大学物理练习答案(上册)施建青
大学物理课后习题答案(上册)
由受力分析图可知:
所以当所以 增大,小球对木板的压力为N2将减小;
同时:
所以 增大,小球对墙壁的压力 也减小。
2-2. 质量分别为m1和m2的两滑块A和B通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度aA和aB分别为多少?
解:(1)轨道方程为
这是一条空间螺旋线。
在O 平面上的投影为圆心在原点,半径为R的圆,螺距为h
(2)
(3)
思考题1
1-1. 质点作曲线运动,其瞬时速度为 ,瞬时速率为 ,平均速度为 ,平均速率为 ,则它们之间的下列四种关系中哪一种是正确的?
(1) ;(2) ;(3) ;(4)
答: (3)
1-2. 质点的 关系如图,图中 , , 三条线表示三个速度不同的运动.问它们属于什么类型的运动?哪一个速度大?哪一个速度小?
解:在绳子中距离转轴为r处取一小段绳子,假设其质量为dm,可知: ,分析这dm的绳子的受力情况,因为它做的是圆周运动,所以我们可列出: 。
距转轴为r处绳中的张力T(r)将提供的是r以外的绳子转动的向心力,所以两边积分:
2-3. 已知一质量为 的质点在 轴上运动,质点只受到指向原点的引力作用,引力大小与质点离原点的距离 的平方成反比,即 , 是比例常数.设质点在 时的速度为零,求质点在 处的速度的大小。
解:由题意和牛顿第二定律可得:
再采取分离变量法可得: ,
两边同时取积分,则:
所以:
2-4. 一质量为 的质点,在 平面上运动,受到外力 (SI)的作用, 时,它的初速度为 (SI),求 时质点的速度及受到的法向力 .
大学物理上册习题答案
大学物理上册习题答案大学物理上册习题答案大学物理是一门重要的基础课程,涵盖了广泛的知识领域,从力学到热学,从电磁学到光学。
学生们通过学习这门课程,可以掌握自然界中的物质和运动规律,培养逻辑思维和问题解决能力。
然而,对于初学者来说,物理习题往往是一个难题。
因此,在这篇文章中,我将给出一些大学物理上册习题的答案,希望能够帮助学生们更好地理解和掌握物理知识。
1. 问题:一个质点以初速度v0匀速沿水平方向运动,经过一段时间t后,它的速度变为v。
求加速度a。
答案:根据匀加速直线运动的公式v = v0 + at,将题目中的数据代入,得到v = v0 + at。
解方程得到a = (v - v0) / t。
2. 问题:一个质点以初速度v0匀速沿水平方向运动,经过一段时间t后,它的位移变为s。
求加速度a。
答案:根据匀加速直线运动的公式s = v0t + (1/2)at^2,将题目中的数据代入,得到s = v0t + (1/2)at^2。
解方程得到a = 2(s - v0t) / t^2。
3. 问题:一个质点以初速度v0匀速沿斜面下滑,经过一段时间t后,它的速度变为v。
求加速度a。
答案:根据斜面下滑运动的公式v = v0 + gt,将题目中的数据代入,得到v = v0 + gt。
解方程得到a = (v - v0) / t。
4. 问题:一个质点以初速度v0自由落体运动,经过一段时间t后,它的位移变为s。
求加速度a。
答案:根据自由落体运动的公式s = v0t + (1/2)gt^2,将题目中的数据代入,得到s = v0t + (1/2)gt^2。
解方程得到a = 2(s - v0t) / t^2。
5. 问题:一个质点以初速度v0匀速沿水平方向运动,经过一段时间t后,它的速度变为v。
如果加速度为a,求位移s。
答案:根据匀加速直线运动的公式v = v0 + at,将题目中的数据代入,得到v = v0 + at。
解方程得到s = v0t + (1/2)at^2。
(完整版)大学物理练习题答案(上下)施建青
大学物理(上册)练习解答练习1 在笛卡尔坐标系中描述质点的运动1-1 (1)D ;(2)D ;(3)B ;(4)C 1-2 (1)8 m ;10 m ;(2)x = (y -3)2;(3)10 m/s 2,-15 m/s 2 1-3 解:(1)2192x y =-(2)24t =-v i j 4=-a j(3)垂直时,则0=r v22(192)(24)0t t t ⎡⎤+--=⎣⎦i j i j0t =s ,3s t =-(舍去)1-4 解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v1-5 解: yt y y t a d d d d d d d d v v v v === 又-=a ky ,所以-k =y v d v / d yd d ky y -=⎰⎰v v221122ky C -=+v 已知=y y 0 ,=v v 0 则20202121ky C --=v)(220202y y k -+=v v 1-6 证:2d d d d d d d d v xv v t x x v t v K -==⋅= d v /v =-K d x⎰⎰-=x x K 0d d 10v v vv , Kx -=0ln v v v =v 0e-Kx练习2 在自然坐标系中描述质点的运动、相对运动2-1 (1)C ;(2)A ;(3)B ;(4)D ;(5)E2-2(1)g sin θ ,g cos θ ;(2)g /cos 0220θv ;(3)-c ,(b -ct )2/R ;(4)69.8 m/s ;(5)331ct ,2ct ,c 2t 4/R 2-3 解:(1)物体的总加速度a 为t n =+a a a()22t t a R Rt a a a a an t t t n t ===ααot a Rt tc =(2)αot R t a S t c 21212==2-4解:质点的运动方程可写成 S = bt , 式中b 为待定常量。
大学物理学上册习题解答完整版
大学物理学上册习题解答HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1)位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等(2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么(4)质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) (6)r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt=各代表什么运动? (7)设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a = 你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9)(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
《大学物理学》第二版上册习题解答
大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt =各代表什么运动?(6) 设质点的运动方程为:()x xt =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt =及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为:(2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dx v t tdt ==-s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆(3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt -===-。
大学物理习题集(上-含解答)
大学物理习题集(上册,含解答)第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自v 图1.7由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?AB AB vv + uv - uABvuuvv[解答]雨对地的速度2v r 等于雨对车的速度3v r 加车对地的速度1v r,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v r 运动,0v r 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F r拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力? [解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N), 这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m g a m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a r 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角;(4)用与斜面平行的加速度1b r把小车沿斜面往上推(设b 1 = b );(5)以同样大小的加速度2b r(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+, 因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosg R θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=-r r r 得:21p p p =+∆r r r,由此可作矢量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆== 24.4(m·s -1). 棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s r的大小为 d s = R d θ.重力G r的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+πr rsin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f r的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πr rcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G r 、摩擦力f r 和马的拉力F r 就是平衡力,即0F G f ++=rr r ,或者()F G f =-+r r r . 拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅r r r rr r 12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)22k mgR μ=-+.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理课后答案总1
大学物理课后答案(上)习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2 ,瞬时加速度2/2s m a ,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R 2,2 (B) tR2,0 (C) 0,0 (D) 0,2tR[答案:B]1.2填空题(1) 一质点,以1 s m 的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V和3V 的关系是 。
[答案: 0321 V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t -3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
大学物理(上)练习题解答
大学物理(上)练习题参考解答第一章 质点的运动1.解:平均速率 Sv t∆=∆,平均速度的大小 r rv t t ∆∆==∆∆S r ∆≠∆ ,v v ∴≠速率 0limt S v t∆→∆=∆,速度的大小 0limt r v t∆→∆=∆当0t ∆→时,r S ∆=∆故(B )正确。
2.解:位移大小 (4)(0)8x x x m ∆=-= 令速度 20dx v b t dt==-=,得3t s =,即在3t s =前后,速度方向逆转,所以,路程(4)(3)(3)(0)10S x x x x m ∆=-+-= 3.解:(1)(2)(1)0.5/21x x v m s -==--(2)296dx v t t dt==-,(2)6/v m s ∴=-(3)令0v =,得0t =或1.5s(1.5)(1)(2)(1.5) 2.25S x x x x m =-+-=4.解:由相似三角形的性质得:21M Mh x x h x -=即 112M h x x h h =-两边对时间求导,得 112M h v v h h =-5.解:(1)t dv a a dt =≠, (2)dr dr dr v dtdtdt=≠=,(3)ds v dt= 正确, (4)t dv a a dt=≠。
6.解:(A )错,因为切向加速度t dv a dt=,速率可能不变,如匀速率圆周运动,切向加速度为零。
(B )2n va ρ=,除拐点外,ρ为有限值,0n a ∴≠,故(B )正确。
(C )n a 反应速度方向变化的快慢,只要速度方向有变化,n a 就不为零。
(D )0t dv a dt== ,0n a a ∴=≠。
(E )dv a dt==恒矢量,质点作匀变速度运动,而非匀变速率运动,如抛体运动。
7.解:2ds ct dt=,2Stds ct dt ∴=⎰⎰,即 31()3s t ct =2t dv a ct dt==,224n vc t a RR==第二章 牛顿运动定律1.解:(1)v kx = ,2dv a kv k x dt∴===,故 2F Ma Mk x == (2)由 dx v kx dt==,得1x txdx kdt x∆=⎰⎰,故 101lnx t kx ∆=2.解:(1)子弹进入沙土后,受的力 F kv =-,由牛顿定律得 dv kv mdt -=分离变量并作积分 0t vvk dv dt mv-=⎰⎰,得/0kt mv v e-=(2)dv dv dx dv kv mm mv dtdx dtdx-===分离变量后作积分m axx vkdx m dv-=⎰⎰,得 0max mv x k=3.解:2p mvj mvj mvj ∆=--=-,应选(D )。
大学物理第一学期练习册答案
练习一 质点运动学一、选择题1.【 A 】2. 【 D 】3. 【 D 】4.【 C 】 二、填空题1. (1) 物体的速度与时间的函数关系为cos dyv A t dt ωω==; (2) 物体的速度与坐标的函数关系为222()vy A ω+=.2. 走过的路程是m 34π; 这段时间平均速度大小为:s /m 40033π;方向是与X 正方向夹角3πα=3.在第3秒至第6秒间速度与加速度同方向。
4.则其速度与时间的关系v=32031Ct dt Ct v v t==-⎰, 运动方程为x=400121Ct t v x x +=-. 三、计算题1. 已知一质点的运动方程为t ,r ,j )t 2(i t 2r 2-+=分别以m 和s 为单位,求:(1) 质点的轨迹方程,并作图;(2) t=0s 和t=2s 时刻的位置矢量;(3) t=0s 到t=2s 质点的位移?v ,?r ==∆✉ (1)轨迹方程:08y 4x 2=-+; (2) j 2r 0=,j 2i 4r 2-=(3) j 4i 4r r r 02-=-=∆,j 2i 2tr v -==∆∆ 2. 湖中一小船,岸边有人用绳子跨过高出水面h 的滑轮拉船,如图5所示。
如用速度V 0收绳,计算船行至离岸边x 处时的速度和加速度。
✉ 选取如图5所示的坐标,任一时刻小船满足:222h x l +=,两边对时间微分 dt dx x dt dl l=,dt dl V 0-=,dtdx V = 022V xh x V +-=方向沿着X 轴的负方向。
方程两边对时间微分:xa V V 220+=,xV V a 220-=5图3220xh V a -=,方向沿着X 轴的负方向。
3. 质点沿X 轴运动,其加速度和位置的关系是)SI (x 62a 2+=。
如质点在x=0处的速度为1s m 10-⋅,求质点在任意坐标x 处的速度。
✉ 由速度和加速度的关系式:dt dv a =,dxdvv dt dx dx dv a ==vdv adx =,vdv dx )x 62(2=+,两边积分,并利用初始条件:0x =,10s m 10v -⋅=vdv dx )x 62(v102x⎰⎰=+,得到质点在任意坐标x 处的速度:25x x 2v 3++=练习二 曲线运动和相对运动一、 选择题1. 【 B 】2.【 D 】3. 【 C 】4.【 B 】 二、填空题其速度j t 5c o s 50i t 5sin 50v+-=;其切向加速度0a =τ;该质点运动轨迹是100y x 22=+。
大学物理练习答案(上册)施建青
大学物理1 在笛卡尔坐标系中描述质点的运动1-1 (1)D ;(2)D ;(3)B ;(4)C1-2 (1)8 m ;10 m ;(2)x = (y -3)2;(3)10 m/s 2,-15 m/s 21-3 解:(1)2192x y =-(2)24t =-v i j 4=-a j(3)垂直时,则0=r v22(192)(24)0t t t ⎡⎤+--=⎣⎦i j i j0t =s ,3s t =-(舍去)1-4 解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213x x +=v1-5 解: yt y y t a d d d d d d d d vv v v === 又-=a ky ,所以-k =y v d v / d yd d ky y -=⎰⎰v v221122ky C -=+v 已知=y y 0 ,=v v 0 则20202121ky C --=v)(220202y y k -+=v v 1-6 证:2d d d d d d d d v xv v t x x v t v K -==⋅= d v /v =-K d x⎰⎰-=x x K 0d d 10v v vv , Kx -=0ln v v v =v 0e -Kx练习2 在自然坐标系中描述质点的运动、相对运动2-1 (1)C ;(2)A ;(3)B ;(4)D ;(5)E2-2(1)g sin θ ,g cos θ ;(2)g /cos 0220θv ;(3)-c ,(b -ct )2/R ;(4)69.8 m/s ;(5)331ct ,2ct ,c 2t 4/R2-3 解:(1)物体的总加速度a 为t n =+a a a()22t t a R Rt a a a a an t t t n t ===ααot a Rt tc =(2)αot R t a S t c 21212==2-4解:质点的运动方程可写成 S = bt , 式中b 为待定常量。
大学物理上册课后练习答案解析
初速度大小为dt1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。
现测得其加速度 a = A-B V ,式中A 、1-1 已知质点的运动方程为:x 10t30t 2 ,y 15t 20t 2。
式中x 、y 的单位为m , t 的单位为s 。
试求: (1)初速度的大小和方向;(2)加速度的大小和方向。
分析由运动方程的分量式可分别求出速度、 加速度 分析本题亦属于运动学第二类问题,与上题不同之 处在于加速度是速度 V 的函数,因此 需将式d V = a (V )d t 分离变量为-d ^ dt 后再两边积分.a(v)的分量 再由运动合成算出速度和加速度的大小和方向. 解选取石子下落方向为y 轴正向,下落起点为坐标原点.vdv dv v 0A Bv(3)船在行驶距离 x 时的速率为v=v 0e kx 。
一 dv[证明](1)分离变数得 — kdt ,v第一章质点的运动B 为正恒量,求石子下落的速度和运动方程。
解(1)速度的分量式为Vv y当 t = 0 时,V o x = -10 m sdx10 60tdt dy15 40t dt-1, V o y = 15 m-1(1)由题dvadt 用分离变量法把式 A Bv(1)改写为dvA Bv将式(2)两边积分并考虑初始条件,有(1)dt ⑵V 0 V 0x V 0y 18.0m得石子速度 V -(1 e Bt)B 设V o 与x 轴的夹角为a 则tanV 0y V ox由此可知当,t is 时,v A为一常量,通常称为极限速度Ba= 123 °1(2)加速度的分量式为a x dV x dt 60a ydV y dt40或收尾速度.(2)再由v—y —(1 e 氏)并考虑初始条件有dt BytABtdy -(1 e )dt 0 0 BA A得石子运动方程y t 2 (e Bt 1)B B 2则加速度的大小为 a .. a x 2a y 272.1 ms 2a y2 设a 与x 轴的夹角为B,则tan B -a x3B= -33 °1 '(或326 °9 )1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于 阻力得到一个与速度反向、 大小与船速平方成正比例的加 速度,即a = - kv 2, k 为常数。
大学物理课后答案总1
大学物理课后答案〔上〕习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr(B)dt r d(C)dtr d ||(D)22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,那么一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2 (B)tRπ2,0 (C)0,0 (D)0,2tRπ[答案:B]1.2填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,那么该质点在5s ,位移的大小是;经过的路程是。
[答案:10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,那么当t 为3s 时,质点的速度v=。
[答案:23m·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,那么1V 、2V和3V 的关系是。
[答案:0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动? 〔1〕x=4t -3;〔2〕x=-4t 3+3t 2+6;〔3〕x=-2t 2+8t+4;〔4〕x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
大学物理练习题上册答案
第一章1、D2、D3、B4、8m ,10m5、23m/s6、4.8m/s 2,3.15rad 7、r,r ∆8、解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=,有速度:sin Rcos v R t i t j ωωωω=-+ 速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=9、解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+ 消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)由d rv dt=,有速度:82v t i j =+ 从0=t 到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。
10、解:(1)由d r v dt =,有:22v t i j =+,d va dt=,有:2a i =; (2)有速率:12222[(2)2]21v t t =+=+∴t dv a dt =221t t =+,利用222t n a a a =+有: 22221n t a a a t =-=+。
11、解: 由于是一维运动,所以,由题意:kv dtdv-=, 分离变量并积分有:001vt v dv kdt v =-⎰⎰ ,得:tk e v v -=0 又∵tk e v dtdx -=0, 积分有:dt e v dx t k t x -⎰⎰=000 ∴ )1(0tk e kv x --=第二章1、D2、B3、l/cos 2θ4、解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律tmK d d vv =- ∴ ⎰⎰=-=-v v v v vv 0d d ,d d 0t t m K t m K∴ m Kt /0e -=v v(2) 求最大深度 解法一:txd d =vt x m Kt d e d /0-=vt x m Kt txd e d /000-⎰⎰=v∴ )e 1()/(/0m Kt K m x --=vK m x /0max v = 解法二: xm t x x m t m K d d )d d )(d d (d d vv v v v ===-∴ v d Kmdx -=v v d d 000m a x ⎰⎰-=K mx x∴ K m x /0max v =5、解:根据牛顿第二定律x m t x x m t m xk f d d d d d d d d 2vv v v =⋅==-= ∴ ⎰⎰-=-=4/202d d ,d d A A x mxkmx x k v v v v v k mAA A m k 3)14(212=-=v ∴ )/(6mA k =v 6、解:由于是在平面运动,所以考虑矢量。
大学物理教程-(上)课后习题-标准答案
大学物理教程-(上)课后习题-标准答案大学物理教程-(上)课后习题-答案————————————————————————————————作者:————————————————————————————————日期:物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1)质点的运动轨迹;(2)从1t s =到2t s =质点的位移的大小;(3) 2t s =时,质点的速度和加速度。
解:(1)由运动方程消去时间t 可得轨迹方程,将t x =代入,有2(1)y x =-或 1y x =-(2)将1t s =和2t s =代入,有11r i =u r r , 241r i j =+u r r r213r r r i j =-=-r u r u r r r V位移的大小223110r m =+=r V (3) 2x dxv t dt== 2(1)y dyv t dt ==- 22(1)v ti t j =+-r r r2xx dv a dt==, 2y y dv a dt == 22a i j =+r r r当2t s =时,速度和加速度分别为42/v i j m s =+r r r22a i j =+r r rm/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+r r r,式中的R 、ω均为常量。
求(1)质点的速度;(2)速率的变化率。
解(1)质点的速度为sin cos d r v R ti R t j dtωωωω==-+r r r r(2)质点的速率为22x y v v v R ω=+=速率的变化率为0dvdt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。
求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故人跳的水平距离增加量为
4-5解:(1)以炮弹与炮车为系统,以地面为参考系,水平方向动量守恒.设炮车相对于地面的速率为Vx,则有
即炮车向后退。
(2)以u(t)表示发炮过程中任一时刻炮弹相对于炮身的速度,则该瞬时炮车的速度应为
通过积分,可求炮车后退的距离
即向后退。
练习5 机械能守恒定律
得氧气密度
kg/m3
(3)氧分子的质量
kg
(4)将分子视为刚性小球,则第一个分子所占体积为 ,可得分子间的平均距离
(5)分子的平均平动动能
12-5解:(1)由 , 得
kg/mol
(2) m/s
(3)
(4)单位体积内气体分子的总平动动能 ,
J/m3
(5)由于 ,气体的内能为
练习13 分布函数、气体分布定律
8-4解:(1)选择A、B两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒。
IAA+IBB=(IA+IB)
又B=0,可得
IAA/ (IA+IB) = 20.9 rad / s
转速
200 rev/min
(2)A轮受的冲量矩
=IA(IA+IB)=4.19×102N·m·s
负号表示与 方向相反。
B轮受的冲量矩
(2)由于在运动过程中无外力矩作用,故系统的动量矩守恒。有
2(I0+ )n1= 2(I0+ )n2
(3)将I0代入W式,得
练习9 狭义相对论的基本原理、洛仑兹坐标和速度变换
9-1(1)C;(2)A
9-2(1)相对的,运动;(2)8.89×10-8;(3)c;(4)
9-3解:设K'相对于K运动的速度为v沿x(x)轴方向,则根据洛仑兹变换公式,有
s
则子的平均飞行距离
9.46 km。
子的飞行距离大于高度,所以有可能到达地面。
练习11 相对论动力学基础
11-1(1)C;(2)A;(3)A;(4)D
11-2(1)0.25mec2;(2) , , ;(3) , ;(4) ;(5) ,
11-3解:按题意,
,
,
动能
,即
11-4解:设实验室为K系,观察者在K′系中,电子为运动物体,则K′对K系的速度为u= 0.6c,电子对K系速度为vx= 0.8c。电子对K′系的速度
。
练习14 热力学第一定律及其应用
14-1(1)D;(2)C;(3)C;(4)B
设质量为m的砂子在t时间内平均受力为 ,则
由上式即可得到砂子所受平均力的方向,设力与x轴的夹角为 ,则
1(4/3)=53°
力方向斜向上。
4-4解:人到达最高点时,只有水平方向速度v=v0cos,此人于最高点向后抛出物体m。设抛出后人的速度为v1,取人和物体为一系统,则该系统水平方向的动量守恒。即
由于抛出物体而引起人在水平方向的速度增量为
所以
(2)当有横向运动趋势时,轮胎与地面间有摩擦力,最大值为N′,这里N′为该时刻地面对车的支持力。由牛顿定律
所以
将 代入得
3-4解:(1)设同步卫星距地面的高度为h,距地心的距离rR+h。由
①
又由 得 ,代入①式得
②
同步卫星的角速度 rad/s,解得
m, km
(2)由题设可知卫星角速度的误差限度为
a=rβ①
x2g-T2=x2a②
T1-x1g=x1a③
(T1-T2)r=( M+r)r2β④
解上述方程,利用l=r+x1+x2,并取x2-x1=S,可得
7-4解:根据牛顿运动定律和转动定律列方程
对物体:mg-T=ma①
对滑轮:TR=I②
又
a=R③
将①、②、③式联立得
a=mg/ (m+ M)
由于v0=0,所以
(2)
2-4解:质点的运动方程可写成S=bt,式中b为待定常量。由此可求得
,
由此可知,质点作匀速率曲线运动,加速度就等于法向加速度。又由于质点自外向内运动,越来越小,而b为常数,所以该质点加速度的大小是越来越大。
2-5解:设下标A指飞机,F指空气,E指地面,由题可知:
vFE=60 km/h正西方向
vAF=180 km/h方向未知
R=0.3 m分
6-5解:A对B所在点的角动量守恒.设粒子A到达距B最短距离为d时的速度为v。
,
A、B系统机械能守恒(A在很远处时,引力势能为零)
6-6解:(1)爆炸过程中,以及爆炸前后,卫星对地心的角动量始终守恒,故应有
①
其中r'是新轨道最低点或最高点处距地心的距离, 则是在相应位置的速度,此时 。
=IIB(-0)=4.19×102N·m·s
方向与 相同。
8-5解:碰撞前瞬时,杆对O点的角动量为
式中为杆的线密度。碰撞后瞬时,杆对O点的角动量为
因碰撞前后角动量守恒,所以
= 6v0/ (7L)
8-5解:(1)将转台、砝码、人看作一个系统。在运动过程中,人作的功W等于系统动能之增量
W=Ek=
这里的I0是没有砝码时系统的转动惯量。
则B中观察者测得A中米尺的长度是
上式中令l0= 1 m可得米尺长度(以米为单位)。
10-5解:按地球的钟,导弹发射的时间是在火箭发射后
s
这段时间火箭在地面上飞行距离
则导弹飞到地球的时间是
s
那么从火箭发射后到导弹到达地面的时间是
t=t1+t2=12.5+25 =37.5 s
10-6解:考虑相对论效应,以地球为参照系,子的平均寿命为
a=R④
由①、②、③、④四式联立解得
a=2g / 7
练习8 刚体定轴转动的角动量定理和角动量守恒定律
8-1(1)C;(2)D;(3)B
8-2
8-3解:由动量定理,对木块M:-ft=M(v2-v1)
对于圆柱体:ftR=I(-0)
所以
-M(v2-v1)=I(-0) /R
因为 ,有
-M(v2-v1)=I/R=Iv2/R2
①
②
联立解出
,
由于二球同时落地,所以 , 。且 。故
,
所以
6-4解:物体因受合外力矩为零,故角动量守恒。
设开始时和绳被拉断时物体的切向速度、转动惯量、角速度分别为v0、I0、0和v、I、.则
①
整理后得
②
物体作圆周运动的向心力由绳的张力提供
由②式可得
当F= 600 N时,绳刚好被拉断,此时物体的转动半径为
分
两火箭的相对接近速率为0.96c
9-6解:已知 , , ,按狭义相对论的速度变换公式
分
在K系中光讯号的速度大小
光讯号传播方向与x轴的夹角
练习10 相对论时空观
10-1(1)B;(2)A;(3)B
10-2(1)4.33×10-8;(2)2.60×108;(3)0.075 m3;(4)x/v, ;(5) ,
13-1(1)D;(2)B;(3)C
13-2(1)氧、氢、T1;(2)N;(3)速率区间 的分子数占总分子数的百分比
13-3解(1)设使用前质量为m,则使用后为m/2,则
(2)由 ,得
m/s
13-4解:
与vp相差不超过1%的分子是速率在 到 区间的分子,故v= 0.02 ,并将v= 代入上式,可得
N/N=1.66%。
rad/s
由②式得
取微分并令dr =r,d,且取绝对值,有
3r/r =2
r=2r/(3=213 m
3-5解:
练习4 质心系和动量守恒定律
4-1(1)C;(2)C;(3)C
4-2(1)0.003 s,0.6 N·s,2 g;(2) , ;(3) , ;(4) ;(5)18 N·s
4-3解:设沙子落到传送带时的速度为 ,随传送带一起运动的速度为 ,则取直角坐标系,x轴水平向右,y轴向上。
观察者测得电子动能为
动量
=1.14×10-22kg·m/s
11-5解:
v≈2.996×108m·s-1
≈1.798×104m
11-6答:这个解答不对,理由如下:
由A、B的静止质量、运动速率都相同,故mA=mB,又因两者相向运动,由动量守恒定律,合成粒子是静止的。
由能量守恒定律,可得
练习12 理想气体统计模型、压强公式、温度公式
v=at=mgt/ (m+ M)
7-6解:如图所示,设重物的对地加速度为a,向上.则绳的A端对地有加速度a向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a向下。
由牛顿第二定律,
对人:Mg-T2=Ma①
对重物:T1- Mg= Ma②
由转动定律,对滑轮有
(T2-T1)R=I=MR2/ 4③
因绳与滑轮无相对滑动
12-1(1)A;(2)A;(3)B;(4)A;(5)B
12-2(1)0, ;(2) , ;(3)7729K;(4)1:1,2:1,2:1,5:3,10:3
12-3解:对刚性双原子分子,氮气的内能
内能增量
由题意有
K
其中M= kg,由
得压强增量
Pa
12-4解:(1)单位体积内的分子数
m-3
(2)由状态方程
已知 y0, v0则
1-6证:
dv/v=-Kdx
,
v=v0e-Kx
练习2 在自然坐标系中描述质点的运动、相对运动
2-1(1)C;(2)A;(3)B;(4)D;(5)E
2-2(1)gsin,gcos;(2) ;(3)-c,(b-ct)2/R;(4)69.8 m/s;(5) ,2ct,c2t4/R
2-3解:(1)物体的总加速度 为
大学物理
1 在笛卡尔坐标系中描述质点的运动
1-1(1)D;(2)D;(3)B;(4)C
1-2(1)8 m;10 m;(2)x= (y3)2;(3)10 m/s2,-15 m/s2