理论力学答案之刚体的平面运动
合肥工业大学理论力学答案08刚体平面运动
八、刚体的平面运动8.1 如图所示,O 1A 的角速度为ω1,板ABC 和杆O 1A 铰接。
问图中O 1A 和AC 上各点的速度分布规律对不对?8.2如图所示,板车车轮半径为r ,以角速度ω 沿地面只滚动不滑动,另有半径同为r 的轮A 和B 在板车上只滚动不滑动,其转向如图,角速度的大小均为ω,试分别确定A 轮和B 轮的速度瞬心位置。
[解] 板车作平动,轮A 、B 与板车接触点 E 、F 的速度相同,且r v v v O F E ω=== 对A 轮由基点法求轮心A 的速度 A E AE =+v v v ,r v AE ω=∴ r v A ω2=,且A 轮的速度瞬心在E 点下方r 处。
同理可得B 轮的速度瞬心就在轮心B 处。
8.3直杆AB 的A 端以匀速度v 沿半径为R 的半圆弧轨道运动,而杆身保持与轨道右尖角接触。
问杆AB 作什么运动?你能用几种方法求出杆AB 的角速度?E FPOE v Av Fv Ov[解] AB 杆作平面运动。
(一) 瞬心法AB 杆作平面运动,速度瞬心为P 。
Rv AP v AAB2==ω (二)基点法D A DA =+v v v ,DA v v AB A DA ωθ==sin又 DA =2R cos(90o -θ)=2R sin θ ∴ Rv AB 2=ω(三)自然法: d d AB tϕω=,而R S ϕ2= ∴d d 2d d S R v t t ϕ==, d d 2vt R ϕ= ∴ Rv AB 2=ω 8.4如图所示四连杆机构OABO 1中,OA=O 1B=AB/2,曲柄OA 的角速度ω=3rad/s 。
当OA 转到与OO 1垂直时,O 1B 正好在OO 1的延长线上,求该瞬时AB 杆的角速度ωAB 和曲柄O 1B 的角速度ω1。
[解]取AB 为研究对象,AB 作平面运动。
以A 为基点,画B 点速度合成图 由B A BA =+v v v(rad/s)32230sin o==∴⋅=⋅==ωωωωAB OAAB OA v v AB AB ABABBBvvvDAv Dv Dv111cos3022(rad/s)B BAv v OA O Bωωω=︒=⋅=∴=8.5图示曲柄摇机构中,曲柄OA以角速度oω绕O轴转动,带动连杆AC在摇块B内滑动,摇块及与其固结的BD杆绕B铰转动,杆BD长l;求在图示位置时摇块的角速度及D点的速度。
理论力学7—刚体的平面运动
A
[vB ]AB [v A ]AB
平面图形上任意两点的速度在其连线上的投影( 大小和方向)相等。这就是速度投影定理。
例7-3 用速度投影定理解例1。 解:由速度投影定理得 vB
[vB ]AB [v A ]AB
B
vA cos30 vB cos60
解得
30°
vA
A
vB 10 3 cm s
0
O
I
vCA与vA方向一致且相等, 点C的速度
vC vA vCA 2vA
7.2 平面图形上各点的速度
7.2.2 投影法
vB v A vBA
vBA
vB vA
B
将两边同时向AB方向投影:
[vB ]AAB,因 此[vBA]AB=0。于是
M
x
xO f1 (t ), yO f2 (t ), f3 (t )
这就是刚体的平面运动方程。
运动分解
y S O' O M
x
如果O'位置不动,则平面图形此时绕轴O'做定 轴转动; 如果O'M方位不变,则平面图形做平移。因此刚 体的平面运动包含了平移和定轴转动两种情况。 但能不能说平移和定轴转动是刚体平面运动的特 殊情况呢? 不能!
M
7.1 刚体平面运动的描述 而垂直于图形S的任 一 条 直 线 A1A2 必 然 作平移。 A1A2 的 运 动 可 用 其与图形S的交 点A的运动来代 替。无数的点A 构成了平面S。
A1 N A S
A2
M
因此,刚体的平面运动可以简化为平面图 形S在其自身平面内的运动。
刚体的平面运动方程 平面图形S在其平面上的位 y 置完全可由图形内任意线段 S O'M的位置来确定,而要确 定此线段的位置,只需确定 O' 线段上任一点O'的位置和线 段O'M与固定坐标轴Ox间的 O 夹角 即可。点O'的坐标和 角 都是时间t的函数,即
《理论力学》第八章刚体的平面运动
刚体的平面运动特点
刚体的平面运动具有 连续性,即刚体上任 意一点的运动轨迹都 是连续的。
刚体的平面运动具有 周期性,即刚体的运 动轨迹可以是周期性 的。
刚体的平面运动具有 对称性,即刚体的运 动轨迹可以是对称的。
02
刚体的平面运动分析
刚体的平动分析
平动定义
刚体在平面内沿着某一确定方向作等速直线运动。
详细描述
通过综合分析动能和势能的变化,可以深入理解刚体在平面运动中的能量转换过程。例 如,当刚体克服重力做功时,重力势能转化为动能;当刚体克服摩擦力做功时,机械能 转化为内能。这种能量转换过程遵循能量守恒定律,即系统总能量的变化等于外界对系
统所做的功与系统内能变化之和。
06
刚体的平面运动的实例分析
刚体的平面运动通常可以分为两种类型:纯滚动和滑动。在 纯滚动中,刚体只滚不滑,刚体上任意一点在任意时刻都位 于一个固定的圆周上。在滑动中,刚体既滚又滑,刚体上任 意一点在任意时刻都位于一个变化的圆周上。
刚体的平面运动分类
纯滚动
刚体只滚不滑,刚体上任意一点 在任意时刻都位于一个固定的圆 周上。
滑动
刚体既滚又滑,刚体上任意一点 在任意时刻都位于一个变化的圆 周上。
势能定理
总结词
势能定理描述了势能与其他形式的能量转换的关系。
详细描述
势能定理指出,在刚体的平面运动过程中,非保守力(如摩擦力、空气阻力等)对刚体所做的功等于系统势能的 减少量。非保守力做正功时,系统势能减少;非保守力做负功时,系统势能增加。
动能和势能的综合分析
总结词
在刚体的平面运动中,动能和势能的综合分析有助于理解运动过程中能量的转换和守恒。
做平动,这种运动也是复合运动。
理论力学(8.6)--刚体的平面运动-思考题
第八章 刚体的平面运动8-1 如图所示,平面图形上两点A ,B 的速度方向可能是这样的吗?为什么?8-2 如图所示已知 ,方向如图; 垂直于。
于是可确定速度瞬心C 的位置,求得:CD ACv v A D = D O CD AC v D O v A D 222==ω这样做对吗?为什么?8-3 如图所示的角速度为 ,板 ABC 和图中铰接。
问图中和 AC 上各点的速度分布规律对不对?8-4 平面图形在其平面内运动,某瞬时其上有两点的加速度矢相同。
试判断下述说法是否正确:(1)其上各点速度在该瞬时一定都相等。
(2)其上各点加速度在该瞬时一定都相等。
8-5 如图所示瞬时,已知 和平行,且=,问与 、与 是否相等?车轮的角加速度是否等于 ?速度瞬心C的加速度大小和方向如何确定?8-7试证:当 ω=0时,平面图形上两点的加速度在此两点连线上的投影相等。
8-8 如图所示各平面图形均作平面运动,问图示各种运动状态是否可能?图a中,和平行,且=-。
图b中,和都与A,B连线垂直,且和反向。
图c中,沿A,B连线,与A,B连线垂直。
图d中,和都沿A,B连线,且> 。
图e中,和都沿A,B 连线,且< 。
图f中,沿A,B连线。
图g中,和都与AC连线垂直,且> 。
图h中, AB 垂直于AC,沿A,B连线,在AB连线上的投影与相等。
图i中,与平行且相等,即=。
图j中,和都与 AB 垂直,且,在A,B连线上的投影相等。
图k中,,在AB连线上的投影相等。
图l中,矢量与在AB线上的投影相等,在AB线上。
8-9 如图所示平面机构中,各部分尺寸及图示瞬时的位置已知。
凡图上标出的角速度或速度皆为已知,且皆为常量。
欲求出各图中点C的速度和加速度,你将采用什么方法?说出解题步骤及所用公式。
8-10 杆AB作平面运动,图示瞬时A,B两点速度,的大小、方向均为已知,C,D两点分别是, 的矢端,如图所示。
试问(l)AB杆上各点速度矢的端点是否都在直线 CD上?(2)对AB杆上任意一点E,设其速度矢端为H,那么点H在什么位置?(3)设杆AB为无限长,它与CD的延长线交于点P。
理论力学_刚体的平面运动
①以A为基点: 随基点A平动到A'B''后, 绕基点转1 角到A'B'
②以B为基点: 随基点B平动到A''B'后, 绕基点转2 角到A'B'
图中看出:AB A'B'' A''B' ,1 2 于是有
lim
t0
1 t
lim
t0
2 t
,1 2
;
d1
dt
d2
dt
,1
2
10
所以,平面图形随基点平动与基点的选择有 关,而绕基点的转动与基点的选取无关.(即在
待求点 基点 即平面图形上任一点的速度等于基点的速度与该点随图形绕 基点转动的速度的矢量和.这种求解速度的方法称为基点法, 也称为合成法.它是求解平面图形内一点速度的基本方法.
二.速度投影法 将上式在AB上投影:
vB AB vA AB 或 vB cos vA cos
即 平面图形上任意两点的速度在该两点连线上的投影等.这 就是 速度投影定理.利用这以定理求平面图形上点的速度的 方法称为速度投影法。速度投影定理反映了刚体上任意两点间 的距离保持不变的特性。
aB
/
O2 B;
而 O AO Bl
1
2
1 2 ;1 2.
30
(b) AB作平面运动, 图示瞬时作瞬时平动, 此时 AB 0, vA vB
O A O B l,
1
2
1 vA / O1A,
23
例3:图示机构,曲柄OA以ω0转动。设 OA=AB=r,图示瞬时O、B、C在同一铅直
线上,求此瞬时点B和C的速度。
解:(1)以OA为研究对象:
理论力学课后习题答案-第6章--刚体的平面运动分析
理论力学课后习题答案-第6章--刚体的平面运动分析为6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。
试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。
解:Rv R v A A ==ωRv R v B B 22==ωBA ωω2=6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。
设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30︒,ϕ=60︒,BC =270mm 。
试求该瞬时杆BC 的角速度和点C 的速度。
解:杆BC 的瞬心在点P ,滚子O 的瞬心在点DBD v B ⋅=ωBPBD BPv B BC ⋅==ωω︒︒⨯=30sin 27030cos 36012 rad/s 8=PC v BC C ⋅=ωm/s 87.130cos 27.08=︒⨯=6-5 在下列机构中,那些构件做平面运动,画出它们图示位置的速度瞬心。
hv AC v AP v ABθθω2000cos cos ===ωω习题6-5图OO 1ABCOO 1ABCD习题6-3解图习题6-3图v Av B ωωCBOϕθ ωCBO ϕθω vv B PD习题6-4图习题6-4解图ωB习题6-6图习题6-6解图l ϕυl2BO 1ωABAυB υO1O ABωω解:图(a )中平面运动的瞬心在点O ,杆BC 的瞬心在点C 。
图(b )中平面运动的杆BC 的瞬心在点P ,杆AD 做瞬时平移。
6-6 图示的四连杆机械OABO 1中,OA = O 1B =21AB ,曲柄OA 的角速度ω= 3rad/s 。
试求当示。
ϕ= 90°而曲柄O 1B 重合于OO 1的延长线上时,杆AB 和曲柄O 1B 的角速度。
解:杆AB 的瞬心在O 3===ωωOAvAABrad/s ωl v B3=2.531===ωωl v BBO rad/s6-7 绕电话线的卷轴在水平地面上作纯滚动,线上的点A 有向右的速度v A = 0.8m/s ,试求卷轴中心O 的速度与卷轴的角速度,并问此时卷轴是向左,还是向右方滚动?解:如图333.16.08.03.09.0==-=AOv ωrad/s 2.1689.09.0=⨯==OOv ωm/s 卷轴向右滚动。
理论力学08_4刚体平面运动微分方程
6 刚体平面运动微分方程刚体的平面运动可简化成刚体的平面图形S 在某一固定平面内的运动,用3个独立坐标描述。
作用在刚体上的外力可简化为S 平面内的一平面力系F i (=1, 2,…,n )。
设坐标系Oxy 为固定的惯性参考系,Cx ′ y ′为质心平移坐标系,如图8-6所示。
平面图形的运动可用质心坐标x C , y C 和绕质心的转动角ϕ描述。
刚体的绝对运动可分解成跟随质心的平移和相对质心平移坐标系的转动。
由动量定理所述,刚体跟随质心的平移仅与外力系的主矢有关,由质点系相对质心的动量矩定理可知,刚体相对质心平移坐标系的运动仅与外力系对质心的主矩有关。
于是,由式(8.1.11)可写出y C x C F ym F x m R R ,==&&&& (8.1.55) 式中m 为刚体的质量,F R x , F R y 分别是外力系的主矢在y x ,方向上的分量。
由式(8.1.54)在垂直于平面图形S 方向上的投影,可得Cz CzM tL =d d (8.1.56) 其中M Cz 是外力系对通过质心且垂直于平面图形S 的轴之矩的代数和。
而ϕ&C Cz J L =,J C 是刚体对于通过质心且垂直于平面图形S 的轴的转动惯量。
应用质心运动定理和相对质心的动量矩定理,得到了三个动力学方程,给出了三个广义坐标x C , y C 和ϕ的封闭方程组,用以解决刚体的平面运动问题。
动力学方程组m (8.1.57)Cz C ni iy C n i ix C M J F ym F x ===∑∑==ϕ&&&&&&,,11称为刚体平面运动微分方程组。
给出相应的初始条件,例如,t =0时,刚体质心的位置分别为x C 0和y C 0,质心在初始时的速度分别为和,平面图形S 在初始时的角位移和角速度分别为ϕ0C x &0C y&0和0ϕ&。
南航理论力学习题答案9(1)
第九章刚体的平面运动1.平面运动刚体相对其上任意两点的( )。
① 角速度相等,角加速度相等② 角速度相等,角加速度不相等③ 角速度不相等,角加速度相等④ 角速度不相等,角加速度不相等正确答案:①2.在图示瞬时,已知O 1A = O 2B ,且O 1A 与O 2 B 平行,则( )。
① ω1 = ω2,α1 = α2② ω1≠ω2,α1 = α2③ ω1 = ω2,α1 ≠α2④ ω1≠ω2,α1 ≠α2正确答案:③3.设平面图形上各点的加速度分布如图①~④所示,其中不可能发生的是( )。
正确答案:②4.刚体平面运动的瞬时平动,其特点是( )。
① 各点轨迹相同;速度相同,加速度相同② 该瞬时图形上各点的速度相同③ 该瞬时图形上各点的速度相同,加速度相同④ 每瞬时图形上各点的速度相同正确答案:②5.某瞬时,平面图形上任意两点A 、B 的速度分别v A 和v B ,如图所示。
则此时该两点连线中点C 的速度v C 和C 点相对基点A的速度v CA 分别为( )和( )。
① v C = v A + v B ② v C = ( v A + v B )/2③ v C A = ( v A - v B )/2 ④ v C A = ( v B - v A )/2正确答案:② ④α1α2 ①②③④6.平面图形上任意两点A 、B 的加速度a A 、a B 与连线AB 垂直,且a A ≠ a B ,则该瞬时,平面图形的角速度ω和角加速度α应为( )。
① ω≠0,α ≠0② ω≠0,α = 0③ ω = 0,α ≠0④ ω = 0,α = 0正确答案:③7.平面机构在图示位置时,AB 杆水平,OA 杆鉛直。
若B 点的速度v B ≠0,加速度τB a = 0,则此瞬时OA 杆的角速度ω和角加速度α为( )。
① ω = 0,α ≠0② ω≠0,α = 0③ ω = 0,α = 0④ ω≠0,α ≠0正确答案:②8.在图示三种运动情况下,平面运动刚体的速度瞬心:(a )为( );(b )为( );(c )为( )。
清华理论力学课后答案6
vE 10 = 3 = 5.77 rad/s , CE 3
r3 = r1 + 2r2 ,可得轮 1 的角速度 v r +r (顺时针) ω1 = M = 1 2 ω4 = 12ω4 , r1 r1
轮 1 的转速为 (顺时针). n1 = 12n4 = 10800 r/ min ,
kh da
习题解答
作图示几何关系,图中 v A = v ,解得
解法二:在直角三角形△ACO 中,
sin ϑ =
̇ cosϑ = − R x ̇ ϑ x2 ̇ = v, x = R sin ϑ ,解得 AB 杆的角速度为 其中, x
2 ̇ = − sin ϑ v , ϑ cos ϑ R (负号表示角速度转向与 ϑ 角增大的方向相反,即逆时针)
(d) (e) =
再选定销钉 B 为动点,摇杆为动系,如图(c) ,有
a B = aen + aet + ar + ac
由式(d),(e)得 大小: 方向: 向 BO 轴上投影 解出 ae = aBO − ac ,于是摇杆的角加速度为
τ n
a
n BO
a
n e
+
a
t e
+
a r + ac
?
2 RωO
O1B ⋅ ω 2 O1
其中 ae = aC′ = a A + a 大小: 方向: ? √
t c ′A
答
aB
=
aA
案
+
网
杆的角速度为 ω AB =
vA = 1 rad/s ,而 C 点的牵连速度为 C AB A
t a BA
+
理论力学(8.7)--刚体的平面运动-思考题答案
第八章 刚体的平面运动答 案8-1均不可能。
利用速度投影定理考虑。
8-2不对。
,不是同一刚体的速度,不能这样确定速度瞬心。
8-3不对。
杆 和三角板ABC不是同一刚体,且两物体角速度不同,三角板的瞬心与干的转轴不重合。
8-4各点速度、加速度在该瞬时一定相等。
用求加速度的基点法可求出此时图形的角速度、角加速度均等于零。
8-5在图(a)中,=,= ,因为杆AB作平移;在图(b)中,=,≠,因为杆AB作瞬时平移。
8-6车轮的角加速度等于 。
可把曲面当作固定不动的曲线齿条,车轮作为齿轮,则齿轮与齿条接触处的速度和切向加速度应该相等,应有,然后取轮心点O为基点可得此结果和速度瞬心C的加速度大小和方向。
8-7由加速度的基点法公式开始,让 ω=0,则有 ,把此式沿着两点连线投影即可。
8-8可能:图b、e;不可能:图a、c、d、f、g、h、i、j、k和l。
主要依据是求加速度基点法公式,选一点为基点,求另一点的加速度,看看是否可能。
8-9(1)单取点A或B为基点求点C的速度和加速度均为三个未知量,所以应分别取A,B为基点,同时求点C的速度和加速度,转换为两个未知量求解(如图a)。
(2)取点B为基点求点C的速度和加速度,选点C为动点,动系建于杆,求点C的绝对速度与绝对加速度,由 ,转换为两个未知数求解(如图b)。
(3)分别取A,B为基点,同时求点D的速度和加速度,联立求得 ,再求 。
8-10(1)是。
把,沿AB方向与垂直于AB的方向分解,并选点B为基点,求点A的速度,可求得杆AB的角速度为 。
再以点B为基点,求点E的速度,同样把点E的速度沿AB方向与垂直于AB的方向分解,可求得杆AB的角速度为。
这样就有,然后利用线段比可得结果。
也可用一简捷方法得此结果。
选点A(或点B)为基点,则杆AB上任一点E的速度为= + ,垂直于杆AB,杆AB上各点相对于基点A的速度矢端形成一条直线,又=+ ,所以只需把此直线沿方向移动距离,就是任一点E的速度的矢端。
哈工大理论力学教研室《理论力学Ⅰ》(第7版)章节题库-刚体的平面运动(圣才出品)
第8章刚体的平面运动一、选择题1.图8-1所示平面图形上A、B两点的加速度与其连线垂直且ɑA≠ɑB,则此瞬时平面图形的角速度ω、角加速度α应该是()。
A.ω≠0,α=0B.ω=0,α≠0C.ω=0,α=0D.ω≠0,α≠0图8-1【答案】B2.图8-2所示各平面图形的速度分布为:(a)v A=-v B,v A不垂直AB,这种速度分布是()。
A.可能的B.不可能的不垂直AB,,这种速度分布是()。
A.可能的B.不可能的图8-2【答案】B;B3.在图8-3所示机构中,则ω1()ω2。
A.=B.>C.<图8-3【答案】C4.在图8-4所示机构的几种运动情况下,平面运动刚体的速度瞬心为:(a)();(b)();(c)();(d)()。
A.无穷远处B.B点C.A、B两点速度垂线的交点D.A点E.C点图8-4【答案】D;B;A;C5.已知图8-5所示平面图形上B点的速度v B,若以A为基点,并欲使是B点相对于A点的速度,则A点的速度v A()。
A.与AB垂直B.沿AB方向,且由A指向BC.沿AB方向,且由B指向AD.与AB成φ角图8-5【答案】B二、填空题1.边长为L的等边三角形板在其自身平面内运动,已知B点的速度大小为,方向沿CB,A点的速度沿AC方向。
如图8-6所示,则此时三角板的角速度大小为______;C点的速度大小为______。
图8-6【答案】2.已知作平面运动的平面图形上A点的速度v A,方向如图8-7所示。
则B点所有可能速度中最小速度的大小为______,方向______。
【答案】;沿AB方向图8-73.已知作平面运动的平面图形(未画出)上某瞬时A点的速度大小为v A,方向如图8-8所示,B点的速度方位沿mn,AB=l,则该瞬时刚体的角速度ω为______,转向为______。
【答案】;顺时针图8-8三、判断题1.作平面运动的平面图形上(瞬时平移除外),每一瞬时都存在一个速度瞬心。
()【答案】对2.研究平面运动图形上各点的速度和加速度时,基点只能是该图形上或其延展面上的点,而不能是其他图形(刚体)上的点。
理论力学-刚体地平面运动
第七章 刚体的平面运动一、是非题 1.刚体作平面运动时,绕基点转动的角速度和角加速度与基点的选取无关。
( )2.作平面运动的刚体相对于不同基点的平动坐标系有相同的角速度与角加速度。
( )3.刚体作平面运动时,平面图形两点的速度在任意轴上的投影相等。
( )4.某刚体作平面运动时,若A 和B 是其平面图形上的任意两点,则速度投影定理AB B AB A u u ][][ 永远成立。
( )5.刚体作平面运动,若某瞬时其平面图形上有两点的加速度的大小和方向均相同,则该瞬时此刚体上各点的加速度都相同。
( )6.圆轮沿直线轨道作纯滚动,只要轮心作匀速运动,则轮缘上任意一点的加速度的方向均指向轮心。
( )7.刚体平行移动一定是刚体平面运动的一个特例。
( )二、选择题1.杆AB 的两端可分别沿水平、铅直滑道运动,已知B 端的速度为B u ,则图示瞬时B 点相对于A点的速度为 。
①u B sin; ②u B cos; ③u B /sin; ④u B /cos。
2.在图示啮合行星齿轮转动系中,齿轮Ⅱ固定不动。
已知齿轮Ⅰ和Ⅱ的半径各为r1和r2,曲柄OA以匀角速度0逆时针转动,则齿轮Ⅰ对曲柄OA的相对角速度1r应为。
①1r=(r2/ r1)0(逆钟向);②1r=(r2/ r1)0(顺钟向);③1r=[(r2+ r1)/ r1] 0(逆钟向);④1r=[(r2+ r1)/ r1] 0(顺钟向)。
3.一正方形平面图形在其自身平面运动,若其顶点A、B、C、D的速度方向如图(a)、图(b)所示,则图(a)的运动是的,图(b)的运动是的。
①可能;③不确定。
②不可能;4.图示机构中,O1A=O2B。
若以1、与2、2分别表示O1A杆与O2B杆的1角速度和角加速度的大小,则当O1A∥O2B时,有。
①1=2,1=2;②1≠2,1=2;③1=2,1≠2;④1≠2,1≠2。
三、填空题1.指出图示机构中各构件作何种运动,轮A(只滚不滑)作;杆BC作;杆CD作;杆DE作。
《理论力学》第八章-刚体平面运动试题及答案
理论力学8章作业题解8-2 半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。
如曲柄OA 以匀角加速度a 绕O 轴转动,且当运动开始时,角速度00=w ,转角0=j 。
求动齿轮以中心A为基点的平面运动方程。
解:图示,A 轮平面运动的转角为=A j ∠C 3AC 2=j +∠CAC 2由于弧长CC 1=CC 2,故有 ∠CAC 2=r R /j ,所以22/t rr R r r R r R A a j j j j +=+=+=A 轮平面运动方程为ïïîïïíì+=+=+=+=+=22212212)sin()()sin()()cos()(cos )(tr r R t r R r R y t r R r R x A A A a j a j a j8-6两刚体M ,N 用铰C 连结,作平面平行运动。
已知AC=BC=600mm ,在题附图所示位置s mm v s mm v B A /100,/200==,方向如图所示。
试求C 点的速度。
解:由速度投影定理得()()0==BC C BC B v v 。
则v C 必垂直于BC 连线,v C 与AC 连线的夹角为30°。
由()()AC A AC C v v = 即得:s mm v v A C /200== ,方向如题4-6附图示。
解毕。
8-9 图所示为一曲柄机构,曲柄OA 可绕O 轴转动,带动杆AC 在套管B 内滑动,套管B 及与其刚连的BD 杆又可绕通过B 铰而与图示平面垂直的水平轴运动。
已知:OA =BD =300mm ,OB =400mm ,当OA 转至铅直位置时,其角速度ωo =2rad/s ,试求D 点的速度。
C 12Aj C解 (1)平面运动方法: 由题可知:BD AC w w =确定AC 杆平面运动的速度瞬心。
套筒中AC 杆上一点速度沿套筒(为什么?)s rad IAOA IA v A AC /72.00=´==w w , s mm BD BD v AC BD D /216=´=´=w w D 点加速度如何分析?关键求AC 杆角加速度(=BD 杆角速度) 基点法,分析AC 杆上在套筒内的点(B’):(1) tA B n A B A B a a a a ¢¢¢++=r r r r大小:× ∠ ∠ × 方位:× ∠ ∠ ∠ 再利用合成运动方法:动点:套筒内AC 杆上的点B’,动系:套筒。
理论力学-刚体的平面运动
刚体的平面运动
解: 基点法
例 题 4
解法一、选A点为基点, A点的速度vA=u,则B点 B
vBA vB ωAB vA =u 的速度可表示为
vB v A vBA
式中vB 方向沿OB向下,vBA 方向垂直于杆AB,由
ψ
O A
速度合成矢量图可得
u
u vB , tan
所以
u vBA , sin
ω
O φ
A B
第9章 刚体的平面运动
参考答案
9-1, 9-2, 9-3.
刚体的平面运动
作业 9-1
曲柄连杆机构如图所 示,OA= r , 3r 。如 AB 曲柄OA以匀角速度ω转动, A ω
求当 60,0 和 90 时点 B的速度。 B
刚体的平面运动
vA
ω
作业 9-1
刚体的平面运动
作业 9-2
A
如图所示,半径为R的
D
vO B O
车轮,沿直线轨道作无滑动 的滚动,已知轮心O以匀速 vO前进。求轮缘上A,B,C 和D各点的速度。
C
刚体的平面运动
作业 9-3
曲柄滑块机构如图所示,曲柄OA长R,连杆AB长l。设曲柄以匀 角速度ω沿逆钟向绕定轴 O 转动。试求当曲柄转角为φ 时滑块B的速 度和连杆AB的角速度。
ω
O
所以
B
x
vB v A
vB vBA vA
y
π 2 π 2
sin( ) sin( ) R π cos sin( ) 2
其中
sin
R sin l
可求得连杆AB 的角速度
理论力学_第06章_刚体的平面运动分析_4 (NXPowerLite)
vB= vA+ vBA
x´ 其中, B点相对速度(定轴转动线速度):
(B点绕A点 作定轴转动)
vBA = ω ×rB
任意点的速度 = 基点绝对速度 + B点相对速度 (矢量和)
速度分析: 速度投影法
速度投影定理法:
用速度投影定理分析平面 图形上点的速度的方法
vBA vB
B
rAB B vA A A vA
定轴转动
曲柄滑块机构
直线平移
刚体平面运动的模型简化
刚体平面运动: 刚体上处于同一平面内的各点到固定平面的
距离保持不变 运动轨迹在各平面内
S2面内:
S和A点到S1面的距离相同,S点相对A 点转动或静止(两点间距固定,不可
能相对平动;二者可同时平动);
面内各点运动可由SA直线的运动代表
A1A2线上:
yP
r2 (l-l1) l
sin ωt
平面运动分解(平移+转动)
在t内,平面图形由位置I运动到Ⅱ, 线段从AB运动到A´B´
A点处地安放平移坐标系,其原点A称为基 点。
由平面运动方程可见: A点固定不动,刚体作定轴转动 线段AB方位不变(=常数),刚体作平移
平面运动分解为随基点A的平移(牵连运动)和绕基点A的转动(相对运动)
B 速度分析: 瞬时速度中心法
rAB B A A vA
vA
vB= vA+ vBA vBA = ω ×rB
瞬时速度中心的概念
只有vA和vBA共线时, 合速度才可能为0
y’ vCA
P
C
S
vA
0 A
vA
过A点作vA的垂直线PA,PA上各点的速度由两
理论力学第九章刚体的平面运动
v CA
v MA
C
vA
vA vA
v M = v A + v MA
v M = v A − ω ⋅ AM
v 当M在VA垂线上时: MA = ω ⋅ AM 垂线上时:
必可找到一点C: v C = 0 (v A = v CA ) v AC v A ⇒ AC = =
ω
ω
15
2、平面图形内各点的速度分布
小 A 大 ? ω ⋅O = ω r2 0 Ⅱ 方 ? 向 √ √
2 2 vB = vA +vBA
vB
vA
v CA v A
vC
v BA v A
= 2ω (r +r2 ) O 1
vB与 A夹 为 o, 向 图 v 角 45 指 如
4 vC =vA +vCA vC =vA +vCA = 2 O(r +r ) ω 1 2
向 方 √
√ √
8
ω DE
[例9-3]曲柄连杆机构如图所示,OA =r,AB= 3 。如 3]曲柄连杆机构如图所示, 曲柄连杆机构如图所示 r 转动。 曲柄OA以匀角速度ω转动。 0o 90 点 的 度 求 当 =60o,, o时 B 速 。 : ϕ
vA
vA
解:1 AB作平面 运动, 基点: 运动, 基点:A
6
2、例题分析
轴的负向运动, [例9-1] 椭圆规尺的A端以速度vA沿x 轴的负向运动, 如图所示, 如图所示,AB=l。求:B端的速度以及尺AB的角速度。 。 的角速度。 解:1、AB作平面运动, 作平面运动, 作平面运动 基点: 基点: A
vB
v BA
2 vB = vA +vBA
理论力学习题解答(第六章)
6-1在图示四连杆机构中,已知:匀角速度O ω,OA =B O 1=r 。
试求在°=45ϕ且AB ⊥B O 1的图示瞬时,连杆AB 的角速度AB ω及B 点的速度。
解:连杆AB 作平面运动,由基点法得BA A B v v v +=由速度合成的矢量关系,知φcos v A BA =v杆AB 的角速度)(/AB /O BA AB 2122+==ωωv (逆时针)B 点的速度2245/r cos v O A B ω=°=v (方向沿AB )6-2. 在图示四连杆机构中,已知:3.021===L B O OA m ,匀角速度2=ωrad/s 。
在图示瞬时,11==L OB m ,且杆OA 铅直、B O 1水平。
试求该瞬时杆B O 1的角速度和角加速度。
解:一.求1ω60230..OA v A =×=⋅=ω m/s取A 为基点,则有BA A B v v v += 得 23.0/6.0ctg v v A B ===ϕ m/sm09.2)3.01()3.0/6.0(sin /v v 2/122A BA =+×==ϕ杆B O 1的角速度67630211../BO /v B ===ω rad/s 顺时针 二.求1ε取点A 为基点,则有n BA A a a a a a ++=+ττBA nB B将上式向X 轴投影21222857s /m .B O /ctg v )sin AB /v (OA ctg a )sin /a (a a a sin a cos a sin a BBA n B n BA A B nBA A n B B +=⋅+⋅+⋅−=++−=−=+−ϕϕωϕϕϕϕϕττ杆B O 1的角加速度7.1923.0/8.57/11===B O a B τεrad/s 2逆时针6-3.图示机构中,已知:OA =0.1m , DE =0.1m ,m 31.0=EF ,D 距OB 线为h=0.1m ;rad 4=OA ω。