浅谈微晶玻璃

合集下载

微晶玻璃名词解释

微晶玻璃名词解释

微晶玻璃名词解释
微晶玻璃是一种具有特殊性能的玻璃材料,通常由玻璃粉末经过特殊处理而制成。

微晶玻璃具有许多优良的性质,如良好的耐温性、耐腐蚀性以及高透明度等,因此在许多领域都得到了广泛的应用。

微晶玻璃的制备过程通常采用以下步骤:首先将玻璃粉末加热至高温,然后加入适当的助熔剂,使其能够均匀地分散在玻璃粉末中。

接着,将混合物在高温下持续加热,使其不断形成晶核,并且促使玻璃粉末中的长石、石英和二氧化硅等物质发生化学反应,形成微晶结构。

这样就可以在玻璃粉末中形成许多微小的晶核,使得微晶玻璃具有更加均匀的晶粒结构和更加良好的光学性能。

微晶玻璃的主要性能特点包括:
1.高透明度:微晶玻璃具有极高的透明度,可以透过99%的阳光,使得其在光学领域应用广泛。

2.良好的耐温性:微晶玻璃具有出色的耐温性,可以承受温度高达600°C的极端高温环境,因此非常适合用于高温环境下的光学设备。

3.耐腐蚀性:微晶玻璃对于许多化学品和化学物质的耐腐蚀性非常好,因此在化学工业和制药行业中得到了广泛应用。

4.良好的机械性能:微晶玻璃具有出色的机械性能,可以轻松地承受压力和冲击负荷,因此非常适合用于机械部件和设备中。

总结起来,微晶玻璃是一种具有特殊性能的玻璃材料,其良好的光学性能、耐温性、耐腐蚀性和机械性能使得其在许多领域得到了广泛的应用。

微晶玻璃及其用途0906-17

微晶玻璃及其用途0906-17

微晶玻璃及其用途0906-17
微晶玻璃及其用途0906-17
微晶玻璃介绍
微晶玻璃(Microcrystalline glass),又称玻璃钢,是一种高性能
玻璃,它具有高熔点、高硬度、高抗损伤性、高粘结性,是一种具有优异
性能的玻璃。

微晶玻璃一般由一种或多种氧化物组成,以硅酸铝硅酸锰为
基本构成元素,具有铝、锰、钛等金属的氧化物成分。

微晶玻璃制造工艺
微晶玻璃的重要原料是硅酸铝、硅酸锰、硅酸钛等金属元素的氧化物,一般经过精细加工组成成分,采用烧结工艺制造出来。

根据加工工艺不同,可以将微晶玻璃分为微晶玻璃颗粒、碎片和微晶玻璃块三种形式。

微晶玻璃的性能特点
1.高熔点:微晶玻璃的熔点可达1600℃,远远高于普通玻璃,具有
良好的高温耐受能力。

2.高硬度:由于微晶玻璃中含有较多的金属元素,具有较高的硬度,
受损伤比普通玻璃小。

3.高抗温性:因为微晶玻璃具有自身的特殊性,具有比普通玻璃更高
的耐热性能,在高温条件下表现良好,可以长时间在高温环境下工作。

4.高抗化学腐蚀性:微晶玻璃表面具有自身的化学结构,能有效抵御
化学侵蚀,耐酸碱性腐蚀能力强,非常适合接触各种有害物质的环境。

微晶玻璃的结构特征

微晶玻璃的结构特征

微晶玻璃的结构特征微晶玻璃是一种具有特殊结构特征的材料,其独特的结构决定了其在光学、电子等领域的广泛应用。

本文将从晶体结构、非晶结构以及微晶结构三个方面介绍微晶玻璃的结构特征。

一、晶体结构晶体结构是指物质中原子或分子的有序排列方式。

晶体结构规整有序,具有周期性重复性。

微晶玻璃的晶体结构主要包括长程有序和短程有序两个部分。

1. 长程有序长程有序是指微晶玻璃中存在一定规则的排列方式,这种排列方式可以延伸到相对较大的距离。

长程有序使得微晶玻璃具有晶体的某些特性,例如热膨胀系数小、热导率高等。

2. 短程有序短程有序是指微晶玻璃中存在的局部有序结构,这种结构的范围较小,一般只涉及几个原子或分子的排列。

短程有序是微晶玻璃的一个重要特征,也是其与晶体和非晶体之间的过渡态。

二、非晶结构非晶结构是指物质中原子或分子的无序排列方式。

与晶体结构不同,非晶结构没有周期性重复性,呈现出类似于无规则堆积的状态。

微晶玻璃的非晶结构主要体现在局部有序和无序混杂的特点上。

1. 局部有序微晶玻璃的非晶结构中会存在一些小的局部有序区域,这些区域由于原子或分子的排列方式相对规整,具有一定的结构特征。

2. 无序混杂除了局部有序区域外,微晶玻璃的非晶结构中还存在大量的无序混杂区域,这些区域中的原子或分子排列方式几乎是随机的,没有明显的规则性。

三、微晶结构微晶玻璃的微晶结构是指晶体结构和非晶结构的混合状态。

微晶玻璃中的微晶区域由于晶体结构的存在,使得其具有一些晶体的特性,例如硬度较高、热稳定性好等。

微晶玻璃的微晶结构特征主要体现在以下几个方面:1. 微晶区域的大小微晶区域的大小是指微晶玻璃中晶体结构所占据的空间范围。

微晶玻璃中的微晶区域通常较小,一般在纳米到微米的尺度范围内。

2. 微晶区域的分布微晶玻璃中的微晶区域通常呈现分散分布的特点,这种分布方式使得微晶玻璃具有均匀的结构特征。

3. 微晶区域的形状微晶区域的形状可以是球形、棒状等不规则形状,这种形状多样性使得微晶玻璃具有更多的应用可能性。

微晶玻璃的定义

微晶玻璃的定义

微晶玻璃的定义微晶玻璃是一种新型的玻璃产品,也被称为粉晶玻璃、微晶质玻璃或云母玻璃。

它是一种由各种硼酸、氧化物和氟化物组成的玻璃陶瓷材料,主要通过高温烧制和快速冷却而形成。

与传统的玻璃相比,微晶玻璃具有更高的硬度、耐热性和耐腐蚀性,可以广泛应用于建筑、家居装饰、电子、医疗、航天等领域。

微晶玻璃的制作微晶玻璃的制作过程包括原料配比、混合、烧结和加工四个步骤。

原料配比微晶玻璃的主要原料包括氧化硅、碱金属氧化物、硼酸、氟化物、氧化钇、氧化镁等。

这些原料需要严格按照一定比例混合,以保证后续加工过程的稳定性和产品质量。

混合将原料混合在一起,并使用球磨机等装置将它们粉碎,以便更好地进行后续的烧结加工。

烧结将混合好的原料在高温下进行烧结,以形成微晶玻璃颗粒。

加工经过烧结后的微晶玻璃颗粒需要进行加工,以便制成各种形状和大小的产品。

加工方式包括切割、打磨、抛光等。

微晶玻璃的特性微晶玻璃具有以下主要特性:高硬度微晶玻璃比普通玻璃更硬,更耐划伤和磨损。

它的硬度接近于天然石英,可以有效降低产品的维护成本,延长寿命。

耐腐蚀性微晶玻璃的表面光洁度高,不易吸附污垢和油脂。

它还对酸、碱、盐溶液等腐蚀性物质具有很好的抵抗能力。

耐热性微晶玻璃的熔点较高,耐高温性能好,可以承受较高温度的蒸汽和火焰,不易变形和炸裂。

透明性微晶玻璃透明度高,可以通过调整成分和加工工艺改善其光学性能,使其具有更好的透光性和透明度。

微晶玻璃的应用微晶玻璃具有广泛的应用前景,可以用于以下方面:建筑微晶玻璃可以用于制作高档玻璃幕墙、楼梯扶手、实验室设备和医疗设备等。

它的高硬度、耐热性和耐腐蚀性可以有效保护建筑物和设备,延长使用寿命。

家居装饰微晶玻璃可以用于制作高档灯饰、花瓶、工艺品等家居装饰品。

它的优美外观和透明度可以为家居带来更高的精致感和品位。

电子微晶玻璃可以用于制造电容器、电池隔膜和触摸屏等电子产品。

它的高硬度和透明度可以使电子产品更加耐用和美观。

医疗微晶玻璃可以用于制作手术器械、人工器官、医疗设备和药品包装等医疗用品。

微晶玻璃简述

微晶玻璃简述

微晶玻璃简要概述刘帅聪(无机非金属材料工程1301班,湖南工学院材料与化学工程学院湖南衡阳 421002)摘要微晶玻璃是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。

由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。

关键词微晶玻璃特点制备工艺应用发展Brief Introduction of Glass - CeramicsShuai Cong Liu(Inorganic Nonmetallic Materials Engineering1301class,Hunan Institute of TechnologyDepartment of Material and Chemical Engineering Hunan Hengyang 421002)Abstract:Crystalline glass is a composite solid material containing a large amount of microcrystals and vitreous bodies obtained by controlling crystallization during the heating process by the base glass or other materials. Because of its high mechanical strength, adjustable thermal expansion, good thermal shock resistance, chemical resistance, low dielectric loss, good electrical insulation properties such as superior performance, has been widely used in many fields.Key words: glass - ceramics, characteristics, preparation technology, application development1 引言微晶玻璃又名玻璃陶瓷,它是指将加有形核剂(个别可不加)的特定组成的基础玻璃,通过控制结晶变成具有一种或多种微晶体和残余玻璃相的复合材料,即在非晶态的玻璃内均匀分布着大量(体积百分比约占95%~98%)的随机取向的微小陶瓷晶体(通常小于10μm)。

微晶玻璃透明的原理

微晶玻璃透明的原理

微晶玻璃是一种特殊的玻璃材料,其透明性能取决于其化学成分和微观结构。

以下是微晶玻璃透明的原理:
1. 纯净的化学成分:微晶玻璃通常采用高纯度的玻璃原料,如二氧化硅(SiO2)、硼三氧化物(B2O3)等,以确保玻璃中没有显著的杂质和不均匀性。

2. 均匀的微观结构:微晶玻璃的制备过程中需要严格控制玻璃的结晶和微观结构,使得玻璃内部的晶粒尺寸均匀,没有明显的气泡和夹杂物。

3. 光的透射和折射:由于微晶玻璃内部没有明显的结构不均匀性和杂质,光线在玻璃中的传播受到较小的散射和吸收,因此可以实现较高的透明度。

4. 表面处理:微晶玻璃的表面经过精细加工和抛光处理,可以减少表面粗糙度对光线的散射,提高玻璃的透明性能。

总的来说,微晶玻璃透明的原理是通过优化材料的化学成分、微观结构和表面处理,最大限度地减少光线在玻璃中的吸收和散射,从而实现较高的透明度。

微晶玻璃分类

微晶玻璃分类

微晶玻璃分类微晶玻璃是一种具有特殊纹理和光泽的玻璃材料。

它具有高质量的透明度和耐磨性,被广泛应用于建筑、家居装饰、电子产品和汽车等领域。

本文将从微晶玻璃的制备工艺、特点和应用方面进行分类介绍。

一、微晶玻璃的制备工艺微晶玻璃是通过特殊的制备工艺制成的。

首先,将玻璃坯料加热至高温状态,然后迅速冷却。

这一过程使得玻璃内部的晶体结构发生变化,形成微晶体。

随后,对玻璃进行进一步的热处理和加工,使其表面呈现出独特的纹理和光泽。

二、微晶玻璃的特点1. 纹理独特:微晶玻璃具有独特的纹理和光泽,能够使其与普通玻璃材料相区别。

2. 高透明度:微晶玻璃具有较高的透明度,能够有效传递光线,增加室内采光亮度。

3. 耐磨性强:微晶玻璃的表面硬度较高,具有较强的耐磨性,不易被刮花。

4. 耐腐蚀性好:微晶玻璃能够抵抗多种化学物质的腐蚀,具有较好的耐候性。

5. 防紫外线:微晶玻璃能够有效阻挡紫外线的侵入,对室内物品起到保护作用。

三、微晶玻璃的应用1. 建筑领域:微晶玻璃常用于建筑的外墙、隔断、天花板等装饰材料。

其独特的纹理和光泽可以增加建筑的美观度和现代感。

2. 家居装饰:微晶玻璃可以用于制作家具、橱柜、灯具等家居装饰品。

其高透明度和耐磨性能使得家居空间更加明亮和耐用。

3. 电子产品:微晶玻璃常用于电子产品的显示屏、触摸屏等部件。

其高透明度和防紫外线特性可以提升电子产品的显示效果和使用寿命。

4. 汽车领域:微晶玻璃广泛应用于汽车的前挡风玻璃、车窗等部件。

其耐磨性和防紫外线特性可以保护驾乘人员的安全和健康。

微晶玻璃是一种具有独特纹理和光泽的玻璃材料,具有高透明度和耐磨性的特点。

它广泛应用于建筑、家居装饰、电子产品和汽车等领域,为这些领域的产品增添了美观度和实用性。

随着科技的不断发展,微晶玻璃的制备工艺和应用领域也在不断创新和拓展,为人们的生活带来了更多便利与美好。

微晶玻璃成分

微晶玻璃成分

微晶玻璃(Microcrystalline Glass)是一种特殊类型的玻璃材料,其组分可以根据具体制备工艺和应用而有所不同。

然而,一般来说,微晶玻璃的成分通常包括以下几种主要成分:
硅氧化物(SiO2):硅氧化物是玻璃的主要成分之一,它赋予玻璃强度和稳定性。

铝氧化物(Al2O3):铝氧化物可以改善玻璃的熔融性和物理性能。

锂氧化物(Li2O):锂氧化物的添加可以促进微晶玻璃的结晶,提高其耐热性和力学性能。

钙氧化物(CaO):钙氧化物通常被用作玻璃的网络调节剂,有助于控制玻璃的熔融性和稳定性。

镁氧化物(MgO):镁氧化物可以影响微晶玻璃的热膨胀系数和机械性能。

钠氧化物(Na2O)和钾氧化物(K2O):这些碱金属氧化物可以影响玻璃的熔融性、抗击热冲击性和电学性能。

其他氧化物:微晶玻璃的成分还可能包括少量的其他金属氧化物,以及特定添加剂,以实现特定的性能要求。

需要注意的是,不同制备工艺和厂家可能会使用不同的成分比例和添加剂,以获得特定的微晶玻璃性能。

因此,具体微晶玻璃的成分可能会有所变化。

微晶玻璃及其应用

微晶玻璃及其应用

浇铸法工艺流程:
配料
混合
玻璃熔制
浇铸
研磨抛光
微晶玻璃
晶化
脱模
带颗粒纹 理产品
优点:可浇铸成异形性,对生产一些异形板有很大优势,产品致密 度高,无气孔,抗压强度大。 缺点:对模具质量要求高,模具损耗大,生产成本高。
溶胶凝胶法:
将金属有机盐作为原料,溶解到乙醇中,,并以醋酸为催化 剂;在恒温下加热,一段时间后,随部分溶剂挥发,有积金属盐不 断水解并缩聚,溶液的浓度和粘度不断增大,并形成一种不可流动 的凝胶状态,然后再逐步进行热处理,最后获得微晶玻璃。
枝晶结构是由晶体在某一晶格方向上加速生长造成的。枝晶的总轮 廓与通常晶体形貌相似,在枝晶结构中保留了很高比例的残余玻璃 相。枝晶在三维方向上连续贯通,形成骨架。由于氢氟酸对亚硅酸 锂的侵蚀速度要比铝硅酸盐玻璃相更快,亚硅酸锂枝晶有容易被银 感光成核,可将复杂的图案转移到微晶玻璃上。
高度晶化微晶玻璃的晶粒尺寸可以控制在几十纳米以内,得到超细 颗粒结构。在锂铝硅透明微晶玻璃中,由于充分核话,基础玻璃中 形成大量的钛酸锆晶核,β-石英固溶体晶相在晶核上外延生长,形 成平均晶粒尺寸约60nm均匀的超细颗粒结构。由于晶粒尺寸远小于 可见光波长,并且β-石英固溶体的双折射率较低,该微晶玻璃透光 率很高。 类硅酸盐矿物在二维方向上结晶能够产生一种互锁的积木结构,是 可切削微晶玻璃的典型显微结构。由于云母晶相较软,而且能使切 削工具尖端引起的裂纹钝化、偏转和分支而产生碎片剥落,不会产 生灾难性破坏,因此即使晶相体积分数仅40%也具有良好的可切削 性,此外,云母相的连续性也使此类微晶玻璃具有很高的电阻率和 介电强度。
烧结法的制备流程为;
配料
混合
玻璃熔制
水淬

微晶玻璃用途和特点

微晶玻璃用途和特点

微晶玻璃用途和特点
在当今科技日新月异的时代,一种新型材料——微晶玻璃正悄然改变着我们的生活。

这种材料以其独特的性能和美观的设计,赢得了越来越多人的青睐。

本文将探讨微晶玻璃的用途和特点,以及它如何成为现代科技与美学的完美结合。

微晶玻璃是一种由高度有序的纳米晶体颗粒组成的透明材料。

它的制作工艺十分精细,需要经过多道严格的工序。

然而,正是这些复杂的制作过程赋予了微晶玻璃无可比拟的优越性能。

首先,微晶玻璃具有极高的硬度和耐磨性,使其成为理想的建筑材料、电子设备外壳等应用领域的理想选择。

其次,微晶玻璃具有良好的隔热性和保温性,使其在家电、汽车等领域得到广泛应用。

此外,微晶玻璃还具有优异的光学性能,如高透明度、抗紫外线等特点,使其在照明、显示设备等领域具有广泛的应用前景。

除了强大的性能,微晶玻璃还以其独特的美学设计吸引了众多设计师和消费者。

由于其高度有序的晶体结构,微晶玻璃呈现出丰富的色彩和纹理变化,为设计师提供了广阔的创作空间。

无论是现代简约风格的家居装饰,还是时尚前卫的电子产品设计,微晶玻璃都能发挥出独特的美感效果。

同时,由于其良好的加工性能,微晶玻璃可以轻松地进行切割、打孔、抛光等加工工艺,使得产品设计更加灵活多样。

随着人们对生活品质的要求不断提高,微晶玻璃的应用前景越来越广阔。

在建筑领域,越来越多的建筑师开始尝试将微晶玻璃应用于外墙、天窗、地面等方面,以提升建筑的整体美感和舒适度。

在电子
设备领域。

微晶玻璃漫谈.

微晶玻璃漫谈.

1
物理、化学特性
力学特性
2
机械强度高; 热膨胀系数可在很大范围内调整; 硬度大,耐磨性能好; 与相同力学性能的金属材料相比,密 度小、质地致密、不透水、不透气; 具有良好的化学稳定性和热稳定, 能 适应恶劣的使用环境; 微晶玻璃的特性 电绝缘性能优良,介电损耗小、介电 常数稳定; 通过组成的设计来获取特殊的光学、 电学、磁学、热学和生物等功能
与玻璃的不同之处
组成
微晶玻璃:微晶相(0.1~0.5um)与玻璃相共存的复相材料。 玻璃:玻璃相(非晶相)。
颜色与透明度
微晶玻璃:可以是透明的或呈各种花纹和颜色的非透明体。
玻璃:一般是各种颜色、透光率各异的透明体。
2
微晶玻璃的特性 微晶玻璃既有玻璃的基本性能,又兼具陶瓷的 多晶特征,集中了玻璃和陶瓷的特点。其性能 指标往往优于同类玻璃和陶瓷。
2
新型透明防火微晶玻璃
新型透明防火微晶玻璃是近年来国外研制开发的一类新型β-石英透明微晶玻璃,具 有良好的抗热炸裂和耐火性能,遇到火灾时在一定的耐火时间内不会炸裂,从而可 以隔断火焰和烟气。
地面
10//2017
内墙
10/9/2017
大堂柱体
10/9/2017
外墙干挂
10/9/2017
在电子工业的应用
2
硬盘基板
目前,微晶玻璃基板已经应用到计算机硬盘上,来增加磁盘的存储能力。与金属合 金、Al2O3陶瓷基板相对比,微晶玻璃具有更优越的力学性能,它在受到冲击和弯 曲压力时不易变形。此外,微晶玻璃基板具有更平整和光滑的表面,相对陶瓷更适 合于平板薄膜技术。
在生物医学领域的应用
1
牙齿材料
通常这类微晶玻璃有两大类: 一类是用于牙齿移植,另一类是用于牙齿修复。这 两种微晶玻璃材料的性能特性存在许多差异。

微晶玻璃晶体析出原理

微晶玻璃晶体析出原理

微晶玻璃晶体析出原理1. 引言1.1 微晶玻璃晶体析出原理简介微晶玻璃是一种具有微米尺度晶粒大小的玻璃材料,其晶体析出原理是指在适当条件下,玻璃原料中所含的各种元素以一定的方式结合,形成微小晶核,并逐渐长大形成晶体结构。

微晶玻璃在工艺制备和性能方面有诸多优点,因此受到广泛关注。

微晶玻璃晶体析出过程主要包括两个阶段:核心形成和晶体生长。

在核心形成阶段,原料中的元素逐渐聚集形成微小晶核;而在晶体生长阶段,这些微小晶核会逐渐长大,形成完整的晶体结构。

这一过程受到析出条件的影响,如温度、压力、成分比例等因素都会对晶体析出起到重要作用。

通过深入研究微晶玻璃晶体析出原理,我们能够更好地掌握其制备工艺和性能调控方法,从而为其在各个领域的应用提供更广阔的空间。

随着材料科学的不断发展,微晶玻璃的应用价值也将逐渐得到充分挖掘,为人类社会的发展做出更大的贡献。

1.2 微晶玻璃的应用价值微晶玻璃还可以用于制作生物医学器件,如生物芯片、显微镜片和医用光学器械等。

微晶玻璃具有良好的生物相容性和化学稳定性,可以避免对人体造成损害,并能有效保护生物样品不受污染,因此在生物医学领域具有广泛的应用前景。

微晶玻璃还可以用于制作电子器件,如光纤通信器件、传感器和显示屏等。

微晶玻璃具有优异的电气性能和热稳定性,能够有效改善电子器件的性能,并且具有较高的抗辐射能力,因此在电子领域有着广泛的应用前景。

微晶玻璃具有很高的应用价值,不仅可以在光学、生物医学和电子领域发挥重要作用,还有着很多潜在的应用领域等待挖掘和开发。

【2000字】2. 正文2.1 微晶玻璃晶体的形成过程微晶玻璃晶体的形成过程是一个复杂而精细的过程,通常包括以下几个主要步骤:1. 初期析出阶段:在溶液中存在着过饱和度,微晶玻璃的成核是在这个阶段发生的。

原子或分子聚集形成起始核,并开始生长。

在这个阶段,克服活化能是最困难的部分,也是形成晶核的关键。

2. 晶核生长阶段:晶核在溶液中沉积周围的离子或分子,晶体的生长逐渐扩展到整个颗粒。

微晶玻璃特点及应用

微晶玻璃特点及应用

微晶玻璃特点及应用微晶玻璃是一种新型玻璃材料,具有许多独特的特点和广泛的应用。

下面将详细介绍微晶玻璃的特点以及应用。

微晶玻璃具有以下特点:1.高机械强度:微晶玻璃具有高硬度和强度,比普通玻璃更耐磨损,更不容易破碎。

2.超低温热膨胀系数:微晶玻璃的热膨胀系数非常低,可以在极端温度条件下仍然保持稳定。

3.优异的光学性能:微晶玻璃具有优异的透光性,可用于光学领域的高清透光窗,具有良好的平整度和清晰度。

4.优良的化学稳定性:微晶玻璃具有优异的抗酸碱性和化学稳定性,不易受到化学物质的侵蚀。

5.良好的热稳定性:微晶玻璃在高温条件下能够保持稳定,不易被热传导和热辐射。

6.可加工性强:微晶玻璃可以通过冷加工、热加工和化学加工等多种方法进行加工,可切割、打磨、磨削等,加工性能极佳。

7.防辐射性能好:微晶玻璃对电磁辐射、紫外线和其他有害辐射具有较好的屏蔽和防护效果。

微晶玻璃的应用十分广泛,下面将详细介绍几个主要的应用领域:1.光学技术领域:由于微晶玻璃具有良好的光学性能,可以广泛应用于光学仪器、光学系统和光学器件等领域。

例如,微晶玻璃可以用于高清晰摄像头的镜头保护膜,可以提供更加清晰、透光度更高的成像效果。

2.医疗领域:微晶玻璃具有优良的生物相容性,不会对人体产生刺激和毒性,因此广泛应用于医疗器械、医用耗材和生物芯片等领域。

例如,微晶玻璃可以用于人工关节、植入式医疗器械、光学传感器等医疗器械。

3.汽车工业:由于微晶玻璃具有高强度和耐磨损性,可以广泛应用于汽车领域。

例如,微晶玻璃可以用于汽车前挡风玻璃和侧窗玻璃,提供良好的视野和安全性能。

4.通信领域:微晶玻璃具有优异的抗辐射性能和低损耗特性,可以广泛应用于通信设备和光纤通信系统中。

例如,微晶玻璃可以用于通信光纤的保护层和连接器,提供更好的信号传输和稳定性能。

5.建筑装饰领域:由于微晶玻璃具有优秀的透光性和耐候性,可以应用于建筑装饰领域。

例如,微晶玻璃可以用于建筑物外墙、天窗和幕墙等,提供高透光度的装饰效果。

微晶玻璃及其用途0906-17

微晶玻璃及其用途0906-17

微晶玻璃及其用途一、微晶玻璃微晶玻璃(Microcrystalline Glass)是一种综合材料,与传统玻璃相比,其软化温度、热稳定性、化学稳定性、机械力学性能较好;与陶瓷相比,它的显微结构致密、无气孔、表面光洁、制品尺寸准确并能生产特大尺寸的制品,因此微晶玻璃既有玻璃的基本性能,又有陶瓷的多晶特征,兼容了玻璃、陶瓷两者的特点,故也称为玻璃陶瓷或结晶化玻璃。

微晶玻璃比高炭钢硬、比铝轻,机械强度比普通玻璃大6倍多,耐磨性不亚于铸石,热稳定性好(加热900℃骤然投入5℃冷水而不炸裂),电绝缘性能与高频瓷接近,化学稳定性与硼硅酸玻璃相同,不怕酸碱侵蚀。

因其可用矿石、工业尾矿、冶金矿渣、粉煤灰、煤矸石等作为主要生产原料,且生产过程中无污染,产品本身无放射性污染,故又被称为环保产品或绿色材料。

微晶玻璃板色彩丰富而均匀,无色差,光泽柔和晶莹,外观酷似天然石材,而机械性能指标、化学稳定性、耐久性、表面光洁度、环保及加工性能等方面都超过花岗石。

透明微晶玻璃板和微晶玻璃板二、微晶玻璃在建筑领域中的应用微晶玻璃既有玻璃的基本性能,又有陶瓷的多晶特征,兼容了玻璃、陶瓷两者的特点,广泛应用于建筑领域。

◆微晶玻璃作为建筑装饰材料的优点:1、丰富多变的颜色和柔和的质感,微晶玻璃的色泽花纹可根据要求设计,而且共有棕红、大红、橙、黄、绿、蓝、紫、白、灰、黑等基色,可任意组合各种色调,可以生产高雅的纯白色板材,其研磨抛光后的光泽度大于90度,可达镜面效果。

抛光后可产生均匀和谐的漫反射效果,形成自然柔和的质感,毫无光污染。

2、优良的耐腐性及耐久性,微晶玻璃的耐酸性和耐碱性都比花岗岩、大理石优良,而本身作为化学稳定性优良的无机材料,即使长期暴露于风雨及空气中,也不会出现变质、褪色、强度降低等现象。

3、吸水性低,微晶玻璃的吸水率几近为零,所以水不易渗入,并且附着于表面的污物也很容易擦洗干净。

4、强度大,可较量化,安装灵巧方便,微晶玻璃材料是一种特殊高温工艺制成的均质材料,根除了导致天然石材断裂的细碎裂纹,所以在强度上、耐磨度上均优于天然花岗石材,不易受损,可适当调节材料厚度以配合施工方法,符合现代建筑物轻巧、坚固的潮流。

理疗仪微晶玻璃的作用原理

理疗仪微晶玻璃的作用原理

理疗仪微晶玻璃的作用原理
理疗仪微晶玻璃是一种常见的理疗设备,其作用原理涉及多个方面。

首先,微晶玻璃具有良好的导热性能,可以有效地传导热能。

当理疗仪微晶玻璃接触皮肤时,它可以吸收体内的热能,并将其传导到皮肤表面,从而产生热疗效果。

其次,微晶玻璃还具有较高的红外辐射能力。

红外辐射可以渗透皮肤表层,作用于深层组织,促进血液循环和新陈代谢。

这种红外辐射的作用可以帮助舒缓肌肉疼痛、缓解炎症反应,并促进组织修复。

此外,微晶玻璃还具有负离子释放的特性。

负离子是一种带负电荷的氧分子,可以与空气中的有害物质结合,净化空气。

当理疗仪微晶玻璃释放负离子时,它可以改善周围环境的空气质量,提供更好的呼吸环境。

综上所述,理疗仪微晶玻璃的作用原理主要包括热疗效果、红外辐射和负离子释放。

这些作用相互协同,可以帮助缓解疼痛、促进血液循环和组织修复,并改善周围环境的空气质量。

微晶玻璃生产技术

微晶玻璃生产技术

微晶玻璃生产技术
无缺
1.微晶玻璃的定义
微晶玻璃,又称抛光玻璃,是一种用于公共建筑物,室内装饰,家居
用途的玻璃产品。

具有高光泽,优良的视觉效果,耐久耐磨,经久耐用的
特性,广泛应用于建筑物的表面装饰。

2.微晶玻璃的原理
微晶玻璃的特殊表面处理技术可以消除光泽差的现象,减少玻璃用户
使用时的反光现象,从而提高微晶玻璃的使用质量。

微晶玻璃的表面经过
抛光处理,由原来的小疤痕变成细小的坑洼,具有良好的表面光泽度及视
觉效果。

3.微晶玻璃的制作方法
a.物料准备
使用玻璃原材料,例如浮法玻璃、夹胶玻璃、厚板玻璃,切割成符合
要求的尺寸大小。

b.抛光处理
将玻璃产品放入到抛光机中,进行抛光处理,手动和机械抛光均可,
能够去除表面的小疤痕、凹凸、微孔,使其视觉效果更佳。

c.清洗处理
抛光处理后的玻璃产品,需要进行清洗处理,以便减少污渍和清洁度,并可以增加玻璃的光泽度。

d.烘干处理
抛光处理后,玻璃产品需要进行烘干处理,以便去除产品表面的水份,并进行冷却,以免玻璃受热而损坏。

e.检验处理。

微晶玻璃 第一章

微晶玻璃 第一章

1 绪论1.1 微晶玻璃的定义1.1.1 定义及特性微晶玻璃(glass-ceramic)又称玻璃陶瓷,是将特定组成的基础玻璃,在加热过程中通过控制晶化而制得的一类含有大量微晶相及玻璃相的多晶固体材料。

玻璃是一种非晶态固体,从热力学观点看,它是一种亚稳态,较之晶态具有较高的内能,在一定的条件下,可转变为结晶态。

从动力学观点看,玻璃熔体在冷却过程中,黏度的快速增加抑制了晶核的形成和长大,使其难以转变为晶态。

微晶玻璃就是人们充分利用玻璃在热力学上的有利条件而获得的新材料。

微晶玻璃既不同于陶瓷,也不同于玻璃。

微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的。

微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。

另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。

尽管微晶玻璃的结构、性能及生产方法与玻璃和陶瓷都有一定的区别,但是微晶玻璃既有玻璃的基本性能,又具有陶瓷的多相特征,集中了玻璃和陶瓷的特点,成为一类独特的新型材料。

微晶玻璃具有很多优异的性能,其性能指标往往优于同类玻璃和陶瓷。

如热膨胀系数可在很大范围内调整(甚至可以制得零膨胀甚至是负膨胀的微晶玻璃);机械强度高;硬度大,耐磨性能好;具有良好的化学稳定性和热稳定性,能适应恶劣的使用环境;软化温度高,即使在高温环境下也能保持较高的机械强度;电绝缘性能优良,介电损耗小、介电常数稳定;与相同力学性能的金属材料相比,其密度小但质地致密,不透水、不透气等。

并且微晶玻璃还可以通过组成的设计来获取特殊的光学、电学、磁学、热学和生物等功能,从而可作为各种技术材料、结构材料或其他特殊材料而获得广泛的应用。

浅谈微晶玻璃

浅谈微晶玻璃

浅谈微晶玻璃摘要微晶玻璃是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。

微晶玻璃具有很多优异的性能,这些特性一般都超过了普通的金属材料、有机材料及无机非金属材料。

这些优异的性能使微晶玻璃受到了极大的欢迎。

关键词微晶玻璃组成结构制备工艺应用发展1引言微晶玻璃(Glass-ceramic)又名玻璃陶瓷,它是指将加有形核剂(个别可不加)的特定组成的基础玻璃,通过控制结晶变成具有一种或多种微晶体和残余玻璃相的复合材料,即在非晶态的玻璃内均匀分布着大量(体积百分比约占95%~98%)的随机取向的微小陶瓷晶体(通常小于10μm)。

同原始玻璃相比,微晶玻璃的特点是无脆性、强度高、化学稳定性好、热稳定性和硬度比较高,并具有一些特殊的性能;与大理石、花岗岩相比,由于其组成是均匀细小晶体,因此其机械性能、耐化学腐蚀、硬度等主要物化性能均优于大理石、花岗岩,因此具有广泛的发展前途和应用价值,用它来代替天然和人造大理石已逐步成为时代的趋势[1]。

我国对微晶玻璃的研究起步于上世纪的八十年代初,经过二十多年的开发,微晶材料的生产工艺基本上已趋于成熟,进人了实用阶段。

它主要用做建筑装饰材料、飞机、火箭、卫星等结构材料,医疗、化工等防腐材料以及军事上,如激光制导材料等。

2 微晶玻璃的组成与结构2.1 组成与一般玻璃不同,微晶玻璃的组成应分解为:(1)玻璃的总体化学组成,它应未微晶化的玻璃的化学组成一致;(2)各相的化学组成,它包括析出的各晶相和残余玻璃组的化学组成。

首先应指出,仅有一定范围的组成能符合制备微晶玻璃的要求。

一般都应含有一定量的玻璃形成剂。

SiO2 ,B2O8等。

其作用在于使玻璃易于晶化而易于引起分,以间接促进核化与晶化。

虽然对分相的作用见解分岐,但一般认为,选择亚稳分相附近的组成有益于微晶化。

此外,许多种添加剂的引入,会起到晶核剂的作用,促进玻璃的整体晶化。

晶核剂及其作用机理的研究是微晶玻璃组成研究的一个重要问题。

微晶玻璃发展概述

微晶玻璃发展概述

1 绪论1.1 微晶玻璃发展概述微晶玻璃是一种无孔隙致密均质的微晶体与残余玻璃相所组成的复合固态材料,它是由含成核剂的基础玻璃经严格的热处理制度受控晶化制得的.微晶玻璃的晶体含量通常被认为在50%-98%之间,晶体尺寸在10nm到几十个μm[1-4]。

由于微晶的存在使这类材料的性质与原玻璃发生了本质变化。

微晶玻璃的结构和生产方法与玻璃和陶瓷都有差别,又集中了这两者的特点,而其结构又使微晶玻璃兼有玻璃和陶瓷两者所具备的优良性能[5,6].它开辟了一个可以满足各种技术要求的全新领域, 一经问世,就受到广泛瞩目,并得到迅速发展。

实用微晶玻璃发展是比较近代的事,虽然很久就知道多数玻璃在适当的温度下加热足够的时间就可能结晶或失透。

但在早期的玻璃制造业中,人们把玻璃相的析晶现象只作为一种生产中出现的缺陷努力加以克服[7,8],直到十八世纪30年代,法国化学家鲁米汝尔进行了从玻璃制备多晶材料的早期尝试[5]。

他指出,如果把玻璃瓶安放在沙子和石膏的混合物中经受数天炽热处理,它就将变成不透明的类瓷的物体。

虽然鲁米汝尔能够把玻璃转化成多晶陶瓷,但他没有完成对晶化过程的控制,而这对于制造真正的微晶玻璃是必要的.按照他的工艺过程所制备的材料具有低的机械强度,并且在热处理过程中会产生变形。

在鲁米汝尔的研究之后大约二百年后的二十世纪五十年代,美国Corning Glass Works开始进行研究其研究人员斯徒基申请了第一个微晶玻璃的专利[5], 他把感光后不透明的玻璃加热到比平常在热处理过程中所用的温度更高的温度,获得了重要的发现。

他发现玻璃没有熔化,而是转变为不透明的多晶陶瓷材料。

这种材料具有比原始玻璃高得多的机械强度以及其它的性能,如电绝缘性能,也能显著改善。

在这种从玻璃到陶瓷形态的转变中,制品没有变形,只有微小的尺寸改变,这代表第一批具有真正工程意义的微晶玻璃的问世。

微晶玻璃的出现不仅给我们提供了一种性能优越、应用广泛的新材料,而且给我们提供了玻璃晶化行为的基础研究的的新领域和研究力学性质和电学性质的新材料。

微晶玻璃的发展范文

微晶玻璃的发展范文

微晶玻璃的发展范文
一、微晶玻璃的介绍
微晶玻璃是一种玻璃制品,其由一种由铝酸盐制成的无机玻璃粉末经
过特殊工艺制成,具有优异的力学性能,在紫外光线作用下易于抛光,有
良好的耐腐蚀性,可对腐蚀性介质或溶液抵抗很好,具有优良的物理机械
性能和化学稳定性,以及无毒无味性。

它广泛应用于许多领域,如轻质材料、激光光学器件等。

二、微晶玻璃的发展历程
微晶玻璃的发展历史可以追溯到20世纪50年代,当时美国航空航天
局(NASA)成功制作出第一种微晶玻璃,它的发展催生了一种新的材料。

此后,微晶玻璃被广泛应用于航空航天、汽车、建筑、医疗、消费品、船
舶等领域,成为各行各业的一种重要材料,并且不断被改进优化。

1、50年代:NASA研制第一种微晶玻璃,并广泛应用于航空航天领域;
2、70年代:由于其优异的性能,微晶玻璃开始被广泛应用于汽车、
建筑、医疗、消费品、船舶等领域;
3、80年代:微晶玻璃的研究和应用进入快速发展阶段,优良的性能
和性价比使其被广泛使用;
4、90年代:镀膜技术在微晶玻璃上的应用技术逐步成熟,优化了微
晶玻璃的性能;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈微晶玻璃摘要微晶玻璃是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。

微晶玻璃具有很多优异的性能,这些特性一般都超过了普通的金属材料、有机材料及无机非金属材料。

这些优异的性能使微晶玻璃受到了极大的欢迎。

关键词微晶玻璃组成结构制备工艺应用发展1引言微晶玻璃(Glass-ceramic)又名玻璃陶瓷,它是指将加有形核剂(个别可不加)的特定组成的基础玻璃,通过控制结晶变成具有一种或多种微晶体和残余玻璃相的复合材料,即在非晶态的玻璃内均匀分布着大量(体积百分比约占95%~98%)的随机取向的微小陶瓷晶体(通常小于10μm)。

同原始玻璃相比,微晶玻璃的特点是无脆性、强度高、化学稳定性好、热稳定性和硬度比较高,并具有一些特殊的性能;与大理石、花岗岩相比,由于其组成是均匀细小晶体,因此其机械性能、耐化学腐蚀、硬度等主要物化性能均优于大理石、花岗岩,因此具有广泛的发展前途和应用价值,用它来代替天然和人造大理石已逐步成为时代的趋势[1]。

我国对微晶玻璃的研究起步于上世纪的八十年代初,经过二十多年的开发,微晶材料的生产工艺基本上已趋于成熟,进人了实用阶段。

它主要用做建筑装饰材料、飞机、火箭、卫星等结构材料,医疗、化工等防腐材料以及军事上,如激光制导材料等。

2 微晶玻璃的组成与结构2.1 组成与一般玻璃不同,微晶玻璃的组成应分解为:(1)玻璃的总体化学组成,它应未微晶化的玻璃的化学组成一致;(2)各相的化学组成,它包括析出的各晶相和残余玻璃组的化学组成。

首先应指出,仅有一定范围的组成能符合制备微晶玻璃的要求。

一般都应含有一定量的玻璃形成剂。

SiO2 ,B2O8等。

其作用在于使玻璃易于晶化而易于引起分,以间接促进核化与晶化。

虽然对分相的作用见解分岐,但一般认为,选择亚稳分相附近的组成有益于微晶化。

此外,许多种添加剂的引入,会起到晶核剂的作用,促进玻璃的整体晶化。

晶核剂及其作用机理的研究是微晶玻璃组成研究的一个重要问题。

而在网络外体中往往需引入具有小离子半径、大场强的Li+,Mg2+和Zn2+等。

其作用在于使玻璃易于晶化或易于引起分相,以间接促进核化与晶化,同时选择亚稳分相附近的组成有益于微晶化。

此外,许多种添加剂的引入,如TiO2、ZrO2、Cr2O3等,会起到晶核剂的作用,促进玻璃的整体晶化。

为了保证重新热处理过程中易于整体晶化,在组成设计时必须使玻璃具有适合的粘度—温度曲线[2]。

2.2 结构材料的外观性能取决于它的内在结构。

微晶玻璃的结构包括晶相和玻璃相的组成、数量和它们的相对比例,因此其性能既取决于玻璃的组成又取决于它的晶化工艺,因为晶体的种类由玻璃组成决定,而晶化工艺却在很大程度上影响着析出晶体的数量和大小[3]。

微晶玻璃是由结晶相和玻璃相组成的,结晶相是多晶结构,晶体细小。

在晶体之间分布着残存的玻璃相,玻璃相把数量巨大、粒度细微的晶体结合起来。

微晶玻璃中结晶相、玻璃相分布的状态,随它们的比例而变化。

当玻璃相占的比例大时,玻璃相呈现为连续的基体,而彼此孤立的晶相均匀地分布在其中;当玻璃相数量较少时,玻璃相分散在晶体网架之间,呈连续网络状;当玻璃相数量很低时,它就以薄膜的状态分布在晶体之间。

微晶玻璃是晶体同玻璃体的复合体,其性能由两者的性质及数量比例决定。

3 微晶玻璃的特点微晶玻璃采用一种不同于陶瓷的制造工艺,与普通玻璃相近,但特性与陶瓷却迥然不同。

因为当玻璃中充满微小晶体后(每立方厘米约十亿晶粒),玻璃固有的性质发生变化,即由非晶形变为具有金属内部晶体结构的玻璃结晶材料。

微晶玻璃比高炭钢硬、比铝轻,机械强度比普通玻璃大6倍多,耐磨性不亚于铸石,热稳定性好(加热900℃骤然投入5℃冷水而不炸裂),电绝缘性能与高频瓷接近,化学稳定性与硼硅酸玻璃相同,不怕酸碱侵蚀。

微晶玻璃板色彩丰富而均匀,无色差,光泽柔和晶莹,外观酷似天然石材,而机械性能指标、化学稳定性、耐久性和表面光洁度等方面都超过花岗石。

分析如下:1、丰富的色泽和良好的质感通过工艺控制可以生产出各种色彩、色调和图案的微晶玻璃蚀面材料。

其表面经过不同的加工处理又可产生不同的质感效果。

抛光微晶玻璃的表面光洁度远远高于天然石材,其光泽亮丽,使建筑物豪华和气派。

而毛光和亚光微晶玻璃可使建筑平添自然厚实的庄重感,所以微晶玻璃可以在色泽和质感上能很好地满足设计者的要求。

2、色调均匀天然花岗石难以避免明显的色差,这是其固有的缺陷。

而微晶玻璃易于实现颜色均匀,达到更辉煌的装饰效果。

尤其是高雅的纯白色微晶玻璃,更是天然石材所望尘莫及的。

3、永不浸湿、抗污染凡由天然石材装修的墙面,经过雨雪浸淋都会留下湿纹,而且一连数月甚至更长时间都无法恢复原状。

这种缺陷是因为天然石材有一定的吸水性,导致其渗水、渗碱,甚至渗泥浆,从而影响其原有色泽甚至产生污染和浸湿石材表面。

而微晶玻璃则具有玻璃不吸水的天生特性,所以不易污染,其豪华外观不但不受任何雨雪的侵害,反而还借此“天雨自涤”的机会而备增光辉,能全天候地永葆高档建筑的堂皇。

由于易于清洁,从建筑物的维护和保养方面考虑,可以大大降低维护成本。

4、优良的机械性能和化学稳定性微晶玻璃是无机材料经高温精制而成,其结构均匀细密,比天然石材更坚硬、耐磨、耐酸碱等,即使暴露于风雨及被污染的空气中也不会变质、褪色[4]。

5、高度的破裂安全性仿石材的微晶玻璃有多种。

天津标准国际建材工业有限公司生产的一种内部结构像花岗石那样的颗粒状组织的微晶玻璃,即便强力冲击引起破裂,其破裂规律也和花岗石一样,只形成三岔裂纹,裂口迟钝不伤手。

而一般的玻璃或其它仿石材微晶玻璃,则会出现蛛网粉碎状,成为不安全因素。

6、高度环保性能微晶玻璃不含任何放射性物质,确保了环境无放射性污染。

尽管抛光微晶玻璃功能达到近似于玻璃的表面光洁度,但光线不论从任何角度照射,都可形成自然柔和的质感,毫无光污染。

7、规格齐全,易加工成型根据需要可以生产各种规格、厚度的平板和弧形板、由于微晶玻璃可用加热方式加工成型,所以其弧形板加工简单、经济。

微晶玻璃的生产工艺,除具有上述微晶化温度低和晶化速度快的特点外,还具有质地细腻,加工光泽度高,不风化,不吸水,可加工成曲面的特点。

微晶玻璃的外观可与玛瑙、玉石、鸡血石等名贵石材相近,装饰效果良好。

用微晶玻璃制成的微晶玻璃装饰板,具有许多奇妙的特性——它属于玻璃制品,却砸不碎,碰不破;它的表面具有天然石材的质感,却没有色差;它像大规格抛光砖一样密实,可铺地,可挂墙,却没有瓷砖釉面褪色的弱点;像铝型复合板一样,可任意着色,外表华丽,却不像铝塑板那样怕氧化,不耐腐蚀。

正是这些色泽美观、外观华丽、永不磨损、永不褪色、不怕腐蚀的特殊优良性能,使微晶玻璃成为继装饰玻璃、天然石材、金属板材之后而流行的高档装饰材料[5]。

4 微晶玻璃的制备工艺微晶玻璃的制备方法根据其所用原材料的种类、特性、对材料的性能要求而变化,主要有熔融法、烧结法、溶胶-凝胶法、二次成型工艺、强韧化技术等。

4.1 熔融法微晶玻璃最早采用的制备方法就是熔制法,直到今天熔制法仍是制备微晶玻璃的主要方法。

熔制法的主要工艺过程为:将一定量的晶核剂加入到玻璃原料中,充分混合均匀制成玻璃配合料,于1500~1600℃高温下熔制,均化后将玻璃成型,经退火后在一定温度下进行核化和晶化,以获得晶粒细小且结构均匀的微晶玻璃制品。

热处理制度的确定是微晶玻璃生产的技术关键。

最佳的成核温度一般介于相当于粘度为1011~1012泊的温度范围之间。

作为初步的近似估计,最佳成核温度介于Tg和比它高50℃的温度之间。

晶化温度上限应低于主晶相在一个适当的时间内重熔的温度。

通常是25℃~50℃。

根据热处理过程一般分两个阶段进行,即将退火后的玻璃加热至晶核形成温度T核,并保温一定时间,在玻璃中出现大量稳定的晶核后再升温到晶体生长温度T晶,使玻璃转变为具有亚微米甚至纳米晶粒尺寸的微晶玻璃。

对于给定的玻璃成分选择合适的晶核剂是至关重要的。

微晶玻璃的成核剂可以分为贵金属及氧化物两大类。

贵金属成核剂主要是以Au、Ag、Pt等贵金属或Cu作晶核剂,而氧化物成核剂常用的有TiO2、ZrO2和P2O5。

晶核剂的作用,一类是促进基质玻璃的亚稳分相,导致相界面的发展,降低了晶核形成的势垒。

另一类晶核剂是借助于均匀成核。

晶核剂在玻璃熔体中分散度高,能诱导主晶相的异相成核。

这类晶核剂在玻璃中成核活化能低,会导致高的均匀成核速度。

还有一类晶核剂,在玻璃中具有两种价态的氧化物,成为价电子的接受者,使玻璃中局部能量产生变化而引起自发核化,如V 2O5、Fe 2O 3、Cr 2O 3等过渡元素的氧化物[1]。

熔融法制备微晶玻璃具有如下优点:(1)可采用任何一种玻璃的成形方法,如压制、浇注、吹制、拉制,便于生产形状复杂的制品和机械化生产;(2)制品无气孔,致密度高;(3)玻璃组成范围宽。

其缺点为:(1)熔制温度过高,通常都在1400~1600℃,能耗大。

(2)热处理制度在现实生产中难于控制操纵。

(3)晶化温度高,时间长,现实生产中难于实现。

熔融法可采用技术成熟的玻璃成型工艺来制备复杂形状的制品,便于机械化生产。

由玻璃坯体制备的微晶玻璃在尺寸上变化不大,组成均匀,不存在气孔。

空隙等陶瓷中常见的缺陷,因而微晶玻璃不仅性能优良且具有比陶瓷更高的可靠性。

4.2 烧结法烧结法是使玻璃粉末产生颗粒粘结,然后经过物质迁移使粉末产生强度并导致致密化和再结晶的过程,烧结的推动力是粉状物料的表面能大于多晶烧结体的晶界能。

烧结微晶玻璃是将玻璃颗粒通过受控烧结、结晶制得。

与普通陶瓷烧结不同的是,烧结微晶玻璃是将玻璃颗粒进行烧结,在加热、烧结过程中,玻璃本身还发生成核析晶现象。

析晶有利于提高烧结体的强度和美化外观装饰效果,但同时也增加玻璃的粘度,阻碍粘性流动,甚至使烧结难于进行。

因此,烧结法生产微晶玻璃要求基础玻璃在较低的粘度下具有一定的析晶能力,并且其表面析晶速度不宜太大。

其目的是为了使烧结时的致密化和晶化过程发生在不同的温度区域,以减少析晶对致密化的干扰。

在微晶玻璃的烧结和结晶过程中,控制适当的表面析晶速率是获得低气孔率微晶玻璃的关键。

烧结法制备微晶玻璃的工艺流程如下:配料→熔制→水淬→粉碎→过筛→成型→烧结→加工它的优点是:(1)基础玻璃的熔制温度与熔融法相比较,熔融温度低且时间短,因此该法适于需要高温才能熔融的玻璃制备微晶玻璃。

(2)烧结法还有一个显著的特点,即玻璃经过水淬后,颗粒细小,表面积增加,比熔融法制得的玻璃更易于晶化,因而有时可以不使用晶核剂。

(3)生产过程易于控制,很容易实现机械化、自动化生产,便于目前建筑陶瓷厂的转型。

(4)产品质量好,成品率高,厚度及规格可变,能够生产大尺寸制品。

相关文档
最新文档