小学数学解题思路技巧(一、二年级用)-10
小学数学应用题解题思路及方法新
5、差倍问题
【含义】
已知两个数的差及大数是小数的几倍(或小数是大数的 几分之几),要求这两个数各是多少,这类应用题叫做差 倍问题。
【数量关系】
两个数的差÷(几倍-1)=较小的数 较小的数×几倍=较大的数
6、倍比问题
【含义】
有两个已知的同类量,其中一个量是另一个量的若干倍, 解题时先求出这个倍数,再用倍比的方法算出要求的数, 这类应用题叫做倍比问题。
【数量关系】
总量÷一个数量=倍数 另一个数量×倍数=另一总量
【解题思路和方法】
先求出倍数,再用倍比关系求出要求的数。
例1 100千克油菜籽可以榨油40千克,现 在有油菜籽3700千克,可以榨油多少?
解 由于每天运出的小麦和玉米的数量相等,所以剩下 的数量差等于原来的数量差(138-94)。把几天后 剩下的小麦看作1倍量,则几天后剩下的玉米就是3 倍量,那么,(138-94)就相当于(3-1)倍, 因此
剩下的小麦数量=(138-94)÷(3-1)=22(吨) 运出的小麦数量=94-22=72(吨) 运粮的天数=72÷9=8(天) 答:8天以后剩下的玉米是小麦的3倍。
例3 食堂运来一批蔬菜,原计划每天吃 50千克,30天慢慢消费完这批蔬菜。后来 根据大家的意见,每天比原计划多吃10千 克,这批蔬菜可以吃多少天?
解 (1)这批蔬菜共有多少千克? 50×30=1500(千克)
(2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天)
列成综合算式:
50×30÷(50+10)=1500÷60=25(天) 答:这批蔬菜可以吃25天。
小学数学二年级下第四单元教案:如何提高孩子的数学解题技巧
小学数学二年级下第四单元教案:如何提高孩子的数学解题技巧如何提高孩子的数学解题技巧数学是一门需要连续思考和实践的科目,对于孩子来说,学好数学需要通过不断地练习和思考来提高自己的数学水平。
对于二年级下第四单元的学习,家长和老师可以通过一些特殊的方法来帮助孩子提高数学解题技巧。
下面将提供一些具体的方法和建议,帮助孩子在数学学习中更加自信和专注。
一、培养孩子的数学思维能力要想提高孩子的数学解题技巧,首先就需要培养孩子的数学思维能力,让孩子有自己的思考方式和解题方式。
具体做法有以下几点:1.鼓励孩子自己思考在孩子进行数学题目练习时,家长和老师不要过多地干预和指导,让孩子自己思考解题方式和方法。
孩子可以对数学题目进行分析,将题目中的数据和信息提取出来,并尝试各种方式解题,从而提高自己的思维能力和解题能力。
2.提供多种解题方式数学学习中,不同的人会有不同的解题方式和思考方式。
为了提高孩子的数学解题技巧,家长和老师可以提供多种解题方式和思考方式,帮助孩子选取适合自己的方法,从而提高解题效率和准确率。
3.鼓励孩子探索和实践数学是一门需要探索和实践的科目,通过实际操作和探索,可以帮助孩子更好地理解和掌握数学知识。
家长和老师可以为孩子提供一些实际问题和实践机会,帮助孩子进行探索和实践,从而促进孩子的数学思维发展和提高解题能力。
二、合理选题和强化练习在进行数学学习时,选题是非常重要的一环。
要想提高孩子的数学解题技巧,就需要合理选题,根据孩子的实际水平和需求进行学习和练习。
具体做法如下:1.合理选题数学学习中,选题要根据孩子的实际情况进行选择。
要兼顾孩子的兴趣爱好和学习能力,从而提高学习效率。
一般来说,可以从孩子的实际生活中挑选出有代表性的数学问题和实际问题,让孩子进行分析解决。
2.强化练习数学学习要重视练习,只有通过不断的练习,才能够掌握数学知识和解题技巧。
家长和老师可以为孩子提供一些强化练习的机会,让孩子进行针对性的练习,帮助孩子不断提高自己的解题能力和水平。
【小学二年级数学】小学数学解题思路技巧(一、二年级用)
奇怪的算式本系列贡献者知识要点根据推理的方法来确定算式中的数字分加法算式谜、减法算式谜、乘法算式谜几种。
范例解析例1 填出方框里的数。
分析9加几个位上是3十位上哪两个数相加得8。
解等。
例2 填出右边算式方框里的数。
分析18减几得9十位上24 661 7。
解例3 右面的算式中只有五个数字已些出补上其他的数字分析先填哪一个呢做这一类题目要善于发现问题的突破口。
从百位进位来看和的千位数只能是1从十位相加来看进位到百位也只能进1。
因此□2□的百位是9和的百位是0。
通过上面的分析就找到了这道题目的突破口。
再从1576 21121 8得出算式例4 在下面的加法算式中每个汉字代表一个数字相同的汉字代表的数字相同求这个算式分析千位上的“边”是进位得来所以“边” 1其次从个位知道“看”“看”的末位数字还是“看”所以“看” 0因此推出想想看想×110 算算看算×110 所以和数“边算边看”是11的倍数因而“算”2。
进而推出想想121-22 99。
所求的算式是990220 1210。
例5 下面的算式由01……9十个数字组成已写出三个数字补上其他数字。
分析这一算式有十个数字分别是01……9这十个数字因此这个算式中所有数字各不相同解题时要充分利用着一点为了说明的方便用英文字母A、B、C、D、E、F来表示要填的数字很明显A 1。
解题的突破口是确定BB可以是7或9因为F至少是3所以十位相加后一定要进位如果B是9C将是2就出现数字的重复因此B只能是7C是0。
现在还没有用上的数字是9653其中只有6是双数因此个位上D和E 必定是单数只能是D 9E 3因此也确定了F 6这个算式如右所示。
例6 如图是一个动物式子不同的动物? 聿煌 氖 智肽阆胍幌胨阋凰阏庑┒ 锔鞔 砟男┦ ?图3-15 分析这个式子从哪里下手解答呢根据两个一位数相加和只能满十的特点首先推出公鸡等于“1”。
然后又根据两熊猫相加和仍然是熊猫推出熊猫只能等于“0”。
小学二年级数学答题规范与考试技巧孩子平时要注意
小学二年级数学答题规范与考试技巧,孩子平时要注意!解题格式与卷面规范,是数学中锦上添花的东西。
一份书写工整、规范的答卷会给任何一位阅卷老师留下美好的印象,也能避免一些不必要的扣分。
现在将一些应当注意的卷面规范写给即将考试的孩子与家长们:关于题型1、答卷不能用铅笔,红笔。
一般要求为黑色签字笔。
作图用铅笔,图形辅助线需用铅笔、虚线。
2、【选择题】、【填空题】只写最后结果,无需写出计算过程在试卷上。
3、【计算题(非方程)】开头写上“解:原式=”【计算题(解方程)】开头写上“解:”,等号上下对齐计算题不能直接写出结果,至少需写三步再给出答案。
4、【解答题】开头写“解:”,最后写“答”:,每步有“小标题”。
解答题中的计算,可以写出算式后直接写出算式结果,不用写出算式的计算过程。
列方程做的应用题可以列出方程后,直接写出方程的解。
解答题务必分步去写过程。
并且要保证过程详尽,该体现在卷面上的要点,不要轻易跳过。
对于那些没有把握的题目,分步去写可以得到分步的分数。
解答题的评分标准都是分步给的。
9个细节1、一道数学题结果要不要带单位,题目要不要进行单位换算,是数学审题的“头等大事”。
2、只需要字体工整,不需要字写的多么好看,就可以让一份答卷看起来赏心悦目。
而整齐的卷面,是可以通过“刻意练习”短期习得的。
根据我个人的教学实践,只要愿意,每个学生都可以把卷面写的很整洁。
3、一道解答题不是完全做对才能得到分数。
把自己想到的思路都写上,只要正确,就可以得到分步的分数。
不要把解答题完全空下来。
每一分都很宝贵。
4、计算的结果若是一个大于1的分数,写成带分数与假分数都可(若分子相较分母过大,可考虑化成带分数,让人一眼能看出分数的大小)。
5、π如果没有明确说明,一定要取3.14代入计算。
6、一道题的最后一步若出现除不尽的情况,比如2÷3:若题目对结果没有明确要求,就写成2/3;若要求结果是小数(但并没有明确说明写成几位小数),则保留小数点后两位,写成0.67;若要求结果是百分数,则百分号前面的数保留小数点后一位,写作66.7%。
人教版二年级数学下册小学数学解题思路大全 解题技巧
1.想数码例如,1989年“从小爱数学”邀请赛试题6:两个四位数相加,第一个四位数的每一个数码都不小于5,第二个四位数仅仅是第一个四位数的数码调换了位置。
某同学的答数是16246。
试问该同学的答数正确吗?(如果正确,请你写出这个四位数;如果不正确,请说明理由)。
思路一:易知两个四位数的四个数码之和相等,奇数+奇数=偶数,偶数+偶数=偶数,这两个四位数相加的和必为偶数。
相应位数两数码之和,个、十、百、千位分别是17、13、11、15。
所以该同学的加法做错了。
正确答案是思路二:每个数码都不小于5,百位上两数码之和的11只有一种拆法5+6,另一个5只可能与8组成13,6只可能与9组成15。
这样个位上的两个数码,8+9=16是不可能的。
不要把“数码调换了位置”误解为“数码顺序颠倒了位置。
”2.尾数法例1比较 1222×1222和 1221×1223的大小。
由两式的尾数2×2=4,1×3=3,且4>3。
知 1222×1222>1221×1223例2二数和是382,甲数的末位数是8,若将8去掉,两数相同。
求这两个数。
由题意知两数的尾数和是12,乙数的末位和甲数的十位数字都是4。
由两数十位数字之和是8-1=7,知乙数的十位和甲数的百位数字都是3。
甲数是348,乙数是34。
例3请将下式中的字母换成适当的数字,使算式成立。
由3和a5乘积的尾数是1,知a5只能是7;由3和a4乘积的尾数是7-2=5,知a4是5;……不难推出原式为142857×3=428571。
3.从较大数想起例如,从1~10的十个数中,每次取两个数,要使其和大于10,有多少种取法?思路一:较大数不可能取5或比5小的数。
取6有6+5;取7有7+4,7+5,7+6;…………………………………………取10有九种 10+1,10+2,……10+9。
共为 1+3+5+7+9=25(种)。
思路二:两数不能相同。
如何快速解决小学数学应用题以及解题思路
如何快速解决小学数学应用题以及解题思路小学数学应用题是很多小朋友失分最多的题,但其实,小学数学的知识点也不是很多,所以,平时家长们可以多让孩子读题目,理解题意。
这里给大家分享一些小学数学应用题的解题思路,希望对大家有所帮助。
小学数学应用题解题思路1、简单应用题(1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
(2) 解题步骤:a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。
读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。
也可以复述条件和问题,帮助理解题意。
b选择算法和列式计算:这是解答应用题的中心工作。
从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。
如果发现错误,马上改正。
2、复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
(2)含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
(3)含有两个已知条件的两步计算的应用题。
已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应用题。
(5)解答三步计算的应用题。
(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。
答案:根据计算的结果,先口答,逐步过渡到笔答。
( 7 ) 解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。
人教版二年级数学下册数学小学数学常用的16种思想方法 解题技巧
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
小学1-6年级数学难点解析,附34个必考公式
一年级的孩子刚刚踏入小学。
不论是学习习惯还是学习方法,都需要全面的培养和正确的引导,这就需要家长对整个六年的小学学习有一个全面的规划。
学习重点难点解析:巧算与速算的基本知识:对于一年级的学生来说,计算是学生学习时遇到的第一个问题。
如果能够在看似无序的算式中寻找到一定的规律,化繁为简,那么学生一定能够增强学习数学的信心,提高学习数学的兴趣。
另外,计算与速算是各种后续问题学习的基础。
学好数学,首先就要过计算这关。
认识并学会数各种基本图形:正方形、长方体、圆和立方体等是小学学习中最常见的图形。
通过系统的指导,使一年级的学生能够计算出各种基本图形的个数;使学生建立起有序思维,为建立思维模式打下基础。
学习简单的枚举法:枚举法对于一年级的学生来说的确是有一定的困难。
在华数课本中,介绍这一难题时采用数数这种更为直观的方式,将复杂抽象的问题形象化,便于孩子们理解。
枚举法训练的重点在于有序的思维方式,学习之初将抽象问题形象化,能够更好地引导学生去主动思考,建立起自己的思维方式。
数字的奇与偶、不等与相等等关于数论的基础知识:数论问题是后续学习中的一个重点,而这学期将要学到的:数字的奇与偶、不等与相等等无疑将会是今后学习的基础,在这里我们把数论问题分解为各种类型逐一讲解,使华数学习更加系统。
二年级奥数二年级是开发孩子智力、形成良好思维习惯的最佳时期,学习奥数不仅能够极大地锻炼孩子的思维能力,也能为孩子之后的学习打下坚实的基础。
对于二年级的学生家长来说,激发孩子对华数的兴趣是最主要的。
学习重点难点解析:计算要过关:对于二年级学生的奥数学习来说,最先碰到的问题就是计算问题,计算问题是重点也是难点。
根据学校数学的学习情况,孩子还没有学习乘除法的列竖式,尤其是乘法的列竖式在二年级华数的学习中要求的比较多,比如华数课本下册第三讲速算与巧算中就多次用到了乘法,另外一些应用题中也会有所应用。
所以对于学习下册华数的学生,首先计算关一定要过。
二年级上册数学辅导技巧及计划
二年级上册数学辅导技巧及计划小学二年级的数学学习方法一、正确的小学数学学习方法——抓住课堂理科学习重在平日功夫,不适于突击复习。
平日学习重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。
同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。
二、高质量完成作业所谓高质量是指高正确率和高速度。
写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。
另外对于老师布置的思考题,也要认真完成。
如果不会决不能轻易放弃,要发扬“钉子”精神,一有空就静心思考,灵感总是突然来到你身边的。
重要的是,这是一次挑战自我的机会小学数学学习方法有哪些小学数学学习方法有哪些。
成功会带来自信,而自信对于学习理科十分重要;即使失败,这道题也会给你留下深刻的印象。
三、勤思考,多提问首先对于老师给出的规律、定理,不仅要知“其然”还要“知其所以然”,正确的小学数学学习方法还有对不懂的内容,做到刨根问底,这便是理解的佳途径。
其次,学习任何学科都应抱着怀疑的态度,尤其是理科。
对于老师的讲解,课本的内容,有疑问应尽管提出,与老师讨论。
总之,思考、提问是清除学习隐患的佳途径四、总结比较,理清思绪(1)知识点的总结比较。
每学完一章都应将*内容做一个框架图或在脑中过一遍,整理出它们的关系。
对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。
(2)题目的总结比较。
同学们可以建立自己的题库。
我就有两本题集。
一本是错题,一本是精题。
对于平时作业,考试出现的错题,有选择地记下来,并用红笔在一侧批注注意事项,考试前只需翻看红笔写的内容即可。
我还把见到的一些极其巧妙或难度高的题记下来,也用红笔批注此题所用方法和思想小学数学学习方法有哪些小学辅导。
小学数学解题方法和技巧(附常见的6种方法)
小学数学解题方法和技巧(附常见的6种方法)1形象思维方法形象思维方法是指人们用形象思维来认识、解决问题的方法。
它的思维基础是具体形象,并从具体形象展开来的思维过程。
形象思维的主要手段是实物、图形、表格和典型等形象材料。
它的认识特点是以个别表现一般,始终保留着对事物的直观性。
它的思维过程表现为表象、类比、联想、想象。
它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。
它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。
实物演示法利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。
这种方法可以使数学内容形象化,数量关系具体化。
比如:数学中的相遇问题。
通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。
二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。
像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。
特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。
长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。
图示法借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。
图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。
在课堂教学当中,要多用图示的方法来解决问题。
有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。
列表法运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。
小学数学解题思路
1 2
=
2(
份).这样,
可以省去计算蜻蜓每小
时飞行多少公里这一步。
按照这样的句式去思考,解第三个问题,既不需要求出蝗虫速度,也不
需要求出蜻蜓速度, 只要把"蜜蜂速度是蜻蜓速度的 1 "代入" 蝗虫速度是蜜 2
蜂的
1 6
" 实际上就是蝗虫速度是蜻蜓速度的
1 2
×
1 6
=
1 12
.
你看, 问题不是简单
多了吗?
分配给乙丙两个运输队, 乙队运输量的 2 等于丙的 5 , 乙队有载重2.5吨的卡车
3
6
Powered by
8 辆,问乙队要完成规定的运输任务,要运几次?
解析一:
1.“甲队运走了全部货物的 30%”揭示了甲队运走的吨数与全部货物间
上半年印书 360000 册是已知数,所以运算方法是:
360000×(1+1.5)=900000(册)
(以下解法同上,从略)
例 2:
蜜蜂每小时飞行60公里, 蝗虫每小时飞行的速度是蜜蜂的 1 , 蜜蜂每小 6
小时飞行的速度是昆虫中的飞行冠军蜻蜓的 1 , 问: 2
(1)蜜蜂飞行速度比蝗虫每小时多飞行多少公里?
出勤率是 96%,丙组出勤多少人?
Powered by
解析:
由“出勤率为 90%”揭示了甲组出勤人数和甲组总人数间的百分比关
系,改变成数量关系的句式是:
甲组出勤人数=甲组总人数×出勤率(90%)
在这个句式里,甲组总人数是未知数,运算方法是:“已知一个数的几
分之几是多少,求这个数,用除法。”
组总人数是未知数。运算方法是:“已知一个数的几倍是多少(甲组总人数
小学数学解题思路
小学数学解题思路一、解题思路之整数运算1. 例如:计算 45 + 53 的结果。
解题思路:将两个数按照个位、十位、百位对齐,逐位相加,注意进位。
步骤一:个位相加,5 + 3 = 8,个位写下 8。
步骤二:十位相加,4 + 5 = 9,加上个位的进位 1,得到 10,十位写下 0,十位的进位写下 1。
步骤三:百位相加,没有需要相加的数,将十位的进位加到百位,百位的结果为 1。
最终结果为:98。
2. 例如:计算 73 - 28 的结果。
解题思路:将被减数的个位、十位、百位对齐,逐位相减,注意借位。
步骤一:个位相减,3 - 8,由于 3 小于 8,需要向十位借位。
步骤二:十位相减,7 - 2,没有需要借位的情况,十位的结果为5。
最终结果为:45。
二、解题思路之分数运算1. 例如:计算 1/4 + 2/3 的结果。
解题思路:首先求出分数的公共分母,然后将两个分数变为相同的分母,再进行分子的加减运算。
步骤一:公共分母为 12。
步骤二:将 1/4 的分母变为 12,分子变为 3。
步骤三:将 2/3 的分母变为 12,分子变为 8。
步骤四:分子相加,3 + 8 = 11。
最终结果为:11/12。
2. 例如:计算 3/5 - 1/4 的结果。
解题思路:首先求出分数的公共分母,然后将两个分数变为相同的分母,再进行分子的加减运算。
步骤一:公共分母为 20。
步骤二:将 3/5 的分母变为 20,分子变为 12。
步骤三:将 1/4 的分母变为 20,分子变为 5。
步骤四:分子相减,12 - 5 = 7。
最终结果为:7/20。
三、解题思路之面积计算1. 例如:计算一个长方形的面积,长为 5cm,宽为 3cm。
解题思路:长方形的面积等于长乘以宽。
步骤一:将长方形的长和宽代入公式,5cm * 3cm = 15cm²。
最终结果为:15cm²。
2. 例如:计算一个圆的面积,半径为 7cm。
解题思路:圆的面积等于π(圆周率)乘以半径的平方。
小学数学解题思维方法整理
小学数学解题思维方法小学数学学习过程中常用的解题方法及思维方式整理,希望能帮到需要的同学。
一、逆向思维方法小学教材中的题目,多数是按照条件出现的先后顺序进行顺向思维的。
逆向思维是不依据题目内条件出现的先后顺序,而是从反方向(或从结果)出发而进行逆转推理的一种思维方式。
逆向思维与顺向思维是训练的最主要形式,也是思维形式上的一对矛盾,正确地进行逆向思维,对开拓应用题的解题思路,促进思维的灵活性,都会收到积极的效果,解:这是一道典型的“还原法”问题,如果用顺向思维的方法,将难以解答。
正确的解题思路就是用逆向思维的方法,从最后的结果出发,一步步地向前逆推,在逆向推理的过程中,对原来题目的算法进行逆向运算,即:加变减,减变加,乘变除,除变乘。
列式计算为:此题如果按照顺向思维来考虑,要根据归一的思路,先找出磨1吨面粉序是一致的。
如果从逆向思维的角度来分析,可以形成另外两种解法:①不着眼于先求1吨面粉需要多少吨小麦,而着眼于1吨小麦可磨多少列式计算为:由此,可得出下列算式:答:(同上)掌握逆向思维的方法,遇到问题可以进行正、反两个方面的思考,在开拓思路的同时,也促进了逻辑思维能力的发展。
二、对应思维方法对应思维是一种重要的数学思维,也是现代数学思想的主要内容之一。
对应思维包含一般对应和量率对应等内容,一般对应是从一一对应开始的。
例1 小红有7个三角,小明有5个三角,小红比小明多几个三角?这里的虚线表示的就是一一对应,即:同样多的5个三角,而没有虚线的2个,正是小红比小明多的三角。
一般对应随着知识的扩展,也表现在以下的问题上。
这是一道求平均数的应用题,要求出每小时生产化肥多少吨,必须先求出上、下午共生产化肥多少吨以及上、下午共工作多少小时。
这里的共生产化肥的吨数与共工作的小时数是相对应的,否则求出的结果就不是题目中所要求的解。
在简单应用题中,培养与建立对应思维,这是解决较复杂应用题的基础。
这是因为在较复杂的应用题里,间接条件较多,在推导过程中,利用对应思维所求出的数,虽然不一定是题目的最后结果,但往往是解题的关键所在。
小学数学应用题解题思路及方法
小学数学应用题解题思路及方法应用题在小学数学中占据着重要的地位,它不仅培养学生的思维能力和逻辑推理能力,还能帮助学生解决生活中的实际问题。
因此,掌握小学数学应用题的解题思路和方法显得尤为重要。
本文将介绍几种常用的应用题解题思路和方法。
一、审题审题是解决应用题的第一步,也是最关键的一步。
在审题过程中,学生需要明确题目中的已知条件、未知条件和问题,并尝试理解它们之间的关系。
为了更好地理解题目,学生可以尝试将题目中的信息用图形或符号表示出来,以便更好地分析和解决问题。
二、分析问题在审题的基础上,学生需要分析问题并找出解决问题的方法。
在分析问题时,学生需要注意问题的类型和特点,并尝试将问题分解成若干个小问题,逐一解决。
同时,学生还需要注意问题中的隐含条件和关键词语,以便更好地解决问题。
三、寻找等量关系在应用题中,等量关系是指题目中已知量和未知量之间的关系。
通过寻找等量关系,学生可以建立方程或方程组来解决问题。
因此,在分析问题的过程中,学生需要认真寻找等量关系并建立方程或方程组。
四、计算计算是解决应用题的最后一步,也是最简单的一步。
在计算过程中,学生需要注意计算准确性和计算速度,以便更好地解决问题。
学生还需要注意单位的换算和符号的运用,以便更好地完成计算。
小学数学应用题的解题思路和方法是解决应用题的关键。
通过审题、分析问题、寻找等量关系和计算等步骤,学生可以更好地解决应用题并提高自己的思维能力和逻辑推理能力。
刚刚接触应用题,很多同学都会有些畏难的心理,其实,应用题并不是很难的,只是需要一些细心和耐心,只要你克服了这个心理,你就会发现,应用题其实并不难。
审题是解决应用题的关键,只有明白了题目中的意思,才能更好的去解题。
分析题意是解决应用题的必经之路,只有明白了题目的意思,才能进行下一步的解题。
在题目中,你经常会遇到一些已知量和未知量,这些量可以帮助你更好的去解题。
数量关系是解决应用题的关键,只有找出了数量关系,才能更好的去解题。
小学数学的解题技巧
小学数学的解题技巧小学数学是学习科目中最难解决的一门学科,孩子在学习数学的时候最困难的是要发散思维,找到解题思路。
下面是小学数学的解题技巧,欢迎阅读。
一、形象思维方法形象思维方法是指人们用形象思维来认识、解决问题的方法。
它的思维基础是具体形象,并从具体形象展开来的思维过程。
形象思维的主要手段是实物、图形、表格和典型等形象材料。
它的认识特点是以个别表现一般,始终保留着对事物的直观性。
它的思维过程表现为表象、类比、联想、想象。
它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。
它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。
1、实物演示法利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。
这种方法可以使数学内容形象化,数量关系具体化。
比如:数学中的相遇问题。
通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。
再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。
二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。
像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。
特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。
长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。
所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。
这样可以有效地提高课堂教学效率,提升学生的学习成绩。
2、图示法借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。
图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。
小学数学解题思路技巧(一、二年级用)
神奇的1和0本系列贡献者:与你的缘[知识要点]1.我们用字母α表示除0以外的任何数,则有⑴ α×1=1×α=α; α÷1=α。
⑵ α+0=0+α=α; α-0=α; α×0=0×α=0; 0÷α=0。
⑶ α÷0无意义。
2.掌握含0的数的读法,规定末尾的0不读;中间有一个0或几个0连在一起都只读一个0。
[范例解析]例1 计算下面由数字1组成的“金字塔”,把所有的1都加起来,看谁算得快。
1111111111111111111111111111111111111111111111111111111解 “金字塔”每层的和分别是1、2、3、4、5、6、7、8、9、10。
它们的总和是:1+2+3+4+5+6+7+8+9+10例2 请回答:数字3最少是几个数字相乘的积?最多呢?解 由于3×1=3,所以3最少是两个数字的积,最多可看成是一个数3和无穷多个数1的积。
例3 我们做一个数字计算游戏。
任取一个不是1的数,如果是双数就除以2(如取18,就18÷2);如果是单数就乘以3加上1后再除以2[如取7,就(7×3+1)÷2]。
现在我们取数3,反复用这两种方法计算,最后的结果怎样?任取数7呢?解 将数3按这两种方法计算有:3×3+1=10 10÷2=5 5×3+1=16 16÷2=8 8÷2=4 4÷2=2 2÷2=1简记为:3→10→5→16→8→4→2→1同样,对于数7有:7→22→11→34→17→52→26→13→40→20→10→5→16→8→4→2→1数3和数7经过用规定的两种方法反复计算,最后的结果都是1。
这种计算方法称“角谷猜想”。
例4 2÷0得几?说明理由。
解假定2÷0=α,根据除法的意义,应有α×0=2。
小学数学应用题解题10个思路应用题解题思路解题技巧
1.顺向综合思路“直接思路”是解题中的常规思路。
它一般是通过分析、综合、归纳等方法,直接找到解题的途径。
【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。
这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。
例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。
(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。
(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。
(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。
(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离?这个分析思路可以用下图(图2.1)表示。
例2 下面图形(图2.2)中有多少条线段?分析(仍可用综合思路考虑):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。
(1)左端点是A的线段有哪些?有 AB AC AD AE AF AG共 6条。
(2)左端点是B的线段有哪些?有 BC、BD、BE、BF、BG共5条。
小学数学解题技巧方法归纳把握
小学数学解题技巧方法归纳把握小学数学是一门很有趣的课程,可以启迪孩子的心智,可以培养孩子的逻辑思维。
下面是小编为大家整理的关于小学数学解题技巧方法把握,希望对您有所帮助!小学数学解题技巧一、理解问题要深刻读题是理解题和解决问题的前提,要反复读题,加深理解。
但常常有这样的同学,读完题后还未完全理解题意便忙于解题,于是就出现理解不出来或解错题的情况,欲速则不达。
二、不要盲目列方程用方程解题的最大好处就是可以用字母代替未知数,在考虑数量关系时,未知数与已知数始终处于平等地位,可以直接参加列式和计算,便于把题目中的数量关系直接地反映出来,从形式上看,它比列算术式要简便。
如此说来,是不是在解题时我们就应一味地去追求列方程呢?实际并非如此。
这些题进一步说明列方程解题并不一定是最好的选择。
通过以上几道例题的分析比较可以看出,很多数学题用算术方法求解要比用代数方法求解简便得多,而且用算术的方法分析问题能很好地锻炼同学们的思维,使自己的'头脑越来越灵活,有利于智力的开发。
所以,在小学阶段,应尽可能使用算术方法去思考问题,而不要盲目追求列方程。
三、分析错误原因对错误的解答,要能够认真分析错误原因。
搞清楚是理解题意有误还是计算错误,是考虑问题不全面还是解题思路有问题。
认真反思,吸取教训,你离成功就不远了。
(一)“篡改试题”就是把题目改了再做,当然你不是故意这样的。
同学们在考试时常受一些曾经似乎做过的题的影响,这个见过,那个见过,就顺着记忆做下去了,实际上由于其中一个条件或关键词的改变或数据的改变,编排顺序的改变等已使题目变得与原题大不相同了,因此在审题时一定要认真,再认真,条件是什么?条件与条件之间的关系是什么?数据又是什么?与问题有怎样的联系?这些都需要思索一番的,我们在教学过程中一般都强调同学们画图、列条件、标数据、写等量关系等,把题目中提供的信息,通过自己的大脑再在草稿纸上表现出来,这样不易遗漏。
当然这些都存在一个时间和效率问题,在考试时是不容你花大量的时间琢磨的,要在有限的时间内把题意掌握清楚,争取不受原来那些题的干扰。
1_一二年级_小学数学解题思路技巧
小学数学解题思路技巧目录(一、二年级用)第一章基础知识§1.1 神奇的1和0§1.2 余数的妙用§1.3 周期现象第二章填速算与技巧§2.1 加减巧算§2.2 乘法巧算§2.3 连续自然数求和第三章填数问题§3.1 用运算符号连算式§3.2 找规律填数§3.3 奇怪的算式§3.4 调整法趣谈第四章火柴棒游戏§4.1 简单的变式运算§4.2 复杂的变式游戏§4.3 图形游戏第五章图形问题§5.1 怎样数图形的个数§5.2 图形的识别与划分§5.3 怎样剪拼图形第六章简单应用题§6.1 解应用题的综合法与分析法§6.2 倍数问题§6.3 有关平均分的问题§6.4 事物推理问题§6.5 钟面上的数学问题第七章模拟试题模拟试题一模拟试题二模拟试题三模拟试题四模拟试题五模拟试题六模拟试题七神奇的1和0[知识要点]1.我们用字母α表示除0以外的任何数,则有⑴α×1=1×α=α;α÷1=α。
⑵α+0=0+α=α;α-0=α;α×0=0×α=0;0÷α=0。
⑶α÷0无意义。
2.掌握含0的数的读法,规定末尾的0不读;中间有一个0或几个0连在一起都只读一个0。
[范例解析]例1计算下面由数字1组成的“金字塔”,把所有的1都加起来,看谁算得快。
解“金字塔”每层的和分别是1、2、3、4、5、6、7、8、9、10。
它们的总和是:1+2+3+4+5+6+7+8+9+10 例2请回答:数字3最少是几个数字相乘的积?最多呢?解由于3×1=3,所以3最少是两个数字的积,最多可看成是一个数3和无穷多个数1的积。
例3我们做一个数字计算游戏。
任取一个不是1的数,如果是双数就除以2(如取18,就18÷2);如果是单数就乘以3加上1后再除以2[如取7,就(7×3+1)÷2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调整法趣谈
本系列贡献者:与你的缘[知识要点]
1.调整法的意义。
我们看下面的点子图:
●●●●●●●
图3-16
它一共有二组,一组有5个点子,另一组有两个点子,图中一共有多少个点子?
算式:5+2 = 7(个)。
现在问:怎样改变点子图,来表示算式2+5呢?我们可用交换点子位置或移动点子位置来改变。
如图所示:
这种通过交换点子位置或移动点子位置的操作过程,我们较做调整法。
2.调整法的用途,我们通过举例来说明。
[范例解析]
例1右面正方形方格中的数字,怎样移动才能使横行和竖行三个数相加的和相等?
分析我们可从图中观察到:竖行三数的和都是6,它们相等,打上“√”号,而横行三数的和都不相等,因此,要调整位置的是横行的数字。
我们只要按照下面图3-19箭头所示进行交换调整,问题就得到解决。
说明凡是符合条件的横行或竖行打上“√”,可使问题一目了然,方便调整。
例2图中有“+”、“-”、“×”、“÷”四种运算符号。
移动这些符号,使每行每列的四种符号不相同。
分析通过观察,发现3-20中只有从左数第二列符号与题目要求不同,因此我们先考虑列的情况,第一列多“+”号,缺“÷”号,而第三列多“÷”号缺“+”,如下图交换后,把符合条件的行与列打上“√”。
经过第一次交换后,图3-21中只有第一行和第二行以及第三列和第四列不符合条件,而第三列多“×”号,缺“-”号,第四列多“-”号,缺“×”号,只要再按如图3-22交换就完全符合条件。
说明较复杂的方阵游戏,多调整几次,是可解决问题的,调整中不想走弯路,这就要靠智慧了。
例3把1~7这七个数填在图3-23中的小圆圈中,使每一
个圆周上四个数字的和都等于17。
分析此题有两种做法。
第一种做法:开始在小圆圈里任填1~7这七个数,
并且两个大圆周上的四个数的和都不等于17。
如图3-24
的填法。
我们观察到,只要首先将2与7交换,就能使右边大圆周上四个数字的和等于17。
这时,左边大圆周上四个数的和是:1+3+7+4 = 15比17少2,要使右边圆周上的四个数字的和不变,只要4与6交换即可。
第二种做法:首先在1~7这7个数字中选四个数字,
并且四个数的和等于17。
例如选(1+3+6+7 = 17)1,
3,6,7四数填在一个圆周上,其他三数任填在另一圆
周上的小圆圈里。
如果另一圆周上四个数字之和不等于
17,只要按前面调整的方法,只经过一此调整就行了。
如图3-25所示。
[思路技巧]
调整不是拼凑,它是充分利用我们已有的知识技能,充分发挥我们的观察能力,有计划、有目的的进行解题的重要手段。
[习题精选]
1.要使图3-26中每横行、每竖行都有四个不同的数,你能做到吗?
2.图3-27中每个五边形上五个数的和都是60,请你调整一下数的位置,使每个五边形上五个数的和都等于61。
3.把1-6六个数填在图3-28中的小圆圈中,使每一个大圆上的三个数相加的和为12。
4.把10、20、30、40、50填在图3-29中的圆圈内,使每条线上三个数的和都相等。
5.在图3-30中填上适当的数,使每横行、每竖行的三个数的和等于15。
如果你所填的数不是1-9这九个数,请将它调整调整成1-9这九个数。
6.在3-31中小圆圈里填上1、2、3、4、5、6这六个数,使每条线上3个小圆圈里的素的和都是9、10、11、12。
8.移动图3-33中的数字,使第二横行的三位数是第一横行三位数的2倍,第三横行的三位数是第一横行三位数的3倍。
图3-339.停车场中有8辆宣传车,如图3-34。
其中5两没有对号停车。
你能不能在车辆不出场
的情况下,帮他们按号停好车?。