数值计算方法课程设计(C语言)
微分方程数值解法C语言-课程设计
微分方程数值解法C语言-课程设计微分方程数值解法C语言由于对matlab语言不熟悉,所以还是采用C。
前面几个都比较简单,最后一个需要解非其次方程组。
采用高斯—Jordan消元法(数值分析)求逆解方程组,也再一次体会到算法本身的重要性,而不是语言。
当然,矩阵求逆的算法也在100个经典的C语言算法之列。
不过偏微分方程数值解的内容的确比较高深,我只能停留在编这种低级的东西的自娱自乐中。
不过解决计算机、数学、信计专业的课程设计还是足够了。
由于篇幅所限,只把源代码粘贴在这。
一:预报矫正格式#include <math.h>#include<iostream>#include<stdlib.h>double count_0( double xn,double yn){//矫正格式double s;s=yn+0.1*(yn/xn*0.5+xn*xn/yn*0.5);return s;}double count_1(double xn,double yn,double y0){//预报格式double s;s=yn+0.05*((yn/xn*0.5+xn*xn/yn*0.5)+(y0/xn*0.5+xn*xn/y0*0.5));return s;}void main(){//计算,步长为0.1,进行10次计算,设初始值double xn=1,yn=1;int i=1;while(i<=10){printf("%16f ,%1.16f ,%1.16f\n",xn,yn,count_1(xn,yn,count_0(xn,yn)));xn=xn+0.1;yn=count_1(xn,yn,count_0(xn,yn));i++;}}二显示差分格式#include<iostream>#include<math.h>#include<stdlib.h>main(){double a[6][11];//初始化;for(int i=0;i<=5;i++){a[0]=0;a[10]=0;}for(int j=1;j<10;j++){double p=3.14*j*0.1;a[0][j]=sin(p);}//按显示格式计算for(i=1;i<=5;i++)for(j=1;j<10;j++)a[j]=a[i-1][j-1]+a[i-1][j+1]; //输出计算好的矩阵for(i=0;i<=5;i++){for(j=0;j<11;j++)printf("%1.10f ",a[j]);printf("\n");}}三龙阁库塔格式#include <math.h>#include<iostream>#include<stdlib.h>double count_k( double xn,double yn){ double s;s=yn/xn*0.5+xn*xn/yn*0.5;return s;}void main(){//步长为0.1double xn=1,yn=1;int i=1;while(i<=11){printf("%f ,%f\n",xn,yn);double k1=count_k(xn,yn);double k2=count_k(xn+0.05,yn+0.05*k1); double k3=count_k(xn+0.05,yn+0.05*k2); double k4=count_k(xn+0.01,yn+0.1*k3); yn=yn+0.1/6*(k1+2*k2+2*k3+k4);xn=xn+0.1;i++;}}四 CRANK--NICOLSON隐式格式#include<iostream>#include<math.h>#include<stdlib.h>double Surplus(double A[],int m,int n);double * MatrixInver(double A[],int m,int n);double * MatrixOpp(double A[],int m,int n) /*矩阵求逆*/ {int i,j,x,y,k;double *SP=NULL,*AB=NULL,*B=NULL,X,*C;SP=(double *)malloc(m*n*sizeof(double));AB=(double *)malloc(m*n*sizeof(double));B=(double *)malloc(m*n*sizeof(double));X=Surplus(A,m,n);X=1/X;for(i=0;i<m;i++)for(j=0;j<n;j++){for(k=0;k<m*n;k++)B[k]=A[k];{for(x=0;x<n;x++)B[i*n+x]=0;for(y=0;y<m;y++)B[m*y+j]=0;B[i*n+j]=1;SP[i*n+j]=Surplus(B,m,n);AB[i*n+j]=X*SP[i*n+j];}}C=MatrixInver(AB,m,n);return C;}double * MatrixInver(double A[],int m,int n) /*矩阵转置*/ {int i,j;double *B=NULL;B=(double *)malloc(m*n*sizeof(double));for(i=0;i<n;i++)for(j=0;j<m;j++)B[i*m+j]=A[j*n+i];return B;}double Surplus(double A[],int m,int n) /*求矩阵行列式*/ {int i,j,k,p,r;double X,temp=1,temp1=1,s=0,s1=0;if(n==2){for(i=0;i<m;i++)for(j=0;j<n;j++)if((i+j)%2) temp1*=A[i*n+j]; else temp*=A[i*n+j];X=temp-temp1;}else{for(k=0;k<n;k++){for(i=0,j=k;i<m,j<n;i++,j++) temp*=A[i*n+j];if(m-i){for(p=m-i,r=m-1;p>0;p--,r--) temp*=A[r*n+p-1];}s+=temp;temp=1;}for(k=n-1;k>=0;k--){for(i=0,j=k;i<m,j>=0;i++,j--) temp1*=A[i*n+j];if(m-i){for(p=m-1,r=i;r<m;p--,r++) temp1*=A[r*n+p];}s1+=temp1;temp1=1;}X=s-s1;}return X;}void initmat_A(double a[][9],double r){ for(int i=0;i<9;i++)for(int j=0;j<9;j++)a[j]=0;for(i=0;i<9;i++){a=1+r;if(i!=8) a[i+1]=-0.5*r;if(i!=0) a[i-1]=-0.5*r;}}void initmat_B(double b[][9],double r){ for(int i=0;i<9;i++)for(int j=0;j<9;j++)b[j]=0;for( i=0;i<9;i++){b=1-r;if(i!=8) b[i+1]=0.5*r;if(i!=0) b[i-1]=0.5*r;}}void initmat_C(double C[][9]){ for(int i=0;i<9;i++)for(int j=0;j<9;j++)C[j]=0;}void main(){double a[100][11];for(int i=0;i<100;i++)for(int j=0;j<11;j++)a[j]=0;//初始化;for(i=0;i<100;i++){a[0]=0;a[10]=0;}for(int j=1;j<10;j++){double p=4*3.14*j*0.1;a[0][j]=sin(p);}//取h=0.1*3.14,r=0.0005,t=0.0001*3.14*3.14; //得到矩阵a和矩阵bdouble A[9][9];initmat_A(A,0.005);double B[9][9];initmat_B(B,0.005);//B矩阵与Un相乘,en是0;double C[9][9];initmat_C(C);double *A_;A_=MatrixOpp(A[0],9,9);//A矩阵求逆;//A逆*Bfor(i=0;i<9;i++)for(j=0;j<9;j++)for(int s=0;s<9;s++)C[j]+=A_[i*9+s]*B[s][j];//填写a表格for(i=0;i<100;i++){for(j=1;j<10;j++)for(int s=0;s<9;s++)a[i+1][j]+=a[s+1]*C[j-1][s];}//输出表格for(i=0;i<100;i++){for(j=0;j<11;j++)printf("%1.8f ",a[j]);printf("\n");}printf("\n"); printf("\n");//利用精确解,求出表格for(i=0;i<100;i++){for(j=0;j<11;j++)printf("%1.8f",exp(-16*0.0001*0.0005*3.14*3.14*i)*sin(4*j*0.1*3.14));printf("\n");}}。
C语言_算数表达式求值_课程设计报告
目录一.概述1二.总体方案设计2三.详细设计3四.程序的调试与运行结果说明4五.课程设计总结5参考文献错误!未定义书签。
附录 (8)一概述一、课程设计的目的与要求本课程设计是为了配合?数据构造?课程的开设,通过设计一个完整的程序,使学生掌握数据构造的应用,算法的编写,类C语言的算法转换成C程序并用Turbo C2.0或Visual C++6.0上机调试的根本方法。
要求如下:1.要充分认识课程设计对自己的重要性,认真做好课程设计前的各项准备工作。
2.既要虚心承受教师的指导,又要充分发挥主观能动性.结合课题,独立思考,努力钻研,勤于实践,勇于创新。
3.独立按时完成规定的工作任务,不得弄虚作假,不准抄袭他人容,否那么成绩以不及格计。
4.课程设计期间,无故缺席按旷课处理;缺席时间达四分之一以上者,其成绩按不及格处理。
5.在设计过程中,要严格要求自己,树立严肃,严密,严谨的科学态度,必须按时,按质,按量完成课程设计。
6.小组成员之间,分工明确,但要保持联系畅通,密切合作,培养良好的互相帮助和团队协作精神。
二、需求分析本课程设计的课题为表达式求值,要求:1.用户将表达式原样输入〔在表达式结尾加上#〕,能得出结果〔为减小难度,运算结果的10进制形式的值,不超过longdouble的存储围〕;2.输入的数可以为小数〔为减小难度,小数的整数与小数局部均不超过10位〕,负数〔如果负数前有运算符,那么应将负数括起来〕,以及2进制,8进制,10进制,16进制的数〔为减小难度,数出的结果都以10进制形式表示〕;3.运算符号包括〔〕、+、—、*、/;括号可以多重;二总体方案设计1.使用双链表的数据构造表示数据的存储,将用户输入的表达式以字符形式存入双链表中。
2.对以负数开头、以括号开头、左括号后紧跟负数的特殊情况作处理。
3.将数与运算符分开;4.依次找到表达式最层括号,次层括号..................每次找到括号的表达式,便将其进展只有加减乘除运算的计算。
线性方程组的数值算法C语言实现(附代码)
线性方程组AX=B 的数值计算方法实验一、 实验描述:随着科学技术的发展,线性代数作为高等数学的一个重要组成部分,在科学实践中得到广泛的应用。
本实验的通过C 语言的算法设计以及编程,来实现高斯消元法、三角分解法和解线性方程组的迭代法(雅可比迭代法和高斯-赛德尔迭代法),对指定方程组进行求解。
二、 实验原理:1、高斯消去法:运用高斯消去法解方程组,通常会用到初等变换,以此来得到与原系数矩阵等价的系数矩阵,达到消元的目的。
初等变换有三种:(a)、(交换变换)对调方程组两行;(b)、用非零常数乘以方程组的某一行;(c)、将方程组的某一行乘以一个非零常数,再加到另一行。
通常利用(c),即用一个方程乘以一个常数,再减去另一个方程来置换另一个方程。
在方程组的增广矩阵中用类似的变换,可以化简系数矩阵,求出其中一个解,然后利用回代法,就可以解出所有的解。
2、选主元:若在解方程组过程中,系数矩阵上的对角元素为零的话,会导致解出的结果不正确。
所以在解方程组过程中要避免此种情况的出现,这就需要选择行的判定条件。
经过行变换,使矩阵对角元素均不为零。
这个过程称为选主元。
选主元分平凡选主元和偏序选主元两种。
平凡选主元:如果()0p pp a ≠,不交换行;如果()0p pp a =,寻找第p 行下满足()0p pp a ≠的第一行,设行数为k ,然后交换第k 行和第p 行。
这样新主元就是非零主元。
偏序选主元:为了减小误差的传播,偏序选主元策略首先检查位于主对角线或主对角线下方第p 列的所有元素,确定行k ,它的元素绝对值最大。
然后如果k p >,则交换第k 行和第p 行。
通常用偏序选主元,可以减小计算误差。
3、三角分解法:由于求解上三角或下三角线性方程组很容易所以在解线性方程组时,可将系数矩阵分解为下三角矩阵和上三角矩阵。
其中下三角矩阵的主对角线为1,上三角矩阵的对角线元素非零。
有如下定理:如果非奇异矩阵A 可表示为下三角矩阵L 和上三角矩阵U 的乘积: A LU = (1) 则A 存在一个三角分解。
数值计算方法教案
数值计算方法教案一、教学目标1.理解数值计算方法的基本原理和应用范围。
2.掌握数值计算方法中常用的数值近似、数值求解和数值积分计算方法。
3.能够灵活应用所学的数值计算方法解决实际问题。
二、教学内容1.数值计算方法的概述和基本原理。
1.1数值计算方法的定义。
1.2数值计算方法在实际问题中的应用。
1.3数值计算方法的误差分析。
2.数值近似方法。
2.1多项式插值法。
2.2最小二乘逼近法。
2.3数值微分和数值积分公式。
3.数值求解方法。
3.1方程求根的迭代法。
3.2线性方程组的直接解法和迭代法。
4.数值积分计算方法。
4.1梯形法则和辛普森法则。
4.2高斯求积公式。
4.3自适应积分法。
5.实际问题的数值计算方法应用案例。
三、教学方法1.讲授法:通过讲解数值计算方法的基本原理和应用范围,引导学生建立正确、完整的知识体系。
2.实例分析法:通过实际问题的例子,引导学生灵活运用所学的数值计算方法解决问题。
3.实验法:通过具体的数值计算实验,让学生通过编程实现数值计算方法,对算法和误差有更深入的理解。
四、教学步骤1.引入:通过生活中的例子,引导学生认识到数值计算方法在实际问题中的重要性。
2.理论讲解:依次讲解数值计算方法的基本原理和应用范围,结合具体的例子加深学生理解。
3.数值近似方法的讲解:分别介绍多项式插值法、最小二乘逼近法和数值微分和积分公式,讲解其原理和算法步骤。
4.数值求解方法的讲解:分别介绍方程求根的迭代法和线性方程组的求解方法,讲解其原理和算法步骤。
5.数值积分计算方法的讲解:分别介绍梯形法则、辛普森法则和高斯求积公式,讲解其原理和算法步骤。
6.案例分析:通过具体的实际问题案例,引导学生应用所学的数值计算方法解决问题,并进行算法正确性和误差分析。
7.总结与提高:对整节课内容进行总结,并引导学生对数值计算方法进行思考和提高。
五、教学评价1.课堂练习:在课堂上进行数值计算方法的相关练习,检查学生对知识的掌握情况。
数值计算方法教案
数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与特点引言:介绍数值计算的定义和基本概念数值计算的特点:离散化、近似解、误差分析1.2 数值计算方法分类直接方法:高斯消元法、LU分解法等迭代方法:雅可比迭代、高斯-赛德尔迭代等1.3 数值计算的应用领域科学计算:物理、化学、生物学等领域工程计算:结构分析、流体力学、电路模拟等第二章:误差与稳定性分析2.1 误差的概念与来源绝对误差、相对误差和有效数字误差来源:舍入误差、截断误差等2.2 数值方法的稳定性分析线性稳定性分析:特征值分析、李雅普诺夫方法非线性稳定性分析:李模型、指数稳定性分析2.3 提高数值计算精度的方法改进算法:雅可比法、共轭梯度法等增加计算精度:闰塞法、理查森外推法等第三章:线性方程组的数值解法3.1 高斯消元法算法原理与步骤高斯消元法的优缺点3.2 LU分解法LU分解的步骤与实现LU分解法的应用与优势3.3 迭代法雅可比迭代法与高斯-赛德尔迭代法迭代法的选择与收敛性分析第四章:非线性方程和方程组的数值解法4.1 非线性方程的迭代解法牛顿法、弦截法等收敛性条件与改进方法4.2 非线性方程组的数值解法高斯-赛德尔法、共轭梯度法等方程组解的存在性与唯一性4.3 非线性最小二乘问题的数值解法最小二乘法的原理与方法非线性最小二乘问题的算法实现第五章:插值与逼近方法5.1 插值方法拉格朗日插值、牛顿插值等插值公式的构造与性质5.2 逼近方法最佳逼近问题的定义与方法最小二乘逼近、正交逼近等5.3 数值微积分数值求导与数值积分的方法数值微积分的应用与误差分析第六章:常微分方程的数值解法6.1 初值问题的数值解法欧拉法、改进的欧拉法龙格-库塔法(包括单步和多步法)6.2 边界值问题的数值解法有限差分法、有限元法谱方法与辛普森法6.3 常微分方程组与延迟微分方程的数值解法解耦与耦合方程组的处理方法延迟微分方程的特殊考虑第七章:偏微分方程的数值解法7.1 偏微分方程的弱形式介绍偏微分方程的弱形式应用实例:拉普拉斯方程、波动方程等7.2 有限差分法显式和隐式差分格式稳定性分析与收敛性7.3 有限元法离散化过程与元素形状函数数值求解与误差估计第八章:优化问题的数值方法8.1 优化问题概述引言与基本概念常见优化问题类型8.2 梯度法与共轭梯度法梯度法的基本原理共轭梯度法的实现与特点8.3 序列二次规划法与内点法序列二次规划法的步骤内点法的原理与应用第九章:数值模拟与随机数值方法9.1 蒙特卡洛方法随机数与重要性采样应用实例:黑箱模型、金融衍生品定价等9.2 有限元模拟离散化与求解过程应用实例:结构分析、热传导问题等9.3 分子动力学模拟基本原理与算法应用实例:材料科学、生物物理学等第十章:数值计算软件与应用10.1 常用数值计算软件介绍MATLAB、Python、Mathematica等软件功能与使用方法10.2 数值计算在实际应用中的案例分析工程设计中的数值分析科学研究中的数值模拟10.3 数值计算的展望与挑战高性能计算的发展趋势复杂问题与多尺度模拟的挑战重点解析本教案涵盖了数值计算方法的基本概念、误差分析、线性方程组和非线性方程组的数值解法、插值与逼近方法、常微分方程和偏微分方程的数值解法、优化问题的数值方法、数值模拟与随机数值方法以及数值计算软件与应用等多个方面。
C语言程序设计教案第三章数据类型运算符与表达式[优秀范文5篇]
C语言程序设计教案第三章数据类型运算符与表达式[优秀范文5篇]第一篇:C语言程序设计教案第三章数据类型运算符与表达式第三章数据类型运算符与表达式课题:教学目的: 教学重点:教学难点:第三章数据类型、运算符与表达式1、掌握C的数据类型2、掌握整型、实型、字符型数据的常量及变量基本数类型的常量和变量不同类型的数据在内存中的存储形式步骤一复习引导上次课我们已经知道了程序的一个方面算法,现在来学习另一方面数据结构。
步骤二讲授新课ν C语言提供的数据结构是以数据类型形式出现的;ν数据在内存中存放的情况有数据类型决定;ν数据的操作要依靠运算符实现,而数据和运算符共同组成了表达式。
C的基本数据类型C语言的数据类型丰富,但在学习第11章之前,我们只遇到C的四种基本数据类型:整型、字符型、单精度实型、双精度实型常量与变量λ常量:其值不能被改变的量。
两种:一般常量和符号常量 1.直接常量(字面常量):整型常量:如12、0、-3等实型常量:如4.5、-1.234等字符常量:如…a‟、…1‟等,用单引号表示,占一个字节;字符串常量:如“a”、“abc”、“1”,用双引号表示。
2.符号常量:符号常量即是用一个标识符来代替一个常量;符号常借助于预处理命令define来实现;ν define命令格式是:#define 标识符字符串ν如:#define PI 3.1415926535#define STRING “ABCD” ①习惯上,符号常量用大写字母表示;② 定义符号常量时,不能以“;”结束;③ 一个#define占一行,且要从第一列开始书写;④ 一个源程序文件中可含有若干个define命令,不同的define 命令中指定的“标识符”不能相同;λ变量:在程序运行过程中,其值会发生变化。
1、每个变量必须有一个名字,变量名是标识符。
2、标识符是用来标识数据对象,是一个数据对象的名字。
3、命名规则:以字母或下划线开始,后跟字符、数字或下划线。
数据结构课程设计四则运算表达式求值(C语言版)
数据结构课程设计四则运算表达式求值(C语⾔版) 明⼈不说暗话,直接上,输⼊提取码z3fy即可下载。
⽂件中包含程序,程序运⾏⽂件,设计报告和测试样例,应有尽有,欢迎⼩伙伴们在中下载使⽤。
本课程设计为四则运算表达式求值,⽤于带⼩括号的⼀定范围内正负数的四则运算标准(中缀)表达式的求值。
注意事项:1、请保证输⼊的四则表达式的合法性。
输⼊的中缀表达式中只能含有英⽂符号“+”、“-”、“*”、“/”、“(”、“)”、“=”、数字“0”到“9”以及⼩数点“.”,输⼊“=”表⽰输⼊结束。
例如9+(3-1)*3.567+10/2=,特别是请勿输⼊多余空格和中⽂左右括号。
2、输⼊的中缀表达式默认限定长度是1001,可根据具体情况调整字符串数组的长度。
3、请保证输⼊的操作数在double数据类型范围内,单个数字有效数字长度不可超过15位。
本课程设计中操作数是C语⾔中的双精度浮点数类型。
4、本课程设计中的运算数可以是负数,另外如果是正数可直接省略“+”号(也可带“+”号)。
下⾯的程序正常运⾏需要在上⾯的百度⽹盘中下载相应⽂件,否则⽆法正常使⽤哦。
1/*本程序为四则运算表达式求值系统,⽤于计算带⼩括号的四则运算表达式求值。
2具体算法:3先将字符串处理成操作单元(操作数或操作符),再利⽤栈根据四则运算4的运算法则进⾏计算,最后得出结果。
*/56 #include<stdio.h>7 #include<ctype.h>8 #include<stdlib.h>9 #include<string.h>10 #include<stdlib.h>11 #include<ctype.h>1213const int Expmax_length = 1001;//表达式最⼤长度,可根据适当情况调整14struct Ope_unit15 {//定义操作单元16int flag;//=1表⽰是操作数 =0表⽰是操作符 -1表⽰符号单元17char oper;//操作符18double real;//操作数,为双精度浮点数19 };2021void Display();//菜单22void Instru(); //使⽤说明23int Check(char Exp_arry[]);24void Evalua(); //先调⽤Conver操作单元化,再调⽤Calculate函数计算结果并输出25int Conver(struct Ope_unit Opeunit_arry[],char Exp_arry[]);//将字符串处理成操作单元26int Isoper(char ch);//判断合法字符(+ - * / ( ) =)27int Ope_Compar(char ope1,char ope2);//操作符运算优先级⽐较28double Calculate(struct Ope_unit Opeunit_arry[],int Opeunit_count,int &flag);//⽤栈计算表达式结果29double Four_arithm(double x,double y,char oper);//四则运算3031int main()32 {33int select;34while(1)35 {36 Display();37 printf("请输⼊欲执⾏功能对应的数字:");38 scanf("%d",&select);39 printf("\n");40switch(select)41 {42case1: Evalua(); break;43case2: Instru(); break;44case0: return0;45default : printf("⽆该数字对应的功能,请重新输⼊\n");46 system("pause");47 }48 }49return0;50 }5152int Check(char Exp_arry[])53 {//检查是否有⾮法字符,返回1表⽰不合法,0表⽰合法54int Explength=strlen(Exp_arry),i;55for(i=0;i<Explength;i++)56 {57if(!Isoper(Exp_arry[i]) && Exp_arry[i] != '.' && !isdigit(Exp_arry[i]))58return1;59if(isdigit(Exp_arry[i]))60 {61int Dig_number=0,Cur_positoin=i+1;62while(isdigit(Exp_arry[Cur_positoin]) || Exp_arry[Cur_positoin]=='.')63 {64 Dig_number++;65 Cur_positoin++;66 }67if(Dig_number >= 16)//最多能够计算15位有效数字68return1;69 }70 }71return0;72 }7374void Evalua()75 {//先调⽤Conver函数将字符串操作单元化,再调⽤Calculate函数计算结果并输出76char Exp_arry[Expmax_length];77int flag=0;//假设刚开始不合法,1表达式合法,0不合法78struct Ope_unit Opeunit_arry[Expmax_length];7980 getchar();//吃掉⼀个换⾏符81 printf("请输⼊四则运算表达式,以=结尾:\n");82 gets(Exp_arry);83 flag=Check(Exp_arry);84if(flag)85 printf("该表达式不合法!\n");86else87 {88int Opeunit_count = Conver(Opeunit_arry,Exp_arry);89double ans = Calculate(Opeunit_arry,Opeunit_count,flag);90if(flag)91 {92 printf("计算结果为:\n");93 printf("%s%lf\n",Exp_arry,ans);94 }95else96 printf("该表达式不合法!\n");97 }98 system("pause");99 }100101int Conver(struct Ope_unit Opeunit_arry[],char Exp_arry[])102 {//将字符串操作单元化103int Explength=strlen(Exp_arry);104int i,Opeunit_count=0;105for(i=0;i<Explength;i++)106 {107if(Isoper(Exp_arry[i]))//是操作符108 {109 Opeunit_arry[Opeunit_count].flag=0;110 Opeunit_arry[Opeunit_count++].oper=Exp_arry[i];111 }112else//是操作数113 {114 Opeunit_arry[Opeunit_count].flag=1;115char temp[Expmax_length];116int k=0;117for(; isdigit(Exp_arry[i]) || Exp_arry[i]=='.' ;i++)118 {119 temp[k++]=Exp_arry[i];120 }121 i--;122 temp[k]='\0';123 Opeunit_arry[Opeunit_count].real=atof(temp);//将字符转化为浮点数124125//负数126if(Opeunit_count == 1 && Opeunit_arry[Opeunit_count-1].flag==0127 && Opeunit_arry[Opeunit_count-1].oper=='-')128 {129 Opeunit_arry[Opeunit_count-1].flag = -1;130 Opeunit_arry[Opeunit_count].real *= -1;131 }// -9132if(Opeunit_count >= 2 && Opeunit_arry[Opeunit_count-1].flag==0133 && Opeunit_arry[Opeunit_count-1].oper=='-' && Opeunit_arry[Opeunit_count-2].flag==0 134 && Opeunit_arry[Opeunit_count-2].oper !=')')135 {136 Opeunit_arry[Opeunit_count-1].flag = -1;137 Opeunit_arry[Opeunit_count].real *= -1;138 }// )-9139140//正数141if(Opeunit_count == 1 && Opeunit_arry[Opeunit_count-1].flag==0142 && Opeunit_arry[Opeunit_count-1].oper=='+')143 {144 Opeunit_arry[Opeunit_count-1].flag = -1;145 }// +9146if(Opeunit_count >= 2 && Opeunit_arry[Opeunit_count-1].flag==0147 && Opeunit_arry[Opeunit_count-1].oper=='+' && Opeunit_arry[Opeunit_count-2].flag==0148 && Opeunit_arry[Opeunit_count-2].oper !=')')149 {150 Opeunit_arry[Opeunit_count-1].flag = -1;151 }// )+9152 Opeunit_count++;153 }154 }155/*for(i=0;i<Opeunit_count;i++)156 {//查看各操作单元是否正确,1是操作数,0是操作符157 if(Opeunit_arry[i].flag == 1)158 printf("该单元是操作数为:%lf\n",Opeunit_arry[i].real);159 else if(Opeunit_arry[i].flag == 0)160 printf("该单元是操作符为:%c\n",Opeunit_arry[i].oper);161 else162 printf("该单元是负号符为:%c\n",Opeunit_arry[i].oper);163 }*/164return Opeunit_count;165 }166167double Calculate(struct Ope_unit Opeunit_arry[],int Opeunit_count,int &flag)168 {//根据运算规则,利⽤栈进⾏计算169int i,dS_pointer=0,oS_pointer=0;//dS_pointer为操作数栈顶指⽰器,oS_pointer为操作符栈顶指⽰器170double Dig_stack[Expmax_length];//操作数栈(顺序存储结构)171char Ope_stack[Expmax_length];//操作符栈172173for(i=0;i<Opeunit_count-1;i++)174 {175if( Opeunit_arry[i].flag != -1 )176 {177if(Opeunit_arry[i].flag)//是操作数178 {179 Dig_stack[dS_pointer++]=Opeunit_arry[i].real;//⼊操作数栈180//printf("%lf\n",Digit[dS_pointer-1]);181 }182else//是操作符 + - * / ( )183 {184//操作符栈为空或者左括号⼊栈185if(oS_pointer==0 || Opeunit_arry[i].oper=='(')186 {187 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;188//printf("%oS_pointer\Ope_u_count",Operator[oS_pointer-1]);189 }190else191 {192if(Opeunit_arry[i].oper==')')//是右括号将运算符⼀直出栈,直到遇见左括号193 {194 oS_pointer--;//指向栈顶195 dS_pointer--;//指向栈顶196while(Ope_stack[oS_pointer] != '(' && oS_pointer != 0)197 {198 Dig_stack[dS_pointer-1] = Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 199 Ope_stack[oS_pointer--]);//oS_pointer--为操作符出栈200201 dS_pointer--;//前⼀个操作数出栈202//printf("操作数栈顶元素等于%lf\n",Digit[dS_pointer]);203 }204 oS_pointer--;//左括号出栈205206 oS_pointer++;//恢复指向栈顶之上207 dS_pointer++;208 }209else if(Ope_Compar(Opeunit_arry[i].oper,Ope_stack[oS_pointer-1]))//和栈顶元素⽐较210 {211 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;212//printf("%oS_pointer\Ope_u_count",Operator[oS_pointer-1]);213 }214else//运算符出栈,再将该操作符⼊栈215 {216 oS_pointer--;//指向栈顶217 dS_pointer--;//指向栈顶218while(Ope_Compar(Opeunit_arry[i].oper,Ope_stack[oS_pointer])==0 && oS_pointer != -1) 219 {//当前操作符⽐栈顶操作符优先级⾼220 Dig_stack[dS_pointer-1]=Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 221 Ope_stack[oS_pointer--]);222 dS_pointer--;223//printf("操作数栈顶元素等于%lf\n",Digit[dS_pointer]);224 }225 oS_pointer++;//恢复指向栈顶之上226 dS_pointer++;227 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;228 }229 }230 }231 }232 }233/*for(i=0;i<oS_pointer;i++)234 printf("操作符栈%oS_pointer\Ope_u_count",Operator[i]);235 for(i=0;i<dS_pointer;i++)236 printf("操作数栈%lf\n",Digit[i]);*/237 oS_pointer--;//指向栈顶元素238 dS_pointer--;//指向栈顶元素239while(oS_pointer != -1)240 {241 Dig_stack[dS_pointer-1]=Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 242 Ope_stack[oS_pointer--]);//oS_pointer--为操作符出栈243 dS_pointer--;//前⼀个操作数出栈244//printf("操作数栈顶元素为%lf\Ope_u_count",Digit[dS_pointer]);245 }246//printf("%dS_pointer,%dS_pointer\n",oS_pointer,dS_pointer);247if(oS_pointer==-1 && dS_pointer==0)248 flag=1;//为1表⽰表达式合法249return Dig_stack[0];250 }251252int Ope_Compar(char ope1,char ope2)253 {//操作符运算优先级⽐较254char list[]={"(+-*/"};255int map[5][5]={//先⾏后列,⾏⽐列的运算级优先级低为0,⾼为1256// ( + - * /257/* ( */1,0,0,0,0,258/* + */1,0,0,0,0,259/* - */1,0,0,0,0,260/* * */1,1,1,0,0,261/* / */1,1,1,0,0 };262int i,j;263for(i=0;i<5;i++)264if(ope1==list[i]) break;265for(j=0;j<5;j++)266if(ope2==list[j]) break;267return map[i][j];268 }269270double Four_arithm(double x,double y,char oper)271 {//四则运算272switch(oper)//保证不含其它运算符273 {274case'+': return x+y;275case'-': return x-y;276case'*': return x*y;277case'/': return x/y;//y不能为0278default : return0;279 }280 }281282int Isoper(char ch)283 {//判断合法字符 + - * / ( ) =284if(ch=='+' || ch=='-' || ch=='*' || ch=='/' || ch=='(' || ch==')' || ch=='=')285return1;286return0;287 }288289void Display()290 {//打印菜单291 system("cls");292 printf("/******************************************************************************/\n");293 printf("\t\t 欢迎使⽤本四则运算表达式求值系统\n");294 printf("\n\t说明:建议请您先阅读使⽤说明,再输⼊相应的数字进⾏操作,谢谢配合!\n"); 295 printf("\n\t\t1 四则运算表达式求值\n");296 printf("\n\t\t2 使⽤说明\n");297 printf("\n\t\t0 退出\n");298 printf("/******************************************************************************/\n");299 }300301void Instru()302 {//打印使⽤说明303 FILE *fp;304char ch;305if( ( fp=fopen("使⽤说明.txt","r") ) == NULL)306 {307 printf("⽂件打开失败!\n");308 exit(0);309 }310for(; (ch = fgetc(fp)) != EOF; )311 putchar(ch);312 fclose(fp);313 printf("\n");314 system("pause");315 }。
《数值计算方法》电子教案
《数值计算方法》电子教案一、教学目标1.了解数值计算方法的基本概念和应用领域;2.掌握常用的数值计算方法,包括数值插值、数值积分、数值微分等;3.培养分析和解决实际问题的能力。
二、教学内容1.数值计算方法的基本概念和应用领域;2.数值插值方法及其应用;3.数值积分方法及其应用;4.数值微分方法及其应用。
三、教学过程1.引入:通过举例引入数值计算方法的基本概念和应用领域。
例如,让学生思考如何确定一个未知函数的近似值,或者如何计算一个无法求解的积分。
2.数值插值方法及其应用2.1数值插值的基本概念介绍数值插值的基本概念和思想。
讲解插值多项式的定义,并给出一个具体的例子进行讲解。
2.2常见的插值方法介绍常见的插值方法,包括拉格朗日插值法、分段线性插值法、牛顿插值法等。
详细讲解其中一个方法,并给出实际的应用例子进行讲解。
2.3数值插值的误差估计3.数值积分方法及其应用3.1数值积分的基本概念介绍数值积分的基本概念和思想。
讲解积分的几何意义和数值积分的定义,并给出一个具体的例子进行讲解。
3.2常见的数值积分方法介绍常见的数值积分方法,包括矩形法、梯形法、辛普森法等。
详细讲解其中一个方法,并给出实际的应用例子进行讲解。
3.3数值积分的误差估计4.数值微分方法及其应用4.1数值微分的基本概念介绍数值微分的基本概念和思想。
讲解导数的几何意义和数值微分的定义,并给出一个具体的例子进行讲解。
4.2常见的数值微分方法介绍常见的数值微分方法,包括中心差分法、前向差分法、后向差分法等。
详细讲解其中一个方法,并给出实际的应用例子进行讲解。
4.3数值微分的误差估计四、教学方法1.授课结合实例,通过实际问题引导学生思考;2.通过讨论和演示,培养学生的分析和解决问题的能力;3.在教学过程中引入多媒体技术和计算工具,提高学生的学习兴趣和动手能力。
五、教学评价1.课堂小测验,检查学生对基本概念的掌握情况;2.课后作业,巩固和扩展学生的知识;3.课堂讨论和演示,考察学生的应用能力和解决问题的能力。
《数值计算方法》课程设计报告-15页精选文档
《数据分析方法》课 程 实 验 报 告1.实验内容(1)掌握回归分析的思想和计算步骤;(2) 编写程序完成回归分析的计算,包括后续的显著性检验、残差分析、Box-Cox 变换等内容。
2. 模型建立与求解(数据结构与算法描述)3.实验数据与实验结果解:根据所建立的模型在MATLAB 中输入程序(程序见附录)得到以下结果: (1)回归方程为:123.45260.49600.0092Y X X ∧=++说明该化妆品的消量和该城市人群收入情况关系不大,轻微影响,与使用该化妆品的人数有关。
2σ的无偏估计:2 4.7403σ= (2)方差分析表如下表: 方差来源自由度平方和 均方 F 值p回归(R ) 2 538452692256795 2.28误差(E ) 12 56.883 4.703 总和(T ) 1453902从分析表中可以看出:F 值远大于p 的值。
所以回归关系显著。
复相关20.9989R =,所以回归效果显著。
解:根据所建立的模型,在MATLAB 中输入程序(程序见附录)得到如下结果: (1)回归方程为:1257.9877 4.70820.3393Y X X ∧=-++在MTLAB 中计算学生化残差(见程序清单二),所得到的学生化残差r 的值由残差可知得到的r 的值在(-1,1)的概率为0.645,在(-1.5,1.5)的概率为0.871,在(-2,2)之间的概率为0.968.而服从正态分布的随机变量取值在(-1,1)之间的概率为0.68,在(-1.5,1.5)之间的概率为0.87,在(-2.2)之间的概率为0.95,所以相差较大,所以残差分析不合理,需要对数据变换。
取λ=0.6进行Box-Cox 变换()ln ,01,0Y Y Y λλλλλ=⎧⎪=⎨-≠⎪⎩ 在MATLAB 中输入程序(见程序代码清单二)取0.6λ=,所以得到r 的值(r 的值见附录二)其值在(-1,1)之间的个数大约为20/31=0.65,大致符合正态分布,所以重新拟合为:0-11.7736β=1 1.1478β=20.0969β=拟合函数为:12-11.7736 1.14780.0969Y X X ∧=++ 通过F 值,R 值可以检验到,回归效果显著(3)某医院为了了解病人对医院工作的满意程度Y 和病人的年龄1X ,病情的严重程度2X 和病人的忧虑程度3X 之间的关系,随机调查了该医院的23位病人,得数据如下表:(1) 拟合线性回归模型0112233Y X X X ββββε=++++,通过残差分析与考察模型及有关误差分布正态性假定的合理性;(2) 若(1)中模型合理,分别在2()()i R p α,()p ii C ,()p iii PRESS 准则下选择最优回归方程,各准则下的选择结果是否一致?(3) 对0.10E D αα==,用逐步回归法选择最优回归方程,其结果和(2)中的数否一致?(4) 对选择的最优回归方程作残差分析,与(1)中的相应结果比较,有何变化? 习题2.6解:(1)回归参数的β的最小二乘估计为:1()T T X X X Y β∧-=。
数值分析算法C语言程序
数值分析算法C语言程序数值分析是研究数学问题的近似解法的一门学科,其中包括了各种数值方法和算法。
本文将介绍数值分析中的常见算法,并给出相应的C语言程序。
1.二分法(Bisection Method)二分法是一种求函数零点的简单且常用的方法。
该方法的基本思想是通过不断将区间进行二分,并比较中点处函数值的正负来找到零点所在的区间。
```c#include <stdio.h>double f(double x)return x * x - 2;double bisection(double a, double b, double eps)double c;while ((b - a) > eps)c=(a+b)/2;if (f(c) == 0)break;}else if (f(a) * f(c) < 0)b=c;}elsea=c;}}return c;int maidouble a = 0.0;double b = 2.0;double result = bisection(a, b, eps);printf("The root is: %lf\n", result);return 0;```2.牛顿迭代法(Newton's Method)牛顿迭代法是一种高效的求函数零点的方法。
该方法的基本思想是通过对函数进行线性逼近,不断逼近函数的零点。
```c#include <stdio.h>#include <math.h>double f(double x)return x * x - 2;double df(double x)return 2 * x;double newton(double x0, double eps) double x = x0;double deltaX = f(x) / df(x);while (fabs(deltaX) > eps)deltaX = f(x) / df(x);x = x - deltaX;}return x;int maidouble x0 = 2.0;double result = newton(x0, eps); printf("The root is: %lf\n", result); return 0;```3.高斯消元法(Gaussian Elimination)高斯消元法是一种用于求解线性方程组的方法。
数值计算原理课程设计
数值计算原理课程设计一、课程设计目标本次课程设计主要目标是巩固和提高学生在数值计算原理方面的基础,让学生能够熟练掌握一些常见的数值计算方法,并能够通过编写代码来完成相关计算任务。
课程设计的重点在于让学生通过实践来加深对数值计算方法的理解和掌握。
二、课程设计内容本次课程设计内容包括以下几个部分:1. 插值法插值法是一种常见的数值计算方法,它的作用是根据给定的数据点,推导出通过这些数据点的函数的近似解。
本次课程设计中,学生需要实现拉格朗日插值法和牛顿插值法,并通过编写代码来完成对一组数据点的插值计算。
2. 数值积分法数值积分法主要是用来求解复杂函数的积分问题,通过将函数划分成多个小区间,然后对这些小区间进行近似计算,最终得到整个函数的积分值。
本次课程设计中,学生需要实现梯形积分法和辛普森积分法,并通过编写代码来完成对一组函数的积分计算。
3. 方程求根法方程求根法主要是用来求解方程的根,其基本思想是通过迭代逼近,不断逼近方程的根。
本次课程设计中,学生需要实现牛顿迭代法和二分法,并通过编写代码来完成对一个方程的根的求解。
4. 常微分方程数值解法常微分方程数值解法主要是用来求解一类常见的微分方程问题。
通过将微分方程转化成离散的形式,然后通过数值计算方法得到其近似解。
本次课程设计中,学生需要实现欧拉法和龙格库塔法,并通过编写代码来完成对一个常微分方程的数值解计算。
三、课程设计流程具体课程设计流程如下:1. 熟悉数值计算原理基础知识在课程设计开始前,教师应该通过一些课堂讲解,让学生熟悉插值法、数值积分法、方程求根法和常微分方程数值解法等相关知识。
2. 完成课程设计报告学生需要根据要求,完成对插值法、数值积分法、方程求根法和常微分方程数值解法的理论讲解以及实现过程和代码展示的课程设计报告。
3. 完成代码实现学生需要根据报告的要求,通过编写代码,实现插值法、数值积分法、方程求根法和常微分方程数值解法的计算任务。
4. 提交课程设计报告和代码学生需要按照要求,将课程设计报告和代码提交给教师进行评审和点评。
数值计算方法实验报告
#include<math.h>
double f(double x)
{
double s;
s=x*x*x/3-x;
return fabs(s);
}
void main()
{double x=-0.99,y;
int k=0;
printf("%d ,%lf\n",k,x);
{if(r>=x[i]&&r<=x[i+1])
{s=m[i]*pow(x[i+1]-r,3)/6*h[i]+m[i+1]*pow(r-x[i],3)/6*h[i]+(y[i]-m[i]*pow(h[i],2)/6)*(x[i+1]-r)/h[i]+(y[i+1]-m[i+1]*pow(h[i],2)/6)*(r-x[i])/h[i];
28.65
39.62
50.65
5.28794
9.4
13.84
20.2
24.9
28.44
31.1
k
7
8
9
10
11
12
78
104.6
156.6
208.6
260.7
312.5
35
36.5
36.6
34.6
31.6
31.0
k
13
14
15
16
17
18
364.4
416.3
468
494
507
520
20.9
14.8
7.8
do
{y=x;
数值计算方法教案
数值计算方法教案一、教学目标1.了解数值计算方法的意义和应用2.掌握常见的数值计算方法,如牛顿迭代法、二分法等3.能够使用数值计算方法解决实际问题二、教学内容1.数值计算方法的基本概念和理论a.什么是数值计算方法b.为什么需要数值计算方法c.数值计算方法的分类和应用领域2.牛顿迭代法a.原理和推导b.算法的步骤和流程c.算法的收敛性和收敛速度d.算法的应用案例3.二分法a.原理和推导b.算法的步骤和流程c.算法的收敛性和收敛速度d.算法的应用案例4.数值计算方法的误差分析a.绝对误差和相对误差的定义和计算b.截断误差和舍入误差的定义和计算c.误差的传播和累积三、教学步骤1.导入a.引入数值计算方法和其应用的背景和意义b.激发学生对数值计算方法的兴趣和好奇心2.讲授a.介绍数值计算方法的基本概念和理论b.讲解牛顿迭代法的原理、推导和应用案例c.讲解二分法的原理、推导和应用案例d.介绍数值计算方法的误差分析方法和步骤3.实践a.给出数值计算方法的练习题,让学生自己实践应用b.引导学生分析和解决实际问题,如方程求根、函数逼近等4.归纳总结a.通过学生的实践活动和讨论,整理和总结数值计算方法的要点和关键步骤5.拓展应用a.引导学生思考和探索数值计算方法在其他领域中的应用,如图像处理、信号处理等b.给予学生相关参考资料和案例,鼓励学生进行创新和探索四、教学评估1.结合练习题和实践活动,对学生的掌握程度进行评估2.收集学生的反馈和意见,及时调整和改进教学方法3.鼓励学生进行小组讨论和分享,提高合作意识和团队精神五、教学反思1.教案内容的组织是否合理,是否能够满足学生的学习需求2.教学过程中是否能够激发学生的学习兴趣和积极参与3.是否有利于学生将所学知识与实际应用相结合,培养实际问题解决能力4.是否能够充分发挥学生的主体性和主动性。
求值c语言课程设计
求值c语言课程设计一、课程目标知识目标:1. 理解C语言中求值的基本概念,掌握常见运算符的优先级和使用方法;2. 学会使用C语言编写简单的求值程序,并能正确运用数据类型进行变量声明和赋值;3. 掌握C语言中的控制结构,如条件语句和循环语句,运用这些控制结构进行求值计算。
技能目标:1. 能够分析实际问题,将其转化为C语言求值的算法,培养编程解题能力;2. 学会使用C语言编译器进行程序编写、调试和运行,具备基本的编程实践能力;3. 掌握C语言程序设计中常见错误类型,学会查找和排除程序中的错误。
情感态度价值观目标:1. 培养学生对编程的兴趣和热情,激发主动学习和探究的精神;2. 培养学生的团队合作意识,学会在团队中沟通协作,共同解决问题;3. 培养学生严谨、认真的学习态度,树立良好的编程习惯。
课程性质:本课程为实践性较强的学科,要求学生具备一定的逻辑思维能力和动手实践能力。
学生特点:针对高年级学生,已具备一定的C语言基础,对编程有一定了解,但对求值问题的处理尚需提高。
教学要求:结合课程性质和学生特点,将知识目标和技能目标分解为具体的学习成果,通过实例讲解、上机实践和课后巩固,帮助学生掌握求值问题的C语言编程方法。
同时,注重培养学生积极的学习态度和团队合作精神,为后续课程打下坚实基础。
二、教学内容1. 算术表达式和运算符:回顾C语言中的基本算术运算符,如加减乘除、取模等,以及它们在表达式中的优先级和结合性。
教材章节:第二章第三节2. 数据类型与变量:讲解整型、浮点型和字符型等基本数据类型,以及变量的声明和赋值。
教材章节:第二章第一节3. 控制结构:- 条件语句:介绍if、if-else、switch语句的使用,用于实现不同的求值逻辑。
教材章节:第三章第二节- 循环语句:讲解for、while、do-while循环的用法,实现重复求值操作。
教材章节:第三章第三节4. 函数:介绍函数的定义、声明和调用,通过函数实现模块化编程,简化求值过程。
数值分析课程设计c
数值分析课程设计c一、教学目标本节课的教学目标是让学生掌握数值分析的基本概念和方法,培养学生运用数值分析解决实际问题的能力。
具体目标如下:1.知识目标:(1)了解数值分析的基本概念;(2)掌握常用的数值算法及其原理;(3)了解数值分析在实际工程中的应用。
2.技能目标:(1)能够运用数值分析方法解决实际问题;(2)能够编写简单的数值计算程序;(3)能够对数值计算结果进行分析和评估。
3.情感态度价值观目标:(1)培养学生对科学探究的兴趣和热情;(2)培养学生团队合作精神,提高学生沟通与协作能力;(3)培养学生运用科学知识解决实际问题的责任感。
二、教学内容本节课的教学内容主要包括数值分析的基本概念、常用数值算法及其原理,以及数值分析在实际工程中的应用。
具体安排如下:1.数值分析的基本概念:(1)数值问题的概念;(2)数值方法的定义及其与解析方法的比较;(3)数值分析的主要任务。
2.常用数值算法及其原理:(1)线性代数方程组的求解;(2)非线性方程的求解;(3)插值与逼近;(4)数值微积分。
3.数值分析在实际工程中的应用:(1)数值模拟与仿真;(2)工程优化与设计;(3)数值计算在科学研究中的应用。
三、教学方法为了提高学生的学习兴趣和主动性,本节课将采用多种教学方法,如讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过教师的讲解,使学生掌握数值分析的基本概念和方法;2.讨论法:引导学生分组讨论数值分析的实际应用案例,培养学生的团队合作精神;3.案例分析法:分析具体的数值计算实例,使学生了解数值分析在实际工程中的应用;4.实验法:安排课后数值计算实验,让学生动手编写程序,提高学生的实际操作能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:《数值分析导论》;2.参考书:《数值分析》、《计算方法》等;3.多媒体资料:相关教学视频、PPT课件等;4.实验设备:计算机、编程环境等。
c语言课程设计求pai
c语言课程设计求pai一、课程目标知识目标:1. 理解C语言中循环和递归的概念,掌握其用法;2. 学会运用C语言进行数值计算,求解π的近似值;3. 熟悉C语言中的数学库函数,理解其功能及使用方法。
技能目标:1. 能够编写出利用循环和递归求解π的程序,并优化算法提高计算精度;2. 能够运用C语言中的数学库函数辅助求解π,提高编程实践能力;3. 能够分析并解决程序运行过程中出现的问题,提高问题解决能力。
情感态度价值观目标:1. 培养学生对C语言编程的兴趣,激发学生自主学习的热情;2. 培养学生严谨的科学态度,注重细节,提高程序代码的可读性和可维护性;3. 培养学生的团队协作能力,学会在团队中分享观点、交流心得,共同进步。
本课程针对高中年级学生,结合C语言课程特点,注重理论知识与实践操作的相结合。
通过求解π的案例,让学生掌握C语言的基本语法、编程技巧和数学知识,提高学生的编程能力和问题解决能力。
同时,关注学生的情感态度价值观的培养,使学生在学习过程中形成积极向上的心态,为未来学习和发展奠定基础。
课程目标具体、可衡量,便于教学设计和评估。
二、教学内容1. C语言基本语法回顾:变量定义、数据类型、运算符、控制结构(循环和分支);2. 数值计算方法:蒙特卡洛方法原理及其在求解π中的应用;3. 循环结构:for循环、while循环在求解π中的应用及优化;4. 递归算法:递归的概念、求解π的递归算法及其分析;5. 数学库函数:C语言中数学库函数的使用,如sqrt、pow等在求解π中的应用;6. 算法优化:分析不同算法求解π的优缺点,引导学生进行算法优化;7. 编程实践:指导学生编写求解π的C语言程序,并进行调试和优化;8. 结果分析:分析程序运行结果,探讨影响计算精度的因素。
教学内容依据课程目标,结合教材相关章节进行组织,确保科学性和系统性。
教学大纲安排如下:1. 第一课时:C语言基本语法回顾,介绍数值计算方法;2. 第二课时:循环结构及其在求解π中的应用;3. 第三课时:递归算法及其在求解π中的应用;4. 第四课时:数学库函数的使用,算法优化;5. 第五课时:编程实践,结果分析。
数值计算课程设计典型数值算法的c 语言程序设计
数值计算课程设计说明书题目:典型数值算法的C++语言程序设计院(系):理学院专业班级:数学1xx学号: xxxx12010134学生姓名: x指导教师: xxxx2014年7月 6日陕西科技大学数值计算课程设计任务书理学院信息与计算科学/应用数学专业信息12*/数学12* 班级学生:xxx题目:典型数值算法的C++语言程序设计课程设计从2014 年 5 月26 日起到2014 年7 月 6 日1、课程设计的内容和要求(包括原始数据、技术要求、工作要求等):每人需作10个算法的程序、必做6题、自选4题。
对每个算法要求用C++语言进行编程。
必选题:1、高斯列主元法解线性方程组2、牛顿法解非线性方程组3、经典四阶龙格库塔法解一阶微分方程组4、三次样条插值算法(压紧样条)用C++语言进行编程计算依据计算结果,用Matlab画图并观察三次样条插值效果。
5、龙贝格求积分算法6、M次多项式曲线拟合,据计算结果,用Matlab画图并观察拟合效果。
自选题:自选4道其他数值算法题目.每道题目重选次数不得超过5次.2、对课程设计成果的要求〔包括图表、实物等硬件要求〕:2.1 提交课程设计报告按照算法要求,应用C++语言设计和开发算法程序,提交由:每个算法说明;与算法相应的程序设计说明(程序中的主要变量语义说明,变量的数据类型,数据在内存中组织和存储结构说明,各函数模块的主要流程图,函数功能说明,函数的形参说明,函数的调用方法说明);程序调试与实例运行记录(包括程序调试和修改记录、测试结论、运行结果记录),每个算法的源程序代码编入附录构成的课程设计报告。
2.2 课程设计报告版式要求目录的要求:居中打印目录二字,(四号黑体,段后1行),字间空一字符;章、节、小节及其开始页码(字体均为小四号宋体)。
节向右缩进两个字符,小节及以后标题均向右缩进四个字符。
目录中应包含正文部分每个算法章节标题、设计体总结、无序号的“参考文献资料”,目录的最后一项是“附录”正文的要求:算法说明论述清楚,公式符号撰写规范,流程图图符规范,计算正确,文字简练通顺,插图简洁规范,书写整洁。
数值计算方法课程设计(C语言)
数值计算方法课程设计姓名学号成绩课程实际报告实验一:秦九韶算法题目用选列主元高斯消去法解线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=-+-=-+-=--022 0 21 34343232121x x x x x x x x x x算法语言:利用c 语言的知识编写该算法程序算法步骤叙述:秦九昭算法的基思路是v[0]=a[0]*x+a[1] v[i]=v[i-1]*x+a[i+1];利用秦九昭算法计算多项式函数。
程序清单:#include <stdio .h >void main(){float a[5],x,sum;int i;printf("presase input the value of x=");scanf("%f",&x);for (i =5;i >=0;i --){printf("please input the value of a%d=",i);scanf("%f",&a[i]);}sum =a[5];for(i=5;i>=1;i--){sum=sum*x+a[i-1];}printf("f(x)=%f/n",sum); }输出结果计算:实验总结:通过运用C 语言,解决了秦九韶算法手写的复杂。
为以后的雪地打下基础。
实验二:用选列主元高斯消去法解线性方程组题目用选列主元高斯消去法解线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=-+-=-+-=--0202 0 21 34343232121x x x x x x x x x x算法步骤叙述第一步消元——在增广矩阵(A,b )第一列中找到绝对值最大的元素,将其所在行与第一行交换,再对(A,b )做初等行变换使原方程组的第一列元素除了第一行的全变为0;第二步消元——在增广矩阵(A,b )中第二列中(从第二行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A,b )做初等行变换使原方程组的第二列元素除了第一和第二行的全变为0;第三步消元——在增广矩阵(A,b )中第三列中(从第三行开始)找到绝对值最大的元素,将其所在行与第三行交换,再对(A,b )做初等行变换使原方程组的第三列第四行元素为0;第四,按x4-x3-x2-x1的顺序回代求解出方程组的解,x[n]=b[n]/a[n][n],x[i]=(b[i]-Σa[i][j]x[j])/a[i][i],i=n-1,…,2,1 程序清单:#include<iostream>#include<math>#define N 4static double A[N][N] = {-3,-1,0,0,-1,2,-1,0,0,-1,2,-1,0,0,-1,2};static double B[N]={1,0,0,0};static double X[N];int i,j,k;void main(){for(k = 0; k < N-1 ;k++){int index = k;for(i = k; i< N ;i++){if(fabs(A[index][k]) < fabs(A[i][k])){index = i;}}double temp;for( i = k ; i < N ;i++ ){temp = A[index][i];A[index][i] = A[k][i];A[k][i] = temp;}temp = B[index];B[index] = B[k];B[k] = temp;for(i = k+1; i<N; i++){double T = A[i][k]/A[k][k];B[i] = B[i] - T * B[k];for ( j = k+1 ; j < N ; j++ ){A[i][j] = A[i][j] - T * A[k][j];}}}X[N-1] = B[N-1]/A[N-1][N-1];for (i = N-2; i >=0 ; i--){double Temp = 0;for (int j = i+1; j<N ;j++)Temp = Temp + A[i][j] * X[j];X[i] = (B[i] - Temp) /A[i][i];}cout << "线性方程组的解(X1,X2,X3......Xn )为:"<<endl;for( i = 0; i < N ;i++){cout << X[i] <<" ";}} 实验总结:通过c++语言的编写过程掌握高斯消元法及选列主元元素的技术,掌握了简单的c++程序编辑语言编写算法程序实验五:二分法与牛顿法题目用二分法和Newton 迭代法求下列方程的正根:要求结果的误差限为6105.0-⨯ ,05.01)1ln(22=---+-x x x x x1.二分法算法语言:C 语言算法思路:算法思路先给定区间[a,b],要求f(a)与f(b)是异号,保证区间内与x 轴有交点,求x=(a+b)/2,求f(x),检查f(x)与f(a)是否同号,如果是同号,把x 当成新的a ,否则把x 当成新的b ,得到新的区间,重复求a 和b 的中点的值,判断与f(a)是否同号,不断循环下去,直到达到精度为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值计算方法课程设计姓名学号成绩课程实际报告实验一:秦九韶算法题目用选列主元高斯消去法解线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=-+-=-+-=--0202 0 21 34343232121x x x x x x x x x x算法语言:利用c 语言的知识编写该算法程序算法步骤叙述:秦九昭算法的基思路是v[0]=a[0]*x+a[1] v[i]=v[i-1]*x+a[i+1];利用秦九昭算法计算多项式函数。
程序清单:#include <stdio .h >void main(){float a[5],x,sum;int i;printf("presase input the value of x=");scanf("%f",&x);for (i =5;i >=0;i --){printf("please input the value of a%d=",i); scanf("%f",&a[i]);}sum =a[5];for(i=5;i>=1;i--){sum=sum*x+a[i-1];}printf("f(x)=%f/n",sum); }输出结果计算:实验总结:通过运用C 语言,解决了秦九韶算法手写的复杂。
为以后的雪地打下基础。
实验二:用选列主元高斯消去法解线性方程组题目用选列主元高斯消去法解线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=-+-=-+-=--022 0 21 34343232121x x x x x x x x x x算法步骤叙述第一步消元——在增广矩阵(A,b )第一列中找到绝对值最大的元素,将其所在行与第一行交换,再对(A,b )做初等行变换使原方程组的第一列元素除了第一行的全变为0;第二步消元——在增广矩阵(A,b )中第二列中(从第二行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A,b )做初等行变换使原方程组的第二列元素除了第一和第二行的全变为0;第三步消元——在增广矩阵(A,b )中第三列中(从第三行开始)找到绝对值最大的元素,将其所在行与第三行交换,再对(A,b )做初等行变换使原方程组的第三列第四行元素为0;第四,按x4-x3-x2-x1的顺序回代求解出方程组的解,x[n]=b[n]/a[n][n],x[i]=(b[i]-Σa[i][j]x[j])/a[i][i],i=n-1,…,2,1 程序清单:#include<iostream>#include<math>#define N 4static double A[N][N] = {-3,-1,0,0,-1,2,-1,0,0,-1,2,-1,0,0,-1,2}; static double B[N]={1,0,0,0};static double X[N];int i,j,k;void main(){for(k = 0; k < N-1 ;k++){int index = k;for(i = k; i< N ;i++){if(fabs(A[index][k]) < fabs(A[i][k])){index = i;}}double temp;for( i = k ; i < N ;i++ ){temp = A[index][i];A[index][i] = A[k][i];A[k][i] = temp;}temp = B[index];B[index] = B[k];B[k] = temp;for(i = k+1; i<N; i++){double T = A[i][k]/A[k][k];B[i] = B[i] - T * B[k];for ( j = k+1 ; j < N ; j++ ){A[i][j] = A[i][j] - T * A[k][j];}}}X[N-1] = B[N-1]/A[N-1][N-1];for (i = N-2; i >=0 ; i--){double Temp = 0;for (int j = i+1; j<N ;j++)Temp = Temp + A[i][j] * X[j];X[i] = (B[i] - Temp) /A[i][i];}cout << "线性方程组的解(X1,X2,X3......Xn )为:"<<endl;for( i = 0; i < N ;i++){cout << X[i] <<" ";}} 实验总结:通过c++语言的编写过程掌握高斯消元法及选列主元元素的技术,掌握了简单的c++程序编辑语言编写算法程序实验五:二分法与牛顿法题目用二分法和Newton 迭代法求下列方程的正根:要求结果的误差限为6105.0-⨯ ,05.01)1ln(22=---+-x x x x x1.二分法算法语言:C 语言算法思路:算法思路先给定区间[a,b],要求f(a)与f(b)是异号,保证区间内与x 轴有交点,求x=(a+b)/2,求f(x),检查f(x)与f(a)是否同号,如果是同号,把x 当成新的a ,否则把x 当成新的b ,得到新的区间,重复求a 和b 的中点的值,判断与f(a)是否同号,不断循环下去,直到达到精度为止。
3)牛顿迭代法设计思想是对f(x0)某点求切线,与x 轴交x1点后,把x1当成x0,再求出其相应新的f(x0),再对其求切线,找到与x 轴的新交点,不断循环下去,直到达到精度为止。
这种方法要求先对函数求一阶导数,然后再迭代:x1=x0-f(x0)/f‘(x0)程序清单:#include<stdio.h>#include <math.h>#define f(x) (x*log(sqrt(x*x-1)+x)-sqrt(x*x-1)-0.5*x)void main(){ float a,b,x,eps;int k=0;printf("intput eps\n");/* 0.5*10^-6 */scanf("%f",&eps);printf("a,b=\n");for(;;){scanf("%f, %f",&a ,&b);if(f(a)*f(b)>=0) /* 判断是否符合二分法使用的条件 */printf("二分法不可使用,请重新输入:\n");else break;}do{ x=(a+b)/2;k++;if(f(a)*f(x)<0) /* 如果f(a)*f(x)<0,则根在区间的左半部分 */b=x;else if(f(a)*f(x)>0) /* 否则根在区间的右半部分 */a=x;else break;}while(fabs(b-a)>eps);/*判断是否达到精度要求,若没有达到,继续循环*/x=(a+b)/2; /* 取最后的小区间中点作为根的近似值 */printf("\n The root is x=%f, k=%d\n",x,k);}输出结果计算:2.牛顿法算法思路:设r是f(x)=0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y=f(x)的切线L,L的方程为y=f(x0) f'(x0)(x-x0),求出L与x轴交点的横坐标x1=x0-f(x0)/f'(x0),称x1为r的一次近似值,如果|f(x1)-0|小于指定的精度,那么继续过点(x1,f(x1))做曲线y=f(x)的切线,并求该切线与x轴的横坐标x2=x1-f(x1)/f'(x1)称x2为r的二次近似值,重复以上过程。
得r的近似值序列{Xn},其中Xn 1=Xn-f(Xn)/f'(Xn),称为r的n 1次近似值。
程序清单:#include <stdio.h>#include <math.h>float f(float x) /* 定义函数f(x) */ {return (x*log(sqrt(x*x-1)+x)-sqrt(x*x-1)-0.5*x);}float f1(float x) /* 定义函数f(x)的导数*/{ return x*log(sqrt(x*x-1)+x))-(sqrt(x*x-1)-0.5*x) ; }void main(){ float eps,x0,x1=1.0;printf("input eps:\n");scanf("%f",&eps); /* 输入容许误差*/do{ x0=x1; /* 准备下一次迭代的初值 */x1=x0-f(x0)/f1(x0); /* 牛顿迭代 */}while(fabs(x1-x0)>eps); /*当满足精度,输出近似根*/printf("x=%f\n",x1);}总结:了解和掌握二分法和牛顿迭代的算法思路,学会利用简单的编程语言编写牛顿和二分法的算法思路,并作简单的计算。
实验八:应用经典的四阶龙格库塔方法求Lorenz 方程题目:应用经典的四阶龙格库塔方法求Lorenz 方程要求:参数,初值0)0(,0)0(,0)0(321===x x x ,步长1.0=h .程序设计:Lorenz 方程实际上是一个四元一阶常微分方程,用解析法精确求解是不可能的,只能用数值计算,最主要的有欧拉法、亚当法和龙格- 库塔法等。
为了得到较高精度的数值解,本实验要求采用经典四阶龙格—库塔方法求解该问题。
程序清单:#include <stdio.h>float func(float x,float y){ return(x-y);}float runge_kutta(float x0,float xn,float y0,int N){ float x,y,y1,y2,h,xh;float d1,d2,d3,d4;int i;x=x0;y=y0;h=(xn-x0)/(float)N;for(i=1;i<=N;i++){ xh=x+h/2;d1=func(x,y);d2=func(xh,y+h*d1/2.0);d3=func(xh,y+h*d2/2.0);d4=func(xh,y+h*d3);y=y+h*(d1+2*d2+2*d3+d4)/6.0;x=x0+i*h; }return(y);}main(){ float x0,xn,y0,e;int N;printf("输入步长 n:\n "); scanf("%d",&N);printf("输入参数 x0,xn:\n "); scanf("%f,%f",&x0,&xn);printf("输入初值 y0:\n "); scanf("%f",&y0);e=runge_kutta(x0,xn,y0,N);printf("y(%f)=%8.6f",y0,e);}输出结果计算:总结:本实验通过龙格——库塔法对Lorenz方程进行了分析,从本实验中我们得出,Lorenz方程的解对初始变量具有很强烈的敏感性。