数学建模A题 嫦娥三号软着陆轨道设计与控制策略

合集下载

《2024年嫦娥三号自主避障软着陆控制技术》范文

《2024年嫦娥三号自主避障软着陆控制技术》范文

《嫦娥三号自主避障软着陆控制技术》篇一一、引言随着人类对太空探索的深入,月球探测任务逐渐成为航天领域的重要一环。

嫦娥三号作为我国探月工程的重要一环,其自主避障软着陆控制技术是确保任务成功的关键技术之一。

本文将详细探讨嫦娥三号在自主避障软着陆控制技术方面的应用及所取得的成果。

二、嫦娥三号任务背景及意义嫦娥三号是我国探月工程的重要一步,其任务目标是实现月球表面的软着陆,并开展相关科学实验。

在这一过程中,自主避障软着陆控制技术起到了至关重要的作用。

此技术的成功应用,不仅为我国探月工程积累了宝贵经验,同时也为后续的深空探测提供了重要的技术支撑。

三、自主避障软着陆控制技术的核心原理嫦娥三号的自主避障软着陆控制技术主要基于先进的导航系统和精确的飞行控制算法。

导航系统通过获取月球表面的地形数据,为飞行器提供实时的环境信息。

飞行控制算法则根据这些信息,实时计算并调整飞行器的轨迹,确保其在着陆过程中能够避开障碍物,实现精确的软着陆。

四、技术实现过程及关键环节1. 障碍物探测与地形建模:嫦娥三号搭载的高精度雷达和光学设备,能够实时探测月球表面的地形信息,并建立精确的地形模型。

这一环节为后续的避障和软着陆提供了重要的数据支持。

2. 飞行轨迹规划与调整:基于探测到的地形信息和飞行控制算法,嫦娥三号能够实时规划出最佳的飞行轨迹。

在飞行过程中,根据实际情况,不断调整轨迹,确保能够避开障碍物并实现软着陆。

3. 软着陆控制策略:在接近月球表面时,嫦娥三号需采用精确的软着陆控制策略。

这一策略包括减速、稳定、着陆等多个环节,确保飞行器在着陆过程中能够保持稳定,并实现精确的着陆点。

五、技术成果及应用价值嫦娥三号的自主避障软着陆控制技术取得了显著的成果。

首先,此技术成功实现了嫦娥三号在月球表面的软着陆,为我国探月工程积累了宝贵的经验。

其次,此技术的应用提高了探月任务的成功率,降低了任务风险。

最后,此技术为后续的深空探测提供了重要的技术支撑,推动了我国航天事业的发展。

2014高教社杯全国大学生数学建模竞赛A题论文答辩

2014高教社杯全国大学生数学建模竞赛A题论文答辩

70.9 48.8 29.9 91.3 2.588 1.056 2.498
75.7 37.4 33.3 90.8 1.838 1.168 1.702
总计
1.347 2.437 2.984 3.784 2.763
求解参数N与P的关系为
N (P 3) 3
P值太大,反而会影响计算效率,因此,取
P 30 为宜。
rpGM 1.6139 103 m / s ra a
沿运动轨迹切线方向
第2页,共15页。
1.问题一:着陆准备轨道近月点和远月点的位置
加速度为:
d 2Z dt 2
e i
d 2r dt 2
r d
dt
2
i
r
d 2
dt 2
2 dr dt
d
dt
对嫦娥三号进行受力分析,由牛顿第二定律得:
mMG ei
2014年高教社杯全国大学生数学建模竞赛
A题: 嫦娥三号软着陆轨道设计
与控制策略
第1页,共15页。
1. 问题一:嫦娥三号速度的大小和方向
vp
(1 e )
(1 e )a
(1 e )
va (1 e )a
联立上式可得近月点(近拱点),远月点(远拱点)的速度:
vp
va
raGM 1.6922 103 m / s rp a
当 rp 1752.013 103 m 时,解得 cos ,则-1 ; 180
当 ra 1837.013 103 m 时,解得 cos,则1 。 0
则在近月点的位置是 (180,1752.013 103 )
远月点的位置是 (0,1837.013 103 )
第4页,共15页。

2014高教社杯全国大学生数学建模竞赛A题

2014高教社杯全国大学生数学建模竞赛A题

2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的报名参赛队号为(8位数字组成的编号):07033001 所属学校(请填写完整的全名):吉林师范大学博达学院参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2014 年 9 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文针对嫦娥三号软着陆轨道设计与控制策略问题,通过提取题目中的信息,利用拱点的概念、B 样条函数逼近的统计定位方法、非线性规划问题及哈密尔顿函数为理论基础进行了完整的建模工作。

嫦娥三号软着陆过程(数模竞赛附件2)

嫦娥三号软着陆过程(数模竞赛附件2)

附件2:嫦娥三号软着陆过程的六个阶段及其状态要求1. 嫦娥三号软着陆过程示意图附图4嫦娥三号软着陆过程示意图2.嫦娥三号软着陆过程分为6个阶段的要求(1)着陆准备轨道:着陆准备轨道的近月点是15KM,远月点是100KM。

近月点在月心坐标系的位置和软着陆轨道形态共同决定了着陆点的位置。

(2)主减速段:主减速段的区间是距离月面15km到3km。

该阶段的主要是减速,实现到距离月面3公里处嫦娥三号的速度降到57m/s。

(3)快速调整段:快速调整段的主要是调整探测器姿态,需要从距离月面3km到 2.4km处将水平速度减为0m/s,即使主减速发动机的推力竖直向下,之后进入粗避障阶段。

(4)粗避障段:粗避障段的范围是距离月面2.4km到100m区间,其主要是要求避开大的陨石坑,实现在设计着陆点上方100m处悬停,并初步确定落月地点。

嫦娥三号在距离月面2.4km处对正下方月面2300×2300m的范围进行拍照,获得数字高程如附图5所示(相关数据文件见附件3),并嫦娥三号在月面的垂直投影位于预定着陆区域的中心位置。

附图5:距月面2400m处的数字高程图该高程图的水平分辨率是1m/像素,其数值的单位是1m。

例如数字高程图中第1行第1列的数值是102,则表示着陆区域最左上角的高程是102米。

(5)精避障段:精细避障段的区间是距离月面100m到30m。

要求嫦娥三号悬停在距离月面100m 处,对着陆点附近区域100m范围内拍摄图像,并获得三维数字高程图。

分析三维数字高程图,避开较大的陨石坑,确定最佳着陆地点,实现在着陆点上方30m处水平方向速度为0m/s。

附图6是在距离月面100m处悬停拍摄到的数字高程图(相关数据文件见附件4)。

附图6:距离月面100m处的数字高程图该数字高程的水平分辨率为0.1m/像素,高度数值的单位是0.1m。

(6)缓速下降阶段:缓速下降阶段的区间是距离月面30m到4m。

该阶段的主要任务控制着陆器在距离月面4m处的速度为0m/s(合速度),即实现在距离月面4m处相对月面静止,之后关闭发动机,使嫦娥三号自由落体到精确有落月点。

2014高教社杯全国大学生数学建模竞赛(A)题目

2014高教社杯全国大学生数学建模竞赛(A)题目

2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题嫦娥三号软着陆轨道设计与控制策略嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。

嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。

在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。

嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m(见附件1)。

嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。

其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。

根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。

(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。

(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。

附件1:问题的背景与参考资料;附件2:嫦娥三号着陆过程的六个阶段及其状态要求;附件3:距月面2400m处的数字高程图;附件4:距月面100m处的数字高程图。

附件1:问题A的背景与参考资料1.中新网12月12日电(记者姚培硕)根据计划,嫦娥三号将在北京时间12月14号在月球表面实施软着陆。

嫦娥三号如何实现软着陆以及能否成功成为外界关注焦点。

目前,全球仅有美国、前苏联成功实施了13次无人月球表面软着陆。

北京时间12月10日晚,嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一次轨道调整。

嫦娥三号软着陆避障阶段的最优控制策略浅析

嫦娥三号软着陆避障阶段的最优控制策略浅析

嫦娥三号软着陆避障阶段的最优控制策略浅析引言嫦娥三号软着陆降落过程中要保证准确性与安全性,此阶段的精确控制尤为重要,本文结合粗避障和精避障两个阶段进行分析研究,在粗避障阶段采用合理化假设并逐步验证的方法,精避障阶段采用中心螺旋法,最终得出嫦娥三号在这两个避障阶段的最优控制策略,并进行误差分析。

1、粗避障阶段的最优控制策略为了使嫦娥三号在软着陆阶段高度可靠安全,着陆器需具备较强的自主障碍识别与规避能力,在粗避障阶段主要目的:在较大范围内去除明显危及嫦娥三号着陆安全的大尺度障碍,为精避障阶段提供较好的安全点选择区域,很大程度上减小出现软着陆过程中近距离无法规避障碍物的风险,提高安全着陆概率,考虑到其速度较大且要求成像快、计算快的情况,本文需要综合推进剂消耗来选择最优位置。

粗避障段的范围是距离月面2.4km到100m区间,要求避开大的陨石坑在设计着陆点上方100m处悬停,由此初步确定落月地点,同时成像敏感器能够持续大范围观测着陆区,此阶段飞行轨迹要尽可能满足特定姿态和下降轨迹要求,进一步接近到达目标着陆点的设计轨迹。

考虑到7500N主发动机羽流(从火箭发动机喷管喷射出来的羽毛状的高速高温燃气流)带来的半锥角约为的椎体,会导致一部分不可见区域,而成像敏感区视场角(以光学仪器的镜头为顶点,以被测目标的物象可通过镜头的最大范围的两条边缘构成的夹角)为,为了避免主发动机羽流对成像敏感器的影响且保证在粗避障阶段成像敏感器能够观测到月球表面着陆区,同时考虑到降落路径的不同会导致软着陆过程中耗时的不同,对推进剂的消耗也是不相同的,本文对嫦娥三号采用下降轨迹接近与水平面夹角的直线下降方式,且推力对嫦娥三号的作用力与其运动径向的方向夹角近似为,并对其进行验证。

以嫦娥三号为坐标原点,其水平和径向方向所在直线为X轴和Y轴,其运行速度方向与X轴夹角为,所受推力方向与Y轴夹角为,结合着陆器成像敏感区的视场角范围,根据嫦娥三号在坐标系中的具体位置,联系其所受推力的大致方向分析验证得到此时主发动机产生的椎体羽流对成像敏感区的影響是较小的,验证了假设的合理性。

2014-高教社杯全国大学生数学建模竞赛AB题评阅要点

2014-高教社杯全国大学生数学建模竞赛AB题评阅要点

2021 高教社杯全国大学生数学建模比赛A 题评阅要点[说明]本要点仅供参考, 各赛区评阅组应根据对题目的理解及学生的解答, 自主地进行评阅。

对本问题应该给出合理的建模假定, 譬如: 惯性坐标、二体问题等, 并加以分析说明。

问题1: 在已知的条件下, 确定嫦娥三号在环月轨道上近月点与远月点的相对位置和速度(1) 建立合理适用的坐标系。

(2) 对嫦娥三号进行受力分析, 建立其运动学和准备轨道的数学模型(譬如: 微分方程等模型) 。

(3) 通过求解数学模型得. 到数值结果。

问题2: 确定软着陆轨道与6 阶段的控制策略由问题对着陆轨道 6 个阶段的要求, 每个阶段都应给出起止状态(速度和位置) 和最优控制策略(推力大小和方向) , 以满足各阶段起止状态的需求。

(1) 建立各阶段的最优控制模型, 明确给出控制变量、状态变量、状态方程、约束条件和目标函数。

(2) 在粗避障和精细避障阶段挑选落点时, 需要综合考虑月面的平整度、光照条件、着陆控制误差等因素, 确定最理想的着陆地点。

(3) 各阶段的控制问题是一个无穷维的优化问题, 可以通过合理的简化(譬如离散化为有限维的优化问题) 求解得. 到合理的数值结果, 即最优的控制策略。

(4) 若未按题目要求按6 阶段设计最优控制策略, 而照抄某些文献的两阶段或三阶段的处理方法, 不能视为较好的论文。

问题3: 着陆轨道设计和控制策略的误差分析与敏感度分析对问题的稳定性有影响的误差包括:(1) 着陆准备轨道参数(近月点位置和速度) 的误差;(2) 分阶段分析发动机推力(大小和方向) 的控制误差;(3) 模型的简化假定、模型的近似与求解过程等综合分析误差;加入能针对以上几个因素对问题结果的影响及程度做相应的敏感度分析, 应给予肯定。

2021高教社杯全国大学生数学建模比赛B题评阅要点[说明]本要点仅供参考, 各赛区评阅组应根据对题目的理解及学生的解答, 自主地进行评阅。

本题主要考查学生对直纹面的描述、建模和计算功底。

2014年数学建模A题-省一等奖

2014年数学建模A题-省一等奖

关键词:软着陆、SQP算法、轨道优化、景象匹配
1

1.1 问题的背景
问题重述
中国是继美国、前苏联之后的第三个能使卫星登上月球实现软着陆的国家。因此, 嫦娥三号如何实现软着陆以及能否成功成为外界关注的焦点。北京时间 12 月 10 日晚, 嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一 次轨道调整。在实施软着陆之前,嫦娥三号还将在这条近月点高度约 15 公里、远月点 高度约 100 公里的椭圆轨道上继续飞行。 嫦娥三号着陆地点选在较为平坦的虹湾区。但由于月球地形的不确定性,最终“落 月”地点的选择仍存在一定难度。但嫦娥三号的预定着陆点为 19.51W,44.12N,海拔为 -2641m。在大约距离月球 15 公里时,反推发动机就要点火工作;到离月球 100 米时, 卫星将暂时处于悬停状态,此时它已不受地球上工程人员的控制,因卫星上携带的着陆 器具有很高智能,它会自动选择一块平整的地方降下去,并在离月球表面 4 米的时候关 闭推进器,卫星呈自由落体降落,确保软着陆成功。为了确保探测器能够成功在月球表 面实现软着陆,需要认真设计降落过程中探测器的发动机的控制方案,使“嫦娥 3 号” 能够顺利完成科研任务,得到最大化的应用。由于月球上没有大气,嫦娥三号无法依靠 降落伞着陆,只能靠变推力发动机,才能完成中途修正、近月制动、动力下降、悬停段 等软着陆任务。 这将是中国航天器首次在地外天体的软着陆和巡视勘探, 同时也是 1976 年后人类探测器首次的落月探测。 嫦娥三号在着陆准备轨道上的运行质量为 2.4t, 其安装在下部的主减速发动机能够 产生 1500N 到 7500N 的可调节推力。在给定主减速发动机的推力方向后,能够自动通过 多个发动机的脉冲组合实现各种姿态的调整控制。 要保证准确地在月球预定区域内实现 软着陆,关键问题是着陆轨道与控制策略的设计。其着陆轨道设计的基本要求:着陆准 备轨道为近月点 15km,远月点 100km 的椭圆形轨道;着陆轨道为从近月点至着陆点,其 软着陆过程共分为 6 个阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆 过程的燃料消耗。 1.2 提出问题 根据上述的叙述以及基本要求,提出以下三个问题: (1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与 方向。

数学建模获奖论文A题-嫦娥三号软着陆轨道设计与控制策略

数学建模获奖论文A题-嫦娥三号软着陆轨道设计与控制策略

嫦娥三号软着陆轨道设计与控制策略摘要随着人类的进步和科技的发展,人类对太空和月球的探索已经取得了很大的进步。

我国的探月工程项目也一直走在世界前列。

嫦娥三号是我国首次实行外天体软着陆任务的飞行器,在世界上首先实现了地外天体软着陆自主避障。

对于嫦娥三号软着陆过程虽然有很多的研究成果,但这仍然是一个永远值得我们研究的问题。

本文首先分析了嫦娥三号运行轨道的近月点和远月点的速度,然后确定了近月点和远月点的位置。

在这基础上,对嫦娥三号软着陆轨道进行拟合确定,通过制导技术分析六个阶段最优控制策略。

最后,对确定的轨道和最优控制策略进行误差分析和敏感性分析。

在对问题一近月点和远月点位置确定和速度分析时,本文建立了动力学模型,通过万有引力定律求得在近月点的飞行速度为1.67km/s,在远月点的速度为1.63km/s,然后用微元迭代的方法,解得近月点的位置19.51W,32.67N,15km,远月点的位置160.49E,32.67S,100km。

在轨道的确定过程中,为了便于研究,将嫦娥三号软着陆的轨道划分为三个阶段。

第一个阶段是从近月点到距月球表面2400米的高空,在这一阶段的研究中,本文建立了基于软着陆二维动力学模型,然后根据所得到的数据确定轨道,进而用MATLAB拟合出轨道。

第二阶段是从距月球表面2400米到4米,考虑到要避开月球表面障碍物,所以,用MATLAB将附件 3中的图像进行平面和三维作图,从而根据所做出的图像确定出此阶段的运行轨道。

在第三阶段的划分是嫦娥三号从4米处开始做自由落体运动,这个阶段的轨迹是一条直线。

在六个阶段运动过程的最优控制策略研究中,首先运用显示制导法进行六个阶段燃料的最优控制,约束条件是嫦娥三号在每个阶段燃料的使用尽量少。

然后用模拟退火遗传算法对六个阶段的轨道最优化进行设计,得出嫦娥三号着陆过程每个阶段最优轨道控制,通过避障制导技术得出嫦娥三号软着陆六个阶段的最优控制策略。

关键词:二维动力学模型最优控制策略显示制导法一. 问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。

嫦娥三号着陆控制研究与软件仿真

嫦娥三号着陆控制研究与软件仿真

嫦娥三号着陆控制研究与软件仿真着陆控制是航天器进入行星表面过程中最为关键的环节之一。

近年来,随着中国航天技术的不断发展,嫦娥三号着陆控制研究成为了热点话题。

本文将重点探讨嫦娥三号着陆控制研究与软件仿真的相关问题。

随着人类对太空的探索不断深入,探月已经成为一项重要的太空任务。

嫦娥三号是中国首次实施地外天体着陆的任务,其着陆控制技术的成功与否直接关系到任务的成功。

因此,对嫦娥三号着陆控制的研究具有重要意义。

嫦娥三号着陆控制研究的主要内容包括:对月观察、月面环境模拟、着陆程序设计和实验验证等方面。

研究人员利用先进的计算机技术和仿真实验方法,对嫦娥三号的着陆过程进行模拟和预测,以优化着陆控制系统的设计和性能。

软件仿真是利用计算机技术对实际系统或过程进行模拟和仿真。

在着陆控制中,软件仿真主要用于模拟着陆过程,以便对控制系统进行测试和验证。

优点:软件仿真可以在实验环境中模拟真实着陆过程,有助于研究人员对控制系统进行充分的测试和验证,降低了实际实验的风险和成本。

缺点:软件仿真无法完全模拟真实环境中的所有因素,仿真的准确性和可信度受到限制。

同时,软件仿真的开发需要耗费一定的人力和物力资源。

这里我们以美国国家航空航天局的火星科学实验室为例,说明软件仿真在着陆控制中的应用。

火星科学实验室的着陆过程需要穿越火星的大气层,对其着陆控制的研究极具挑战性。

通过软件仿真,科学家们成功地模拟了火星科学实验室的着陆过程,并为实际着陆提供了重要的参考依据。

本文对嫦娥三号着陆控制研究与软件仿真进行了探讨。

通过对着陆控制研究背景和意义的分析,以及软件仿真原理和优缺点的讨论,我们发现软件仿真在着陆控制中具有重要作用。

然而,软件仿真的准确性仍需进一步提高,特别是在模拟复杂环境和真实条件下着陆过程时。

针对这一情况,我们建议加大软件仿真方面的研发投入,提高仿真精度和可信度。

开展更为广泛的国际合作,共享技术和经验,也将对嫦娥三号着陆控制研究与软件仿真工作产生积极影响。

嫦娥三号软着陆轨道设计与控制策略

嫦娥三号软着陆轨道设计与控制策略

嫦娥三号软着陆轨道设计与控制策略引言嫦娥三号(Chang'e-3)是中国国家航天局(CNSA)于2013年发射的探月任务。

作为中国首个实现月面软着陆的任务,嫦娥三号的轨道设计与控制策略至关重要。

本文将探讨嫦娥三号的软着陆轨道设计以及相应的控制策略。

一、轨道设计1.1 软着陆的定义软着陆是指在着陆过程中,飞船的速度和加速度较小,从而减小着陆冲击力,降低着陆事故的风险。

嫦娥三号软着陆的主要目标是保证飞船及上面搭载的月球车的安全着陆。

1.2 轨道选择嫦娥三号选择了椭圆轨道进行软着陆。

这是因为椭圆轨道在进入月球表面前可以实现速度和加速度的逐渐减小,从而使得软着陆更加稳定和可控。

1.3 轨道参数设计在确定椭圆轨道之后,嫦娥三号需要确定相应的轨道参数。

这些参数包括轨道离心率、轨道倾角和轨道高度等。

通过科学计算和仿真分析,嫦娥三号确定了具体的轨道参数,以便使得软着陆能够满足任务要求。

二、控制策略2.1 控制模式嫦娥三号软着陆的控制策略采取了主动控制模式。

这意味着在着陆过程中,飞船将根据实时数据进行主动调整,以保证软着陆的稳定和安全。

2.2 触发条件在软着陆的控制策略中,触发条件是十分重要的。

嫦娥三号采取了多个触发条件,包括高度、速度和倾斜度等。

当这些条件满足一定的阈值时,控制系统将自动开始软着陆程序。

2.3 控制手段嫦娥三号软着陆采用了多种控制手段,以确保着陆过程的精确控制。

其中包括推力控制、姿态控制和舵控制等。

这些控制手段能够对飞船的速度、姿态和角度进行实时调整,以实现软着陆的最佳效果。

2.4 控制算法为了实现软着陆的精确控制,嫦娥三号采用了高级的控制算法。

这些算法包括PID控制、模糊控制和神经网络控制等。

通过这些算法,嫦娥三号能够根据实时数据进行精确的控制,并及时作出调整,以确保软着陆的成功。

结论嫦娥三号软着陆轨道设计与控制策略在实现月面软着陆任务中起到了重要的作用。

通过适当的轨道设计和精确的控制策略,嫦娥三号成功实现了月球表面的软着陆,并为未来的探月任务提供了宝贵的经验。

嫦娥三号软着陆轨道设计与控制策略

嫦娥三号软着陆轨道设计与控制策略

Soft Landing Track Design and Control Strategy of
Chang'e-3
作者: 高艺哲;胡茂承;吴奕
作者机构: 江南大学,江苏无锡214122
出版物刊名: 南通职业大学学报
页码: 68-71页
年卷期: 2016年 第3期
主题词: 嫦娥三号 软着陆控制 动力模型 轨道设计 螺旋搜索
摘要:解决嫦娥三号飞行的制导与软着陆控制问题。

建立运动学差分方程,以燃料消耗量最小为目标,利用MATLAB实施迭代,确定着陆准备轨道的位置和主减速段的最优控制策略;在避障阶段,基于离散二维熵的最优阈值选择模型,采用螺旋搜索方法选定安全着陆点;根据动力学原理,算得软着陆6个阶段的发动机推力大小、方向以及消耗的时间与燃料,并给出运动轨迹方程;最后,对计算结果做出误差分析和敏感性分析。

2014年全国数学建模大赛A题

2014年全国数学建模大赛A题

2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的报名参赛队号为(8位数字组成的编号):25001113所属学校(请填写完整的全名):云南大学参赛队员(打印并签名) :1. 林博文2. 张竞文3. 方春晖指导教师或指导教师组负责人(打印并签名):李海燕(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期:2014年9月15日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略优化摘 要 嫦娥三号是中国国家航天局嫦娥工程第二阶段的登月探测器,包括着陆器和玉兔号月球车。

嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。

探月着陆器软着陆轨道设计与控制策略

探月着陆器软着陆轨道设计与控制策略

DOI:10.16660/ki.1674-098X.2019.13.016探月着陆器软着陆轨道设计与控制策略①赵晓旭 高聪 于丰韬(华北理工大学理学院 河北唐山 063210)摘 要:嫦娥三号的软着陆,标志着我国实现了通过程序编码实现机器自主避障着陆地外星体的伟大成就,而着陆轨道与控制策略的制定与设计则是成功软着陆过程中极为重要因素。

本文以嫦娥三号探月着陆相关数据利用迭代计算,微分方程等方法,建立落月着陆轨道与控制策略的模型,并根据安全原则与燃耗最小原则对模型进行合理的轨道设计与着陆路径优化,为探月飞行器的软着陆与轨道设计提供方法。

关键词:软着陆 迭代法 微分方程 非线性规划 最优控制策略中图分类号:V463 文献标识码:A 文章编号:1674-098X(2019)05(a)-0016-02①作者简介:赵晓旭(1997,7—),男,汉族,河南遂平人,本科,研究方向:统计与数学建模。

月球是地球周围唯一的天然卫星,其表面蕴含着丰富的矿物资源,开采月球资源成为解决现今能源问题的一种方法。

由于月球上没有大气层的包裹,飞行器的着陆必须完全依赖发动机的制动。

1 软着陆轨道设计与控制模型建立与求解1.1 减速模型1.1.1 主减速阶段在确定了嫦娥三号卫星近、远月点速度大小与方向后,根据嫦娥三号着陆器参数建立动态微分方程:边界条件:x (t 0)=0,y (t 0)=15000+R ,v x (t 0)=v 0=1614.4,v y (t0)=0,由于主减速运时主推动器需全功率运行,即F 取最大推力7200N且推动器不会频繁改变角度,因此a (t )是一光滑函数。

可将求解控制函数a (t )问题转换为求解最优参数及最短时间问题。

我们采用迭代的方法计算可得最优参数P =(4.862*10-6,-1.079*10-4,,4.785*10-2),时间最短为445s,在主减速结束时刻的水平速度为26.2320m/s,竖直方向速度为53.5072m/s,消耗燃料质量为1132.7kg。

2014全国大学生数学建模a题

2014全国大学生数学建模a题

2014高教社杯全国大学生数学建模竞赛a题摘要2013年嫦娥三号成功发射,标志着我国航天事业上的又一个里程碑,针对嫦娥三号软着陆问题,分别建立着陆前轨道准备模型和软着陆轨道模型,建立动力学方程,以燃料最省为目标进行求解。

问题一:在软着陆前准备轨道上利用开普勒定律、能量守恒定律以及卫星轨道的相关知识,利用牛顿迭代法分别确定了近月点和远月点的速度分别为 1.6925km/s、1.6142km/s,位置分别为(19.91W,20.96N),(160.49E,69.31S)。

问题二:在较为复杂的软着陆阶段,因为相对于月球的半径,嫦娥三号到月球的表面的距离太小,如果以月球中心建立坐标系会造成比较大的误差,因此选择在月球表面建立直角坐标系,在主减速阶段的类平抛面上建立相应的动力学模型,求出关键点的状态和并设计出相应的轨道,接下来通过利用灰度值阀值分割方法和螺旋搜索法对粗避障阶段和精避障阶段的地面地形进行相应的分析,找出安全点,然后调整嫦娥三号的方向以便安全降落,最后在落地时通过姿态发动机调整探测器的姿态,使之可以平稳的落到安全点上,在以上的各个阶段都可以以燃料最省为最优指标,从而建立非线性的最优规划的动力学模型,并基于该动力学模型可以对各个阶段的制导率进行优化设计由此就可以得到各个阶段的最优控制策略,问题三:最后针对所设计的轨道和各个阶段的控制策略进行了误差分析和灵敏度分析。

对系统误差和偶然误差都做了解释;通过灵敏度分析发现,嫦娥三号在近月点的位置对结果的影响最大。

关键字牛顿迭代法,灰度值阀值分割,螺旋搜索法,灵敏度分析一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。

嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。

在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。

嫦娥三号软着陆轨道设计与控制策略的优化模型_杜剑平模板

嫦娥三号软着陆轨道设计与控制策略的优化模型_杜剑平模板

)的模型建立与求解 3 问题 1
3. 1 确定近月点和远月点的速度 由假设 2. 嫦娥三号从近月点开始下落 , 且与着陆准备轨道在同一个平面上 。 又由假设 2. 3, 1 和 2. 2
1] 。 知, 嫦娥三号的着陆准备轨道满足开普勒轨道定律 , 其着陆准备轨道如图 1 所示 [
远月点至月心的距离为 设近月 点 至 月 心 的 距 离 为 r A, 单位时间嫦娥三号扫过的面积为 r B, 1 1 r vA , S r vB , A B = B 2 2
竞赛论坛
檺檺殣
1 问题的提出
在高速飞行的情况下 , 嫦娥三号要保证准确地在月球预定区域实现软着陆 , 关键问题是着陆轨道与 远月点 1 控制策略的设计 。 基本要求是 : 着陆准备轨道为近月点 1 着陆轨道 m, m 的椭圆形轨道 ; 5k 0 0k 为从近月点至着陆点 , 其软着陆过程共分为 6 个阶段 , 要求满足每个阶 段 在 关 键 点 所 处 的 状 态 ; 尽量减 少软着陆过程的燃料消耗 。 根据上述基本要求 , 要研究以下 3 个问题 : )确定着陆准备轨道近月点和远月点的位置以及嫦娥三号的相应速度 ; 1 )确定嫦娥三号的着陆轨道和 6 个阶段的最优控制策略 ; 2 )针对建立的模型 , 对所设计的着陆轨道与控制策略做相应的误差分析和敏感性分析 。 3
6 - / , 嫦娥三号所受到的最大离心加速度为 由于月球自转速度为 ω = 2. 6 6 1 7×1 r a d s 0 2 2 5 - ( / ) 。 k s 2 3 9 6×1 0 α = ωr ≈ 1. g 2 5 - / 即 将非惯性坐标系近似为惯性坐标系 , 的加速度误差 , 最大可能产生1. 远小于月球引 k s 0 2 3 9 6×1 g
的引力加速度为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

vyg v月
t2
0
F F m dt gt2 v月 - ln1 t2 gt2 m m - mt m
2
H3-H4 垂直降落月面过程示意图

着陆轨道和控制策略 误差分析和敏感性分析
问 题 三
3
影响探测器能否落地后保持直立的姿 态基本上依赖于着陆表面的粗糙程度
H2-H3 制导段飞行过程

问 题 二
v yg v y1
t H x t2
0
F F m dt g (t H x t 2 ) v y1 ln(1 (t H x t 2 )) g(t H x t 2 ) m mt m m
横向速度关系式可表示为
1 1 F F S y v y 0t1 gt12 v yg (t H x t 2 ) g (t H x t 2 ) 2 [ln(1 (t H x t 2 ))(t H x t 2 ) 2 2 m m m m (t H x t 2 ) ln(1 (t H x t 2 ))] m m
H0-H1横向主减速飞行过程示意图

H1-H2,径向减速过程
问 题 二
H1 点初始状态值
垂直方向姿态调整时间
代入动力学方程可得到重力场影响下径向速度关系式
2
由重力场影响下的径向速度关系式和 径向减速段动力学模型 t F F m v yg v y1 dt gt2 ln(1 t 2 ) gt 2 位移关系式可得 0
OX LYL Z L
为月固坐系,
参考平面是月球赤道面, Ax1 y1 z1 为原点在探测器 的轨道坐标系。
1
近月点与远月点的相对 位置和速度大小及方向

问 题 一
月球重力加速度 g在月固坐标系中 由黄金代换式 、角动量守恒定律以及 的投影形式记作 能量守恒定律,可以列出以下关系式:
G1L gL R 2 GM gR m GM 1 GM 1 2 2 故探测器在月固坐标系中的运动 2 m v1 m r 2 m v2 m r 1 2 方程表示为
m mt m m
1 2 约束条件 F m m m S v y 0 gt [ln(1 t 2 ) t 2 t 2 ln(1 t 2 )] 2 m m m m 由动力学方程可得到重力场影响下径向位移关系式
S2
t2
2
0
F (v yg gt dt) v yg gt ln(1 t) dt 0 t mm m m
H2 点各个状态参量
v yg v y1
t2 F 决定主发动机开机高 dt gt2 度以及开机时间长短 0 mm t2 t
v y1
F m ln(1 t 2 ) gt 2 F m m m
H1-H2 径向减速控制过程流程图 H1-H2径向减速过程示意图
H2-H3 制导段飞行过程
3

评 估 与 改 进
模型的改进
在问题二对应的景象匹 配模型中,结合工程实 际,采用六个阶段的分 段控制的方法。
1
2
4
在问题三中,对景象匹 配模型做出简化假设、 近似与求解过程等综合 分析误差;
16
感谢各位评委与专家的聆听 敬请提出宝贵指导意见
17
vHx
t2 0
F F m dt ln1 t H X t m m-m m
0
横向位移关系式为
2
S Hx
F m m m ln(1 tHx )tHx tHx ln(1 tHx ) m m m m
F m m m S x 2 vH x t2 ln(1 t2 )t2 t2 ln(1 t2 ) m mH x m mH x
F m
2
喷口切换点横向速度为:
vHx F m F m ln1 tHx ln 1 t2 m mHx m m
H2-H3 制导段飞行过程示意图
H3-H4 垂直降落月面过程

问 题 二
1 2 1 2 F m m m S v y 0t1 gt1 v ygt2 gt2 ln1 - t2 t2 t2 ln1 t2 m m 2 2 m m
H2-H3 制导段飞行过程

问 题 二
联立方程可得
横向总位移:
S X v Hxt2
m m m ln( 1 t ) t t ln( 1 t ) 2 2 2 2 m m m Hx Hx F m m m ln( 1 t ) t t ln( 1 t ) H H HX H m m X X m m X
˙

1Leabharlann QVr sin cos m VxL 2GMr2 ˙ 1.69 103 m v QV 1 s r ( r r ) r T ﹒ cos g L 2 VL 1 T22 1 VyL 1 m ˙ 2GMr v 1.61 103 m 1 QV V 2 r zL (r r )r s sin sin 1 2 2 m

着陆轨道和控制策略 误差分析和敏感性分析
问 题 三
3
模拟行星表面着陆区域内石块或撞击坑的平均个数、 直径分布和位置;其次,在着陆区域内,探测器随机选 择某着陆点降落,根据着陆安全判定方法判定着陆是 否安全,计算得到探测器安全着陆概率为 P=0.8471

着陆轨道和控制策略 误差分析和敏感性分析

问 题 二
在制导信息形成并完成对准目标点的调姿工作后, 横向辅助发动机启动飞向目标点,到达目标点上空时, 横向速度减为零,其后主发动机进行径向主减速,并最 终保证嫦娥3号到达H3点时满足对月速度要求。
由径向减速方程式可知
v yg v y1
t H x t2 0
2
F F m dt g (t H x t 2 ) ln(1 (t H x t 2 )) g(t H x t 2 ) t mm m m

景象匹配模型

问 题 二
HO H1 H2 H3 H4
• 初始高度距月面15km •横向速度减小为0时的高度
• 制导阶段的初始高度 • 制导结束的高度 • 抵达月面
2

H0-H1横向主减速过程
问 题 二
2
从初始高度H0把 着陆器相对月面 的横向速度从约 1.7km/s降至0到 达终点高度H1, 为其后的姿态变 换提供条件。
问 题 三
为提高探测器软着陆成功概 率,对探测器的安全着陆概率进 行敏感性分析。对仿真中着陆区 域面积大小进行改变,得出
安全着陆概率随着陆区域边长的变化曲线
3
由变化曲线图可知,着陆区域面积大 小对安全着陆概率的影响较小。

评 估 与 改 进
模型的评估
研 究 成 果
1
2
4
结合工程实际,采用分段 控制的方法,根据不同阶 段的任务要求,制定了不 主发动机和辅助发动机共同 同的控制策略,从而满足 作用进行制导飞行,使制导 着陆精度的要求。 根据推力阶梯可调式发动机特 方式更为简单,增加了工程 点,采用景象匹配导航并通过 上的可行性。 分段控制方法得到精确软着陆 各个控制阶段的飞行状态和控 制变量的仿真结果。
2014年全国大学生数学建模竞赛
汇 报 内 容

近月点与远月点的相对位置和速度大小及方向(问题1)
二 三
软着陆轨道确定和6个阶段的最优控制策略(问题2)
软着陆轨道和控制策略误差分析和敏感性分析(问题3)

模型的评价与改进
近月点与远月点的相对 位置和速度大小及方向

问 题 一
根据二体模型可以建立以月心为 原点的惯性坐标系
相关文档
最新文档