集合的运算 交集并集 补集优秀课件

合集下载

集合的基本运算课件(共11张PPT)

集合的基本运算课件(共11张PPT)

解析: M={x|-1≤x≤3},M∩N={1,3},有2个.
3:(必修1第一章复习参考题B组练习1) 学校举办运动会时,高一(1)班有28名同学参 加比赛,有15人参加游泳比赛,有8人参加田径比 赛,14人参加球类比赛,同时参加游泳和田径比赛的 有3人,同时参加游泳和球类比赛的有3人,没有人 同时参加三项比赛。问同时参加田径和球类比赛的 有_____人? 解析:设同时参加田径和球 类比赛的有x人,则 9+3+3+(8-3-x)+x+(14-3-x)=28
二:以点集为背景的集合运算:
例1:(必修1习题1.1B组练习2)在平面直角坐标系中,
集合 C ( x, y ) y x表示直线 y
x, 从这个角度看,集合
2 x y 1 D ( x, y ) ,表示什么?集合C , D之间有什么关系? x 4 y 5
(1) A B A, A B B; A A B, B A B
A (CU A) , A (CU A) U
( 2) A B A A B;
A B B A B
(3)德摩根定律: CU ( A B ) (CU A) (CU B ) CU ( A B ) (CU A) (CU B )
【解题回顾】将两集合之间的关系转化为两曲线之 间的位置关系,然后用数形结合的思想求出 的范围 (准确作出集合对应的图形是解答本题的关键).
a
课堂总结:
1、集合的基本运算:
2、集合的运算性质:
3、注重数形结合思想的应用:
(1)韦恩(Venn)图 (2)连续的数集——数轴 (3)点集的运算——曲线位置关系
游泳 田径

课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版

课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版

(3)(∁SA)∪(∁SB);
6
解析:
• 【解析】(1)由并集的概念可知A∪B={1,2,3,4,5,6};

(2)借助数轴(如图)


∴M∪N={x|x<-5或x>-3}.
• 【答案】(1){1,2,3,4,5,6} (2)A
7
方法归纳:
• 并集的运算技巧: • (1)若集合中元素个数有限,则直接根据并集的定义求解,但要注意集合中元素的
互异性. • (2)若集合中元素个数无限,可借助数轴,利用数轴分析法求解,但是要注意含“=”
用实心点表示,不含“=”用空心点表示.
8
探究一 并集的运算
9
解析:
10
探究二 交集的运算
• 【例】(1)已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则A∩B=________.

(2)已知集合A={x|x≥5},集合B={x|x≤m},且A∩B={x|5≤x≤6},则实数m=
________.

11
解析:
• 【解析】(1)A={x|x=1或x=-2},B={x|x=-2或x=3},

∴A∩B={-2}.

(2)结合数轴:


由图可知m=6.
• 【答案】(1){-2} (2)6
是否存在?若存在,求出x;
∴(∁RA)∩B={x|2<x<3或7≤x<10}.
由此可得:(1)(∁SA)∩(∁SB)={x|1<x<2}∪{7}.(2)∁S(A∪B)={x|1<x<2}∪{7};
(3)(∁SA)∪(∁SB)={x|1<x<3}∪{x|5≤x≤7}={x|1<x<3,或5≤x≤7};

人教版高中数学集合的基本运算(并集与交集)(16张PPT)教育课件

人教版高中数学集合的基本运算(并集与交集)(16张PPT)教育课件

凡 事都 是多棱 镜, 不同 的角 度会
凡 事都是 多棱 镜, 不同 的角度 会看 到不 同的 结果 。若 能把一 些事 看淡 了, 就会 有个好 心境 ,若 把很 多事 看开 了 ,就会 有个 好心 情。 让聚散 离合 犹如 月缺 月圆那 样寻 常, 让得失 利弊 犹如花 开花 谢那 样自然 ,不 计较, 也不 刻意执 着;让 生命 中各 种的喜 怒哀 乐,就 像风 儿一 样,来 了, 不管是 清风 拂面 ,还是 寒风 凛冽, 都报 以自 然 的微笑 ,坦然 的接 受命 运的馈 赠, 把是非 曲折 ,都 当作是 人生 的
1.1集合
1.1.3集合的基本运算
观察集合A,B与C中元素间的关系:
A={2,3,4,5}, B={4,5,6,7}, C={2,3,4,5,6,7}
集合C就是由集合A中和集合B中的所有元素所 组成的集合.
定义
一般地,由属于集合A或属于集合B 的所有元素组成的集合叫做A与B的 并集,
记作 A∪B 读作 A并 B 即A∪B={x x∈A,或x∈B}




























































集合的基本运算(第1课时)交集与并集 课件

集合的基本运算(第1课时)交集与并集 课件
A∪B∪C=__________.
【答案】 {x|-4≤x≤3};R
题型二 并集与交集的应用 例3 已知集合A={x|x≤2},B={x|x>a}. (1)若A∩B=∅,求a的取值范围; (2)若A∪B=R,求a的取值范围; (3)若1∈A∩B,求a的取值范围.
【解析】 (1)画出如图(1)所示的数轴,知只有a≥2时,有 A∩B=∅.
例1 求下列两个集合的并集和交集. (1)A={a,b,c},B={a,c,e,f}; (2)A={x|x>-2},B={x|x≤3}; (3)A={y|y=x2-2x},B={x|y=-x2}.
【解析】 (1)A∪B={a,b,c,e,f},A∩B={a,c}. (2)把A和B表示在数轴上,如图.
要点2 交集
(1)交集的三种语言 ①文字语言:由所有 属于集合A 且 属于集合B 的元素所
组成的集合,叫做A与B的交集. ②符号语言:A∩B= {x|x∈A,且x∈B} .
③图形语言:如图中阴影部分.
(2)交集的性质: ①A∩A = A; ②A∩B = B∩A; ③A∩∅ = ∅; ④A∩B ⊆ A; ⑤A∩B ⊆ B; ⑥A⊆B⇔A∩B=A.
例2 设集合U={1,2,3,4,5},集合A={1,2,3},集合B=
{3,4,5},则A∪(B∩U)=( )
A.{1,2,3,4,5}
B.{3}
C.{1,2,4,5}
D.{1,5}
【解析】 ∵A={1,2,3},B={3,4,5}, ∴B∩U={3,4,5}.∴A∪(B∩U)={1,2,3,4,5}.
3.第三十届夏季奥林匹克运动会于2012年在伦敦举行,若集 合A={参加伦敦奥运会比赛的运动员},集合B={参加伦敦奥运 会比赛的男运动员},集合C={参加伦敦奥运会比赛的女运动 员},则下列关系正确的是( )

《集合的基本运算》(第2课时补集及应用)PPT

《集合的基本运算》(第2课时补集及应用)PPT
分析:由于U,A,B均为连续的无限集,所求问题是集合间的交集、
并集、补集运算,故考虑借助数轴求解.
解:将集合U,A,B分别表示在数轴上,如图所示,
则∁UA={x|-1≤x≤3};
∁UB={x|-5≤x<-1,或1≤x≤3};
(∁UA)∩(∁UB)={x|1≤x≤3}.
探究一
探究二
探究三
思维辨析
随堂演练
∴A∩B={x|-1<x<2},∁UB={x|x≤-1,或x>3}.
又 P= ≤ 0,或 ≥
5
2
,
5
∴(∁UB)∪P= ≤ 0,或 ≥ 2 .
5
又∁UP= 0 < < 2 ,∴(A∩B)∩(∁UP)={x|-1<x<2}∩ 0 < <
5
={x|0<x<2}.
2
解:(1)∵B∩(∁UA)={2},∴2∈B,但2∉A.
∵A∩(∁UB)={4},∴4∈A,但4∉B.
8
= 7,
2
4 + 4 + 12 = 0,
∴ 2
解得
12
2 -2 + = 0,
=- 7 .
8 12
∴a,b 的值分别为7,- 7 .
探究一
探究二
探究三
思维辨析
随堂演练
集合中的新定义问题
)
A.{1,3,5,6} B.{2,3,7}
C.{2,4,7}
D.{2,5,7}
(2)已知全集U为R,集合A={x|x<1,或x≥5},则∁UA=
.
解析:(1)由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁UA={2,4,7}.故选C.

1.1.3集合的基本运算(并集与交集)PPT演示课件

1.1.3集合的基本运算(并集与交集)PPT演示课件
则A∩B= {等腰直角三角形}
例2 设A={x x是锐角三角形}, B={x x是钝角三角形},
则A∩B= Φ
A∪B= {斜三角形}
例3 设A={x x>-2},B={x x<3}, 求A∩B, A∪B.
1.2004年甘肃卷
感受高考
已知集合 M={0,1,2},
N={x︱x=2a,a∈M}
则集合M∩ N = ( D )
A
B
A∩B
1.设A= {x∣ x<5},B= {x∣x≥0},求A∩B
例3.灵溪二高开运动会,设 A={x|x是灵溪二高高一年级参加百米赛 跑的同学} B={x|x是灵溪二高高一年级参加跳高比 赛的同学},求A∩B
例4.设平面内直线l1上的点的集合为L1, 直线上l2的点的集合为L2,试用集合的运 算表示l1,l2的位置关系.
性质
⑴ A∩A = A A∩φ = φ A∩B =B∩A
⑵ A∪A = A A∪φ = A A∪B = B∪A
⑶ A∩B A A∩B B
⑷ A A∪B B A∪B
⑸ 若A∩B=A,则A B.
反之,亦然.
⑹ 若A∪B=A,则A B.
反之,亦然.
例题讲解
例1 设A={x x是等腰三角形}, B={x x是直角三角形},
例2.设集合A={x|-1<x<2}, 集合B={x|1<x<3},求A∪B.
观察集合A,B,C元素间的关系:
A={4,5,6,8}, B={3,5,7,8}, C={5,8}
定义
一般地,由既属于集合A又属于集合 B的所有元素组成的集合叫做A与 B的交集.
记作 A∩B 读作 A交 B
即 A∩B={x x∈A,且x∈B}
且A∩B=C 求x,y的值及A∪B.

集合的运算交集并集补集 ppt课件

集合的运算交集并集补集 ppt课件
集合的运算交集并集补集
【新知识】
集合的运算交集并集补集
做图表示实例中的并集
A三好 B优干
王莉 李红 张雪 王明 周涛
集合的运算交集并集补集
【知识巩固】
AB
x -3 -2 -1 0 1 2 3 4 5 6 7
集合的运算交集并集补集
【新知识】 由并集的定义可知,对任意的两个集合A、B,有
集合的运算交集并集补集
集合的运算交集并集补集
做图表示【实例】中的交集
A舞蹈
B合唱
王莉 李红 周梅 张雪 王明 周涛 李璐
集合的运算交集并集补集
【想一想】 集合A与集合B的交集能否为空集? 能否为集合A或者集合B?
A
B
B AA B
集合的运算交集并集补集
、 【知识巩固】
集合的运算交集并集补集
集合的运算交集并集补集
A
【练习】1.3.2
集合的运算交集并集补集
1.3.3 补集
【实例】某学习小组学生的集合为U={王明,曹勇,王 亮,李冰,张军,赵云,冯佳,赵秀芹,钱忠良,何晓 慧},其中在学校技能大赛获得过金奖的学生集合为 A={王明,曹勇,王亮,李冰,张军} 没有获得金奖的学生是: 赵云,冯佳,赵秀芹,钱忠良,何晓慧。
B
x -3 -2 -1 0 1 2 3 4 5 6 7
集合的运算交集并集补集
【新知识】
由交集的定义可知,对任意的两个集合A、B,有
集合的运算交集并集补集
【练习】1.3.1
集合的运算得三好学生表彰的集合为A={王莉,李红,张 雪},获得优秀学生干部表彰的学生的集合为B={王明,周涛,张雪}。 老师请所有获得表彰的同学上台领奖 我们可以看到,上台的同学有:王莉、李红、张雪、王明、周涛。

交集与并集(课件)

交集与并集(课件)
12
练习
4、设集合A={7,a},B={-1},A∩B=B,则a=( -1 ) 5、已知A={x|x≤4}, B={x|x>a},若A∪B=R,求实数a的 取值范围.
6、已知集合A={x |-2≤x≤4},
B={x |2a-1<x<a+1}
①若A∩B=B,求实数a的取值范围;
②若A∪B=B,求实数a的取值范围.
x ∈ A ,或 符号 A∪B={x|_____ x∈B} A∩B={x|x∈A,且___ 语言 x∈B} 图形 语言
14
归纳
2.并集和交集的性质
并集
(1) A B B A
性质
交集
(1) A B B A ( 2) A A A (3) A
( 2) A A A (3) A
解:A B {4,5,6,8} {3,5,7,8,9 } {5,8}
例4 设A={x\-1< x < 2},B={x\1< x<3}, 求A∪B , A∩B. 解: A∪B={x\ -1< x < 2}∪{x\ 1< x<3} ={x \ -1< x<3} A ∩ B={x |-1< x < 2} ∩{x\ 1< x<3} ={x \ 1< x<2}
20
注意
A={1,4},B={x|(x-3)(x-a)=0}求A∪B.
[解析] 当a=3时,B={3},A∪B={1,3,4}
当a=1时,B={1,3},A∪B={1,3,4} 当a=4时,B={1,4},A∪B={1,3,4} 当a≠1,3,4时,B={3,a},A∪B={1,3,4,a} 综上当a=1或3或4时,A∪B={1,3,4} 当a≠1,3,4时,A∪B={1,3,4,a}.

人教版高中数学必修一集合的基本运算并集与交集课件

人教版高中数学必修一集合的基本运算并集与交集课件
人教版高中数学必修一1.1.3集合的基 本运算 (并集 与交集) 课件( 16张PP T)
人教版高中数学必修一1.1.3集合的基 本运算 (并集 与交集) 课件( 16张PP T)
作业布置
教材P12 A组T6,7,
人教版高中数学必修一1.1.3集合的基 本运算 (并集 与交集) 课件( 16张PP T)
数}.求 A B, A B.
交集,找公共元素
解: A={x|x是不大于10的正奇数}={1,3,5,7,9}, B={x|x是12的正约数}={1,2,3,4,6,12},
A B {1,3}, A B {1, 2,3, 4,5,6,7,9,12}.
并集,找所有元素
人教版高中数学必修一1.1.3集合的基 本运算 (并集 与交集) 课件( 16张PP T)
人教版高中数学必修一1.1.3集合的基 本运算 (并集 与交集) 课件( 16张PP T)
2.设A={x︱x2-16=0}, B={x︱x3+64=0}, 则A∩B=_{__4_} ; A∪B=_{__4,_4_}_.
3.设A={x︱-1≤x<2},B={x︱-1<x<3},求A∩B,A∪B.
解: A∩B ={x|-1<x<2}; A∪B={x|-1≤x<3} .
人教版高中数学必修一1.1.3集合的基 本运算 (并集 与交集) 课件( 16张PP T)
例2设集合A={x |-1<x<2}, 集合B={x | 1<x<3},
求A∪B.
-1
123 x
人教版高中数学必修一1.1.3集合的基 本运算 (并集 与交集) 课件( 16张PP T)
人教版高中数学必修一1.1.3集合的基 本运算 (并集 与交集) 课件( 16张PP T)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高教社
动脑思考 探索新知
全集
如果一个集合含有我们所研究的各个集合的全部元素, 在研究过程中,可以将这个集合叫做全集,一般用U来表示, 所研究的各个集合都是这个集合的子集.
问题1中小区所有150户居民和问题2中学习小组的所有10名学生 就是所研究问题的全集 .
在研究数集时,常把实数集R作为全集.
高教社
高教社
阅读 教材章节1.3 书写 学习与训练 1.3训练题 实践 了解全集和补集的生活应用
Байду номын сангаас教社
2.设U | 0 180 , A | 0 90 , B | 90 180 ,
求 U A, U B , U A U B , U A U B .
高教社
归纳小结 强化思想
集合运算
运算特点
概念记法
高教社
综合应用
自我反思 目标检测
学习方法
学习行为
学习效果
高教社
作 业

UU =

U =

U ( U A )=

高教社
运用知识 强化练习
教材练习 1.3.3
1.设U 小于10的正整数 , A 1,4,7 ,求 U A .
2.设U = R , A x | 2 x 4 ,求 A .
高教社
理论升华 整体建构
集合 运算
什么是集合的交运算?如何用符号表示?如何用图形表示? 什么是集合的并运算?如何用符号表示?如何用图形表示? 什么是集合的补运算?如何用符号表示?如何用图形表示?
高教社
.
1
7
43
58
A
B
02 6 9 U
巩固知识 典型例题
例 4 设全集 U =R,集合 A={x|x≤2},B={x|x>-4},
求 UA , UB, A B, A B.
在理解集合运算的含义基础上,充分运用数轴的表示来
.
进行求解.
高教社
作图解决
运用知识 强化练习
完成练习
1.设U 1,2,3,4,5,6,7,8 , A 2,4,6 , B 3,4,5 , 求 A B , A B , U A , U B , U A U B , U A U B .
高教社
创设情景 兴趣导入
问题1 某小区共有150户居民,其中有110户订阅了报纸,问该 小区内有多少户居民没有订阅报纸?
问题2 某学习小组学生的集合为U={王明,曹勇,王亮,李冰, 张军,赵云,冯佳,薛香芹,钱忠良,何晓慧},其中在 学校应用文写作比赛与技能大赛中获得过金奖的学生集合 为P={王明,曹勇,王亮,李冰,张军},没有获得金奖的 学生有哪些?
动脑思考 探索新知
补集
如果集合A是全集U子集,那么,由U中不属于A的所有元 素组成的集合叫做集合A在全集U中的补集.
U A xx U 且 x A
.
高教社
演示说明
巩固知识 典型例题
例 1 设U 0,1, 2,3, 4,5,6,7,8,9 , A 1,3, 4,5 , B 3,5,7,8 .
集合的运算 交集并集 补集优秀 课件
高教社
复习知识 揭示课题
1 交集和并集的概念是什么?(含义和符号 ) 2 集合交运算和并运算各自的特点是什么? 3 用列举法和描述法表示的集合在运算时需要注意什么?
高教社
复习知识 揭示课题
完成练习 1.A={-1,0,1,2}, B={0,2,4,6},求A∩B , A∪B. 2. A={x|-2<x ≤ 2},B ={x|0 ≤ x≤4},求A∩B , A∪B.
运用
在进行集合的交运算、并运算和补运算时各自的特点是什么? .
.
用列举法和描述法表示集合时运算需要注意的问题是什么? .
交集
并集
补集
高教社
巩固知识 典型例题
例 3 设全集U 0,1,2,3,4,5,6,7,8,9 ,集合 A 1,3, 4,5 ,
B 3,5,7,8 .求 U A , U B , U A U B , U A U B , U A B , U A B .
求 UA及 UB.
高教社
02
.
67
89
A 13
45
U
01 2 B
46 3 5 78
9
U
巩固知识 典型例题
例 2 设 U=R, A x | 1 x 2 ,求 A .
通过观察数轴得到所求集合的补集,注意端点的处理. 演示说明
高教社
创 新培养 自我归纳
对于非空集合 A:
A∩( U A )=

A∪( U A )=
相关文档
最新文档