运筹学试题4
运筹学考试试题
运筹学考试试题一、选择题(每题2分,共10分)1. 线性规划的标准形式中,目标函数的系数应为:A. 正数B. 负数C. 任意非零数D. 零2. 在单纯形法中,如果某个非基变量的检验数大于零,则:A. 该变量不能进入基B. 该变量必须进入基C. 该变量的值可以增加D. 该变量的值可以减少3. 下列哪项不是运输问题的特殊矩阵?A. 平衡矩阵B. V型矩阵C. U型矩阵D. 散布矩阵4. 对于一个确定的线性规划问题,下列哪项是正确的?A. 只有一个最优解B. 有多个最优解C. 可能没有可行解D. 所有选项都是正确的5. 在动态规划中,状态转移方程的作用是:A. 确定初始状态B. 确定最终状态C. 确定中间状态D. 确定最优解二、简答题(每题5分,共20分)1. 简述单纯形法的基本步骤。
2. 解释什么是灵敏度分析,并说明其在运筹学中的应用。
3. 什么是网络流问题?请举例说明其在实际中的应用。
4. 描述动态规划的基本原理及其与分阶段决策过程的关系。
三、计算题(每题10分,共30分)1. 给定如下线性规划问题,请找出其最优解,并计算目标函数的最小值。
Maximize Z = 3x1 + 2x2Subject tox1 + 2x2 ≤ 103x1 + x2 ≤ 15x1, x2 ≥ 02. 考虑一个有三个仓库(A、B、C)和三个市场(D、E、F)的运输问题。
运输成本矩阵如下:| D E F ||--|--|--|A | 2 3 4 || B | 1 2 3 || C | 5 6 7 |每个仓库的供应量和每个市场的需求量如下:Supply/Demand: A: 10, B: 8, C: 5, D: 8, E: 10, F: 7使用北街角规则找出初始可行解。
3. 一个公司想要在三个城市(城市1、城市2、城市3)之间运输货物。
运输成本和需求量如下表所示:| 城市1 城市2 城市3 ||--|--|--|| 2 3 5 || 1 2 4 || 3 4 6 |需求量:城市1: 4, 城市2: 3, 城市3: 2请使用匈牙利算法解决此问题。
运筹试题
一、回答下面问题(每小题3分)1.在单纯形法计算中,如果不按最小比值规则确定换基变量,则在下一个解中一定会出现。
2. 原问题无界时,其对偶问题,反之,当对偶问题无可行解时,原问题。
3.已知y0为线性规划的对偶问题的最优解,若y0>0,说明在最优生产计划中对应的资源。
4.已知y0为线性规划的对偶问题的最优解,若y0=0,说明在最优生产计划中对应的资源。
5.已知线形规划问题的原问题有无穷多最优解,则其对偶问题的最优解一定是。
6.m个产地n个销地的产销平衡运输问题的模型其决策变量的个数是个;基变量的个数是个;决策变量的系数列向量的特点是。
7.用位势法求解运输问题,位势的含义是;行位势与列位势中有一个的取值是任意的,这是因为。
8.用割平面法求解整数规划,割平面割去了;但未割去。
9.按教材中的符号写出最大流问题的数学模型。
10.什么是截集,何谓最小截集?二、(10分)下表是用单纯形法计算到某一步的表格,已知该线性规划的目标函数值为z=14表1c j x1x2x3x4x3 x12acde11/51σj b-1f g(1)求a—g的值;(8分)(2)表中给出的解是否为最优解。
(2分)三、(每小题6分共12分)车间为全厂生产一种零件,其生产准备费是100元,存贮费是0.05元/天·个,需求量为每天30个,而且要保证供应。
(1)设车间生产所需零件的时间很短(即看成瞬时供应);(2)设车间生产零件的生产率是50个/天。
要求在(1)(2)条件下的最优生产批量Q*,生产间隔期t*和每天的总费用C*。
四、(18分)某公司下属甲、乙两个厂,有A原料360斤,B原料640斤。
甲厂用A、B两种原料生产x1,x2两种产品,乙厂也用A、B两种原料生产x3,x4两种产品。
每种单位产品所消耗各种原料的数量及产值、分配等如下工厂甲分配原料乙分配原料产品x1 x2x3 x4原料AB 8 46 101603305 810 4200310产值(百元) 4 3 3 41.求各厂最优生产计划;(12分)2.问公司能否制定新的资源分配方案使产值更高?(6分)五、(10分)已知有六个村庄,相互间道路的距离如图所示,已知各村庄的小学生数为:A村50人,B村40人,C村40人,D村60人,E村50人,F村90人。
运筹学考试试题
运筹学考试试题一、选择题(每题 5 分,共 25 分)1、线性规划问题的可行域是()A 凸集B 凹集C 无界集合D 空集2、下列哪种情况不能用单纯形法求解线性规划问题()A 存在无界解B 存在唯一最优解C 存在无穷多最优解D 无可行解3、对于运输问题,若总产量等于总销量,则一定存在()A 唯一最优解B 无穷多最优解C 无界解D 最优解4、在动态规划中,以下说法正确的是()A 最优策略的子策略一定是最优的B 状态转移方程是唯一的C 阶段数是固定的D 决策变量的取值是连续的5、排队论中,M/M/1 排队系统的平均队长 Lq 为()A λ/(μ λ)B λ^2/(μ(μ λ))C (λ/μ)^2D (λ/μ)/(1 λ/μ)二、填空题(每题 5 分,共 25 分)1、线性规划问题的标准形式中,约束条件为_____。
2、求解整数规划问题的方法有_____、_____等。
3、运输问题中,若产销平衡,且单位运价表中每行每列都有一个零元素,则最优解中一定有_____个数字格。
4、用分支定界法求解整数规划问题时,若子问题无可行解,则该子问题对应的上界值为_____。
5、在存储论中,不允许缺货,生产时间很短的模型称为_____模型。
三、简答题(每题 10 分,共 20 分)1、简述单纯形法的基本思想和计算步骤。
答:单纯形法的基本思想是从可行域的一个顶点(基本可行解)开始,按照一定的规则转移到另一个顶点,使得目标函数值不断改进,直到找到最优解或判定无最优解。
计算步骤如下:(1)将线性规划问题化为标准形式。
(2)找出一个初始可行基,得到一个初始基本可行解。
(3)检验当前基本可行解是否最优。
如果是,则停止计算;否则,进行换基迭代。
(4)确定换入变量和换出变量。
(5)进行换基运算,得到新的基本可行解,返回步骤3 继续检验。
2、简述动态规划的基本思想和求解步骤。
答:动态规划的基本思想是将多阶段决策问题转化为一系列相互关联的单阶段决策问题,通过求解每个单阶段决策问题的最优解,从而得到整个多阶段决策问题的最优解。
《运筹学》试题及答案(四)
《运筹学》试题及答案一、单选题1. μ是关于可行流f的一条增广链,则在μ上有(D)A.对一切B.对一切C.对一切D.对一切2.不满足匈牙利法的条件是(D)A.问题求最小值B.效率矩阵的元素非负C.人数与工作数相等D.问题求最大值3.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.当基变量x i的系数c i波动时,最优表中引起变化的有(B)A.最优基BB.所有非基变量的检验数C.第i 列的系数D.基变量X B6.当非基变量x j的系数c j波动时,最优表中引起变化的有(C)A.单纯形乘子B.目标值C.非基变量的检验数D. 常数项7.当线性规划的可行解集合非空时一定(D)A.包含点X=(0,0,···,0)B.有界C.无界D.是凸集8.对偶单纯形法的最小比值规划则是为了保证(B)A.使原问题保持可行B.使对偶问题保持可行C.逐步消除原问题不可行性D.逐步消除对偶问题不可行性9.对偶单纯形法迭代中的主元素一定是负元素()AA.正确B.错误C.不一定D.无法判断10.对偶单纯形法求解极大化线性规划时,如果不按照最小化比值的方法选取什么变量则在下一个解中至少有一个变量为正()BA.换出变量B.换入变量C.非基变量D.基变量11.对LP问题的标准型:max,,0Z CX AX b X==≥,利用单纯形表求解时,每做一次换基迭代,都能保证它相应的目标函数值Z必为()BA.增大B.不减少C.减少D.不增大12. 单纯形法迭代中的主元素一定是正元素( )AA.正确B.错误C.不一定D.无法判断13.单纯形法所求线性规划的最优解()是可行域的顶点。
AA.一定B.一定不C.不一定D.无法判断14.单纯形法所求线性规划的最优解()是基本最优解。
运筹学试题及详细答案
运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。
答案:多,竞争。
《运筹学》试题
《运筹学》试题一、名词解释(20分)对偶可行基影子价格灵敏度分析平衡运输问题不平衡运输问题纯整数规划0—1规划问题混合整数规划网络最大流问题二、选择题(20分)1、我们可以通过()来验证模型最优解。
A观察B应用C实验D调查2、建立运筹学模型的过程不包括()阶段。
A观察环境B数据分析C模型设计D模型实施3、建立模型的一个基本理由是去揭晓那些重要的或有关的()A数量B变量 C 约束条件 D 目标函数4、模型中要求变量取值()A可正B可负C非正D非负5、运筹学研究和解决问题的效果具有()A连续性 B 整体性 C 阶段性 D 再生性6、如果线性规划问题有可行解,那么该解必须满足()A所有约束条件 B 变量取值非负 C 所有等式要求 D 所有不等式要求7、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。
A基 B 基本解 C 基可行解 D 可行域8、线性规划问题是针对()求极值问题.A约束B决策变量 C 秩D目标函数9、如果第K个约束条件是“≤”情形,若化为标准形式,需要()A左边增加一个变量B右边增加一个变量C左边减去一个变量D右边减去一个变量10、若某个bk≤0, 化为标准形式时原不等式()A不变 B 左端乘负1 C 右端乘负1 D 两边乘负1三、填空题(20分)1、线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求()的线性规划问题与之对应,反之亦然。
2、在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的()。
3、如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为()。
4、对偶问题的对偶问题是()。
5、若原问题可行,但目标函数无界,则对偶问题()。
6、在某线性规划问题中,已知某资源的影子价格为Y1,相应的约束常数b1,在灵敏度容许变动范围内发生Δb1的变化,则新的最优解对应的最优目标函数值是()(设原最优目标函数值为Z﹡)7、若某约束常数bi的变化超过其容许变动范围,为求得新的最优解,需在原最优单纯形表的基础上运用()求解。
运筹学复习习题
运筹学学习与考试指导模拟考试试题(一)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分.每小题2分,共10分)1。
博弈论中,局中人从一个博弈中得到的结果常被称为( ): A. 效用; B. 支付; C. 决策; D 。
利润。
2.设线性规划的约束条件为⎪⎩⎪⎨⎧≥=++=++0,,,4223421421321x x x x x x x x x则基本可行解为( ). A 。
(0,0,4,3) B.(3,4,0,0) C 。
(2,0,1,0) D 。
(3,0,4,0) 3.minZ=3x1+4x2, x1+x2≥4, 2x1+x2≤2, x1、x2≥0,则( ). A.无可行解B 。
有唯一最优解C 。
有多重最优解D 。
有无界解4.互为对偶的两个线性规划问题的解存在关系( ). A.原问题无可行解,对偶问题也无可行解 B 。
对偶问题有可行解,原问题也有可行解 C.若最优解存在,则最优解相同D.一个问题有无界解,则另一个问题无可行解5.下列图形中阴影部分构成的集合是凸集的是( ):二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
每小题2分,共20分)1。
线性规划问题的每一个基本可行解对应可行域的一个顶点。
( )2. 如果在单纯形表中,所有的检验数都为正,则对应的基本可行解就是最优解。
( )3. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
4.可行解集非空时,则在极点上至少有一点达到最优值。
( ) 5.原问题具有无界解,则对偶问题不可行。
( )6.互为对偶问题,或者同时都有最优解,或者同时都无最优解。
( ) 7.加边法就是避圈法.( )8.一对正负偏差变量至少一个大于零.( ) 9.要求不超过目标值的目标函数是minZ=d+。
( )10.求最小值问题的目标函数值是各分枝函数值的下界。
( ) 三、填空(1分/空,共5分)1.原问题的第1个约束方程是“="型,则对偶问题相应的变量是 变量. 2.若原问题可行,但目标函数无界,则对偶问题 。
运筹学试卷及参考答案
运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
运筹学试题及答案
一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。
2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。
3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划: MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X1≤1 和 X1≥2 。
5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。
6. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D 和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_无解_________; 10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和 Xi ≤INT (b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束问:(1)对偶问题的最优解: Y =(4,0,9,0,0,0)T (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、 已知线性规划(20分) MaxZ=3X 1+4X 2 X 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤8 X 1,X 2≥02) 若C 2从4变成5,最优解是否会发生改变,为什么?3) 若b 2的量从12上升到15,最优解是否会发生变化,为什么?4) 如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3y1+2y2+3y3≥3 y1+4y2+2y3≥4 y1,y2≥02)当C 2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。
《运筹学》课程考试试卷试题(含答案)
《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学考试试卷及答案
运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。
答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。
运筹学试题及答案
运筹学试题及答案运筹学试题及答案一、选择题1. 运筹学是一门综合应用学科,它的研究对象是哪些问题?A. 经济决策问题B. 工程管理问题C. 交通运输问题D. 能源问题E. 以上都是答案:E. 以上都是2. 下列哪项不是运筹学的研究方法?A. 数学规划B. 数据分析C. 模拟仿真D. 统计推断答案:D. 统计推断3. 运筹学中的线性规划是一种用于解决什么类型的问题?A. 最小化问题B. 最大化问题C. 平衡问题D. 优化问题答案:D. 优化问题4. 运筹学中使用的线性规划求解算法有哪些?A. 单纯形法B. 整数规划法C. 动态规划法D. 匈牙利算法答案:A. 单纯形法5. 运筹学中的最优化问题可以分为哪两类?A. 离散最优化和连续最优化B. 线性最优化和非线性最优化C. 线性最优化和整数最优化D. 线性最优化和动态最优化答案:B. 线性最优化和非线性最优化二、判断题1. 运筹学只研究最优化问题,不研究约束条件。
答案:错误2. 运筹学只能用于解决企业管理问题,不适用于其他领域。
答案:错误3. 数学规划是运筹学的重要方法之一,但并不是唯一的方法。
答案:正确4. 运筹学的研究对象只包括一些实际运作困难的问题。
答案:错误5. 线性规划只适用于线性关系,不能处理非线性关系。
答案:正确三、简答题1. 什么是运筹学?答:运筹学是一门综合应用学科,通过数学建模和优化方法来解决经济、工程、管理、交通运输等领域中的优化问题。
它体现了一种科学的决策方法和管理思维,可以帮助人们做出最优决策。
2. 运筹学的主要研究方法有哪些?答:运筹学的主要研究方法包括数学规划、数据分析、模拟仿真和统计推断。
其中,数学规划是运筹学中最重要的方法之一,包括线性规划、整数规划、动态规划等。
数据分析通过对大量数据的统计和分析来揭示内在的规律,模拟仿真通过模拟现实场景进行实验和推演来验证决策方案的可行性,统计推断通过对样本数据进行概率分析和推断来进行决策。
运筹学考试试题
运筹学考试试题
问题一:线性规划
某食品公司有两种包装酱油的产品,产品 A 和产品 B。
产品 A 需
要 2 包的玻璃瓶和 3 包的金属瓶,产品 B 需要 4 包的玻璃瓶和 1 包的金属瓶。
公司每天共有 60 包玻璃瓶和 50 包金属瓶可用于生产。
产品
A 毛利为 10 元/包,产品
B 毛利为 15 元/包。
为了最大限度地提高公司的毛利,请问公司每天应该生产多少包产品 A 和产品 B?
问题二:整数规划
某快递公司需要派送多个包裹,在不同的送货地点停靠。
每个派送地点需要 1 辆专门的送货车。
快递公司最多可以使用 5 辆送货车。
每辆车的容量为 30 个包裹。
每个送货地点的包裹量如下:地点 1 需要 12 个包裹,地点 2 需要 8 个包裹,地点 3 需要 15 个包裹,地点 4 需要 10 个包裹。
每个送货地点停靠一辆车后,可以继续往下一个地点派送。
请问如何安排送货车来最大化送货量?
问题三:动态规划
假设有一个 3×3 的方格矩阵,每个格子里都写有一个正整数。
从左上角出发,每次只能向右或向下移动,直到达到右下角。
路线上所有经过的格子的数字加起来就是这条路径的价值。
求最优路径和的最大值。
问题四:网络流
某市有 4 座工厂,生产不同种类的零件。
每座工厂每天的生产能力不同,且每种零件的需求也不相同。
如何设计一个合理的生产调度方案,使得所有工厂的产量最大化,且满足市场对不同零件的需求?
以上考试试题仅供参考,实际考试内容以试卷内容为准。
祝考试顺利!。
运筹学期末试题及答案4套
《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。
三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为试画出该工程的网络图.(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。
六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。
(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。
二、(20分)已知运输表如下:(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。
三、(35分)设线性规划问题maxZ=2x1+x2+5x3+6x4的最优单纯形表为下表所示:利用该表求下列问题:(1)要使最优基保持不变,C3应控制在什么范围;(2)要使最优基保持不变,第一个约束条件的常数项b1应控制在什么范围;(3)当约束条件中x1的系数变为时,最优解有什么变化;(4)如果再增加一个约束条件3x1+2x2+x3+3x4≤14,最优解有什么变化。
四、(问指派哪个人去完成哪项工作,可使总的消耗时间最小?五、(20分)用图解法求解矩阵对象G=(S1,S2,A),其中六、(20分)已知资料如下表:(1)绘制网络图;(2)确定关键路线,求出完工工期。
运筹学期末试题及答案
运筹学期末试题及答案一、单项选择题(每题2分,共20分)1. 线性规划的最优解一定在可行域的哪个位置?A. 边界上B. 内部C. 顶点D. 不确定答案:A2. 动态规划的基本原理是什么?A. 贪心算法B. 分而治之C. 动态规划D. 回溯算法答案:B3. 整数规划问题中,变量的取值范围是?A. 连续的B. 离散的C. 整数D. 任意实数答案:C4. 以下哪个不是网络流问题?A. 最短路径问题B. 最大流问题C. 旅行商问题D. 线性规划问题答案:D5. 用单纯形法求解线性规划问题时,如果目标函数的系数矩阵是奇异的,则会出现什么情况?A. 无解B. 多解C. 无界解D. 有唯一解答案:C6. 以下哪个算法不是启发式算法?A. 遗传算法B. 模拟退火算法C. 动态规划D. 贪心算法答案:C7. 以下哪个是多目标优化问题?A. 只有一个目标函数B. 有多个目标函数C. 目标函数是线性的D. 目标函数是凸的答案:B8. 以下哪个是确定性决策方法?A. 决策树B. 随机模拟C. 蒙特卡洛方法D. 马尔可夫决策过程答案:A9. 以下哪个是排队论中的基本概念?A. 服务时间B. 到达率C. 队列长度D. 以上都是答案:D10. 以下哪个是存储论中的基本概念?A. 订货点B. 订货周期C. 订货量D. 以上都是答案:D二、多项选择题(每题3分,共15分)1. 以下哪些是线性规划问题的解?A. 可行解B. 基本解C. 基本可行解D. 非基本解答案:ABC2. 以下哪些是整数规划问题的解?A. 整数解B. 混合整数解C. 连续解D. 非整数解答案:AB3. 以下哪些是动态规划的步骤?A. 确定状态B. 确定决策C. 确定状态转移方程D. 确定目标函数答案:ABC4. 以下哪些是排队论中的基本概念?A. 到达过程B. 服务过程C. 等待时间D. 服务台数量答案:ABCD5. 以下哪些是图论中的基本概念?A. 节点B. 边C. 路径D. 环答案:ABCD三、简答题(每题5分,共20分)1. 请简述线性规划的几何意义。
《运筹学》期末考试试题及参考答案
《运筹学》期末考试试题及参考答案《运筹学》期末考试试题及参考答案一、填空题1、运筹学是一门新兴的_________学科,它运用_________方法,研究有关_________的一切可能答案。
2、运筹学包括的内容有_______、、、_______、和。
3、对于一个线性规划问题,如果其目标函数的最优解在某个整数约束条件的约束范围内,那么该最优解是一个_______。
二、选择题1、下列哪一项不是运筹学的研究对象?( ) A. 背包问题 B. 生产组织问题 C. 信号传输问题 D. 原子核物理学2、以下哪一个不是运筹学问题的基本特征?( ) A. 唯一性 B. 现实性 C. 有解性 D. 确定性三、解答题1、请简述运筹学在日常生活中的应用实例,并就其中一个进行详细说明。
2、某企业生产三种产品,每种产品都可以选择用手工或机器生产。
假设生产每件产品手工需要的劳动时间为3小时,机器生产为2小时,卖价均为50元。
此外,手工生产每件产品的材料消耗为10元,机器生产为6元。
已知每个工人每天工作时间为24小时,可生产10件产品,每件产品的毛利润为50元。
请用运筹学方法确定手工或机器生产的数量,以达到最大利润。
参考答案:一、填空题1、交叉学科;数学;合理利用有限资源,获得最大效益2、线性规划、整数规划、动态规划、图论与网络、排队论、对策论3、整点最优解二、选择题1、D 2. A三、解答题1、运筹学在日常生活中的应用非常广泛。
例如,在背包问题中,如何在有限容量的背包中选择最有价值的物品;在生产组织问题中,如何合理安排生产计划,以最小化生产成本或最大化生产效率;在信号传输问题中,如何设计最优的信号传输路径,以确保信号的稳定传输。
以下以背包问题为例进行详细说明。
在背包问题中,给定一组物品,每个物品都有自己的重量和价值。
现在需要从中选择若干物品放入背包中,使得背包的容量恰好被填满,同时物品的总价值最大。
这是一个典型的0-1背包问题,属于运筹学的研究范畴。
《运筹学》试题及答案大全
《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
《运筹学》试题及答案(四)
《运筹学》试题及答案一、单选题1. μ是关于可行流f的一条增广链,则在μ上有(D)A.对一切B.对一切C.对一切D.对一切2.不满足匈牙利法的条件是(D)A.问题求最小值B.效率矩阵的元素非负C.人数与工作数相等D.问题求最大值3.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.当基变量x i的系数c i波动时,最优表中引起变化的有(B)A.最优基BB.所有非基变量的检验数C.第i 列的系数D.基变量X B6.当非基变量x j的系数c j波动时,最优表中引起变化的有(C)A.单纯形乘子B.目标值C.非基变量的检验数D. 常数项7.当线性规划的可行解集合非空时一定(D)A.包含点X=(0,0,···,0)B.有界C.无界D.是凸集8.对偶单纯形法的最小比值规划则是为了保证(B)A.使原问题保持可行B.使对偶问题保持可行C.逐步消除原问题不可行性D.逐步消除对偶问题不可行性9.对偶单纯形法迭代中的主元素一定是负元素()AA.正确B.错误C.不一定D.无法判断10.对偶单纯形法求解极大化线性规划时,如果不按照最小化比值的方法选取什么变量则在下一个解中至少有一个变量为正()BA.换出变量B.换入变量C.非基变量D.基变量11.对LP问题的标准型:max,,0Z CX AX b X==≥,利用单纯形表求解时,每做一次换基迭代,都能保证它相应的目标函数值Z必为()BA.增大B.不减少C.减少D.不增大12. 单纯形法迭代中的主元素一定是正元素( )AA.正确B.错误C.不一定D.无法判断13.单纯形法所求线性规划的最优解()是可行域的顶点。
AA.一定B.一定不C.不一定D.无法判断14.单纯形法所求线性规划的最优解()是基本最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《运筹学》试题4
一.(40分)某公司计划制造Ⅰ、Ⅱ两种产品,已知各制造一个单位产品时,分别占用的设备A 、B 的台时、调试时间、每天设备A 、B 的台时、调试工序可用于这两种产品的能力及各售出一单位时的获利情况,问应怎样组织生产才能使总利润最多,求最优生产计划;写出对
(1)如果产品Ⅰ的利润降至1.5百元/单位,而产品Ⅱ的利润增至2百元/单元时,最优生产计划有何变化;
(2)果产品Ⅰ的利润不变,则产品Ⅱ的利润在什么范围内变化时,该公司的最优生产计划将不发生变化.
(3)若设备A 和调试工序的每天能力不变,而设备B 每天的能力增加到32小时,分析公司最优计划的变化;
(4)若设备A 和B 每天可用能力不变,则调试工序能力在什么范围内变化时,问题的最优基不变.
(5)设该公司又计划推出新产品Ⅲ,生产一单位产品Ⅲ,所需设备A 、B 及调试工序的时间分别为3小时、4小时、2小时,该产品的预期盈利为3百元/单位,试分析该新产品是否值得投产;如投产对该公司的最优生产计划有何变化.
(6)若产品Ⅱ每单位需设备A 、B 和调试工时8小时、4小时、1小时,该产品的利润变为3百元/单位,试重新确定该公司最优生产计划.
二.(15分)已知某物资的产量、销量及运价如下表,试制定最优调运方案.
三(15分)用内点法求解下列问题
321)1(12)(min ++=x x x f
s.t. 01≥x
12≥x
四(15分)用共轭梯度法求解下列问题
2222),(min 22
2212121+++-=x x x x x x x f ,初始点T x )0,0(0=.
五.整数规划(15分)某厂为扩大生产能力,拟订购某种成套设备4套—6套,以分配给所辖1,2,3三个分厂使用,预计各分厂分得不同套数的设备后,每年创造的利润(万元)。