实验2,3植物组织含水量的测定.
植物组织含水量的测定
%100Wf d -f ⨯鲜重干重鲜重W W %100d d -f ⨯W W W 干重干重鲜重植物组织含水量的测定【实验目的】1.了解含水量的表示方法;2.了解绝对含水量和相对含水量的区别3.掌握植物组织鲜重干重的测量方法 【实验原理】植物组织的含水量是反映植物组织水分生理状况的重要指标,其直接影响植物的生长、气孔状况,光合功能及作物产量。
在环境胁迫情况下,植物组织的含水量也是反映植物受胁迫程度的重要指标之一。
水分含量测定也是农作物产品的品质检定和判断其是否适于贮藏的重要标准。
所以,植物组织含水量的测定在植物生理学研究及农业生产中具有重要的理论和实践意义。
植物组织含水量的表示方法常以鲜重、干重、相对含水量(或称饱和含水量)来表示。
其中相对含水量可作为比较植物保水能力及推算需水程度的指标。
分别测量植物组织的鲜重Wf ,干重Wd ,饱和鲜重Wt ,依据以下公式可以分别算出植物组织的鲜重含水量,干重含水量,以及相对含水量。
鲜重含水量=干重含水量=相对含水量=%100Wf -Wt d-f ⨯鲜重饱和鲜重干重鲜重W W【实验材料】 蜀葵花瓣 【实验步骤】1.将新采的蜀葵花瓣,称取6 份 0.5 g (Wf ) ,迅速剪成小块。
2.3份分别于120℃烘箱中烘考1~1.5 h ,然后称此时的干重(Wd )。
3.3份分别放入蒸馏水中浸泡70 min ,当达到恒重时称此时的重量(Wt )利用所得到的数据:Wf ,Wd ,Wt 分别计算出鲜重含水量,干重含水量,相对含水量 注意事项:1.测量干重时,先测出称量瓶的重量W ,在测出称量瓶与花瓣重量的总和Wf 与Wd 。
放入瓶中以后,花瓣不再取出。
烘烤一个小时后取出冷却至室温,称量,再放入烘箱中烘烤10分钟,取出冷却至室温,再次称量。
重复以上步骤,直至总重量恒重。
2.放入蒸馏水浸泡的花瓣,可以用吸水纸将其覆盖在水中。
另取两片花瓣同样的方式浸泡在水中。
70min 后称量两片对照物花瓣,其恒重可作为实验材料也恒重的标志。
植物水分状况的测定
• 水是原生质的主要组成成分,占原生质总 量的70%-90%。植物水分状况对植物生 理活动具有重要影响。植物含水量、水 势、渗透势是植物水分状况的重要指标, 对于植物水分生理的科学研究以及农业 生产实践具有重要指导意义。
1 植物含水量的测定
• 实验原理:
利用水遇热蒸发的原理,加热使植物体内的水 分蒸发,从而测定植物的含水量。
– 将植物材料切成小块,浸泡在不同浓度的蔗糖溶液 中,由于植物材料与蔗糖溶液间水势梯度的存在, 导致蔗糖溶液从植物材料中吸水、失水或保持动态 平衡,从而使蔗糖溶液变稀、变浓或保持浓度不变; 由此可以找到与植物材料水势相当的蔗糖溶液浓度。 算出植物组织的水势。
若组织水势大于蔗糖水势 →组织失水 →蔗糖溶液变稀 →小液流上升
–如果小液流上升,说明组织水势高于蔗糖溶 液水势,组织排水,蔗糖浓度变低;如果小 液流下降,说明组织水势低于蔗糖溶液水势, 组织吸水,蔗糖浓度变大;如果小液流不动, 说明组织水势与蔗糖溶液水势相同,二者间 无水分量的交换。
表:蔗糖溶液浓度与其渗透势
蔗糖溶液浓度(mol/L) 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55水分总是从 水势高的区域向水势低的区域自发迁移。
• 成熟植物细胞水势的组成:
Ψ = Ψs+ Ψp
1. Ψs 溶质势/渗透势
由于溶液中溶质颗粒的存在而使水势降低的值。纯水的 溶质势为0,溶液的渗透势可根据 Van‘t Hoff Equation
计算: Ψs = - CiRT
• 实验材料与试剂
– 中试管; – 青霉素小瓶; – 弯头毛细吸管; – 单面刀片; – 打孔器; – 解剖针; – 移液管; – 镊子; – 蔗糖; – 甲基兰
植物水分等测定
植物水分、干物质和粗灰分的测定植物水分、干物质和粗灰分的测定植物水分和干物质的测定植物体由水和干物质两部分组成。
含水量多少是反映植物生理状态和成熟度的一个指标,含水量过高,植株易徒长倒伏;而过低又易调萎。
植物需要有适宜的含水量才能生长健壮。
在研究土壤、施肥、栽培和气候等因子对植物生长发育影响和光合利用率等问题时,一般要测定植株的水分和干物质积累状况。
新鲜植物体一般含水量为70~95%,叶片含水量较高,又以幼叶为最高;茎秆含水量较少,种子含水量更少,一般为5~15%。
新鲜植物体除去水分的剩余部分即为于物质,它包括有机质和矿物质两部分。
其中有机质占植物干物质的90~95%,矿物质为5~10%。
水分含量测定也是农作物产品的品质检定和判断其是否适于贮藏的重要标准。
在植物成分分析中,都是以全干样品为基础来计算各成分的质量百分含量。
因为新鲜样品的含水量变化很大,风干样品的含水量也会受环境湿度和温度的影响而变动,只有用全干样作计算(干基),各成分含量的数值才比较稳定。
水分的测定方法测定植物水分的方法很多,应根据植物样品成分的性质、对分析精度的要求和实验室设备条件等情况适当选择。
常用的方法有常压恒温干燥法、减压干燥法和蒸馏法,其中用得最多的常压恒温干燥法准确度较高,适用于不含易热解和易挥发成分的样品,被认为是测定水分的标准方法;但对于幼嫩植物组织和含糖、干性油或挥发性油的样品则不适用。
减压干燥法,运用于含易热解成分的样品;但含有挥发性油的样品也不适用,蒸馏法,适用于含有挥发油和干性油的样品,更适用于含水较多的样品,如水果和蔬菜等。
其他如红外干燥法、冷冻干燥法、微波衰减法、中子法、卡尔·费休法等都要有特定仪器设备,不易推广使用。
常压恒温干燥法方法原理将植物样品置于100~105°C烘箱中烘干,由样品的烘干失重(即为水分重)计算水分的含量。
此法适用于不含有易热解和易挥发成分的植物样品。
植物样品在高温烘干过程中,可能有部分易焦化、分解和挥发的成分损失而使水分测定产生正误差;也有可能因水分未完全驱除(或在冷却、称量时吸湿)或有部分油脂等被氧化增重而产生负误差。
植物生理学实验
实验名称:植物含水量的测定实验目的:掌握测定植物组织的含水量的方法实验原理:利用水遇热蒸发为水蒸汽的原理,可用加热烘干法来测定植物组织中的含水量。
植物组织含水量的表示方法,常以鲜重或干重 % 表示,有时也以相对含水量 % (或称饱和含水量 % )表示。
后者更能表明它的生理意义。
实验材料与设备:(一)材料:植物鲜组织。
(二)仪器设备:天平(感量1/1000g);烘箱;干燥器;剪刀;搪瓷盘;塑料袋;纸袋;吸水纸等。
实验步骤:⒈鲜重测定迅速剪取植物材料,装入已知重量的容器(或塑料袋)中,带入室内,用分析天平称取鲜重(FW)。
⒉干重测定提前把烘箱打开,温度升至100~105℃。
把称过鲜重的植物材料装入纸袋中,放入烘箱内,100~105℃杀青10min,然后把烘箱的温度降到70~80℃左右,烘至恒重。
取出纸袋和材料,放入干燥器中冷却至室温,称干重(DW)。
⒊饱和鲜重测定将称过鲜重的植物材料浸入水中,数小时后取出,用吸水纸吸干表面水分,立即称重;再次将材料放入水中浸泡一段时间后,再次取出,吸干表面水分,称鲜重,直到两次称重的结果基本相等,最后的结果即为饱和鲜重(SFW)。
若事先已知达到水分饱和所用的时间,则可一次取得饱和鲜重的测量定值。
⒋取得以上数据后,按公式计算组织含水量、相对含水量。
思考题:测定饱和含水量时,植物材料在水中浸泡时间过短或过长会出现什么问题?实验名称:植物组织水势的测定(小液流法)实验目的:学会用小液流法测定植物组织的水势实验原理:将植物组织分别放在一系列浓度递增的溶液中,当找到某一浓度的溶液与植物组织之间水分保持动态平衡时,则可认为此植物组织的水势等于该溶液的水势。
因溶液的浓度是已知的,可以根据公式算出其渗透压,取其负值,为溶液的渗透势(ψπ),即代表植物的水势(ψw)。
ψw=ψπ=-P=-iCRT实验材料与设备:(一)材料:小白菜或其它作物叶片(二)仪器设备:1.带塞青霉素小瓶12个;2.带有橡皮管的注射针头;3.镊子;4.打孔器5.培养皿。
水分对植物生长的影响
植物的水分生理是一种复杂的现象。
一方面植物通过根系吸收水分,使地上部分各器官保持一定的膨压,维持正常的生理功能;另一方面,植株又通过蒸腾作用把大量的水分散失掉,这一对相互矛盾的过程只有相互协调统一才能保证植株的正常发育。
充足的水分是植物生长的一个重要条件。
水分缺乏,生长就会受到影响。
其原因是:第一,水分是植物细胞扩张生长的动力。
植物细胞在扩张生长的过程中,需要充足的水分使细胞产生膨胀压力,如果水分不足,扩张生长受阻,植株生长矮小。
禾谷类作物在拔节和抽穗期间,主要靠节间细胞的扩张生长来增加植株高度,此时需要水分较多,如果严重缺水,不仅植株生长矮小,而且有可能抽不出穗子,导致严重减产。
第二,水分是各种生理活动的必要条件。
植物生长首先需要一定的有机物作为建造细胞壁和原生质的材料,这些材料主要是光合作用的产物,而水是光合作用顺利进行的必要条件,缺水光合作用降低。
同时光合作用制造的有机物质向生长部位运输也需要水分。
缺水时,有机物趋于水解,呼吸作用急剧增加,这些都不利于植物生长。
在水分充足的情况下,植物生长很快,个大枝长,茎叶柔嫩,机械组织和保护组织不发达,植株的抗逆能力降低,易受低温、干旱和病虫的危害。
1.水分状况对植物生长的影响1.1 对植物形态的影响植物通过水分供应进行光合作用和干物质积累,其积累量的大小直接反映在株高、茎粗、叶面积和产量形成的动态变化上。
在水分胁迫下,随着胁迫程度的加强,枝条节间变短,叶面积减少,叶数量增加缓慢;分生组织细胞分裂减慢或停止;细胞伸长受到抑制;生长速率大大降低。
遭受水分胁迫后的植株个体低矮,光合叶面积明显减小,产量降低。
1.1.1 对叶片变化的影响叶片是光合与蒸腾的主要场所。
叶片的大小、形状、颜色、表面特征和位置等从本质上决定了叶片对入射光的吸收和反射,影响叶温,从而影响到叶片界面阻力;叶片的内部结构影响叶片的扩散阻力及水汽运动的总阻力。
叶肉细胞扩张和叶片生长对水分条件十分敏感。
植物组织含水量的测定
实验 2 植物组织含水量的测定一、原理植物组织的含水量是反映植物组织水分生理状况的重要指标,如水果、蔬菜含水量的多少对其品质有影响,种子含水状况对安全贮藏更有重要意义。
利用水遇热蒸发为水蒸汽的原理,可用加热烘干法来测定植物组织中的含水量。
植物组织含水量的表示方法,常以鲜重或干重 % 表示,有时也以相对含水量 % (或称饱和含水量 % )表示。
后者更能表明它的生理意义。
二、实验材料与仪器设备(一)实验材料植物鲜组织。
(二)仪器设备分析天平,剪刀,烘箱,铝盒,干燥器,吸水纸,坩埚钳。
三、实验步骤l. 自然含水量的测定( 1 )铝盒的恒重将洗净的两个铝盒编号,放在 105 ℃恒温烘箱中,烘 2 小时左右,用坩锅钳取出放入干燥器中冷却至室温后,在分析天平上称重,再于烘箱中烘 2 小时,同样于干燥器中冷却称重,如此重复 2 次( 2 次称重的误差不得超过 0.002g ),求得平均值 W 1 ,将铝盒放入干燥器中待用。
( 2 )将待测植物材料(如叶子等)从植株上取下后迅速剪成小块,装入已知重量的铝盒中盖好,在分析天平上准确称取重量,得铝盒与鲜样品总量为 W 2 ,然后于 105 ℃烘箱中干燥4 ~ 6 小时(注意要打开铝盒盖子)。
取出铝盒,待其温度降至 60 ~ 70 ℃后用坩锅钳将铝盒盖子盖上,放在干燥器中冷却至室温,再用分析天平称重,然后再放到烘箱中烘 2 小时,在干燥器中冷却至室温,再称重,这样重复几次,直至恒重为止。
称得重量是铝盒与干样品总重量 W 3 。
烘时注意防止植物材料焦化。
如系幼嫩组织可先用 100 ~ 105 ℃杀死组织后,再在 80 ℃下烘至恒重。
( 3 )记录及计算表 1-1 植物组织含水量记录表编号铝盒重( W 1 )铝盒 + 样品鲜重( W 2 )铝盒 + 样品干重( W 3 )样品鲜重W f = W 2 – W 1样品干重W d = W 3 – W 12. 相对含水量的测定方法(或称饱和含水量法)此法是以植物组织的饱和含水量为基础来表示组织的含水状况,因为作为计算基础的组织饱和含水量有较好的重复性,而组织的鲜重、干重不太稳定(鲜重常随时间及处理条件而有变化,生长旺盛的幼嫩叶子,常随时间而会显著增加,所以要进行不同时期含水量的对比就不恰当)。
植物相对含水量的测定
植物的含水量 植物种类 生长环境 器官、组织的差异
构成植物 体的元素
水分 (10-95%)
干物质 (5-90%)
有机物 (90%)
无机物 (10%)
矿质元素?
C、H、O CO2 + H2O
植物体
105℃,30 min 80℃,48 h
燃烧
干物质
N N2 + NH3 + NO 少量S H2S + SO2
饱和鲜重—Wt
干重—Wd
100%
实验材料的选择
草本-白三叶(1-4)、木本-槐树(5-8)
暴马丁香 (9-12)、狗尾巴草(13-17) 也可以观察同一种植物不同器官间水分的情况,例如花和叶
。
总结数据、分析实验结果
思考题: 为什么相对含水量比绝对含水量更能反映植物体的 生理状态?
含水量是植物水分状况的重要指标,植物组织含水量不但直接影响植 物的生长、气孔状况,光合功能甚至作物产量,而且还对果蔬品质以 及种子和粮食的安全贮藏具有至关重要的作用。所以,植物组织含水 量的测定在植物生理学研究中具有重要的理论和实践意义。
RWC=(Wf-Wd) / (Wt-Wd)×100
(12-3)
式中WT:组织被水充分饱和后重量。
水分饱和亏(WSD)指植物组织实际相对含水量距饱和相对含水量(100% )差值的大小。常用下式表示:
WSD=1-RWC )
(12-4
实际测定时,可用下式计算:
WSD=(Wt-Wf) / (Wt-Wd)×100 5)
。
二、仪器与用具
天平(感量0.1mmg);烘箱;剪刀;100ml烧杯3个;铝盒3 个;吸水纸。
三、方法
实验一植物组织含水量及水势的测定
自然含水量(WC)=(Wf-Wd)/Wf × 100% 相对含水量(RWC)=(Wf-Wd)/(Wfs-Wd) × 100% 水分饱和亏(WSD)=1-RWC
六、结果与计算
2、植物组织水势
等势点的渗透势即为叶片组织水势。
Ψw=-iCRT
i:解离系数,蔗糖为1; C:溶液的摩尔浓度; R:摩尔气体常数,R=0.0083 L·Mpa·mol-1·K-1 T:热力学温度K,即273 + t,t为实验温度,单位为℃。 (水势单位换算:1 atm=1.013 bar=101 kPa,1 Mpa=10 bar)
五、实验步骤
(二)植物组织水势的测定
1、用1M蔗糖母液配制一系列不同浓度的蔗糖溶液 (0.05、0.1、 0.2、 0.3、0.4、0.5、0.6M)。 2、取7支试管编号,分别加入适量不同浓度的蔗糖溶 液;同时取7个青霉素瓶,编号后分别加入2ml不同浓 度的蔗糖溶液。 3、用打孔器在叶片打孔取叶圆片(避开中脉),随机 取样,向每青霉素瓶放入相等数目(10~20片)的叶 圆片,加塞,放置30min,期间摇动数次。到时间后, 用大头针沾取少许甲烯蓝粉末加入青霉素瓶中,充分 混匀。 4、用毛细滴管从试验组的各瓶中依次吸取液体少许, 伸入对照组同样浓度溶液的中部,缓慢从毛细管尖端 横向放出一滴蓝色溶液,轻轻取出滴管,观察蓝色液 滴的移动方向。
相对含水量(Relative Water Content, RWC)
实际含水量 RWC = ×100% 饱和含水量
水势的测定方法
液相平衡法:小液流法、质壁分离法 压力平衡法:压力室法 气相平衡法:热电偶湿度计法、露点法等
实验一、植物组织含水量及水势的测定
(示范:吐水及小孔的扩散现象)
反映植物水分状况的指标
绝对含水量 相对含水量 水势 渗透势
一、实验目的
1、掌握植物含水量的表示及测定方法; 2、熟悉植物水势的测定原理及方法。
二、 实验原理
植物组织含水量的指标
鲜重− 干重 自然含水量= 100% 自然含水量 ×100% 鲜重
小液流法测定水势的原理
水总是从水势高处流向低处。 当植物组织放在外界溶液中,如植物组 织的水势小于溶液的渗透势,组织吸水, 外界溶液变浓,比重变大;如植物组织 水势大于溶液的渗透势,则反之;如二 者相等,则外界溶液的比重不变。
三、实验材料 实验材料
忍冬科金银木枝条
2%NaCl 4h 0.2%NaCl 4h 蒸馏水 4h
相对含水量( 相对含水量(Relative Water Content, RWC) , )
实际含水量 RWC = 100% ×100% 饱和含水量
水势的测定方法
液相平衡法:小液流法、 液相平衡法 小液流法、质壁分离法 小液流法 压力平衡法:压力室法 压力平衡法 压力室法 气相平衡法:热电偶湿度计法 热电偶湿度计法、 气相平衡法 热电偶湿度计法、露点法等
i:解离系数,蔗糖为1; i 1 C:溶液的摩尔浓度; R:摩尔气体常数,R=0.0083 L·Mpa·mol-1·K-1 T:热力学温度K,即273 + t,t为实验温度,单位为℃。 (水势单位换算:1 atm=1.013 bar=101 kPa,1 Mpa=10 bar)
七、演示实验
吐水及小孔扩散现象观察
五、实验步骤
(二)植物组织水势的测定
1、用1M蔗糖母液配制一系列不同浓度的蔗糖溶液 (0.05、0.1、 0.2、 0.3、0.4、0.5、0.6M)。 2、取7支试管编号,分别加入适量不同浓度的蔗糖溶 液;同时取7个青霉素瓶,编号后分别加入2ml不同浓 度的蔗糖溶液。 3、用打孔器在叶片打孔取叶圆片(避开中脉),随机 取样,向每青霉素瓶放入相等数目(10~20片)的叶 圆片,加塞,放置30min,期间摇动数次。到时间后, 用大头针沾取少许甲烯蓝粉末加入青霉素瓶中,充分 混匀。 4、用毛细滴管从试验组的各瓶中依次吸取液体少许, 伸入对照组同样浓度溶液的中部,缓慢从毛细管尖端 横向放出一滴蓝色溶液,轻轻取出滴管,观察蓝色液 滴的移动方向。
植物组织含水量的测定
实验 2 植物组织含水量的测定、原理植物组织的含水量是反映植物组织水分生理状况的重要指标,如水果、蔬菜含水量的多少对其品质有影响,种子含水状况对安全贮藏更有重要意义。
利用水遇热蒸发为水蒸汽的原理,可用加热烘干法来测定植物组织中的含水量。
植物组织含水量的表示方法,常以鲜重或干重% 表示,有时也以相对含水量% (或称饱和含水量% )表示。
后者更能表明它的生理意义。
二、实验材料与仪器设备(一)实验材料植物鲜组织。
(二)仪器设备分析天平,剪刀,烘箱,铝盒,干燥器,吸水纸,坩埚钳。
三、实验步骤l. 自然含水量的测定( 1 )铝盒的恒重将洗净的两个铝盒编号,放在105 ℃恒温烘箱中,烘 2 小时左右,用坩锅钳取出放入干燥器中冷却至室温后,在分析天平上称重,再于烘箱中烘 2 小时,同样于干燥器中冷却称重,如此重复 2 次( 2 次称重的误差不得超过0.002g ),求得平均值W 1 ,将铝盒放入干燥器中待用。
( 2 )将待测植物材料(如叶子等)从植株上取下后迅速剪成小块,装入已知重量的铝盒中盖好,在分析天平上准确称取重量,得铝盒与鲜样品总量为W 2 ,然后于105 ℃烘箱中干燥4 ~ 6 小时(注意要打开铝盒盖子)。
取出铝盒,待其温度降至60 ~70 ℃后用坩锅钳将铝盒盖子盖上,放在干燥器中冷却至室温,再用分析天平称重,然后再放到烘箱中烘 2 小时,在干燥器中冷却至室温,再称重,这样重复几次,直至恒重为止。
称得重量是铝盒与干样品总重量W 3 。
烘时注意防止植物材料焦化。
如系幼嫩组织可先用100 ~105 ℃杀死组织后,再在80 ℃下烘至恒重。
( 3 )记录及计算表1-1 植物组织含水量记录表编号铝盒重(W 1 )铝盒+ 样品鲜重(W 2 )铝盒+ 样品干重(W 3 )样品鲜重W f = W 2 –W 1样品干重W d = W 3 –W 12. 相对含水量的测定方法(或称饱和含水量法)此法是以植物组织的饱和含水量为基础来表示组织的含水状况,因为作为计算基础的组织饱和含水量有较好的重复性,而组织的鲜重、干重不太稳定(鲜重常随时间及处理条件而有变化,生长旺盛的幼嫩叶子,常随时间而会显著增加,所以要进行不同时期含水量的对比就不恰当)。
植物生理学实验
实验名称:植物含水量的测定实验目的:掌握测定植物组织的含水量的方法实验原理:利用水遇热蒸发为水蒸汽的原理,可用加热烘干法来测定植物组织中的含水量。
植物组织含水量的表示方法,常以鲜重或干重 % 表示,有时也以相对含水量 % (或称饱和含水量 % )表示。
后者更能表明它的生理意义。
实验材料与设备:(一)材料:植物鲜组织。
(二)仪器设备:天平(感量1/1000g);烘箱;干燥器;剪刀;搪瓷盘;塑料袋;纸袋;吸水纸等。
实验步骤:⒈鲜重测定迅速剪取植物材料,装入已知重量的容器(或塑料袋)中,带入室内,用分析天平称取鲜重(FW)。
⒉干重测定提前把烘箱打开,温度升至100~105℃。
把称过鲜重的植物材料装入纸袋中,放入烘箱内,100~105℃杀青10min,然后把烘箱的温度降到70~80℃左右,烘至恒重。
取出纸袋和材料,放入干燥器中冷却至室温,称干重(DW)。
⒊饱和鲜重测定将称过鲜重的植物材料浸入水中,数小时后取出,用吸水纸吸干表面水分,立即称重;再次将材料放入水中浸泡一段时间后,再次取出,吸干表面水分,称鲜重,直到两次称重的结果基本相等,最后的结果即为饱和鲜重(SFW)。
若事先已知达到水分饱和所用的时间,则可一次取得饱和鲜重的测量定值。
⒋取得以上数据后,按公式计算组织含水量、相对含水量。
思考题:测定饱和含水量时,植物材料在水中浸泡时间过短或过长会出现什么问题?实验名称:植物组织水势的测定(小液流法)实验目的:学会用小液流法测定植物组织的水势实验原理:将植物组织分别放在一系列浓度递增的溶液中,当找到某一浓度的溶液与植物组织之间水分保持动态平衡时,则可认为此植物组织的水势等于该溶液的水势。
因溶液的浓度是已知的,可以根据公式算出其渗透压,取其负值,为溶液的渗透势(ψπ),即代表植物的水势(ψw)。
ψw=ψπ=-P=-iCRT实验材料与设备:(一)材料:小白菜或其它作物叶片(二)仪器设备:1.带塞青霉素小瓶12个;2.带有橡皮管的注射针头;3.镊子;4.打孔器5.培养皿。
植物生理学实验
处理
1
2
3
4
5
K+
Na+
蒸馏水
每个处理测 5 个值,求平均。
五、思考及分析 比较气孔开度大小,并分析原因。
实验三 叶绿体色素的提取、理化性质与含量测定
一、原理 叶绿素在叶绿体内以它的亲水部分与蛋白质结合,亲脂部分与拟脂结合,必须 用含水的有机溶剂才能把叶绿素提出。 (一)皂化作用
原理:叶绿素是一种双羧酸的脂类,能与碱发生皂化反应,产生叶绿酸的盐及游离的叶 绿醇、甲醇,叶绿酸的盐形成以后,因分子极性增大,易容于稀酒精溶液中,不能进入 苯层,而类胡萝卜素在苯中溶解性大于在甲醇、乙醇中,这就易于把叶绿素与胡萝卜素 分开。 (二)氢和铜对叶绿素分子中镁的取代作用 原理:叶绿素分子中啉环上的 Mg 处于不稳定的状态,可被 H、Cu、Zn 离子取代
材料:小麦种子 仪器:烧杯、培养皿、刀片、镊子、恒温箱 药品:0.5%TTC 溶液 (三)实验步骤 1. 浸种:将待测种子在 30~35℃浸种(6~8 小时)。 2. 显色:取吸胀的种子 200 粒,用刀片沿种子胚的中心线纵切为两半,将其中的一
半置于一只培养皿中,加入适量的 0.5%TTC(以覆盖种子为度),然后置于 30℃ 恒温箱中 0.5~1 小时。另一半在沸水中煮 5 分钟杀死种胚,做同样染色处理,作 为对照。结果,凡胚被染色的是活种子。
二、实验材料:仪器和试剂
(4) 材料:蚕豆叶 (5) 仪器:显微镜、温箱、培养皿等 (6) 试剂:0.5%KNO3、0.5NaNO3、蒸馏水 三、实验步骤:
a) 取 3 个培养皿编号,分别放入 15ml0.5%KNO3、0.5NaNO3、蒸馏水。 b) 撕蚕豆叶下表皮分别放入 3 个培养皿。 c) 将 3 个培养皿放入 25 温箱,保温 0.5 小时。 d) 取出培养皿置于人工光照条件下,照光 0.5 小时。 e) 在显微镜下观察气孔的开度。 四、数据记录及处理
植物水分状况的测定
2 水势的测定
水势的概念
自由能:一个体系中可以用于做功的能量。 化学势:偏摩尔自由能。
化学反应能否进行、或物体能否从一体系转移到 另一体系,要看反应前后或两全体系的自由能 或化学势的变化。
水势是一物理化学概念在植物生理学中的应用, 是指偏摩尔体积水的化学势。单位是压强单位。
–如果小液流上升,说明组织水势高于蔗糖溶 液水势,组织排水,蔗糖浓度变低;如果小 液流下降,说明组织水势低于蔗糖溶液水势, 组织吸水,蔗糖浓度变大;如果小液流不动, 说明组织水势与蔗糖溶液水势相同,二者间 无水分量的交换。
表:蔗糖溶液浓度与其渗透势
蔗糖溶液浓度(mol/L) 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
• 注意:
1. 观察时要在载玻片上滴一滴同浓 度的蔗糖溶液。
2. 实验用洋葱以紫色的最易于观察 质壁分离,其它材料如紫鸭趾草、红甘 蓝也可代替。
• 成熟植物细胞水势的组成:
Ψ = Ψs+ Ψp
当发生质壁分离时, ψp =0,这时Ψ = Ψs
• 实验原理
生活细胞的原生质膜是一种选择透性膜,可以看作是半透 膜,它对于水是全透性的,而对于一些溶质如蔗糖的透 性较低。因此当把植物组织放在一定浓度的外液中,组 织内外的水分便可通过原生质膜根据水势梯度的方向而 发生水分的迁移,当外液浓度较高时(高渗溶液),细 胞内的水分便向外渗出,引起质壁分离;而在外液浓度 低时(低渗溶液),外液中的水则进入细胞内。当细胞 在一定浓度的外液中刚刚发生质壁分离时(初始质壁分 离,质壁分离仅在细胞角隅处发生),细胞的压力势等 于零,细胞的渗透势等于细胞的水势,也就等于外液的 渗透势。该溶液即称为细胞或组织的等渗溶液,其浓度 称为等渗浓度。
植物组织中自由水和束缚水含量的测定
植物组织中自由水和束缚水含量的测定(一)目的植物组织中水份以两种不同状态存在:一种是和原生策胶体结合紧密的束缚水,它不参与代谢作用;另一种是与原生质胶体结合得不紧密,可自由移动的自由水,它参与种种代谢作用。
自由水/束缚水比率的大小,标志着植物代谢活性及抗逆性和强弱。
因此研究作物生理状态常要测定作物的自由水与束缚水的含量。
(二)原理把一已知重量的植物组织放入已知重量的高浓度的蔗糖溶液中,那么植物组织的自由水便会扩散到糖液中去,而束缚水是原生质胶本昆密结合在一起,不会扩散到糖液中去。
由于植物组织中的自由水扩散到糖液中去,这样降低了糖液的浓度。
因糖液的重理及原来的浓度是已知的。
根据糖液浓度降低的数值可计算出植物组织中自由水(即扩散到糖液中去的水)的含量。
另外,再测定同样植物组织中的总含水量,并由总含水量减去其中自由水的含量,这就是植物组织中束缚水的含量。
(三)材料及设备(1)待测的植物组织(最好是叶片),(2)公析天平,(3)折光仪,(4)注射器(10毫升),(5)称时瓶,(6)打孔器,(7)烘箱,(8)干燥器,(9)90%蔗糖溶液,(10)小橡皮塞(塞注射器小口用)。
(四)实验步骤1. 测定植物组织中总含水量选取一定部位及一定叶龄的叶片,用打孔器钻小圆片(避开粗的叶脉)50片,立即装入称好重(Wo)的称量瓶内精确地称重W1(克),置90℃烘臬至恒重(大约烘5小时),置干燥器中冷却后称重W2(克)。
按下列公式计算含水量(%):式中:W0—称量瓶重W1—称量瓶+鲜叶重W2—称量瓶+干叶重2. 测定植物组织中自由水含量(1)取1支干净的注射器在连接针头的口上塞上小橡皮塞(或用细橡皮管制一帽状小套也很好用),一起放在分析天平上称期重G2(克)。
(2)选取一定部位及一定叶龄的叶片,用打孔器钻取小圆片(避开粗大的叶脉)50片,立即装入注射器内,连同注射器带叶圆片一起在天平上称重量G2(克)。
(3)用折光仪精确地测出60%蔗糖溶液的(G1),然后用注射器吸取已知浓度的糖液5毫升左右。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
植物组织含水量的测定在植物生理学研究中
具有重要的意义。
一、实验目的
了解含水量的表示方法
了解绝对含水量和相对含水量的区别 掌握HG63水分测定仪的使用
二、原理
表示组织含水量的方法有两种:一是以干重为基 数表示;二是以鲜重为基数表示。从而分为干重 法和鲜重法:
实验二 植物组织含水量的测定
--- 水分测定仪法
实验三 植物组织水势的测定
--- 小液流法
实验二 植物组织含水量的测定
---水分测定仪法
含水量是表示植物组织水分状况的常用指标。 对于正常生长的组织,含水量的多少直接影响植 物的生长状况;对于水果、蔬菜,含水量的多少
对品质有着很大的影响;对于贮藏中的种子,含
“结果显示类型”(样品水分含量以占鲜重%显 示 ) 去皮重按 。
2、植物叶片剪碎,注意大小尽量一致(2 mm × 5
mm),取样均匀,快速。
3、按“打开/关闭自动加样室,按键
,
加样品0.1~0.5 g取出样品盘,将样品摆匀 再按一次 键关闭。
4、按start键,仪器开始工作。待仪器自动停止 工作后,读取测量结果。
下将样品均匀地快速干燥,样品表面不易受损,其
检测结果与国标烘箱法具有良好的一致性,具有可 替代性,且检测效率远远高于烘箱法。一般样品只 需几分钟即可完成测定。
HG63卤素水分测定仪技术参数
测量值
可读性水分含量 重复性(sd) 2 g样品 重复性(sd) 10 g样品 0.01 % 0.05 % 0.01 % √ √ √ 61 g 0.1 g 1 mg 环形卤素灯 40~200˚C 1˚C 标准、快速
天平
最大样品量 最小样品量 可读性
干燥单元
干燥技术 温度范围 温度调节增量 升温程序
质量管理
天平校验 50 g 加热单元校验 100/160˚C 称量指导 主动/被动 参数修改保护 √ 符合GLP / GMP规范的打印输出 √
自动关机(5级)
该关机模式依据单位时间失重,只要在指定时间 内平均失重小于预设置,仪器就认为干燥过程完成,并 自动终止测量过程。在干燥过程中所显示的时间表示测 量过程经历时间。
HG63卤素水分测定仪的特点
1、操作简便、测量准确。
2、采用镀金辐射体,确保样品加热的均匀性。
3、兼顾样品称重和干燥功能,在干燥过程中,水
分仪持续测量并即时显示样品丢失的水分含量%,
干燥程序完成后,最终测定的水分含量值被锁定显
示。
HG63卤素水分测定仪的特点
4、与国标烘箱加热法相比,卤素加热可以在高温
组织相对含水量(RWC%) = (FW-DW)/(SFW-DW)×100
组织水分饱和亏(WSD%) = (1-RWC)×100
三、材料、仪器与用具
1、材料:大叶紫薇(Lagerstroemia speciosa L.) (单数组)和海芋 (Alocasia macrorrhizos L.) (双数组)。
2.主要测量参数的正确选择
干燥温度---根据样品正确选择干燥程序后 ( 或 ),设置好温度。
关机模式---可确定样品结束干燥的时间。 干燥时间。
四、操作步骤
1、开机按 程序”(快速 (出厂设置 ,仪器自检 选择与设置“干燥 ,75℃) 选择“关机模式” ,适用于大多数样品) 选择
关机模式
时间控制(分钟)+手动 自动关机(5 级) 自由关机模式 0.5-480 √ √
测定结果评估
水分和干重含量% 质量 g ATRO Dry, ATRO Wet
用户支持
方法测试功能(Test) 自动进样腔 测定方法储存 测定方法命名(数字) 每个样品注释行 自由因子 LCD背亮液晶显示屏 内置打印机HA-P43 √ √ 10 √ 1 √ √ HG63P标配
利用溶液的浓度不同其比重也不同的原理来测定试验前后溶 液浓度的变化,然后根据公式计算渗透势。
浸提液滴
(含甲烯蓝) 0 0.05 0.10 0.15 0.20 0.25
植物组织的含水量常用水分含量占鲜重或干
重的百分比来表示。在研究水分生理时,相对含
水量与水分饱和亏也是常用的水分生理指标。
测定植物组织的鲜重(FW)、干重(DW)、饱和 鲜重(SFW)后,用下式计算以上几个生理指标:
组织含水量(占鲜重%) = (FW-DW/FW)×100
组织含水量(占干重%) = (FW-DW/DW)×100
2、仪器与用具:HG63卤素水分测定仪、剪刀。
顶 面 观
HG63卤素水分测定仪
主要由一台卤素加热单元和一台精密天平两 个仪器组成。 仪器根据热解重量原理:测定开始,水分测
定仪测定样品的重量,然后,样品由内置的 卤素加热单元和水分蒸发器快速加热。干燥结束时,显示水分含量和干 燥物质含量作为最终结果。
二.实验原理:
植物细胞、组织之间以及植物体和环境间的水 分间移动方向都由水势差决定。 当植物细胞或组织放在某一溶液中时,如蔗糖 溶液。
Ψw = ψл + ψρ + ψε
Ψw ψл
水势 = 渗透势 + 压力势 + 重力势
水分子的移动方向?
Ψw
H2O
Ψw
H2O
ψл
ψл
1. Ψw > ψл,则植物组织失水,溶液浓度下降 ,液滴上升 。 2. Ψw < ψл,则植物组织吸水,溶液浓度增加 ,液滴下降 。 3. Ψw =ψл,则二者水分保持动态平衡,液滴不动。
测量结果可靠性的相关因素
1. 样品的制备
样品制备决定了测量速度和结果的准确性。
请注意样品制备的基本规则: 所选择样品应尽可能小(0.1~0.5 g). 样品量大需要更多干燥时间,因此而延长测量
过程。若样品量少,则测量结果不具代表性。
注意样品的取量和均匀。样品越不均匀,样 品量要求则越大。 样品要均匀分布于样品盘上,尽量增加样品 表面积,便于热量吸收。
准备去 皮状态
准备称 量状态
准备启 动状态
干燥与测 量状态
注意:
本次实验要有平行!
结果要算出标准差。
含水量(%)= 78.9 ± 0.568
实验三
植物组织水势的测定(小液流法)
一.实验目的:
掌握植物细胞水势概念及计算公式, 了解小液流法测定植物组织水势的方法。
黄 果 树 瀑 布
德 天 瀑 布