天大物理化学第五版第十章 界面现象

合集下载

天津大学物理化学第五版(下)答案(完整版...[1]

天津大学物理化学第五版(下)答案(完整版...[1]

第七章 电化学7.3 用银电极电解AgNO 3溶液。

通电一定时间后,测知在阴极上析出0.078g 的Ag ,并知阳极区溶液中23.376g ,其中含AgNO 30.236g 。

已知通电前溶液浓度为1kg 水中溶有7.39g AgNO 3。

求Ag +和3NO -迁移数。

解法1:解法1:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。

显然阳极区溶液中Ag +的总量的改变如。

n 电解后(Ag +)= n 电解前(Ag +)+ n 电解(Ag +)- n 迁移(Ag +)则:n 迁移(Ag +)= n 电解前(Ag +)+ n 电解(Ag +)- n 电解后(Ag +)n 电解(Ag +)=()()4Ag 0.0787.22910mol Ag 107.9m M -==⨯()3323.3760.2367.3910(Ag) 1.00710mol 169.87n -+--⨯⨯==⨯解前电30.236(Ag ) 1.38910mol 169.87n +-==⨯电解后n 迁移(Ag +) = 1.007×10-3+7.229×10-4-1.389×10-3=3.403×10-4mol()44Ag 3.40310Ag 0.477.22910n t n +-+-⨯==⨯移解()=迁电 则:t (3NO -)= 1 - t (Ag +)= 1 – 0.471 = 0.53解法2:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。

显然阳极区溶液中3NO -的总量的改变如下:n 电解后(3NO -)= n 电解前(3NO -) + n 迁移(3NO -)则:n 迁移(3NO -)=n 电解后(3NO -)- n 电解前(3NO -)n 电解后(3NO -)=30.236(Ag) 1.38910mol 169.87n +-==⨯解后电n 电解前(3NO-)=()3323.3760.2367.3910(Ag) 1.00710mol 169.87n -+--⨯⨯==⨯解前电n 迁移(3NO -) = 1.389×10-3-1.007×10-3 = 3.820×10-4moln 电解(Ag +)=()()4Ag 0.0787.22910mol Ag 107.9m M -==⨯()4334NO 3.82010NO 0.537.22910n t n ----⨯==⨯移解()=迁电 则: t (Ag +)= 1 - t (3NO -)= 1 – 0.528 = 0.477.5 已知25℃时0.02mol·dm -3KCl 溶液的电导率为0.2768S·m -1。

物理化学 第十章 界面现象

物理化学 第十章  界面现象

4. 热力学基本公式
考虑了表面功,热力学基本公式中应相应增加一项,即:
dU TdS pdV
dn
B
B
dAS
B
dH TdS VdP
dn
B
B
dAS
B
dA SdT pdV
dn
B
B
dAS
B
dG SdT VdP
dn
B
B
dAS
B
由此可得:
( U AS
Ga 0 1800 任何液体与固体间都能粘湿
在等温等压条件下,单位面积的液固界面分开产生液体表面与固体表 面所需的功称为粘附功。粘附功越 大,液体越能润湿固体,液-固结合 得越牢。
Wa Ga gl (cos 1 )
Wa o
(2)浸湿(work of immersion)
浸湿:固体浸入液体,固体表面消失,液-固界面产生的润湿过程。
当将边长为10-2m的立方体分割成10-9m的小立方体 时,比表面增长了一千万倍。
可见达到nm级的超细微粒具有巨大的比表面积, 因而具有许多独特的表面效应,成为新材料和多相 催化方面的研究热点。
对具有巨大表面积的分散体系,界面分子的 特殊性对体系性质的巨大影响不能忽略
界面与表面:是指两相接触的约几个分子厚度的过渡区 (界面相),若其中一相为气体,这种界面通常称为表 面。
Langmuir吸附等温式的缺点:
1.假设吸附是单分子层的,与事实不符。 2.假设表面是均匀的,其实大部分表面是不均匀的。
3.在覆盖度 较大时,Langmuir吸附等温式不适用。
§ 10.4 液—固界面
接触角 粘附功 浸湿功 铺展系数
1 接触角(contact angle)和Young equation

天津大学物理化学第十章 界面现象

天津大学物理化学第十章 界面现象

4. 亚稳态及新相生成
系统分散度增大、粒径减小引起液滴和固
体颗粒的饱和蒸气压大于普通液体、固体的情
况,只有在粒径很小时才需要考虑。 在蒸气冷凝、液体凝固和沸腾、溶液结晶 等过程中,新相从无到有,最初尺寸极其微小, 比表面积和表面吉布斯函数都很大,新相的产
生非常困难,会出现一些特殊的状态——亚稳
态(介安态)。
dG dA 8πr dr
pr 4πr 2 (dr ) pr dG (dn) RT ln RT ln p M p
dG dA 8πr dr
pr 2 M RT ln p r
开尔文公式
由Kelvin公式可知: 凸液面 r 越小pr 越大 p 2 M 对于凹液面: RT ln pr r 比较饱和蒸气压: p凸> p平> p凹
吸附等温线:
Va

Va

0
Va

p/p*

1
0 Va
p/p*

1
Va
0p/p*ຫໍສະໝຸດ 10p/p*
1
0
p/p*
1
p: 达平衡时的吸附压力; p*: 该温度下吸附气体的饱和蒸气压。
2. 吸附经验式——弗罗因德利希公式
Freundlich用指数方程描述 型吸附等温线
V a kpn
n、k 是两个经验参数,均是 T 的函数。 k: 单位压力时的吸附量。一般T ,k; n :介于0~1之间,反映 p 对V a 影响的强弱。 直线式: lgV
§10.4 液 - 固界面
固体表面力场不对称,存在润湿和吸附 1. 接触角与杨氏方程
平衡时
cos
s ls lg

第10章-界面现象天津大5版

第10章-界面现象天津大5版
p 2 gh
r1
18
由于液面曲率半径r1与毛细 管半径r间关系为
cos r r1
p 2 gh
r1
h 2 cos rg
19
h 2 cos rg
A. 在一定的温度下,毛细管越细,液 体的密度越小,液体对管壁润湿得越好, 液体在毛细管中上升得越高。
B. 当液体不润湿管壁,θ>90, cos θ <0, h为负值,液面下降。
W ' Fdx 2 ldx dAs r
W '
r
dAs
•γ也表示为使系统增加单位面积所需作的可逆 功,单位为Jm-2。
表面吉布斯函数
• 在恒温恒压下,可逆非体积功应等于系统的 吉布斯函数变。
W
' r
dGT ,
p
dAs
(
G As
)T
,P
γ也称为表面吉布斯函数,表示在恒温恒压下, 系统增加单位面积时所增加的吉布斯函数变。单 位为Jm-2。
4
由于表面层的分子受到指向物体内部并垂直 于表面的作用力(合力),使物体表面有自动缩小的 趋势。
5
表面张力
F 2 l F
2l
• γ即表面张力:引起液体表面收缩的单位长度 上的力。单位Nm-1。
• 表面张力的方向:与液面相切,并与两部分的 分界线垂直。
6
表面功
• 将内部分子移至表面,必须对所移动的分子施 加外力、做功。表面能量较物体内部大。

dGs=d(γAs) = γ d As +As dγ ≤0
所以系统通过减少界面面积或界面张力来降低界面吉布斯函 数,使过程自发进行。如小液滴聚成大液滴,多孔固体表面吸 附气体,液体对固体润湿过程。

10-物理化学第十章 界面现象

10-物理化学第十章 界面现象

ln
Pr Ps
2 M r RT
凸(液滴)~ “+” 凹(气泡)~ “–”
凸(液滴,固体粉末 or r > 0)— Pr>Ps 凹(气泡 or r < 0 )— Pr<Ps
水平液面(r→∞)— Pr=Ps
❖ 亚稳状态和新相的生成 ——分散度对系统性质的影响
亚稳状态
——热力学不稳定态,一定条件下能相对 稳定的存在。
杨氏方程
cos
s l
sl
润湿条件 s sl 铺展条件 s sl l
❖ 应用
毛细管内液面
凹: 润湿
凸: 不润湿
§10–3 弯曲液面下的附加压
由此产生毛细现象,并影响饱和蒸气压
10·3·1 弯曲液面产生附加压
附加压 △P= P心-P外
➢ 杨-拉普拉斯方程
曲面— P 2 膜— P 4
第十章 界面现象
讨论界面性质对系统的影响
新的系统—多相,小颗粒系统
非体积功—表面功
❖ 需考虑界面影响的系统 界面所占比例大的系统
比表面——
aS
AS m
❖ 本章内容 表面张力
① 表面现象的成因 表面现象的总成因
与AS↓有关 ② 各类现象分析
与γ↓有关
§10–1 表面现象的成因 10·1·1 表面张力 ❖ 表面张力 γ 定义—作用于单位边界上的表面紧缩力 方向—总指向使表面积减小的方向
为降低表面张力而产生 吸附剂 —— 起吸附作用的 吸附质 —— 被吸附的
§10–4 固体表面的吸附 固体对气体的吸附
10·4·1 吸附的产生
固体特点—有大的比表面,不稳定。 通过吸附其它分子间力较小的物质,形成 新的表面能较低的界面。
两个相对的过程——吸附和解吸 吸附量——一定T、P下,吸附和解吸达平 衡时,吸附气体的量。

天津大学第五版物理化学习题参考解答10

天津大学第五版物理化学习题参考解答10

天津大学第五版《物理化学》第十章“界面现象” P503-506习题参考解答:10-1.(1)常见的亚稳态有过饱和蒸气、过饱和溶液、过热液体、过冷液体等。

这些亚稳态的产生,是因为新相初生时,颗粒极小,比表面积和表面吉布斯能高,很不稳定,一旦形成马上又会退缩回去,因而新相难以形成所致。

比如,由于弯曲液面的附加压力造成液体内微小气泡难以形成而产生过热液体。

要防止亚稳态的产生,常用的方法是加入新相种子或使新相种子容易形成的物质,或者施加外界扰动,提高系统自身能量等。

比如,加入沸石、素烧瓷片、毛细管等作为气泡种子,可以防止液体过热。

(2)在恒温密闭钟罩内的两个大小不一的球形液滴,长时间放置后,由于液滴越小其饱和蒸气压越大,小液滴将不断蒸发,越变越小,大液滴则不断有蒸气凝结其上,越变越大,最后小液滴消失,只剩下大液滴。

(3)下雨时,雨滴落在水面形成气泡,其形状近似于半球形。

这是因为雨滴落下进入水面时,其后产生的负压将空气带入而形成气泡,气泡稳定存在时,要求其表面吉布斯能最低,表面积最小,故在水面上形成半球形气泡。

(4)物理吸附和化学吸附最本质的区别是吸附作用力的不同,前者是分子间力(范德华力),后者是化学键力。

(5)一方面,物理吸附是定温定压下自发进行的过程,其表面吉布斯能减小,a 0G ∆<;另一方面,物理吸附是将气体分子从三维空间转移到二维空间,是熵减小的过程,a 0S ∆<。

因此,a a a 0H G T S ∆=∆+∆<,吸附焓小于零,物理吸附过程都是放热过程。

10-2.设大汞滴半径为R ,小汞滴半径为r ,小汞滴个数为N ,则()()()333332222s s,s,3322394/34/34444110 4141100.48651 6.114J 110V R R N V r rR G A A A N r R r R r R R r ππγγγππγπππγπ---===⎛⎫∆=∆=-=⋅-=⋅- ⎪⎝⎭⎛⎫⨯⎛⎫=-=⨯⨯⨯⨯-= ⎪ ⎪⨯⎝⎭⎝⎭大小小大10-3.对水中气泡 36 62258.9110 1.17810Pa 0.110p r γ--⨯⨯∆===-⨯-⨯ 对空中水滴 3 6 62258.9110 1.17810Pa 0.110p r γ--⨯⨯∆===⨯⨯ 对空中液泡 36 64458.9110 2.35610Pa 0.110p r γ--⨯⨯∆===⨯⨯10-4.所加压力即液面附加压力。

物理化学知识点chap 10

物理化学知识点chap 10

Pa
2.356
103
kPa
【10.5】水蒸气迅速冷却至298.15K时可达到过饱和状态。已
知该温度下水的表面张力为71.97×10-3 N·m -1 ,密度为997
kg·m-3。 当过饱和水蒸气压力为平液面水的饱和蒸气压的4
倍时,计算: (1)开始形成水滴的半径;(2)每个水滴中
所含水分子的个数。
m
= 7.569 ? 10- 10m
(2)每个水滴的体积
( ) V 水滴=
4 3
pr
3
=
4 创3.14 3
7.569 ? 10- 10 3 m 3
1.815 ? 10- 27m 3
每个水分子的体积
V 水分子=
M rL
=
骣 琪 琪 琪 桫997

0.018 6.022
m 3 = 3.00 ? 10- 29m 3 1023
分析: 利用拉普拉斯方程
p 2
r
解: (1)和(2)两种情况下均只存在一个气-液界面, 其附加压力相同。根据拉普拉斯方程
p
2
r
2 58.91103 0.1106
Pa
1.178
103
kPa
(3)空气中存在的气泡,有两个气-液界面,其附加压力 为
p
4
r
4
58.91103 0.1106

pg
••



p
• •
pl
(a)
pg
• 气 p • •
液•
pl (b)
附加压力方向示意图


气•


• •
p=• 0

物理化学 10 界面现象

物理化学 10 界面现象
19 of 153
(10 .1 .12)
河北联合大学
由吉布斯函数判据可知:在恒温、恒 压、各相中各种物质的量不变时,系统总 界面吉布斯函数减小的过程为自发过程。 例:液体对固体的润湿,小液滴聚集成大液滴……
3.界面张力及其影响因素
界面张力取决于界面的性质,能影响物质性质的因素,都 能影响界面张力。 ①与物质的本性有关:不同的物质,分子间的作用力不 同,对界面上分子的影响也不同。分子间相互作用力越大,γ 越 大。 一般对于气液界面有:γ(金属键)> γ(离子键)> γ(极 性键)> γ(非极性键)
液体
水 乙醇 甲醇 CCl4 丙酮 甲苯 苯
河北联合大学
25 of 153
③ 压力及其它因素对表面张力的的影响:
压力增加,使气相密度增加,减小表面分子受力不对称 程度;也使气体分子更多溶于液体,改变液相成分,这些 因素都使表面张力下降。 a.表面分子受力不对称的程度 ↓ p↑ b.气体分子可被表面吸附,改变γ, ↓ γ↓
α B
4.2.7
河北联合大学
16 of 153
dU TdS pdV μB (α )dnB (α)
α B
4.2.8 4.2.9 4.2.10
dH TdS Vdp μB (α )dnB (α)
α B
dA SdT pdV μB (α )dnB (α)
t /°C
1050 215 5.5 0. 25 1850 20 -196
/mNm-1
1670 1140 685 527 12010 1000 905 4500 1030
Cu Ag Sn 苯 冰 氧化镁 氧化铝 云母 石英
河北联合大学

物理化学下册第五版天津大学出版社第十章界面现象习题答案

物理化学下册第五版天津大学出版社第十章界面现象习题答案

物理化学下册第五版天津大学出版社第十章界面现象习题答案10.1 请回答下列问题:(1)常见的亚稳定状态有哪些?为什么会产生亚稳定状态?如何防止亚稳定状态的产生?解:常见的亚稳定状态有:过饱和蒸汽、过热或过冷液体和过饱和溶液等。

产生亚稳定状态的原因是新相种子难生成。

如在蒸气冷凝、液体凝固和沸腾以及溶液结晶等过程中,由于要从无到有生产新相,故而最初生成的新相,故而最初生成的新相的颗粒是极其微小的,其表面积和吉布斯函数都很大,因此在系统中产生新相极其困难,进而会产生过饱和蒸气、过热或过冷液体和过饱和溶液等这些亚稳定状态,为防止亚稳定态的产生,可预先在系统中加入少量将要产生的新相种子。

(2)在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间恒温放置后,会出现什么现象?解:若钟罩内还有该液体的蒸气存在,则长时间恒温放置后,出现大液滴越来越大,小液滴越来越小,并不在变化为止。

其原因在于一定温度下,液滴的半径不同,其对应的饱和蒸汽压不同,液滴越小,其对应的饱和蒸汽压越大。

当钟罩内液体的蒸汽压达到大液滴的饱和蒸汽压时。

该蒸汽压对小液滴尚未达到饱和,小液滴会继续蒸发,则蒸气就会在大液滴上凝结,因此出现了上述现象。

(3)物理吸附和化学吸附最本质的区别是什么?解:物理吸附与化学吸附最本质的区别是固体与气体之间的吸附作用力不同。

物理吸附是固体表面上的分子与气体分子之间的作用力为范德华力,化学吸附是固体表面上的分子与气体分子之间的作用力为化学键力。

(4)在一定温度、压力下,为什么物理吸附都是放热过程?解:在一定温度、压力下,物理吸附过程是一个自发过程,由热力学原理可知,此过程系统的ΔG<0。

同时气体分子吸附在固体表面,有三维运动表为二维运动,系统的混乱度减小,故此过程的ΔS<0。

根据ΔG=ΔH-TΔS可得,物理吸附过程的ΔH<0。

在一定的压力下,吸附焓就是吸附热,故物理吸附过程都是放热过程。

10.2 在293.15 K及101.325kPa下,把半径为1×10-3m的汞滴分散成半径为1×10-9m小汞滴,试求此过程系统的表面吉布斯函数变为多少?已知汞的表面张力为0.4865N·m-1。

天津大学物理化学教研室《物理化学》(第5版)笔记和课后习题(含考研真题)详解-第10~12章【圣才出

天津大学物理化学教研室《物理化学》(第5版)笔记和课后习题(含考研真题)详解-第10~12章【圣才出

第10章 界面现象10.1 复习笔记一、界面张力物质的分散度:为物质的表面积A s 与其质量m 之比,用a s 表示,单位为m 2·kg -1。

1.液体的表面张力、表面功及表面吉布斯函数物质表面层的分子处于力学场不对称的环境中,内部分子对表面层的吸引力与外界物质对表面层的吸引力大小不等,从而形成表面张力。

(1)表面张力可以看做是引起液体表面收缩的单位长度上的力,单位为N·m -1。

表面张力的方向和液相相切,并和两部分的分界线垂直。

(2)表面功为恒温恒压下使系统增加单位表面所需的可逆功,单位为J·m -2。

可表示为:(3)表面吉布斯函数等于恒温恒压下系统增加单位面积时所增加的吉布斯函数,单位为J·m -2。

可表示为:注意:①表面张力、表面功、表面吉布斯函数均用γ表示;②三者为不同的物理量,但三者的量值和量纲等同。

三者的单位皆可化为N·m -1。

界面张力:与液体表面类似,其他界面如固体表面等由于界面层的分子同样受力不对称,同样存在着界面张力。

s s a A m2.吉布斯函数判据在恒温恒压下,系统可以减少界面面积或降低界面张力两种方式来降低界面吉布斯函数,这是一个自发过程。

3.界面张力的影响因素(1)物质的本性:不同液体表面张力之间的差异主要是由于液体分子之间的作用力不同而引起的。

固体物质一般要比液体物质具有更高的表面张力。

(2)温度:界面张力一般随着温度的升高而减小。

当温度趋于临界温度时,饱和液体与饱和蒸气的性质趋于一致,相界面趋于消失,此时表面张力趋于0。

(3)压力:增加气相的压力一般使表面张力下降。

(4)分散度对界面张力的影响:要到物质分散到曲率半径接近分子大小的尺寸时才会明显。

二、弯曲液面的附加压力及其后果1.弯曲液面的附加压力-拉普拉斯方程式中,为弯曲液面内外的压力差;γ为表面张力;r为弯曲液面的曲率半径。

表明弯曲液面的附加压力与液体表面张力成正比,与曲率半径成反比,曲率半径越小,附加压力越大。

天大物理化学第五版第十章_界面现象

天大物理化学第五版第十章_界面现象

B
B ( )d n B ( ) d A
s
A G U H A s A s A s A s T , p ,n B ( ) S ,V , n B ( ) S , p ,n B ( ) T ,V , n B ( )
14
弯曲液面附加压力Δp 与液面曲率半径之间关系的推导: 水平分力相互平衡, 垂直分力指向液体内部, 其单位周长的垂直分力为cos 球缺底面圆周长为2r1 ,得垂直分力在圆周上的合力为: F=2r1 cos 因cos = r1/ r ,球缺底面面积为 r 12 , 故弯曲液面对于单位水平面上的附加压力 p 整理后得:
h 2 r g
17
当接触角0 < < 90o
r r1
cos
h
2 co s r g

9 0o , h 0 9 0o , h 0
液体在毛细管中上升 液体在毛细管中下降
18
2. 微小液滴的饱和蒸汽压-kelven公式
足够长的时间
原因:
p 小水滴 p 大水滴
23
(4) 过饱和溶液 溶液浓度已超过饱和 液体,但仍未析出晶体的 溶液称为过饱和溶液。
原因:小晶体为凸面, pr>p , 表明分子从固相中逸出的倾向大 , 这造成它的浓度大,即溶解度大, 由此产生过饱和现象。
由于小颗粒物质的表面特殊性,造成新相难以生成,
从而形成四种不稳定状态(亚稳态):
——过饱和蒸气,过热液体,过冷液体,过饱和溶液
饱和蒸气压p*反比于液滴的曲率半径
19
饱和蒸气压与液滴曲率半径关系的推导:
dn的微量液体转移到小液滴表面 小液滴面积A:4r2 4(r+dr)2 面积的增量:dA = 8rdr

物理化学第10章界面现象ppt课件

物理化学第10章界面现象ppt课件
他还导出了联系吸附量和界面张力随体相浓度变化 的普遍关系式即著名的吉布斯吸附等温式。1859年, 开尔文(Kelvin)将界面扩展时伴随的热效应与界 面张力随温度的变化联系起来。后来,他又导出蒸 汽压随界面曲率的变化的方程即著名的开尔文方程。
在1913—1942年期间,美国科学家Langmuir在界面 科学领域做出了杰出的贡献,特别是对吸附、单分 子膜的研究尤为突出。他于1932年获诺贝尔奖,被 誉为界面化学的开拓者。 界面化学的统计力学研 究是从范德华开始的。1893年,范德华认识到在界 面层中密度实际上是连续变化的。他应用了局部
与一般体系相比,小颗粒的分散体系有很大的表 面积,它对系统性质的影响绝对不可忽略。
首 页 刚看的页 上一页 下一页 结 束
物质的分散度用比表面积 as 表示,它的定义为 物质的表面
积 As 与质量 m 的比:
as
As m
10.0.1 单位:m2·kg-1
对于以上水滴的例子,若近似认为其在室温下密度为 1g ·cm-3,则以上两种情况,比表面积 as 分别约为:6 cm2 ·g1 及600 m2 ·g-1 。
αB
4.2.7
首 页 刚看的页 上一页 下一页 结 束
dU TdS pdV μB (α)dnB (α) 4.2.8
αB
dH TdS Vdp μB (α)dnB (α) 4.2.9
αB
dA SdT pdV μB (α)dnB (α) 4.2.10
αB
当体系作表面功时,G 还是面积A的函数
界面现象是自然界普遍存在的现象。胶体指的是 具有很大比表面的分散体系。对胶体和界面现象 的研究是物理化学基本原理的拓展和应用。从历 史角度看,界面化学是胶体化学的一个最重要的 分支,两者间关系密切。而随着科学的发展,现 今界面化学已独立成一门科学,有关“界面现象” 或“胶体与界面现象”的专著在国内外已有多种 版本。本课程主要介绍与界面现象有关的物理化 学原理及应用。它包括各种相界面和表面活性剂 的相关特性,界面上的各种物理化学作用,实验 的和理论的研究方法及其重要应用。对于准备考 研的同学,还应将其作为物理化学课程的一部分。

物理化学第10章界面现象

物理化学第10章界面现象
§10.1 界面张力 §10.2 弯曲液面的附加压力及其后果 §10.3 固体表面 §10.4 液 - 固界面 §10.5 溶液表面
第一页,编辑于星期五:点 十一分。
界面现象是自然界普遍存在的现象。胶体指的是 具有很大比表面的分散体系。对胶体和界面现象 的研究是物理化学基本原理的拓展和应用。从历 史角度看,界面化学是胶体化学的一个最重要的 分支,两者间关系密切。而随着科学的发展,现 今界面化学已独立成一门科学,有关“界面现象” 或“胶体与界面现象”的专著在国内外已有多种 版本。本课程主要介绍与界面现象有关的物理化学
界面现象有着广泛的应用。主要有:
1、吸附 如用活性炭脱除有机物;用硅胶或活性氧化铝 脱除水蒸汽;用分子筛分离氮气和氧气;泡沫浮选等。
2、催化作用 在多相催化中使用固体催化剂以加速反 应。如石油工业的催化裂化和催化加氢、胶束催化 等。
3、表面膜 如微电子集成电路块中有重要应用的LB
膜;在生物学和医学研究中有重要意义的BL膜和人 工膜;能延缓湖泊水库水分蒸发的天然糖蛋白膜等。 4、新相生成 晶核生成或晶体生长是典型的新相生成, 过冷、过热、过饱和等亚稳现象产生的主要原因也 是由于新相生成。
2l
另一方面,当用外力F,使金属丝向下移动 dx ,皂膜面积增大 dA,则表面张力作可逆表面功.
第十九页,编辑于星期五:点 十一分。
首 页 刚看的页 上一页 下一页
结束
肥皂膜
l
无摩擦、可自由活动
dx
F
δ' Wr' Fdx 2γ l dx γ dAs
γ δWr' dAs
10.1.3
γ可理解为:使液体增加单位表面时环境所需作的可逆功,称 比表面功。 单位:J ·m-2。

天津大学物理化学教研室《物理化学》(下册)课后习题(界面现象)

天津大学物理化学教研室《物理化学》(下册)课后习题(界面现象)

第10章界面现象10.1 请回答下列问题:(1)常见的亚稳态有哪些?为什么产生亚稳态?如何防止亚稳态的产生?(2)在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间放置后,会出现什么现象?(3)下雨时,液滴落在水面上形成一个大气泡,试说明气泡的形状和理由。

(4)物理吸附与化学吸附最本质的区别是什么?(5)在一定温度、压力下,为什么物理吸附都是放热过程?答:(1)常见的亚稳态有过饱和蒸气、过热和过冷液体及过饱和溶液。

产生亚稳态的原因是新相种子难以生成。

如在蒸气冷凝、液体凝固和沸腾以及溶液结晶等过程中,由于要从无到有生成新相,因而最初生成的新相的种子是极其微小的,其比表面积和表面吉布斯函数都很大,因此新相难以生成,进而会产生过饱和蒸气、过热和过冷液体以及过饱和溶液等亚稳状态。

为了防止亚稳状态的产生可预先在系统中加入将要产生的新相的种子。

(2)若钟罩内还有该液体的蒸气存在,则长时间恒温放置会出现大液滴越来越大,小液滴越来越小的现象,最终小液滴消失,大液滴不再变化。

其原因在于,一定温度下,液滴的半径不同,其饱和蒸气压不同,液滴越小,其饱和蒸气压越大,当钟罩内气体的饱和蒸气压达到大液滴的饱和蒸气压时,对于小液滴尚未达到饱和,小液滴会继续蒸发,则蒸气会在大液滴上凝结,因而出现了上述现象。

(3)气泡的形状近似于半球状,如不考虑重力影响,则应为半球状。

雨滴落在水面上形成气泡的过程基本上是恒温恒压生成内外表面的过程,当气泡达到稳定状态时,要求其表面吉布斯函数处于最低,而相同体积的气泡则以球状表面积最小,这就是气泡为半球状的原因。

(4)物理吸附与化学吸附最本质的区别在于吸附剂与吸附质间的相互作用力不同,前者是范德华力,而后者则为化学键力。

(5)在一定温度、压力下,物理吸附过程是一个自发过程,由热力学原理可知,此过程系统的G∆<0。

同时,气体分子吸附在固体表面,由三维运动变为二维运动,系统的混乱度减小,因此过程系统S∆的<0。

《物理化学教学课件》第十章界面现象

《物理化学教学课件》第十章界面现象

界面现象的基本原理
表面张力
表面张力是物质表面分子或离子间的吸引力,使得物质表 面尽可能收缩。表面张力的大小与物质种类和温度有关。
润湿
润湿是指液体在固体表面铺展或被固体表面吸附的现象。 润湿与固体的表面能、液体的表面张力以及固体与液体之 间的相互作用力有关。
吸附
吸附是指物质在界面上的富集现象。吸附可以分为物理吸 附和化学吸附,物理吸附主要与物质在界面上的范德华力 有关,化学吸附则涉及到化学键的形成。
润湿是指液体在固体表面铺展并覆盖住表面的现象,而不润湿则是指液体不能在固体表面 铺展的现象。
润湿与不润湿产生的原因
润湿与不润湿现象的产生与液体和固体表面的分子间相互作用有关,当液体分子与固体表 面分子间的相互作用力大于液体分子间的内聚力时,就会产生润湿现象;反之则产生不润 湿现象。
润湿与不润湿的应用
能源
能源的储存与转化过程中涉及大量界面现象,如电池、燃料电池等,深入研究 界面现象有助于提高能源利用效率和降低环境污染。
环保
污水处理、大气污染控制等领域涉及大量界面现象,通过优化界面现象可实现 更高效的环保技术。
THANKS
感谢观看
毛细现象
毛细现象定义
毛细现象是指由于液体的表面张力作用,使得液体会在细管中上 升或下降的现象。
毛细现象产生的原因
由于液体的表面张力作用,使得液体会在细管中产生向上的附加压 力,从而使液体在细管中上升。
毛细现象的应用
毛细现象在自然界和日常生活中广泛存在,如植物的吸水、毛细血 管等。
润湿与不润湿
润湿与不润湿定义
04
界面现象的实验研究方法
表面张力测量方法
表面张力是液体表面所受到的垂 直于表面方向的力与表面每单位

物理化学第五版课后习题答案

物理化学第五版课后习题答案

第十章 界面现象10-1 请回答下列问题:(1) 常见的亚稳定状态有哪些为什么产生亚稳态如何防止亚稳态的产生(2) 在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间放置后,会出现什么现象(3) 下雨时,液滴落在水面上形成一个大气泡,试说明气泡的形状和理由 (4) 物理吸附与化学吸附最本质的区别是什么(5) 在一定温度、压力下,为什么物理吸附都是放热过程答: (1) 常见的亚稳态有:过饱和蒸汽、过热液体、过冷液体、过饱和溶液。

产生这些状态的原因就是新相难以生成,要想防止这些亚稳状态的产生,只需向体系中预先加入新相的种子。

(2) 一断时间后,大液滴会越来越大,小液滴会越来越小,最终大液滴将小液滴“吃掉”, 根据开尔文公式,对于半径大于零的小液滴而言,半径愈小,相对应的饱和蒸汽压愈大,反之亦然,所以当大液滴蒸发达到饱和时,小液滴仍未达到饱和,继续蒸发,所以液滴会愈来愈小,而蒸汽会在大液滴上凝结,最终出现“大的愈大,小的愈小”的情况。

(3) 气泡为半球形,因为雨滴在降落的过程中,可以看作是恒温恒压过程,为了达到稳定状态而存在,小气泡就会使表面吉布斯函数处于最低,而此时只有通过减小表面积达到,球形的表面积最小,所以最终呈现为球形。

(4) 最本质区别是分子之间的作用力不同。

物理吸附是固体表面分子与气体分子间的作用力为范德华力,而化学吸附是固体表面分子与气体分子的作用力为化学键。

(5) 由于物理吸附过程是自发进行的,所以ΔG <0,而ΔS <0,由ΔG =ΔH -T ΔS ,得 ΔH <0,即反应为放热反应。

10-2 在及下,把半径为1×10-3m 的汞滴分散成半径为1×10-9m 的汞滴,试求此过程系统表面吉布斯函数变(ΔG )为多少已知时汞的表面张力为 N ·m -1。

解: 3143r π=N×3243r π N =3132r rΔG =21A A dA γ⎰=(A 2-A 1)=4·( N 22r -21r )=4·(312r r -21r )=4××(339 (110)110--⨯⨯-10-6)=J10-3 计算时时,下列情况下弯曲液面承受的附加压力。

物理化学第-10章-界面现象分析解析

物理化学第-10章-界面现象分析解析
=2πr1 γcosα / π r12
cosα= r1 / r
p=2γ/r Laplace equation
r 越小,则ΔP越大。平面 r = ∞ ΔP=0
附加压力方向:指向凹面曲率半径中心
ΔP= 4γ /r(空气中的气泡)
例 毛细管中装有某种液体,在一端加热, 液体流动方向如何?
附加压力
p=2γ/r
h= 2γ/r1gρ = 2 cos rg
2. 微小液滴的饱和蒸汽压
恒温下, 1mol液体
P
r
P’
(液相) P
P’=P+2γ/r
(气相) 蒸气压 p
pr
气液平衡: (l) =(g) 即Gm(l) = Gm(g)
G m pl(l)Tdpl G m pg (g)Tdpg
V m (l)dplV m (g)dpgRTdlnpg
2.为防止液体过热。
由于沸石或毛细管这些多孔物质的孔中储存 有气体,加热时,这些气体成为新相种子,因而 绕过了形成极微小气泡的困难阶段,使液体的过 热的程度大大降低。
§10.3 固体表面
1、固体表面的不均匀性
固体表面不是理想的晶面,存在种种 缺陷。固体表面的不均匀性导致固体表面
处于不平衡的环境之中,表面有过剩自 由能,具有吸附外界分子的倾向。
V a kp n 0 n 1
Chapter10 界面现象
界面现象的本质
表面层分子与内部分子相比,它们所处的环境 不同。体相内部分子所受四周邻近相同分子的 作用力是对称的,各个方向的力彼此抵销.
但是处在界面层的分子,一方面受到体相内 相同物质分子的作用,另一方面受到性质不同 的另一相中物质分子的作用,其作用力未必能 相互抵销,因此,界面层会显示出一些独特的 性质。

物理化学:第十章 界面现象4

物理化学:第十章 界面现象4

Ga sg ls lg lg (cos 1) Gi sg ls lg cos Gs sg ls lg lg (cos 1)
>0,θ<180º >0,θ<90º ≥0,θ=0º
利用接触角 判断润湿
<90°, 润湿 >90°, 不润湿 =0°或不存在,完全润湿 =180°,完全不润湿
一液界面所交的角。
l-g M
l-g
M
g
s-g
A l
s
N
s-l
s-g
g
A
l
s
s-l
N
亲液性固体
憎液性固体
10
1805年,Young指出,接触角是平面固体上 液滴受三个界面张力的作用,达到平衡时形成 的 ,应有下面关系
s ls lg cos
cos
s lg
ls
这就是著名的Young方程,也称润湿方程
吸附热沿DE线上升,合 成速率沿AB上升。
速率达到最高点B后,吸 附热继续上升,由于吸附 太强,合成速率反而下降。
对应B点的是第八族第 一列铁系元素。
8
§10.4 液 - 固界面
固体表面力场不对称,存在润湿和吸附
1. 接触角与杨氏方程
将液滴(L)放在一理想平面(S)上),如果有一
相是气体,则接触角是气一液界面通过液体而与固
32
固体自溶液中的吸附
吸附量 na V ( c0 c ) m
① 自稀溶液中的吸附
一般为 I 型等温线,可用Langmuir公式描述:
na nma bc 1 bc
b :吸附系数,与溶剂、溶质的性质有关;
nma :单分子层饱和吸附量;
亦可用弗罗因德利希吸附经验式: na kcn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
(3)表面吉布斯函数:
恒温、恒压下的可逆非体积功等于系统的吉布斯函数变
W r d G T , p d A
s
即:
G A s T ,p ,N
:恒温恒压下,增加单位表面时系统所增加的Gibbs函数。
单位:J· -2。 m
三者物理意义不同,但量值和量纲等同,单位均 可化为: N· -1 m
(2) 与接触相的性质有关。 (3) 温度的影响:温度升高,界面张力下降。 极限情况:T→Tc时, →0。 T↑ 气相中分子密度↑ 液相中分子距离↑
0 1 T / Tc
n
↓ (有例外)
其中:0与n为经验常数。
11
(4)压力的影响。 a.表面分子受力不对称的程度 ↓ P↑ b.气体分子可被表面吸附,改变, ↓ c.气体分子溶于液相 一般:p↑10atm, ↓1mN/m,例: 1atm 10atm
T 一定,Va = f(p)
p 一定,Va = f(T) na 一定, p = f(T)
吸附 等温线
吸附 等压线 吸附 等量线
27
吸附等温线:
p: 达平衡时的吸附压力;p*:该温度下的吸附气体的饱和蒸气压
Ⅰ:单层吸附;
Ⅱ、Ⅲ:平附
3. 吸附经验式——弗罗因德利希公式

H2O = 72.8 mN/m H2O = 71.8 mN/m
12
§10.2 弯曲液面的附加压力及其后果 1. 弯曲液面的附加压力——Laplace方程
pg pl
一般情况下,液体表面是水平的,
水平液面下液体所受压力即为外界压力。 图中为球形液滴的某一球缺,凸液面 上方为气相,压力pg ;下方为液相,压力 pl ,底面与球形液滴相交处为一圆周。圆周 外液体对球缺表面张力 作用在圆周线上, 垂直于圆周线,而且与液滴表面相切。圆 周线上表面张力合力对凸液面下液体造成 额外压力。将凹液面一侧压力以p内表示, 凸液面一侧压力用p外表示,附加压力
h
17
当接触角0 < < 90o
r r1
cos
h
2 co s r g

90 , h 0
o
液体在毛细管中上升 液体在毛细管中下降
90 , h 0
o
18
2. 微小液滴的饱和蒸汽压-kelven公式
足够长的时间
原因:
p 小水滴 p 大水滴


饱和蒸气压p*反比于液滴的曲率半径
9
2. 热力学公式
对一般多组分体系: G
f (T , p , n B , n C )
当系统作表面功时,G 还是面积A的函数,若系统内 只有一个相界面,且两相T、p相同 ,
G f (T , p , A s , n B , n C )
d G S dT V d p

5
§10.1
界面张力
1. 液体的表面张力,表面功及表面吉布斯函数
的由来:
表面分子受力不对称
所以液体表面有自动收缩的倾向,扩展表面要作功。
6
(1) 液体的表面张力 实验:
l
若使膜维持不变,需在金属丝上加一力F,其大小与 金属丝长度 l 成正比,比例系数 。因膜有两个表面, 故有: F 2l 即: F / 2l

B

B ( )
dn
B ( )
dA
s
A G U H A s A s A s A s T , p ,n B ( ) S ,V , n B ( ) S , p ,n B ( ) T ,V , n B ( )
式中: b=k1/k-1 b:吸附系数或吸附平衡常数,与吸附剂、吸附质、T有关。 b↑,吸附能力↑ 。
又:q = V
a
V
a m
所以有: V
a
= V
a m
bp 1 + bp
直线式:
V
1
a
=
1 V
a m
+
1 V
a mb
1 p
∴以1/ Va对1/p作图,截距、斜率 Vam 和 b
32
讨论:
V
复盖率:θ=
被吸附质复盖的固体表面积 固体总的表面积
p 较低时,p↑,θ ↑; p足够高时,θ→1。 v吸附= k1(1-θ)p· N v解吸= k-1θ· N
(N:总的具有吸附能力的晶格位置数)
31
吸附平衡时:v吸附= v解吸,有:k 1(1-θ)pN=k-1θN
q = bp 1 + bp
——Langmuir吸附等温式
成a、b两部分,则 a 部分表面层中的分子对 b 部分的吸引力,一定等于
b 部分对 a 部分的吸引力,这两部分的吸引力大小相等、方向相反。这 种表面层中任意两部分间的相互吸引力,造成了液体表面收缩的趋势。
由于表面张力的存在,液体表面总是趋于尽可能缩小,微小液滴往往呈
圆球形,正是因为相同体积下球形面积最小。
23
(4) 过饱和溶液 溶液浓度已超过饱和 液体,但仍未析出晶体的 溶液称为过饱和溶液。
原因:小晶体为凸面, pr>p , 表明分子从固相中逸出的倾向大 , 这造成它的浓度大,即溶解度大, 由此产生过饱和现象。
由于小颗粒物质的表面特殊性,造成新相难以生成,
从而形成四种不稳定状态(亚稳态):
——过饱和蒸气,过热液体,过冷液体,过饱和溶液
选择性 可逆性 吸附平衡
小(近于液化热) 大(近于反应热)
无或很差 可逆 易达到 较强 不可逆 不易达到
26
2. 等温吸附
吸附量:当吸附平衡时,单位重量吸附剂吸附的吸附质 即:
n
a
=
n m
单位:molkg-1
或:
V
a
=
V m
单位: m3kg-1
V: 被吸附的气体在0 oC,101.325kPa下的体积 气体的吸附量是T,p的函数: Va = f(T,p)
14
弯曲液面附加压力Δp 与液面曲率半径之间关系的推导: 水平分力相互平衡, 垂直分力指向液体内部, 其单位周长的垂直分力为cos 球缺底面圆周长为2r1 ,得垂直分力在圆周上的合力为: F=2r1 cos 因cos = r1/ r ,球缺底面面积为 r 12 , 故弯曲液面对于单位水平面上的附加压力 整理后得:
这种在正常相平衡条件下应该凝结而未凝结的蒸气,
称为过饱和蒸气。
21
(2) 过热液体
液体内部产生气泡所需压力: pi = p大+ p静+Δp 由此所需的温度: Ti >T正常 因此很容易产生暴沸。
这种按照相平衡条件,应当沸腾而不沸腾的液体, 称为过热液体。
22
(3) 过冷液体
这种按照相平衡条件,应当凝固而未凝固的液体, 称为过冷液体。
对I类吸附等温线:
V
a
= kp
a
n
k, n 经验常数,
与吸附体系及T 有关。
直线式: lg V
lg(Va/[ V])
= n lg p + lg k
T1 <T2
斜率 n; 截距 k(p =1时的吸附量) T,k lg(p/[p])
方程的优点:(1) 形式简单、计算方便、应用广泛;
(2) 可用于气~固体及液~固界面上的单分子层吸附的计算。 (3) 对气体的吸附适用于中压范围的吸附。
分为1018个 直径:1cm 表面积:3.1416 cm2 直径:10nm 表面积:314.16 m2
界面相示意图
表面积是原来的106倍 一些多孔物质如:硅胶、活性炭等,也具有很大的比表面积。
3
物质的分散度可用比表面积as来表示,其定义为
as = As/m
单位为m2kg-1。 小颗粒的分散系统往往具有很大的比表面积,因此 由界面特殊性引起的系统特殊性十分突出。
④ Δp永远指向球心。
16
毛细现象:
当接触角θ<90o时, 液体在毛细管中上升; 当接触角θ>90o时, 液体在毛细管中下降。
当接触角θ=0时,r曲面= r毛细管= r
pg pl h pg r
p p g pl
2 r
由流体静力学有: p g
2 r g
p l gh
液体在毛细管中的上升高度为:
24
§10-3 固体表面
在固体或液体表面,某物质的浓度与体相浓度不同
的现象称为吸附。
产生吸附的原因,也是由于表面分子受力不对称。 dG = dA+Ad 被吸附的物质—— 有吸附能力的物质——
25
1. 物理吸附与化学吸附:
性质 物理吸附 化学吸附
吸附力
吸附层数
范德华力
单层或多层
化学键力
单层
吸附热
由于
2 gV = r
m
dn = 4 p r (dr )r / M
2
可导出:
R T ln
pr p
2g M = r r
——Kelvin公式
由Kelvin公式可知: 1) r 越小,pr 越大; 2) p凸> p平> p凹
20
3. 亚稳态及新相生成
(1) 过饱和蒸气
在t0温度下缓慢提高蒸 气的压力 (如在气缸内缓 慢压缩)至A点,蒸气对通 常液体已达到饱和状态p0, 但对微小液滴却未达到饱 和状态,所以蒸气在A点 不能凝结出微小液滴。要 继续提高蒸气的压力至B 点,达到小液滴的饱和蒸 气压p 时,才可能凝结出 微小液滴。
弯曲液面的附加压力
Δp = p内-p外
13
球形液滴(凸液面),附加压力为: 液体中的气泡(凹液面),附加压力:
相关文档
最新文档