人教版八年级数学上册教案《全等三角形》

合集下载

人教版八年级上册12.1全等三角形教学设计

人教版八年级上册12.1全等三角形教学设计

人教版八年级上册12.1全等三角形教学设计前言全等三角形是初中数学中的重要知识点之一,其概念与性质是高中几何学习的基础。

因此,对全等三角形的学习十分重要,可以培养学生的逻辑思维能力、几何直观与美感。

本教学设计旨在通过反思学生的学习状况,制定出一套高效的教学方案。

教学目标1.掌握全等三角形的概念和标志。

2.掌握在不同条件下判定三角形全等的方法。

3.培养学生的几何直观和逻辑思维能力。

教学重点1.全等三角形的概念和标志。

2.判定三角形全等的方法。

教学难点判定三角形全等的方法。

教学内容及流程1.概念讲解(时长:15分钟)–引导学生从生活常识中认识全等三角形。

–定义全等三角形,明确其概念和标志。

–通过示意图向学生直观展示全等三角形的特征。

2.判定全等三角形的方法(时长:30分钟)–分别介绍边-角-边、角-边-角和边-边-边三种判定方法。

–生动的比喻和实际演示,帮助学生理解三种判定方法的本质。

–请同学们进行练习题。

3.练习题解析(时长:15分钟)–将练习题的解法及步骤进行详细讲解。

–同时呈现一些容易出错和易混的问题进行分析和解释。

4.设计小实验(时长:30分钟)–为了让学生更好地理解全等三角形的概念和性质,我们准备了一个小实验。

–在学生面前放置一些木制三角板,让学生自行组合出全等三角形,并进行学习的验证。

–学生可以利用手中的尺子进行测量,来验证三角形的边长、角度等是否相等。

5.课堂小结(时长:10分钟)–对本节课的要点进行复述,并与学生一起总结本堂课的收获和不足。

教学评价及小结本节课通过多角度的讲解和生动的示例,让学生更好地理解了全等三角形的概念和性质,特别是三种判定方法。

同时,通过小实验的方式,让学生能够在实际操作中更好地体验全等三角形的特征。

学生的几何直观能力得到提升,学习积极性也得到很好的体现,达到了预期的教学目标。

在未来的教学中,可以考虑使用更多案例来让学生更好的理解全等三角形的知识点。

《人教版八年级上册全册数学教案》.pdf

《人教版八年级上册全册数学教案》.pdf

2 .这时它们的三个顶点、三条边和三个内角分别重合了.
3 .完全重合说明三条边对应相等,三个内角对应相等,
?对应顶点在相对应的位置.
【教师活动】根据学生交流的情况,给予补充和语言上的规范.
1 .概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,
?重合的边叫做对应边,重合的
角叫做对应角.
2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,
? 到角的两边的距离相等的点在角的平分线上. (判定定理)
教学内容 本节课主要内容是探索三角形全等的条件( SSS), ?及利用全等三角形进行证明. 教学目标 1 .知识与技能 了解三角形的稳定性,会应用“边边边”判定两个三角形全等. 2 .过程与方法 经历探索“边边边”判定全等三角形的过程,解决简单的问题. 3 .情感、态度与价值观 培养有条理的思考和表达能力,形成良好的合作意识. 重、难点与关键 1 .重点:掌握“边边边”判定两个三角形全等的方法. 2 .难点:理解证明的基本过程,学会综合分析法. 3 .关键:掌握图形特征,寻找适合条件的两个三角形. 教具准备 一块形状如图 1 所示的硬纸片,直尺,圆规.
培养观察、操作、分析能力,体会全等三角形的应用价值.
重、难点与关键
1 .重点:会确定全等三角形的对应元素.
2 .难点:掌握找对应边、对应角的方法.
3 .关键: 找对应边、对应角 有下面 两种方法 :( 1)全等三角形对应角所对的边是对应边,两个对应角
所夹的边是对应边; ( 2)对应边所对的角是对应角, ?两条对应边所夹的角是对应角.
?如果本图 11. 1─2△ ABC和
△ DBC全等,点 A 和点 D,点 B 和点 B,点 C 和点 C 是对应顶点, ?记作△ ABC≌△ DBC.

人教版八年级上册数学教学设计《12.1 全等三角形》

人教版八年级上册数学教学设计《12.1 全等三角形》

人教版八年级上册数学教学设计《12.1 全等三角形》一. 教材分析《12.1 全等三角形》是人教版八年级上册数学的一个重要章节,主要内容包括全等三角形的概念、全等三角形的性质、全等三角形的判定方法等。

本章通过全等三角形的学习,培养学生对几何图形的认识和理解,提高学生的空间想象力,为后续几何学习打下基础。

二. 学情分析八年级的学生已经掌握了三角形的基本知识,对三角形的性质和判定方法有一定的了解。

但全等三角形作为三角形的一个重要分支,其概念和性质较为抽象,学生理解和掌握全等三角形的难度较大。

因此,在教学过程中,要注重引导学生从实际问题中抽象出全等三角形的概念,并通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。

三. 教学目标1.了解全等三角形的概念,掌握全等三角形的性质和判定方法。

2.培养学生对几何图形的认识和理解,提高学生的空间想象力。

3.培养学生运用全等三角形的知识解决实际问题的能力。

四. 教学重难点1.全等三角形的概念及其性质。

2.全等三角形的判定方法。

3.全等三角形在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出全等三角形的概念。

2.通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。

3.运用多媒体辅助教学,提高学生的空间想象力。

4.采用小组合作学习的方式,培养学生的团队合作精神。

六. 教学准备1.准备相关教学课件和教学素材。

2.设计具有代表性的例题和练习题。

3.准备全等三角形的模型或图片,用于直观展示。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如拼图、制作模型等,引导学生思考:如何判断两个三角形是否完全相同?从而引出全等三角形的概念。

2.呈现(10分钟)介绍全等三角形的定义、性质和判定方法。

通过PPT展示全等三角形的图形,让学生直观地感受全等三角形的特征。

同时,给出全等三角形的判定方法,如SSS、SAS、ASA、AAS等。

人教版八年级上册数学《全等三角形》教案

人教版八年级上册数学《全等三角形》教案

第十二章全等三角形11.2全等三角形一、教学目标1.理解全等形、全等三角形的概念.2.能熟练找出两个全等三角形的对应角、对应边.3.理解并能灵活应用全等三角形的性质.培养学生动态研究几何图形的意识.二、教学重点及难点重点:1.理解全等形、全等三角形的概念.2.理解并能灵活应用全等三角形的性质.难点:全等三角形的性质的运用三、教学用具电脑、多媒体、课件、两个完全相同的三角形硬纸板、直尺、刻度尺四、相关资源两个全等三角形平移、旋转、翻折的动画演示;全等三角形的概念与性质微课五、教学过程(一)情景导入1.下面哪些图形的形状相同、大小相等?2.你能再举出生活中的一些类似例子吗?设计意图:丰富的图形容易引起学生的注意,使他们能很快地投入到学习的情境中,同时反映了现实生活中存在着大量的全等图形.(二)探究新知1.举出现实生活中能够完全重合的图形的例子.这些形状相同、大小相等的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.结论:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.2.全等三角形的对应边、对应角以及两个三角形全等的符号表示、读法、写法.让学生把刚才得到的两个三角形,任意放置,与同桌交流.(1)任何时候两个三角形能够完全重合在一起吗?(2)此时它们的顶点、边、角,有什么特点?把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.“全等”用“≌”表示,读作“全等于”.两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如ABC△和△≌△.△,点A和点D、点B和点E、点C和点F是对应顶点,记作ABC DEFDEF(3)先让学生对全等三角形纸板进行观察,小组讨论,合作交流,观察对应边、对应角有何关系,教师再用动画进行演示,从而得出全等三角形的性质.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.用几何语言表示:如图:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF(全等三角形的对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应角相等).3.总结找对应元素的常用方法:(1)从运动角度看a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.b.旋转法:一个三角形绕某一点旋转一定角度能与另一个三角形重合,从而发现对应元素.c.平移法:沿某一方向推移使两个三角形重合来找对应元素.(2)根据位置元素来推理a.有公共边的,公共边是对应边;b.有公共角的,公共角是对应角;c.有对顶角的,对顶角是对应角;d.两个全等三角形最大的边是对应边,最小的边也是对应边;e.两个全等三角形最大的角是对应角,最小的角也是对应角.(3)对应边所对的角是对应角,对应角所对的边是对应边.设计意图:让学生通过观察图案的形状、大小,得到“全等形”的概念,进而迁移到“全等三角形”的概念,从互相重合过渡到全等三角形的对应边、对应角相等的性质,从而培养学生探索与发现问题的能力,并尝试应用知识解决问题,再一次激发学生的学习热情,掌握确定全等三角形的对应顶点、对应边、对应角的方法,帮助学生不断完善和构建正确的认知结构,完成新知识的内化.(三)课堂练习1.判断下列各组图形中的两个图形是全等形的是.(填序号)2.下列命题:①形状相同的三角形是全等三角形;②面积相等的三角形是全等三角形;③全等三角形的周长相等;④经过平移、翻折或旋转得到的三角形与原三角形是全等三角形.其中正确的命题有().A.1个B.2个C.3个D.4个3.如图,已知△ABC≌△BAD,点A,C的对应点分别为B,D,如果AB=5 cm,BC =7 cm,AC=10 cm,那么BD等于().A.10 cm B.7 cm C.5 cm D.无法确定学生独立完成..答案:1.①②④;2.B;3.A设计意图:检查学生对本节课所学知识的掌握情况.六、课堂小结1.在自己动手实际操作中,得到了全等三角形的哪些知识?2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等,但公共顶点不一定是对应顶点.3.在运用全等三角形的定义和性质时,应注意规范书写格式.设计意图:通过小结,使学生梳理本节所学内容,理解全等形、全等三角形的概念,学会用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题.七、板书设计12.1.1 全等三角形全等三角形:能够完全重合的两个三角形叫做全等三角形对应定点对应边对应角全等三角形的性质:全等三角形的对应边相等全等三角形的对应角相等第十二章全等三角形12.2全等三角形的判定第1课时一、教学目标1.引导学生积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程.2.掌握三角形全等的“边边边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

第12章全等三角形教案

第12章全等三角形教案

八年级数学上册教案第12章 《全等三角形》教案12.1全等三角形的性质【教学目标】1.知识与技能目标掌握怎样的两个图形是全等形,了解全等形,了解全等三角形的的概念及表示方法。

掌握全等三角形的性质。

2.过程与方法目标:围绕全等三角形的这一中心。

让学生找出它的对应顶点、对应边、对应角,进而引入本节问题的主题,强化了本课的中心问题-----全等三角形的性质。

【重点难点】重点:全等三角形的性质难点:寻找全等三角形中的对应元素【教学过程】课前准备 :全等三角形纸片一、引入新课全等形定义:能够完全重合的两个图形叫做全等形。

全等三角形定义:能够完全重合的两个三角形叫做全等三角形“全等”用“≌”表示,读“全等于”,记作:△ABC ≌△A ′B ′C ′二、 探究1.全等三角形中的对应元素问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。

这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。

表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。

①对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

②对应边:全等三角形中互相重合的边叫做对应边。

③对应角:全等三角形中互相重合的角叫做对应角。

2.全等三角形的性质全等三角形的对应边相等。

全等三角形的对应角相等。

用几何语言表示全等三角形的性质如图:∵∆ABC ≌ ∆DEF∴AB =DE ,AC =DF ,BC =EF (全等三角形对应边相等)∠A =∠D ,∠B =∠E ,∠C =∠F (全等三角形对应角相等)3.探求全等三角形对应元素的找法1.下图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?用式子表示全等关系.并说出其中的对应关系.回答:两个全等的三角形经过一定的转换可以重合。

人教版八年级数学上册《全等三角形》教学教案

人教版八年级数学上册《全等三角形》教学教案

《全等三角形》精品教案课题12.1全等三角形单元第十二单元学科数学年级八年级学习目标1.知识与技能(1)了解全等形和全等三角形的概念,掌握全等三角形的性质。

(2)能正确表示两个全等三角形,能找出全等三角形的对应元素。

2.过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质3.情感态度和价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

重点理解并掌握全等三角形的对应边相等,对应角相等难点正确寻找全等三角形的对应元素教学过程教学环节教师活动学生活动设计意图导入新课课件展示:问题引入。

【过渡】在日常生活中,我们总能看到这样的情景:上边的图片,相信大家都不陌生,两只米奇有什么一样或者不一样的地方吗?我们经常看到的剪纸,大家观察一下,又有什么特点?它们的大小和形状一样吗?观察图片,通过提示的问题,从形状和大小两个方面对其进行分析回答,从而对全等图形有一个初步的概念。

通过现实生活中大量的形状、大小相同的图形,注重从一般到特殊并运用贴近学生生活的图案,激发学生探究的兴趣,由此说明数学来源于生活。

(学生回答)这两种图形形状一样吗?大小一样吗?【过渡】除了这个之外,我们再来看一下这两个五角星。

【过渡】和刚刚的问题一样,你能说出这两个图形的大小和形状一样吗?(学生回答)【过渡】其实,大家的答案都是一样的,它们的大小和形状都是一样的,这就是我们今天要学习到的全等图形。

讲授新课1.全等三角形【过渡】刚刚我们看了几个不同的全等图形,谁能来总结一下什么样的图形是全等图形呢?全等图形的概念:能完全重合的图形称为全等图形。

现在我们来思考一个问题,如果两个图形全等,它们的形状大小一定都相同吗?课件展示动画。

【过渡】通过刚刚的动画,我们看到,这两个五角星是可以完全重合的,结合日常生活,大家对重合是如何理解的呢?(学生回答)【过渡】重合就意味着这两个图形的大小和形状是完全一样的。

人教版八年级上册第十二章12.1全等三角形(教案)

人教版八年级上册第十二章12.1全等三角形(教案)
人教版八年级上册第十二章12.1全等三角形(教案)
一、教学内容
人教版八年级上册第十二章12.1全等三角形:
1.全等三角形的定义与性质;
2.全等三角形的判定方法:SSS、SAS、ASA、ห้องสมุดไป่ตู้AS、HL;
3.全等三角形的实际应用;
4.举例说明全等三角形在几何证明中的应用。
二、核心素养目标
1.培养学生的几何直观与空间想象能力,通过全等三角形的学习,使学生能够理解和运用全等变换,把握图形的运动和位置关系;
首先,我意识到需要更多地强调全等三角形判定方法的实际应用。学生们在理解了基本概念后,可能仍然不知道如何将这些知识运用到具体问题中。在未来的教学中,我打算引入更多与生活相关的实例,让学生们明白全等三角形不仅仅是一个几何学的概念,而是与我们的生活息息相关。
其次,我发现在小组讨论环节,有些学生参与度不高,可能是因为他们对全等三角形的应用还不够自信。为了提高学生的参与度,我考虑在下次课上进行一些小组竞赛,鼓励学生们积极思考,增强他们解决问题的信心。
举例:在证明全等三角形的过程中,学生需要明确指出哪些角是对应角,哪些边是对应边,而不是简单地比较三角形的角和边是否相等。
-难点三:将全等三角形的理论知识应用到解决实际问题中。学生在面对实际问题时,可能不知道如何将问题转化为全等三角形的问题来解决。
举例:在解决平面图形的面积问题时,学生需要能够识别图形中的全等三角形,并利用全等性质来简化计算过程。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等三角形的基本概念。全等三角形是指能够完全重合的两个三角形,它们的对应角相等,对应边相等。它是几何学中的一个重要概念,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了全等三角形在实际中的应用,以及它如何帮助我们解决问题。

人教版数学八年级上册第十二章《全等三角形》教案(全单元)

人教版数学八年级上册第十二章《全等三角形》教案(全单元)

第十二章全等三角形12.1全等三角形1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.重点探究全等三角形的性质.难点掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形的对应元素.一、情境导入一位哲人曾经说过:“世界上没有完全相同的叶了”,但是在我们的周围却有着好多形状、大小完全相同的图案.你能举出这样的例子吗?二、探究新知1.动手做(1)和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?(2)把手中三角板按在纸上,画出三角形,并裁下来,把三角板和纸三角形放在一起,观察它们能够重合吗?得出全等形的概念,进而得出全等三角形的概念.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.2.观察观察△ABC与△A′B′C′重合的情况.总结知识点:对应顶点、对应角、对应边.全等的符号:“≌”,读作:“全等于”.如:△ABC≌△A′B′C′.3.探究(1)在全等三角形中,有没有相等的角、相等的边呢?通过以上探索得出结论:全等三角形的性质.全等三角形的对应边相等,对应角相等.(2)把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状.把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B 和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.三、应用举例例1如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.分析:由全等三角形的性质可知,全等三角形的对应边相等,找出对应边即可.解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm,∴BC=6 cm.又∵CD=5 cm,∴BD=BC-CD=6-5=1(cm).四、巩固练习教材练习第1题.教材习题12.1第1题.补充题:1.全等三角形是()A.三个角对应相等的三角形B.周长相等的三角形C.面积相等的两个三角形D.能够完全重合的三角形2.下列说法正确的个数是()①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④全等三角形的面积相等.A.1B.2C.3D.43.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EF=5,求∠DFE 的度数与DE的长.补充题答案:1.D2.D3.∠DFE=35°,DE=8五、小结与作业1.全等形及全等三角形的概念.2.全等三角形的性质.作业:教材习题12.1第2,3,4,5,6题.本节课通过学生在做模型、画图、动手操作等活动中亲身体验,加深对三角形全等、对应含义的理解,即培养了学生的画图识图能力,又提高了逻辑思维能力.12.2三角形全等的判定(4课时)第1课时“边边边”判定三角形全等1.掌握“边边边”条件的内容.2.能初步应用“边边边”条件判定两个三角形全等.3.会作一个角等于已知角.重点“边边边”条件.难点探索三角形全等的条件.一、复习导入多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?二、探究新知根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.强调在应用时的简写方法:“边边边”或“SSS”.实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.明确:三角形的稳定性.三、举例分析例1如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件.让学生独立思考后口头表达理由,由教师板演推理过程.教师引导学生作图.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.四、巩固练习教材第37页练习第1,2题.学生板演.教师巡视,给出个别指导.五、小结与作业回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.进一步明确:三边分别相等的两个三角形全等.布置作业:教材习题12.2第1,9题.本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.第2课时“边角边”判定三角形全等1.掌握“边角边”条件的内容.2.能初步应用“边角边”条件判定两个三角形全等.重点“边角边”条件的理解和应用.难点指导学生分析问题,寻找判定三角形全等的条件.一、复习引入1.什么是全等三角形?2.全等三角形有哪些性质?3.“SSS”具体内容是什么?二、新知探究已知△ABC ,画一个三角形△A′B′C′,使AB =A′B′∠B =∠B ′,BC =B′C′. 教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法.操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?(2)上面的探究说明什么规律?总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS ”.三、举例分析多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?分析:如果证明△ABC ≌△DEC ,就可以得出AB =DE. 证明:在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS ). ∴AB =DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.四、课堂练习如图,已知AB =AC ,点D ,E 分别是AB 和AC 上的点,且DB =EC.求证:∠B =∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程. 五、小结与作业 1.师生小结:(1)“边角边”判定两个三角形全等的方法.(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.第3课时“角边角”和“角角边”判定三角形全等1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”) [师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长;(2)画线段A′B′,使A′B′=AB;(3)分别以A′,B ′为顶点,A ′B ′为一边作∠DA′B′,∠EB ′A ′,使∠DA′B′=∠CAB ,∠EB ′A ′=∠CBA ;(4)射线A′D 与B′E 交于一点,记为C′.即可得到△A′B′C′.将△A′B′C′与△ABC 重叠,发现两三角形全等. [师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA ”) 这又是一个判定两个三角形全等的条件. 2.出示探究问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°, ∠A =∠D ,∠B =∠E , ∴∠A +∠B =∠D +∠E. ∴∠C =∠F.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠E ,BC =EF ,∠C =∠F ,∴△ABC ≌△DEF(ASA ). 于是得规律:两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS ”) 例 如下图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中,⎩⎨⎧∠A =∠A ,AC =AB ,∠C =∠B ,∴△ADC ≌△AEB(ASA ). ∴AD =AE.[师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充.三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习图中的两个三角形全等吗?请说明理由.四、课堂小结有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.第4课时 “斜边、直角边”判定三角形全等1.探索和了解直角三角形全等的条件:“斜边、直角边”. 2.会运用“斜边、直角边”判定两个直角三角形全等.重点探究直角三角形全等的条件.难点灵活运用直角三角形全等的条件进行证明.一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS );方法二:测量没遮住的一条直角边和一个对应的锐角(ASA 或AAS ). 工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗? 二、探究新知多媒体出示教材探究5.任意画出一个Rt △ABC ,使∠C =90°.再画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB.把画好的Rt △A ′B ′C ′剪下来,放到Rt △ABC 上,它们全等吗?画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB. 想一想,怎么样画呢?按照下面的步骤作一作: (1)作∠MC′N =90°;(2)在射线C′M 上截取线段B′C′=BC ;(3)以B′为圆心,AB 为半径画弧,交射线C′N 于点A′;(4)连接A′B′.△A ′B ′C ′就是所求作的三角形吗?学生把画好的△A′B′C′剪下放在△ABC 上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL ”. 多媒体出示教材例5如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD.求证:BC =AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C 与∠D 都是直角.在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AB =BA ,AC =BD , ∴Rt △ABC ≌Rt △BAD(HL ). ∴BC =AD.想一想:你能够用几种方法判定两个直角三角形全等?直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS,ASA,AAS,SSS,还有直角三角形特殊的判定全等的方法——“HL”.三、巩固练习如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.学生独立思考完成.教师点评.四、小结与作业1.判定两个直角三角形全等的方法:斜边、直角边.2.直角三角形全等的所有判定方法:定义,SSS,SAS,ASA,AAS,HL.思考:两个直角三角形只要知道几个条件就可以判定其全等?3.作业:教材习题12.2第7题.本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.12.3角的平分线的性质掌握角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.重点角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.难点灵活运用角的平分线的性质和判定解题.一、复习导入1.提问角的平分线的定义.2.给定一个角,你能不用量角器作出它的平分线吗?二、探究新知(一)角的平分线的画法教师出示:已知∠AOB.求作:∠AOB的平分线.然后让学生阅读教材第48页上方思考.(教师演示画图)通过对分角仪原理的探究,得出用直尺和圆规画已知角的平分线的方法,师生共同完成具体作法.(二)角的平分线的性质试验:(1)让学生在已经画好的角的平分线上任取一点P;(2)分别过点P作PD⊥OA,PE⊥OB,垂足为D,E;(3)测量PD和PE的长,观察PD与PE的数量关系;(4)再换一个新的位置看看情况怎样?归纳总结得到角的平分线的性质.分析讨论PD=PE的理由.(三)角平分线的判定教师指出:角的内部到角的两边的距离相等的点在角的平分线上.(1)写出已知、求证.(2)画出图形.(3)分析证明过程.巩固应用:解决教材第49页思考(四)三角形的三个内角的平分线相交于一点1.例题:教材第50页例题.2.针对例题的解答,提出:P点在∠A的平分线上吗?通过例题明确:三角形的三个内角的平分线相交于一点.练习:教材第50页练习.三、归纳总结引导学生小组合作交流:(1)本节课学到了哪些知识?(2)你有什么收获?四、布置作业教材习题12.3第1~4题.教学始终围绕着角平分线及其性质、判定的问题而展开,先从出示问题开始,鼓励学生思考,探索问题中所包含的数学知识,让学生经历了知识的形成与应用的过程,从而更好的理解掌握角平分线的性质。

全等三角形教案6篇

全等三角形教案6篇

全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。

人教版八年级上册12.1全等三角形教学设计

人教版八年级上册12.1全等三角形教学设计
1.强调全等三角形判定条件的逻辑关系,帮助学生建立清晰的几何思维。
2.指出学生在课堂练习中的常见错误,提醒他们在以后的学习中注意避免。
3.鼓励学生提出对本节课知识的疑问,及时解答,确保他们对全等三角形知识的掌握。
一、教学目标
(一)知识与技能
1.理解全等三角形的定义,掌握全等三角形的判定条件(SSS、SAS、ASA),能够准确识别和绘制全等三角形。
人教版八年级上册12.1全等三角形教学设计
一、教学目标
(一)知识与技能
1.理解全等三角形的定义,掌握全等三角形的判定方法,能够准确地识别和绘制全等三角形。
-学生能够回忆起之前学过的等腰三角形、等边三角形等特殊三角形的性质,为新学习的全等三角形判定打下基础。
-通过直观演示和实际操作,让学生掌握SSS(边-边-边)、SAS(边-角-边)、ASA(角-边-角)全等三角形的判定定理,并能够运用这些定理解决具体问题。
1.采用生动的语言和形象的比喻,帮助学生理解抽象的几何概念。
2.使用教具、多媒体等教学资源,增强学生的直观感受。
3.通过与学生互动,及时解答学生的疑问,确保学生对新知识的掌握。
(三)学生小组讨论
在讲授新知后,我会组织学生进行小组讨论,让学生在合作中深入探讨全等三角形的性质和判定方法。我会给出几个具有代表性的问题,引导学生思考:
2.学会运用全等三角形的性质和判定方法解决实际问题,如计算三角形面积、证明线段或角相等。
3.掌握全等变换(平移、旋转、翻转)的基本操作,能够运用这些变换创造全等图形。
(二)过程与方法
1.通过观察、分析和归纳,培养学生逻辑思维能力。
2.设计探究活动,让学生在实践过程中掌握全等三角形的判定方法。
3.通过小组合作,培养学生的团队协作能力和沟通能力。

最新人教版八年级数学上册《全等三角形》优质教案

最新人教版八年级数学上册《全等三角形》优质教案

第十二章全等三角形12.1 全等三角形一、导学1.导入课题:观察下列几组图形:你能发现这几组图片中两个图形有什么关系吗?今天我们开始学习最简单的全等形——全等三角形.2.学习目标:(1)知道全等形及全等三角形的概念.(2)能够准确辨认全等三角形的对应元素.(3)知道全等三角形的性质,并能灵活运用全等三角形的性质解决相应的几何问题.3.学习重、难点:重点:全等三角形的性质.难点:运用全等三角形的性质解决几何问题.4.自学指导:(1)自学内容:探究三角形全等的意义和一个图形经过几何变换前后的关系.(2)自学时间:10分钟.(3)自学方法:操作、观察、比较、归纳.(4)探究提纲:①取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来.②通过上面的操作可以得到全等形的概念:能够完全重合的两个图形叫做全等形;全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.③列举日常生活中两个图形全等的例子.学校教室的前后门,前后窗户.④观察下面甲、乙、丙三个图形的位置变化.如图甲将△ABC沿直线BC平移得△DEF;如图乙将△ABC沿BC翻折180°得到△DBC;如图丙将△ABC绕A旋转180°得△AED.a.各图中的两个三角形全等吗?你能找出图中全等三角形的对应线段(边)和对应角吗?b.根据对应顶点放在对应位置上的方法,图甲记作:△ABC ≌△DEF;图乙记作:△ABC ≌△DBC;图丙记作△ABC ≌△AED.c.一个图形经过平移、翻折、旋转后,形状和大小不变,即:平移、翻折、旋转前后的图形全等.⑤从全等的实际意义中你认为全等三角形有哪些性质吗?对应边相等,对应角相等.二、自学学生可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:对于图甲这种类型的图形,学生能顺利地寻找出对应元素;但对于图乙、图丙这种有重合部分的图形,学生寻找对应元素会存在一定的难度,教师应予以重点关注.(2)差异指导:a.对于图乙、图丙,教师加强动画演示,引导学生观察图形经过翻折、旋转变换后的对应元素的位置;b.引导学生运用几何语言描述全等三角形的性质,用几何语言表示两个三角形全等的时候,一定要强调对应顶点放在对应位置上;c.教师强调同一组图形的记法并不唯一.2.生助生:学生相互交流帮助.四、强化1.基本概念:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.记作:△ABC≌△A′B′C′,符号“≌”读作“全等于”.(注意强调书写时对应顶点字母写在对应的位置上)3.练习:(1)如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.若∠A=20°,∠AOC=75°,你能求出∠B的度数吗?解:OC=OB,OA=OD,CA=BD,∠COA=∠BOD,∠C=∠B,∠A=∠D.∠B=∠C=180°-∠A-∠AOC=85°.(2)如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.若BD=2cm,DE=3cm,你能求出DC的长吗?解:AB=AC,AE=AD,BE=CD,∠BAE=∠CAD.DC=BE=BD+DE=5cm.五、评价1.学生的自我评价:学生相互交谈自己的收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果和不足进行点评.(2)纸笔评价:课堂评价检测.3.教师自我评价(教学反思):本课时通过学生在做模型、画图、动手操作等活动中的体验,完成对三角形全等的认识,重点在对“三角形全等”“对应”等含义的理解.对“全等三角形”的认识,可让学生采用复写纸、手撕、剪纸、扎针眼等方式获取,并鼓励学生间互相交流动手过程中的体验.教学过程中,强调学生自主探索和合作交流,经历观察、实验、归纳、类比、直觉、数据处理等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.一、基础巩固(第1题20分,第2题50分,共70分)1.判断题:(2)全等三角形的周长相等,面积也相等.(√)(3)面积相等的三角形是全等三角形.(×)(4)周长相等的三角形是全等三角形.(×)2.填空:(1)如图,点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180°,可以与△COD 重合,这说明△AOB≌△COD.这两个三角形的对应边是AO与CO,OB与OD,BA与DC;对应角是∠AOB与∠COD,∠OBA与∠ODC,∠BAO与∠DCO.(2)如图,△ABC≌△ADE,则,AB=AD,∠E=∠C.若∠BAE=120°,∠BAD=40°,则∠BAC=80°.(3)△ABC≌△DEF且△ABC的周长为12,若AB=3,EF=4,则AC=5.(4)△ABC≌△BAD,A和B,C和D是对应顶点,如果AB=8cm,BD=6cm,AD=5cm,BC=5cm.(5)如图,△ABE≌△ACD,AB=AC,BE=CD,∠B=50°,∠AEC=120°,则∠DAC的度数等于70°.二、综合应用(每题10分,共20分)3.已知:△DEF≌△MNP,EF=NP,∠F=∠P,∠D=48°,∠E=52°,MN=12cm,求:∠P的度数及DE的长.解:∵△DEF≌△MNP,EF=NP,∠F=∠P,∴∠M=∠D=48°,∠N=∠E=52°,DE=MN=12 cm.又∠M+∠N+∠P=180°∴∠P=80°4.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是(A)A.∠AB.∠BC.∠CD.∠B或∠C三、拓展延伸(10分)5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是(C)A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC人生格言:我们要知道别人能做到的事,只要自己有恒心,坚持努力,就没有什么事是做不到的。

人教版八年级上数学教学设计《第12章全等三角形》

人教版八年级上数学教学设计《第12章全等三角形》

人教版八年级上数学教学设计《第12章全等三角形》一. 教材分析人教版八年级上数学第12章《全等三角形》是初中数学中的重要内容,主要介绍了全等三角形的概念、性质和判定方法。

通过本章的学习,使学生理解和掌握全等三角形的判定和性质,能运用全等三角形的知识解决一些实际问题。

教材中安排了丰富的例题和练习题,有利于学生巩固所学知识。

二. 学情分析学生在学习本章内容前,已经掌握了相似三角形的知识,并具备一定的逻辑思维能力和空间想象能力。

但全等三角形与相似三角形既有联系又有区别,学生需要通过对比、分析、归纳等方法,理解和掌握全等三角形的概念和性质。

同时,学生需要通过大量的练习,提高运用全等三角形知识解决实际问题的能力。

三. 教学目标1.知识与技能目标:使学生理解和掌握全等三角形的概念、性质和判定方法,能运用全等三角形的知识解决一些实际问题。

2.过程与方法目标:通过观察、操作、对比、分析等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的勇气。

四. 教学重难点1.教学重点:全等三角形的概念、性质和判定方法。

2.教学难点:全等三角形的判定方法以及在实际问题中的运用。

五. 教学方法1.情境教学法:通过生活实例引入全等三角形的概念,激发学生的学习兴趣。

2.对比教学法:对比全等三角形与相似三角形的异同,帮助学生深入理解全等三角形的性质。

3.实践操作法:让学生动手操作,通过实际操作得出全等三角形的判定方法。

4.小组合作学习法:培养学生团队合作精神,共同解决实际问题。

六. 教学准备1.教学课件:制作全等三角形的相关课件,包括图片、动画、例题等。

2.教学素材:准备一些全等三角形的实际问题,用于巩固和拓展学生的知识。

3.练习题:挑选一些具有代表性的练习题,用于检验学生对全等三角形知识的掌握程度。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,引导学生思考:如何判断两个三角形是否全等?从而引出全等三角形的概念。

人教版初中八年级数学上册《第十二章 全等三角形》大单元整体教学设计

人教版初中八年级数学上册《第十二章 全等三角形》大单元整体教学设计

人教版八年级数学上册《第十二章全等三角形》——大单元整体教学设计一、内容分析与整合(一)教学内容分析《全等三角形》作为人教版初中八年级数学上册第十二章的核心内容,不仅是几何学知识体系中的一个重要里程碑,也是学生深化几何思维、培养逻辑推理能力的关键章节。

本章内容设计逻辑严密,层次分明,旨在通过系统的学习,使学生全面掌握全等三角形的基本概念、判定方法及其在实际问题中的应用,为后续深入探索相似三角形、三角函数等更高级的数学概念打下坚实的基础。

本章首先从全等三角形的定义切入,明确了两个三角形在完全重合时被称为全等三角形,这一基本概念为后续的学习奠定了理论基础。

教材详细展开了三角形全等的几种主要判定方法,即SSS(三边相等)、SAS(两边及夹角相等)、ASA(两角及夹边相等)和AAS(两角及非夹边相等),每一种判定方法都配以清晰的图形说明和严密的逻辑推理,帮助学生理解并掌握如何根据给定的条件判断两个三角形是否全等。

为了增强学生的实践能力和探索精神,本章还特别融入了“信息技术应用:探究三角形全等的条件”这一环节,鼓励学生利用计算机软件或数学工具进行动态演示和实验操作,通过直观的视觉体验加深对三角形全等判定方法的理解。

这种信息技术与数学教学的深度融合,不仅丰富了教学手段,也极大地提升了学生的学习兴趣和参与度。

本章末尾引入了“角的平分线的性质”这一内容,进一步拓展了全等三角形的应用范畴。

通过学习角的平分线如何影响三角形的形状和大小,学生能够从更广阔的视角理解全等三角形的本质,同时也为后续学习其他几何概念提供了有力的支撑。

《全等三角形》这一章节不仅是对几何学基础知识的深入探索,更是培养学生逻辑思维、空间想象能力和实践操作能力的重要载体。

通过本章的学习,学生不仅能够建立起全等三角形的完整知识体系,还能够在解决实际问题的过程中,体验到数学的严谨之美,为后续的数学学习和个人发展奠定坚实的基础。

教师应充分利用教材资源,结合多样化的教学方法,激发学生的学习兴趣,引导他们主动探索,从而在掌握知识的同时,培养良好的数学素养和创新能力。

人教版八年级上册数学全册教案

人教版八年级上册数学全册教案

11.1全等三角形(1课时)教学目标通过实例表述全等图形的概念和特征,并能找出全等图形;能叙述全等三角形的定义及其相关概念,并能找出两个全等三角形的对应边和对应角;总结出全等三角形的性质,并能进行简单的推理和计算,解决一些实际问题。

教学重、难点重点:全等三角形的概念、性质。

难点:对应边和对应角的确定。

课时安排:1课时教学过程设计(一)生活导入我们身边经常看到“一模一样”的图形,比如同一版面的记念邮票,同一版面的人民币、用两张纸叠在一起剪出的两张窗花等,请大家举出这类图形的例子。

(二)新课问题1:几何中,我们把上述所例举的“一模一样”的图形叫做“全等形”,以下是描述全等形的三种不同的说法,你认为哪种说法是恰当的?(l)形状相同的两个图形叫全等形。

(2)大小相等的两个图形叫全等形。

(3)能够完全重合的两个图形叫全等形。

总结概念:能够完全重合的两个三角形叫做全等三角形。

做一做:请你用两张半透明的薄纸分别描出下中的两个三角形.然后把它们叠放在一起,观察这两个图形是否完全重合.(提高学生的动手能力和观察能力)思考:课本图11.1、11.2、11.3中,各图中的两个三角形全等吗?总结出结论:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。

小组讨论,得出全等三角形有这样的性质:全等三角形的对应边相等;全等三角形的对应角相等。

(三)练习课本课后的练习1、2。

(五)小结引导学生总结出本节的主要知识点。

(六)布置作业:创新作业11.2 三角形全等的条件 (共4课时)教学目标能叙述三角形全等的条件,体会三角形的稳定性;能灵活地运用三角形全等的条件,进行有条理的思考和简单的推理,并能利用三角形的全等解决实际问题;提高动手能力。

教学重、难点重点:三角形全等的条件。

难点:利用三角形全等的条件解题。

课时安排:4课时教学过程设计第一课时(一)复习提问1.怎样的两个三角形是全等三角形?2.全等三角形的性质?(二)SSS定理的得出给出任意两个三角形,有些是全等的,有些不是全等的,我们知道如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C ′这六个条件,就能保证△ABC≌△A′B′C′。

八年级数学上人教版《全等三角形》教案

八年级数学上人教版《全等三角形》教案

《全等三角形》教案
【教学目标】
1.掌握全等三角形的概念和性质,能够应用全等三角形的概念和性质解决相
关问题。

2.掌握全等三角形的判定方法,包括SSS、ASA、AAS、SAS等判定方法。

3.能够运用全等三角形解决一些实际问题,提高数学应用能力。

【教学内容】
1.全等三角形的定义和性质。

2.全等三角形的判定方法。

3.全等三角形的应用。

【教学重点与难点】
1.重点:全等三角形的概念和性质、全等三角形的判定方法。

2.难点:全等三角形的证明方法、运用全等三角形解决实际问题。

【教具准备】
1.黑板、粉笔。

2.教科书、学习辅导资料。

3.多媒体教学设备。

【教学过程】
1.导入新课:通过复习上节课内容,引出全等三角形的概念和性质,以及全
等三角形的判定方法。

2.新课学习:通过举例和讲解,让学生了解全等三角形的基本概念和性质,
然后引导学生学习全等三角形的各种判定方法,包括SSS、ASA、AAS、SAS 等判定方法。

3.巩固练习:通过一系列的练习题,让学生加深对全等三角形概念和性质的
理解,同时让学生掌握全等三角形的证明方法,能够运用全等三角形解决一些实际问题。

4.归纳小结:通过总结本节课学到的知识,让学生明确全等三角形的重要性
和应用价值,同时引导学生思考如何运用全等三角形解决一些实际问题。

5.布置作业:根据学生的学习情况,布置适量的作业,包括概念题、证明题
和应用题等类型,让学生巩固本节课学到的知识。

全等三角形人教版数学八年级上册教案

全等三角形人教版数学八年级上册教案

全等三角形人教版数学八年级上册教案全等三角形指三条边及三个角都对应相等的两个三角形,是几何中全等之一。

根据全等转换,两个全等三角形可以平移、旋转、把轴对称或重叠。

以下是整理的全等三角形人教版数学八年级上册教案,欢迎大家借鉴与参考!12.1全等三角形教案一、课标要求(1)理解全等三角形的概念,能识别全等三角形中的对应边、对应角,掌握并能运用全等三角形的性质。

(2)经历探索三角形全等条件的过程,掌握判定三角形全等的基本事实(“边边边”“边角边”和“角边角”)和定理(“角角边”),能判定两个三角形全等。

(3)能利用三角形全等证明一些结论。

(4)探索并证明角平分线的性质定理,能运用角的平分线的性质。

二、教材分析中学阶段重点研究的两个平面图形间的关系是全等和相似,本章以三角形为例研究全等。

对全等三角形研究的问题和研究方法将为后面相似的学习提供思路,而且全等是一种特殊的相似,全等三角形的内容是学生学习相似三角形的重要基础。

本章还借助全等三角形进一步培养学生的推理论证能力,主要包括用分析法分析条件与结论的关系,用综合法书写证明格式,以及掌握证明几何命题的一般过程。

由于利用全等三角形可以证明线段、角等基本几何元素相等,所以本章的内容也是后面将学习的等腰三角形、四边形、圆等内容的基础。

全等形在几何中处处可见,为了避免学生将全等的概念局限于全等三角形,本章从现实世界中各种各样的全等图形谈起。

接着,教科书从“重合”的角度定义了全等形和全等三角形的概念,这种定义方式有利于学生借助生活经验直观地认识所定义的对象,也便于引出全等形的对应部分。

性质与判定是研究全等三角形的两个重要方面。

教科书由全等三角形的定义直接导出全等三角形的性质。

在研究全等三角形的判定方法时,由图形的性质与判定在命题陈述上的互逆关系出发,引出由三条边分别相等、三个角分别相等判定两个三角形全等的方法。

接下来,教科书构建了一个完整的探索三角形全等条件的活动——首先提出探究的问题:由全等三角形的定义可知,满足三条边分别相等、三个角分别相等的两个三角形全等,那么能否减少条件,简捷地判定两个三角形全等呢?然后从“一个条件”开始,逐渐增加条件的数量,分别探究“一个条件”“两个条件”“三个条件”……能否保证两个三角形全等。

全等三角形教案【优秀7篇】

全等三角形教案【优秀7篇】

全等三角形教案【优秀7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!全等三角形教案【优秀7篇】在教学工作者开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。

人教版八年级(上册)全等三角形教案

人教版八年级(上册)全等三角形教案

课题:12.1全等三角形【教学目标】知识与技能目标:掌握怎样的两个图形是全等形,了解全等形,了解全等三角形的的概念与表示方法。

掌握全等三角形的性质。

体会图形的变换思想,逐步培养动态研究几何意识。

初步会用全等三角形的性质进行一些简单的计算。

过程与方法目标:围绕全等三角形的对应元素这一中心,。

设计一系列问题,给出三组组合图形,让学生找出它的对应顶点、对应边、对应角,进面引入本节问题的主题,强化了本课的中心问题-----全等三角形的性质,经历理解性质的过程。

,体会图形的变换思想,逐步培养学生动态研究几何图形的意识。

情感与态度目标:学生在富有趣味的活动中进行全等三角形的学习,提供学生发现规律的空间,激发学生学习兴趣。

教学重点:全等三角形的性质教学难点:寻找全等三角形中的对应元素教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。

学情分析:这节课是学了三角形的基本知识后的一节课、只要实际操作不出错、学生一定能学好。

课前准备:全等三角形纸片【教学教程】一、创设情境,引入新课1、问题:各组图形的形状与大小有什么特点?一般学生都能发现这两个图形是完全重合的。

归纳:能够完全重合的两个图形叫做全等形。

2.学生动手操作新- 课-标- 第- 一-网⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。

⑵问题:如何在另一纸板再剪一个三角形DEF,使它与△ABC全等?3.板书课题:全等三角形定义:能够完全重合的两个三角形叫做全等三角形“全等”用“≌”表示,读着“全等于”如图中的两个三角形全等,记作:△ABC≌△DEF二、探究全等三角形中的对应元素1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?2.学生讨论、交流、归纳得出:⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《全等三角形》
◆教材分析
本节课是新人教版义务教育课程标准实验教材数学八年级上册第十一章第一课时的内容,本章围绕全等三角形,主要学习全等三角形的有关概念和性质,三角形全等的条件以及角平分线的性质,学生在七年级教材中学过了线段、角、相交线等与三角形有关的知识和一些简单的说理内容,这为全等三角形的学习奠定了基础,并且在今后学习等腰三角形、直角三角形、线段的垂直平分线、角平分线等内容中都要通过证明两个三角形全等来加以解决。

◆教学目标
【知识与能力目标】
1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能用符号正确表示两个三角形全等,能找出全等三角形的对应元素。

【过程与方法目标】
在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,通过全等三角形有关概念的学习,提高学生数学概念的辨析能力,通过找出全等三角形的对应元素,培养学生的识图能力。

【情感态度价值观目标】
通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神,通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧,培养学生科学的学习态度及自信,互相尊重的健全人格。

【教学重点】
全等三角形的概念和性质.
【教学难点】
找出全等三角形的对应边、对应角.
多媒体课件、三角板。

一、新课导入
观察下列图案,指出这些图案中形状与大小相同的图形.
问题:你还能举出生活中一些实际例子吗?
探究:把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?从同一张底片冲洗出来的两张尺寸相同的照片上的图形,放在一起也能够完全重合吗?
这些形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.◆教学重难点

◆课前准备

◆教学过程
能够完全重合的两个三角形叫做全等三角形。

二、传授新知
在图(1)中,把△ABC 沿直线BC 平移,得到△DEF 。

在图(2)中,把△ABC 沿直线BC 翻折180°,得到△DBC 。

在图(3)中,把△ABC 旋转后得到△ADE 。

一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即两图形全等. “全等”用“≌”表示,读作“全等于”。

两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如DEF ABC ∆∆和全等时,点A 和点D ,点B 和点E ,点C 和点F 是对应顶点,记作DEF ABC ∆≅∆。

把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

观察下图,
可以得到全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等。

三、随堂练习
1、如图,△OCA ≌△OBD ,点C 和点B ,点A 与点D 是对应点,则下列结论错误的是( D ).
(A ) ∠COA =∠BOD ;
(B ) ∠A =∠D ;
(C ) CA =BD ;
(D ) OB =OA .
2、△ABN ≌△ACM,∠ABN 和∠ACM 是对应角,AB和AC 是对应边.则下列结论错误的是( C )。

(A)∠AMC =∠ANB ;
(B)∠BAN =∠CAM ;
(C)BM =MN ;
(D)AM =AN .
3、如图,△ABC ≌△CDA,AB 与CD,BC与DA 是对应边,则下列结论错误的是( C )。

(A)∠ BAC =∠ DCA ;
(B)AB //DC ;
(C)∠ BCA =∠ DCA ;
(D)BC //DA .
4、如图,△EFG ≌△NMH,∠F 和∠M 是对应角。

(1)FG 与MH 平行吗?为什么?
(2)判断线段EH 与NG 的大小关系,并说明理由。

(1)平行;
(2)相等.
四、课堂小结
通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素,这也是这节课大家要重点掌握的。

◆教学反思
略。

相关文档
最新文档