利用压力传感器实现液位控制系统的设计课程设计报告1
利用压力传感器实现液位控制系统的设计
泵 出 口管 道 上 的 压 力传 感 器 , 出 口 压 力 变成 标 准 工 业 电 信 把 号 的 模 拟 信 号 , 过 前 置 放 大 、 路切 换 、 经 多 MD 变换 成 数 字 信 号 传送 到单 片 机 , 单 片 机 运 算和 给 定 参 量 的 比 较 , 行 PD 经 进 I
不懂 密 封 防 爆 原 理 . 致使 其 防 爆 接 线 盒 电源 接线 处 密 封 性 能 失效 。 当
4 摩 托车等在 站 内打火 问题
加 油 站 直接 给 为 熄火 的摩 托 车 加 油 的现 象 较 普 遍 。 也 极 易 引 发 这 火 灾 爆 炸 事故 的 发 生 。汽 车 、 托 车 、 摩 拖拉 机 必须 熄 火加 油 , 且 摩 托 而 车 、 拉 机要 推 离 危 险 区域 后 发 动 。 拖 因为 行 驶 中 的车 辆 排 出 的尾 气 中 。 可 能 含 有 为燃 尽 的 汽 油所 携 带 的 火 星 。 其 像 摩托 车 和 拖拉 机 的完 全 尤 燃 烧 程 度低 , 别 是 在启 动 时 , 尾 气 的 火 星更 多 。 特 其
() 杂控 制器 控 制 方 式 。这 种控 制方 式 是 通 过 安装 在 水 2复
制 水 泵 停 止 上水 ; 测 值 若 低 于 下 限 设 定 值 , 求 报 警 , 启 检 要 开 继 电器 , 制 水 泵 开 始 上水 。现 场 实 时 显 示 测量 值 。 而 实 现 控 从
对 水 箱 液位 的监 控 。
性 液 体 液 位控 制 中 也 被 广泛 应 用 。通 过对 模 型 的 设计 可 很 好 的 延伸 到具 体 应 用 案例 中 。
供 水 箱 水位 进 行 监 控 的 系统 。根 据 监 控对 象 的特 征 , 求 实时 要
液位控制系统设计
摘要本文主要设计了一种液位控制器,它以8051作为控制器,通过8051单片机和模数转换器等硬件系统和软件设计方法,实现具有液位检测报警和控制双重功能,并对液位值进行显示。
本系统是基于单片机的液位控制,在设计中主要有水位检测、按键控制、水位控制、显示部分、故障报警等几部分组成来实现液位控制。
主要用水位传感器检测水位,用六个控制按键来实现按健控制,用三位7段LED显示器来完成显示部分,用变频器来控制循环泵的转速,并且通过模数转换把这些信号送入单片机中。
把这些信号与单片机中内部设定的值相比,以判断单片机是否需要进行相应的操作,即是否需要开启补水泵或排水泵,来实现对液面的控制,从而实现单片机自动控制液面的目的。
本设计用单片机控制,易于实现液位的控制,而且有造价低、程序易于调试、一部分出现故障不会影响其他部分的工作、维修方便、等优点.关键词: 8051单片机; 模数转换;水位控制; 自动控制目录1 前言 (3)1.1课题背景 (3)1。
2国内外研究的现状 (3)1.3使用单片机实现水体液位控制的优点 (4)2 系统硬件设计 (6)2。
1核心芯片8051单片机 (6)2.2液位传感器设计 (9)2.4ADC0809A/D转换器 (13)2.5键盘及显示接口 (16)2。
6自动报警电路 (17)下列二种情况发生系统报警。
(18)1)当水位达到上限极限水位时报警,水位到达上限极限水位时系统发出报警; (18)2)当水位达到下限极限水位时报警,水位到达下限极限水位时系统发出报警 (18)3 系统软件的设计 (19)3。
1软件设计流程图 (19)致谢 (23)1 前言1。
1 课题背景液位控制系统是以液位为被控参数的控制系统,它在工业生产的各个领域都有广泛的应用。
在工业生产过程中,有很多地方需要对容器内的介质进行液位控制,使之高精度地保持在给定的数值,如在建材行业中,玻璃窑炉液位的稳定对窑炉的使用寿命和产品的质量起着至关重要的作用。
蓄水池液位控制系统课程设计
南华大学过程控制仪表课程设计设计题目PLC控制的蓄水池液位系统学生姓名吴港南专业班级自动化1002班学号***********指导老师刘冲目录1.设计的目的和意义 (2)1.1设计目的 (3)1.2设计意义 (3)2.控制系统工艺流程及控制要求 (4)2.1基本任务 (4)2.2基求控制要求 (4)2.3给定条件 (4)2.4主要性能指标 (4)2.5工艺流程图 (5)3.总体设计方案 (6)3.1控制方法选择 (7)3.1.1控制方法选择 (7)3.1.2系统组成 (7)3.2系统组成 (8)4.软硬件设计 (8)4.1建模过程 (8)4.2硬件开发及系统配置 (10)4.2.1PLC系统—CPU、模/数转换模块、数/模转换模块 (10)4.2.1回路表 (10)4.2.2PID指令 (11)4.2.3程序流程图 (12)4.2.4程序 (14)5.课程设计实验 (18)6.遇到的问题及解决方法 (18)7.收获和体会 (19)参考文献 (19)·第1章设计的目的及意义1.1设计目的对蓄水池液位/压力控制系统。
这是一个单回路反馈控制系统,控制的任务是使水箱的液位/压力等于给定值,减小或消除来自系统内部或外部扰动的影响。
用液位/压力参数为被控对象。
交流电动机带动齿轮泵通过阀1向上水箱供水,调节阀2使之同时向外排水,令入水的速度大于出水的速度,达到被控参数(液位/压力)的动态调整。
1.2设计意义在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工, 溶液过滤, 化工生产等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度, 既不能太满溢出造成浪费, 也不能过少而无法满足需求。
因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。
可编程控制器(PLC)是计算机家族中的一员,是为工业控制应用而设计制造的,主要用来代替继电器实现逻辑控制。
液体混合装置控制系统plc课程设计
液体混合装置控制系统plc课程设计液体混合装置控制系统PLC课程设计引言:液体混合装置是工业生产中常见的设备,通过控制系统的设计,可以实现液体的精确配比和混合。
本文将介绍液体混合装置控制系统PLC课程设计的相关内容。
液体混合装置控制系统的设计旨在实现液体的准确配比和混合,提高生产效率和产品质量。
一、设计目标液体混合装置控制系统的设计目标是实现液体的精确配比和混合,确保产品的质量稳定和生产效率的提高。
具体包括以下几个方面:1. 实现液体的精确配比,保证混合比例准确无误;2. 控制液体流量和压力,确保液体供应的稳定;3. 控制液体温度,适应不同的生产需求;4. 监测液体混合过程中的参数,实时调整控制策略,确保混合效果。
二、系统架构液体混合装置控制系统采用PLC作为控制核心,通过传感器和执行器与液体混合装置进行信息交互。
系统架构主要包括以下几个模块:1. 传感器模块:用于采集液体流量、压力和温度等信息,将采集到的数据传输给PLC;2. PLC控制模块:接收传感器模块传输的数据并进行处理,根据设定的控制策略生成控制信号;3. 执行器模块:根据PLC生成的控制信号,控制液体的供给和混合过程;4. 人机界面模块:提供对液体混合装置控制系统的监控和操作界面,方便操作员进行参数设定和实时监测。
三、系统设计1. 传感器选择:根据不同的控制需求选择合适的传感器,如流量传感器、压力传感器和温度传感器等,确保采集到的数据准确可靠。
2. PLC编程:根据设计目标和控制策略,编写PLC程序,实现液体的精确配比和混合控制。
程序应包括液体流量、压力和温度的控制算法,以及实时监测和报警机制。
3. 执行器控制:根据PLC生成的控制信号,控制液体的供给和混合过程。
可采用电磁阀、变频器等执行器设备,确保液体供给的准确性和稳定性。
4. 人机界面设计:设计人机界面,提供参数设定、实时监测和报警信息等功能。
界面应简洁明了,操作方便,能够满足操作员的需求。
传感器课设报告
传感器课设报告在当今社会,传感器技术已经成为了现代科技发展的重要组成部分。
传感器的应用范围非常广泛,从工业生产到日常生活中都有着重要的作用。
因此,对传感器技术进行深入的研究和学习是非常有意义的。
在传感器课设报告中,我们将着重介绍以下几个方面:传感器的基本原理、传感器的应用以及传感器在未来的发展趋势。
首先,我们将介绍传感器的基本原理。
传感器是一种能够将非电信号转换为电信号的装置。
传感器的基本原理就是利用某种物理效应或化学效应来检测被测量的物理量,并将其转换为电信号。
不同类型的传感器有着不同的工作原理,比如压力传感器是根据力的大小来检测压力的变化,光敏传感器则是利用光电效应来检测光照强度的变化。
其次,我们将介绍传感器的应用。
传感器的应用非常广泛,包括但不限于工业控制、环境监测、医疗诊断、智能家居等领域。
例如,温度传感器可以用于监测工业生产中的温度变化,光敏传感器可以用于智能家居系统中的光照控制。
传感器的应用不仅提高了生产效率,也为人们的生活带来了极大的便利。
最后,我们将介绍传感器在未来的发展趋势。
随着科技的不断进步,传感器技术也在不断发展。
未来,传感器将更加智能化、多功能化和微型化。
同时,传感器与人工智能、大数据等新兴科技的结合也将给传感器技术带来新的发展机遇。
我们期待着未来传感器技术的进一步突破和创新。
通过这次传感器课设报告,我们对传感器技术有了更深入的了解。
传感器技术的发展不仅对科技行业有着重要的意义,也为人们的生活带来了更多的便利。
我们相信,随着传感器技术的不断发展,它将在更多领域发挥作用,为人类社会的发展做出更大的贡献。
基于PLC的液位控制系统设计
基于PLC的液位控制系统设计液位控制系统是一种自动控制系统,用于控制液体在容器中的液位。
PLC(可编程逻辑控制器)被广泛应用于液位控制系统中,因为它具有可编程性、易于安装和维护以及可靠性高的特点。
在本文中,我们将基于PLC设计一个液位控制系统。
首先,我们需要选择适合的PLC设备。
根据液位控制系统的规模和需求,我们可以选择不同型号和品牌的PLC,例如西门子、施耐德等。
一个PLC系统通常包括CPU、输入和输出模块、通信模块等组成部分。
根据液位控制系统的需求,我们可以选择适当的输入和输出模块来连接传感器和执行器。
接下来,我们将设计液位传感器和执行器的布置。
液位传感器用于检测液位的高度,并将信号传输给PLC系统。
常用的液位传感器包括浮球传感器、压力传感器等。
根据液位控制系统的需求,我们可以将传感器布置在不同的位置和高度。
执行器用于控制液位,例如开关泵来增加液位或者打开泄水阀来降低液位。
然后,我们需要设计PLC的逻辑控制程序。
PLC的逻辑控制程序决定了液位控制系统的工作方式。
我们可以使用PLC编程语言(如ladder diagram)来编写逻辑控制程序。
在程序中,我们可以定义液位的上下限,并根据实际液位与设定值之间的偏差来控制执行器的开关状态。
例如,当液位低于设定值时,PLC会启动泵来增加液位;当液位高于设定值时,PLC会打开泄水阀来降低液位。
最后,我们需要测试和调试液位控制系统。
在测试过程中,我们可以使用仿真工具来模拟真实情况,并验证PLC的逻辑控制程序是否正确。
如果发现问题,我们可以对逻辑控制程序进行修改或优化。
一旦测试通过,我们就可以将液位控制系统部署到实际环境中,并进行调试。
在调试过程中,我们需要确保PLC系统能够稳定地控制液位,并及时响应外部输入和输出信号。
总结起来,基于PLC的液位控制系统设计包括选择PLC设备、设计液位传感器和执行器布置、编写逻辑控制程序以及测试和调试系统等步骤。
通过合理设计和调试,PLC可以有效地控制液位,提高系统的自动化程度和稳定性。
基于压力传感器实现的液位控制系统的设计
博 罗 5 1 6 1 0 0 )
要: 文章介 绍一种基 于压 力传感 器实现 的液位控 制器的设计方法 , 该控制 器以单片机 为核 心 , 通过 外围硬件 电
路 来达到 实现控制的 目的。可根据需要 设定液位控制 高度 , 同时具备报 警 、 高度显 示等 功能 , 由于增加 了气体压 力传感
S e n i o r T e c h n i c a l S c h o o l o f C u a n g d o n g , B o l u o , G u a n g d o n g 5 1 6 1 0 0 , C h i n a )
Ab s t r a c t :A s i n g l e - c h i p mi c r o c o mp u t e r - b a s e d c o n t r o l l e r t o a c h i e v e t h e l e v e l o f t h e d e s i g n me t h o d ,t h e s i n g l e — c h i p c o n t r o l l e r a s t h e c o r e ,t h r o u g h t h e e x t e r n a l h a r d wa r e c o n t r o l c i r c u i t t o a c h i e v e t h e c o n t r o 1 . I t c a n s e t l e v e l c o n t r o l h e i g h t ,a t t h e s a me t i me h a v e f u n c t i o n a l i t y o f a l a r m a n d d i s p l a y i n g a h i g h d e g r e e ,d u e t o a n i n c r e a s e o f g a s p r e s s u r e s e n s o r ,s o i t wi l l h a v e c h a r a c t e r i s t i c o f n o c o n t a c t wi t h t h e l i q u i d s u r f a c e ,c a n b e u s e d f o r l e v e l c o n t r o l o f t o x i c ,c o r r o s i v e l i q u i d a n d h a v e h i g h r e s e a r c h v a l u e . T h e c o n t r o l l e r c a n b e u s e d n o t o n l y f o r t e a c h i n g a n d r e s e a r c h s c h o o l s ,b u t a l s o f o r t h e r e a l i t y o f p r o d u c t i o n a n d i s a s c a r c e p r o d u c t .
水位计方案
水位计方案1. 概述水位计是一种用于测量液体水位高低的设备,广泛应用于水利工程、环境监测、生产制造等领域。
本文将介绍一种基于压力传感器的水位计方案,包括原理、设计要点以及应用场景等内容。
2. 原理水位计的测量原理一般采用压力传感器测量液体所施加的压力,通过转换成相应的电信号来表示液位高度。
具体原理如下:1.液体静压力:液体在垂直方向上受到的压力与液体高度成正比。
因此,通过测量液体施加在压力传感器上的静压力,可以推算出液位高度。
2.压力传感器:压力传感器是一种能够将压力信号转换为电信号的设备。
常见的压力传感器类型包括压阻式、电容式、电感式等。
在水位计中,一般采用压阻式传感器。
3.信号处理:压阻式传感器输出的电阻值与液体的静压力成正比。
通过将电阻值转换为相应的电压或电流信号,并进行放大和滤波等处理,可以得到精确的液位高度测量结果。
3. 设计要点设计一种可靠的水位计方案需要考虑以下要点:3.1 压力传感器选择选择合适的压力传感器是确保水位计精度和可靠性的关键。
在选择压力传感器时,需要考虑以下因素:•测量范围:根据实际应用需求选择合适的测量范围,保证传感器能够覆盖所有可能的液位变化范围。
•精度:传感器的精度决定了测量结果的准确性,要根据实际需求选择合适的精度等级。
•耐压性能:考虑液体压力范围、冲击压力等因素,选择具有足够耐压性能的传感器。
3.2 电路设计水位计的电路设计包括信号调理、放大、滤波和输出等环节。
关键考虑因素包括:•信号调理:将压力传感器输出的电阻值转换为相应的电压或电流信号。
•放大:对信号进行放大,提高测量精度和灵敏度。
•滤波:采用低通滤波器等方法,降低噪声干扰,提高信号质量。
•输出:将处理后的信号转换为标准信号输出,如电压、电流等。
3.3 系统校准在使用水位计之前,需要对系统进行校准,以确保测量结果的准确性。
校准方法一般包括对应不同液位高度的压力值进行测量,并记录对应的传感器输出值。
根据测量值和实际液位高度建立校准曲线,以便后续测量结果的精确推算。
水位自动检测与控制系统的设计
1 引言1.1 探讨背景在社会经济飞速发展的今日,水在人们生活和生产中起着越来越重要的作用。
一旦断水,轻则给人民生活带来极大的不便,重则可能造成重大的生产事故及损失。
因此,对水位的自动检测及限制的探讨,有着极其重要的地位。
任何时候都能供应足够的水量,平稳的水压,合格的水质,是对供水系统的基本要求。
就目前而言,多数工业生活供水系统,都接受水塔,层顶水箱等基本储水设备,由一级二级水泵从地下市政水管补给,因此如何建立一个牢靠平安又利于维护的给水系统是值得我们探讨的课题。
现今社会,自动扮装置无所不在,在限制技术需求的推动下,限制理论本身也取得了显著的进步。
水塔水位的监测和限制,再也不须要人工进行操作。
实践证明,自动化操作,具有不行替代的应用价值。
在工农业生产以及日常生活应用中,常常会须要对容器中的液位(水位)进行自动限制。
比如自动限制水箱、水池、水槽、锅炉等容器中的蓄水量,生活中抽水马桶的自动补水限制、自动电热水器、电开水机的自动进水限制等。
虽然各种水位限制的技术要求不同,精度不同,但基本的限制原理都可以归纳为一般的反馈限制方式,就是利用传感器对于信号的供应通过单片机对数码显示、电机限制、报警限制部分的限制[1]。
本设计从分析水塔水位报警器的原理和设计方法入手,主要基于单片机的硬件电路和语言程序设计,实现一种能够实现水位自动限制、具有自动爱惜、自动声光报警功能的限制系统。
本限制系统由A/D转换部分、单片机限制部分、数码显示部分、电机驱动部分、电机限制部分等构成。
这是个简洁而灵敏的监测报警电路,操作简洁,接通电源即可工作。
因为大部分电路接受数字电路,所以本水位监测报警器还具有耗能低、精确性高的特点。
该系统设计新颖、简易,灵敏度高,工作稳定,能够自动检测和显示当前水位、凹凸水位报警等功能水位自动限制电路是通过水位传感器将水位高度转换为0~10V的直流电压,再经过A/D转换后,将转换所得的数字量送入单片机进行处理来达到对水位进行自动限制的目的。
基于传感器的压力液位检测系统设计
基于传感器的压力液位检测系统设计简介本文档旨在介绍一种基于传感器的压力液位检测系统的设计。
设计目标该系统的设计目标包括但不限于以下几点:- 实时监测液体的压力和液位;- 提供可靠的数据,以便用户能够准确了解液体的状态;- 高度精度和稳定性;- 易于安装和使用。
系统组成该压力液位检测系统主要由以下几个组件组成:1. 压力传感器:用于测量液体的压力,并将其转化为电信号;2. 液位传感器:用于测量液体的液位,并将其转化为电信号;3. 控制器:接收传感器转化的电信号,并进行处理和分析,以得出液体的压力和液位数据;4. 显示屏:用于显示液体的压力和液位数据,使用户能够直观地了解液体的状态;5. 电源供应:提供系统所需的电力。
工作原理该系统的工作原理如下:1. 压力传感器通过测量液体对其施加的压力,将其转化为相应的电信号;2. 液位传感器通过测量液体的液位高度,将其转化为相应的电信号;3. 控制器接收传感器传来的电信号,并根据预设的算法对其进行处理和分析,从而得出液体的压力和液位数据;4. 显示屏将处理后的数据展示给用户,使其能够直观地了解液体的状态。
实施步骤下面是设计该系统的一般实施步骤:1. 进行需求分析,明确系统的设计目标;2. 选择合适的压力传感器和液位传感器,确保其满足系统要求;3. 设计并实现传感器与控制器之间的连接和数据传输;4. 开发控制器的算法和逻辑,确保准确地计算出液体的压力和液位数据;5. 连接显示屏和控制器,并确保其正常工作;6. 进行系统测试和调试,确保其稳定性和精确性;7. 完成系统的安装和部署,并提供使用说明。
总结基于传感器的压力液位检测系统设计是一个复杂而具有挑战性的任务,但通过合理的规划和实施,我们可以实现高精度和可靠的液体状态监测。
该系统的设计目标、组成和工作原理在本文档中得到了详细阐述,并提供了一般的实施步骤。
希望本文档能为设计和开发基于传感器的压力液位检测系统提供一定的指导和帮助。
智能化液位测量仪课程设计报告
东北大学分校自动化工程系《过程控制系统》课程设计设计题目:智能化液位测量仪设计一.《过程控制系统》课程设计要求1. 设计题目:智能化液位测量仪设计2. 设计任务:利用压力传感器和可编程控制器设计智能液位测量仪1)采用压力传感器,硬件控制采用西门子300PLC2)写出压力测量过程,绘制压力测量仪组成框图3)设计系统硬件电路4)编制液位测量程序二.前言1.液位传感器的类型:1)静压式液位计:当变送器投入到被测液体中某一深度时,迎液面受到的压力P=,。
采用扩散硅或瓷敏感元件的压阻效应,将静压转成电信号。
转换成4-20mADC标准电流信号输出。
2)硅压阻式液位变送器:把与液位深度成正比的液体静压力测量出来,经过放大电路转换成标准电流电压信号输出,建立起输出电信号与液位深度的线性对比关系,实现对液体深度的测量。
3)磁致伸缩液位计:电子仓产生起始脉冲,在波导丝中传输时,同时产生一沿波导丝方向前进的旋转磁场,当磁场与磁环或浮球中的永久磁场相遇时,产生磁致伸缩效应,使波导丝发生扭动,扭动被安装在电子仓的拾能机构所感知并转换成相应的电流脉冲,通过电子电路计算出两个脉冲之间的时间差,即可精确测出被测的位移和液位。
4)超声波液位计:探头向被测介质表面发射超声波脉冲信号,超声波在传输过程中遇到被测介质(障碍物)后反射,反射回来的超声波信号通过电子模块检测,通过专用软件加以处理,分析发射超声波和回波的时间差,结合超声波的传播速度,可以精确计算出超声波传播的路程,进而反映出液位。
5)电容式液位传感器:把一根涂有绝缘层的金属棒,插入装有导电介质的金属容器中,在金属棒和容器壁间形成电容,当被测介质物位变化时,传感器电容量发生相应变化,电容量的变体△Cx 转换成与物位成比例的直流标准信号。
6)浮球式液位传感器:当浮子随着液位(界面)上下浮动,浮子永磁体的磁力作用于导管的干簧管,使相应高度的干簧管闭合,得到正比于液位的电压信号,经转换器转换成4~20mA.DC的标准信号。
传感器课程设计报告
传感器课程设计报告一、课程目标知识目标:1. 学生能理解传感器的定义、分类及其在日常生活和科技领域的作用;2. 学生能够掌握不同传感器的工作原理,如温度传感器、光敏传感器、压力传感器等;3. 学生能够了解传感器在智能控制系统中的应用,并能分析其优缺点。
技能目标:1. 学生能够正确使用传感器进行数据采集,并处理传感器数据;2. 学生能够运用已学知识设计和制作简单的传感器应用电路;3. 学生能够运用传感器解决实际问题,培养创新意识和动手能力。
情感态度价值观目标:1. 学生对传感器技术产生兴趣,培养主动探究科学技术的积极态度;2. 学生通过学习传感器课程,认识到传感器技术在现实生活中的重要性,增强社会责任感和使命感;3. 学生在小组合作中,学会相互尊重、沟通与协作,培养团队精神。
课程性质:本课程为选修课程,旨在拓展学生的知识面,提高学生的实践能力和创新能力。
学生特点:学生为八年级学生,已具备一定的物理知识和动手能力,对新鲜事物充满好奇心。
教学要求:结合学生特点,注重理论与实践相结合,强调学生的参与度和实践操作,培养学生的学习兴趣和创新能力。
通过本课程的学习,使学生能够将所学知识应用于实际生活中,提高解决问题的能力。
后续教学设计和评估将围绕以上具体学习成果展开。
二、教学内容根据课程目标,教学内容主要包括以下三个方面:1. 传感器基础知识:- 传感器的定义、分类和作用;- 常见传感器的原理和特点。
对应教材章节:第一章“传感器概述”2. 传感器工作原理及实践:- 温度传感器、光敏传感器、压力传感器等的工作原理;- 传感器在智能控制系统中的应用实例;- 传感器数据采集与处理方法。
对应教材章节:第二章“传感器工作原理”和第三章“传感器应用实例”3. 传感器创新实践:- 设计和制作简单的传感器应用电路;- 解决实际问题的传感器应用方案;- 小组合作,进行创新性传感器项目设计。
对应教材章节:第四章“传感器创新实践”教学进度安排:1. 第1-2课时:传感器基础知识学习;2. 第3-4课时:传感器工作原理及实践;3. 第5-6课时:传感器创新实践。
《力控组态软件》课程设计报告书
河南机电高等专科学校课程设计报告书课程名称:力控组态软件课题名称:流量监控系统设计系部名称:自动控制系专业班级:计控102*名:***学号:*********2012年09月30日摘要衡量一个自控系统的先进程度,除能完成一定的自动化控制功能外,日常的生产管理功能也是其重要指标之一。
在流程工艺生产中的物料消耗和产量的自动统计就是一个生产管理的基本功能。
我国属于能源缺乏国,精确的自动化监控更加有必要去研究和实行。
通过设置多个采集点,以硬件组态、数据组态、图像组态等功能实现上位机对供水管路的实时检测,为操作人员合理实时调度提供可靠技术保障,实现能源优化配置,提高管路稳定和对事故的预见性、降低了能耗。
该系统运行正常,完全达到设计要求。
力控软件的流量监控设计在成本、开放性、灵活性、功能和界面等方面给企业用户提供了最佳的控制系统解决方案。
本文介绍了采用力控软件的工业流量控制系统。
硬件用到了:涡轮式流量计、压力传感器、PLC等。
关键词:组态软件;硬件链接;流量监控;远程数据采集1、引言随着工业控制系统应用的深入,在面临规模更大、控制更复杂的控制系统时,人们逐渐意识到原有的上位机编程的开发方式,对项目来说是费时费力、得不偿失的,同时,MIS(管理信息系统,Management Information System)和CIMS (计算机集成制造系统,Computer Integrated Manufacturing System)的大量应用,要求工业现场为企业的生产、经营、决策提供更详细和深入的数据,以便优化企业生产经营中的各个环节。
组态软件作为一种工业信息化的管理工具,其发展方向必然是不断降低工程开发工作量,提高工作效率。
易用性是提高效率永恒的主题,但是提高易用性对于提高开发效率是有限的,亚控科技则率先提出通过复用来提高效率,创造性地开发出模型技术,并将这一技术集成到KingView7.0中。
这一技术能将客户的工程开发周期缩短到原来的30%或更低,将组态软件为客户创造价值的能力提高到了一个新的境界,代表了组态软件的未来。
液位监测系统,单片机课程设计报告
单片机课程设计报告书液位监测系统一、设计目的1. 采用单片机、ADC0809、压力传感器为主要器件,设计水深检测系统;2. 通过本次课程设计加深对单片机课程的全面认识和掌握,对单片机课程的应用进一步的了解;3. 掌握定时器、外部中断的设置和编程原理;4. 通过此次课程设计能够将单片机软硬件结合起来,对程序进行编辑,校验。
二、设计要求1.压力变送器输出为4-20mA电流信号,通过转换电路把其转换为电压信号;2.处理模拟信号并显示其实际水的深度数值。
三、设计器材四、设计方案及分析1. 单片机最小系统电路单片机最小系统电路如图1所示,由主控器STC89C52、时钟电路和复位电路三部分组成。
单片机STC89C52作为核心控制器控制着整个系统的工作,而时钟电路负责产生单片机工作所必需的时钟信号,复位电路使得单片机能够正常、有序、稳定地工作。
图1 单片机最小系统2. 时钟电路STC89C52 单片机芯片内部设有一个由反向放大器所构成的振荡器。
19脚(XTAL1)为振荡器反相放大器和内部时钟发生电路的输入端,18脚(XTAL2)为振荡器反相放大器的输出端。
在XTAL1和XTAL2引脚上外接定时元器件,内部振荡电路就会产生自激振荡。
本系统采用的定时元器件为石英晶体(晶振)和电容组成的并联谐振回路。
晶振频率为12MHz,电容大小为33pF,时钟电路如图所示。
图2 时钟电路(晶振)3. 复位电路STC89C52的复位是由外部的复位电路来实现的,复位电路通常采用上电复位和按钮复位两种方式,本设计采用的是最按钮复位电路,其电路图如图所示。
图3 复位电路4.数码管显示电路LED又称为数码管,它主要由8段发光二极管组成的不同组合,可以显示a~g为数字和字符显示段,h段为小数点显示,通过a~g为7个发光段的不同组合,可以显示0~9和A~F共16个数字和字母。
LED可以分为共阴极和共阳极两种结构。
共阳极结构即把8个发光二极管阳极连在一起。
传感器课程设计-- 压力传感器
摘要压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。
压力传感器的原理是将压力信号转变为某种电信号,如应变式,通过弹性元件变形而导致电阻变化;压电式,利用压电效应等。
工业生产控制过程中,压力是一个很重要的参数。
例如,利用测量大气压力来间接测量海拔高度;在工业生产中通过压力参数来判断反应的过程;在气象预测中,测量压力来判断阴雨天气。
因此,压力计的设计拥有广阔的市场前景。
这种压力传感器能比较精确和快速测量,尤能测量动态压力,实现多点巡回检测、信号转换、远距离传输、与计算机相连接、适时处理等,因而得到迅速发展和广泛应用。
本课题就是在这样的背景下设计一个简单的数字压力计,使得测量得到的压力能够数码管显示。
关键字:压力、电信号目录一、设计目的------------------------- 1二、设计任务与要求--------------------- 12.1设计任务------------------------- 12.2设计要求------------------------- 1三、设计步骤及原理分析 ----------------- 13.1设计方法------------------------- 1 3.2设计步骤------------------------- 23.3设计原理分析--------------------- 10四、课程设计小结与体会 ---------------- 11五、参考文献------------------------- 12一、设计目的1. 培养综合运用所学职业基础知识、职业专业知识和职业技能提高解决实际问题的能力从而达到巩固、深化所学的知识与技能;2. 培养建立正确的科学思想培养学生认真负责、实事求是的科学态度和严谨求实作风二、设计任务及要求2.1设计任务1.系统地掌握控制器的开发设计过程相关的电子技术和传感器技术等进行设计任务和功能的描述;2.进行系统设计方案的论证和总体设计;3.从全局考虑完成硬件和软件资源分配和规划分别进行系统的硬件设计和软件设计;4.进行硬件调试软件调试和软硬件的联调2.2设计要求本设计是通过以单片机为主的压力测量系统。
水箱液位控制系统的设计
水箱液位控制系统的设计首先,我们需要选择适合的传感器来测量水箱中的液位。
常用的液位传感器有浮子式传感器、压力传感器和超声波传感器等。
在选用传感器时需要考虑水箱的大小、形状和液位变化的速度等因素。
在测量完液位后,测量值需要经过放大和转换处理,以便与控制器进行连接并进行进一步的处理和分析。
放大和转换电路应根据传感器类型和输出信号的特征进行设计。
接下来,我们需要选择合适的控制器来实现液位控制。
液位控制器通常包括一个比例控制器和一个开关控制器。
比例控制器根据液位测量值与设定值之间的差异来调整输出信号,以控制水泵的运行速度。
开关控制器则根据液位测量值是否超出设定范围来判断是否需要启动或停止水泵。
在液位控制器中,需要定义一个设定范围,即水箱液位的上下限。
当液位超出设定范围时,开关控制器会发送一个控制信号,来启动或停止水泵。
同时,比例控制器会根据液位测量值与设定值之间的差异来调整水泵的运行速度。
另外,为了确保系统的可靠性和稳定性,还需要设计一套安全保护措施。
例如,在水箱液位过高或过低的情况下,可以设置报警装置,同时关闭水泵以避免故障或损坏。
此外,还可以设计备用水泵或备用电源,以确保在主要设备故障时系统可以继续运行。
最后,为了方便人机交互和系统管理,可以将液位控制系统与计算机网络进行连接,实现远程监控和操作。
通过远程监控,可以随时随地获取系统状态和运行数据,及时发现并解决问题。
总之,水箱液位控制系统的设计需要选择合适的传感器和控制器,并进行适当的信号处理和转换。
在设计过程中需要考虑系统的可靠性、稳定性和安全性,并提供方便的人机交互和系统管理功能。
通过合理的设计和实施,水箱液位控制系统可以实现自动化的液位控制,提高水资源的利用效率,并减少人力和能源的浪费。
储水罐液位计算机控制系统设计
储水罐液位计算机控制系统设计引言:储水罐液位计算机控制系统是一种用于监测和控制储水罐液位的自动化系统。
该系统能够实时监测储水罐的液位,并通过计算机进行数据处理和控制指令的发送,以实现储水罐液位的自动调节和控制。
本文将从硬件设计、软件设计和通信设计三个方面对储水罐液位计算机控制系统进行详细介绍。
一、硬件设计1.传感器:传感器用于实时监测储水罐的液位。
一般使用压力传感器或浮球传感器。
压力传感器通过测量物体所受压力的大小来判断液位高低,而浮球传感器则通过浮球的浮沉来反映液位的变化。
根据具体需要选择合适的传感器。
2.控制器:控制器是该系统的核心部分,负责处理传感器采集到的液位数据,并根据控制算法生成相应的控制指令。
控制器可以选择使用单片机、PLC或者工控机等设备。
3.执行器:执行器用于实现对储水罐液位的控制,包括开、关液位阀门等操作。
执行器通常选择使用电磁阀、电动阀等设备。
二、软件设计1.数据处理:控制器通过传感器获取到的液位数据进行预处理,例如滤波、校准等,以提高数据的准确性和稳定性。
通过合适的算法对数据进行处理,可以获得液位的实时信息。
2.控制算法:控制器根据液位的变化规律和外部控制要求,设计合适的控制算法,以生成相应的控制指令。
常用的控制算法有PID控制算法、模糊控制算法等。
根据具体需要选择合适的控制算法。
三、通信设计1.与计算机之间的通信:控制器通过串口、以太网等方式与计算机进行通信,将采集到的液位数据传输给计算机,并接收计算机的控制指令。
通信方式可以根据具体需求选择。
2.设备之间的通信:控制器与执行器之间通过数字信号进行通信,控制器接收到计算机的控制指令后,通过数字信号控制执行器的运行状态。
通信方式可以选择常见的485通信、CAN通信等。
结论:储水罐液位计算机控制系统设计涉及到硬件设计、软件设计和通信设计等多个方面。
通过合理的硬件选型、完善的软件设计和稳定的通信设计,可以实现对储水罐液位的自动化监测和控制。
液位控制系统课程设计.
目录第1章系统总体方案选择 (5)第2章系统结构框图与工作原理 (7)2.1 系统机构框图 (7)2.2 工作原理 (8)第3章各单元软硬件 (9)3.1 模拟控制对象系统 (9)3.2 控制台 (9)3.3 上位机及控制软件系统 (9)3.4 模拟量输入模块ICP-7017 (10)3.5 模拟量输出模块ICP-7024 (11)3.6 电动调节阀 (11)3.7 液位传感器 (12)第4章软件设计与说明 (13)4.1 用户窗口 (13)4.2 实时数据库 (16)第5章系统调试 (17)5.1 设备连接 (17)5.2 系统调试 (17)5.3 调试结果 (18)5.3 注意事项 (19)第6章总结 (20)附录程序清单 (21)第1章系统总体方案选择随着工业生产的迅速发展,工艺条件越来越复杂。
对过程控制的要求越来越高。
过程控制系统的设计是以被控过程的特性为依据的。
由于工业过程的复杂、多变,因此其特性多半属多变量、分布参数、大惯性、大滞后和非线性等等。
为了满足上述特点与工艺要求,过程控制中的控制方法是十分丰富的。
通常有单变量控制系统,也有多变量控制系统,有复杂控制系统,也有满足特定要求控制系统。
在工业生产过程中,液体贮槽设备如进料罐、成品罐、中间缓冲容器、水箱等应用十分普遍,为保证生产正常进行,物料进出需均衡,以保证过程的物料平衡,因此工艺要求贮槽内的液位需维持在某个给定值上下,或在某一小范围内变化,并保证物料不产生溢出,要求设计一个液位控制系统。
对分析设计的要求,生产工艺比较简单要求并不高,所以采用管道流量控制系统进行设计。
管道流量控制系统又称简单控制系统,是指由一个被控系统、一个检测元件及变送器、一个调节器和一个执行器所构成的闭合系统。
管道流量控制系统是最简单、最基本、最成熟的一种控制方式。
管道流量控制系统根据被控量的系统、液位管道流量控制系统等。
管道流量控制系统的结构比较简单,所需的自动化装置数量少,操作维护也比较方便,因此在化工自动化中使用很普遍,这类系统占控制回路的绝大多数。
压力液位传感器实验报告03
压力和液位传感器测量实验一、实验目的1. 了解压力传感器和液位传感器的工作原理和结构2. 学习如何安装和使用压力传感器、液位传感器3. 学习如何测定和校正传感器的量程曲线4. 学习传感器、数字转换仪表的连接和参数设置5. 学习用液位计和电磁阀一起控制液位的原理及应用二、实验装置及试剂压力传感器一台,液位传感器一台,直流电源,数字显示仪表,高位槽,低位槽,电磁阀三、实验原理压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业过程的测量和自控包括石油、化工、航空、制药、环境等不同的行业和过程,按照不同的类型,还可以有用来测量液体或气体压力的,测量物体重量的,测量流体压差的和物体的位移量。
也可以分别叫做压力传感器、重量传感器、液位传感器和差压传感器等名称,下本实验简单介绍一些常用传感器原理及其应用。
实验装置为一个透明的有机玻璃塔,也可以作为一个液体罐。
在塔体的下部,安装有压力传感器,通过改变液体的高度,或者气体的压力,都可以造成系统压力的变化,可以用来测量塔内液体水产生的压力,并显示在数字仪表上。
该数据也可以直接连接到计算机上,实现在线监控和采集。
在塔的上、下部位,安装有液位传感器,用来测量液体的位差。
本实验中液体是水,不管液体上方的气体压力如何变化,液位传感器只是测量上下两个测量口之间的压力差。
液位传感器除了测量水的液位,还可以用来控制液位。
本实验就采用液位传感器,控制一个电磁阀。
先从仪表设定一个需要控制的液位高度,当传感器测量到的高度超过这个设定值时,仪表会输出一个信号,控制电磁阀的打开,让塔内的液体排出。
当液位低于设定的数值时,仪表会停止控制信号的输出,电磁阀处于关闭的状态,这样,就能保持塔内的液位,处在一个固定的范围内波动。
传感器测量原理:压力传感器的种类繁多,有压阻式压力传感器、电容式压力传感器、半导体应变片压力传感器电、感式压力传感器、谐振式压力传感器及电容式加速度传感器等。
但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。
[报告压力传感器设计与实现]压力传感器实验报告
[报告压力传感器设计与实现]压力传感器实验报告报告压力传感器设计与实现传感器设计与实现报告<论文>学生姓名学号专业题目教师——压力传感器设计电气自动化技术压力传感器设计刘艳伟PS压力传感器设计与实现——PS压力传感器摘要压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。
我们知道,晶体是各向异性的,非晶体是各向同性的。
某些晶体 蓬勃范文网:[报告压力传感器设计与实现]压力传感器实验报告)介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应【1】;当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。
科学家就是根据这个效应研制出了压电传感器。
压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。
实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。
关键词:压力;结构;PS压力系统目录第 1 章绪论 (1)1.1背景 (1)1.2传感器的定义 (1)1.3传感器的分类 (1)1.4设计目的 (2)第2章原理分析 (3)2.1工作原理 (3)第3章实现过程 (4)3.1 电路图设计 (4)第四章结论 (5)参考文献: (6)第1 章绪论1.1背景压力传感器【2】中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。
其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。
由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。
而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、前言 (4)(一)概述 (4)(二)发展前景 (4)(三)设计思想 (4)二、液位控制系统分析 (5)(一)液位控制系统的工作原理 (5)(二)液位控制的实现方式 (5)1、简单的机械式控制方式 (5)2、复杂控制系统控制方式 (5)3、方案选择 (6)三、液位控制系统的设计 (6)(一)硬件设计 (6)1、传感器的选用 (6)2、放大器的选用 (7)3、比较器的选用 (8)4、三极管电子开关 (9)5、继电器的选择 (10)6、输出显示部分 (10)(二)调试过程 (10)1、液位控制系统模型框图 (11)2、调试 (11)五、遇到的问题分析 (11)六、总结 (12)参考文献 (12)液位控制系统设计一、前言传感器技术是现代测量和自动化系统的重要技术之一,从宇宙开发到海底探秘,从生产的过程控制到现代文明生活,几乎每一项技术都离不开传感器。
液位控制在多个领域都有使用,所以实现其自动化检测具有非常重要的意义。
通过压力传感器实现液位控制系统,具有体积小,实际应用系统简单实用,成本低,效益好;具有较高的性能价格比;系统不易受到干扰,可靠性高等优势。
(一)概述在各类传感器中压力传感器具有体积小、重量轻、灵敏度高、稳定可靠、成本低、便于集成化的优点,可广泛用于压力、高度、加速度、液体的流量、流速、液位、压强的测量与控制。
除此以外,还广泛应用于水利、地质、气象、化工、医疗卫生等方面。
在该液位控制系统的设计方案中,所使用的传感器为六角测压测重传感器,将水重量产生的压强转化为电压值输出,通过对电压大小的控制,从而实现传感器在液位控制中的功能。
(二)发展前景由于该技术是平面工艺与立体加工相结合,又便于集成化,所以可用来制成血压计、风速计、水速计、压力表、电子称以及自动报警装置等。
压力传感器已成为各类传感器中技术最成熟、性能最稳定、性价比最高的一类传感器。
国外液位控制系统的发展已相当成熟,我们国内也在朝着这方面努力,而且好多企业与国际接轨,有了不菲的成绩。
比如单片机控制的智能型液位控制系统的运用等等。
总的来说,发展方向有:(1)高速化,高效化,低能耗。
提高液位控制系统的工作效率,降低生产成本。
(2)机电液一体化。
充分合理利用机械和电子方面的先进技术促进整个控制系统的完善。
(3)自动化、智能化。
微电子技术的高速发展为液位控制系统的自动化和智能化提供了充分的条件。
智能化不仅仅体现的在液位控制,应能够实现对系统的自动诊断和调整,具有与液面不接触的特点。
(三)设计思想该课程设计是通过相关硬件组合调试实现对液位高度的控制,通过一系列的放大比较将模拟信号转化为数字化的信号,然后通过对数字信号的各种处理实现类比,将液位高度的变化通过数字信号的不同反映出来,显示结果,实现对液位高度的实时监控。
通过在水箱底部安装压电传感器,水箱水位高度发生变化时,引起水压强产生波动,然后传感器把水压转换成电压信号,经放大器放大后输送到电压比较器。
经比较后的输出电压有高低两种电平,若为低电平则表明水位正常,高电平时启动接在后面的三极管电子开关,集电极继电器导通,电流流经发光二极管,从而实现水位的显示控制。
二、液位控制系统分析(一)液位控制系统的工作原理设计的组成:水位检测、水位控制、显示部分。
液位控制是基于自动控制的智能化系统,其主要组成部分包括:压电传感器,放大器,比较器,三极管电子开关,继电器等。
其工作原理是:通过压电传感器将液体压力转换为电压信号进行输出,由于传感器转化灵敏度比较低,输出电压达不到比较要求,需加前置放大器,经放大后的信号与设定的参考电压一起输入比较器,通过对比较器输出电压的判断决定三极管是否导通,导通后的三极管集电极输出放大后的电流,流入继电器,当电流产生的磁场足够强时,可使继电器常开端闭合,显示灯亮,从而达到液位控制的目的。
(二)液位控制的实现方式对于液位进行控制的方式有很多,而应用较多的主要有2种,一种是简单的机械式控制装置控制,一种是复杂的控制系统控制方式。
两种方式的实现如下:1、简单的机械式控制方式这种控制方式是通过在水桶的底部安装压电传感器,将液体压力转换为电压信号进行输出,由于传感器转化灵敏度比较低,输出电压达不到比较要求,需加前置放大器,经放大后的信号与设定的参考电压一起输入比较器,通过对比较器输出电压的判断决定三极管是否导通,导通后的三极管集电极输出放大后的电流,流入继电器,当电流产生的磁场足够强时,可使继电器常开端闭合,显示灯亮,从而达到液位控制的目的。
2、复杂控制系统控制方式这种控制方式是通过安装在水泵出口管道上的压力传感器,把出口压力变成标准工业电信号的模拟信号,经过前置放大、多路切换、AD变换成数字信号传送到单片机,经单片机运算和给定参量的比较,进行PID运算,得出调节参量;经由DA变换给调压变频调速装置输入给定端,控制其输出电压变化,来调节电机转速,以达到控制水箱液位的目的。
工作过程如下:水箱(水塔)液位发生变化时,引起连接在水箱(水塔)底部的软管管内的空气气压变化,气压传感器在接收到软管内的空气气压信号后,即把变化量转化成电压信号;该信号经过运算放大电路放大后变成幅度为0~5 V标准信号,送入AD转换器,AD 转换器把模拟信号变成数字信号量,由单片机进行实时数据采集,并进行处理,根据设定要求控制输出,同时数码管显示液位高度。
通过键盘设置液位高、低和限定值以及强制报警值。
该系统控制系统特点是直观地显示水位高度,可任意控制水位高度。
3、方案选择三、液位控制系统的设计1、传感器的选用传感器可使用SY一9411L—D型变送器,它内部含有1个压力传感器和相应的放大电路。
压力传感器是美国SM公司生产的555—2型OEM压阻式压力传感器,其有全温度补偿及标定(O~70℃),传感器经过特殊加工处理,用坚固的耐高温塑料外壳封装。
其引脚分布如图3所示。
1脚为信号输出(一);2脚为信号输出(一);3脚为激励电压;4脚为地;5脚为信号输出(+);6脚为信号输出(+)。
图3 SY-9411L-D型变送器引脚结构图在水箱底部安装1根直径为5mm的软管,一端安装在水箱底部;另一端与传感器连接。
水箱水位高度发生变化时,引起软管内气压变化,然后传感器把气压转换成电压信号,输送到放大器。
另一种传感器是:MPX5700A压力传感器测量范围:0 to 700kPa输出:0.2 to 4.7V OUTPUT温度补偿范围:0-85°C测量方式:表压差压绝压工作特性参数参数符号最小典型最大单位压力范围Pop 0 700 KPa供电电压Vs 4.75 5.0 5.25 Vdc供电电流l07.0 10 mAdc4.388 4.5 4.613 V满量程输出 (0-85℃)VFSS零位电压偏差 (0-85℃) Voff 0.088 0.2 0.313 V 灵敏度△V/△P 6.4 mV/KPa 精度 (0-85℃)±2.5%V FSS 响应时间(1O%~90%) tR 1.0 ms0.1 mA稳定度l0+基于实用性及节约的考虑,我们决定使用第二种传感器。
此传感器的灵敏度为6.4mv/kPa,而根据课程设计要求,水位高度最大值为2M,即最大电压输出值为128mv,并可知道,此传感器满足精度0.1m的要求。
2、放大器的选用由于传感器的输出值只有128mv,太小,不能直接输入比较器进行比较,所以需加前置放大器,电压的放大可通过三极管或运算放大器实现,在设计伊始的时候,大家的想法是通过三极管进行放大,因为三极管型号比较多,既经济又可以挑选,而且接线方式比较简单,但是由于三极管的放大倍数需公式计算,且放大倍数的理论计算值同实际工作中的放大倍数误差较大,最终放弃了三极管,选择通用型低功耗集成四运放LM324,对电压值进行放大。
LM324的芯片引脚图如下:LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。
可工作在单电源下,电压范围是3.0V-32V或+16V.LM324内含4个独立的高增益、频率补偿的运算放大器,既可接单电源使用 (3~30 V),也可接双电源使用(±1.5~±15 V),驱动功耗低,可与TTL逻辑电路相容。
3、比较器的选用右图表示输出电压与输入电压之间关系的特性曲线,称为传输特性。
电路图 (b)传输特性当ui<UR时,运放输出高电平,稳压管Dz反向稳压工作。
输出端电位被其箝位在稳压管的稳定电压UZ,即 uO=UZ当ui>UR时,运放输出低电平,DZ正向导通,输出电压等于稳压管的正向压降UD,即 uo=-UD因此,以UR为界,当输入电压ui变化时,输出端反映出两种状态,高电位和低电位。
LM339类似于增益不可调的运算放大器。
每个比较器有两个输入端和一个输出端。
两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。
用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。
当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。
当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。
两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。
LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。
选不同阻值的上拉电阻会影响输出端高电位的值。
因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。
另外,各比较器的输出端允许连接在一起使用。
4、三极管电子开关VT基极限流电阻器R确定:其计算的方法很简单,把三极管C、E极间看成短路,求解集电极电流Ic,然后IB—rc/p,在计算In的限流电阻时,以(3~5)倍I。
的值代人计算,以使得三极管能工作在充分饱和状态。
由于应用于开关电路,对三极管的p值要求就不严格.根据三极管的电流分配作用,在基极输入一个较弱的电流IB,就可以控制集电极电流Ic有较强的变化。
在调试电路时,接通电源,继电器应能在电压满足时工作,测量VT集电极、发射极之间电压UCE≤0.35 V,说明三极管已饱和导通,三极管开关电路工作正常,否则会使VT过热而损坏。
5、继电器的选择在没有给线圈通电前用万用表测试一下导通,有三个脚是通的,不通的一个脚就是常开脚,给线圈通5VDC的电压,再测剩下的两个脚不通的脚就是常闭脚,剩下的两个脚就是公共点,两脚之间是导通的。
.6、输出显示部分方案一:液晶显示器。
如果选择此方案,将会降低系统的功耗,这样就可以用电池供电,便于携带。