桥梁工程毕业设计——钢筋砼拱桥
桥梁工程 第三篇_拱桥1 (2)解析
2、 中承式拱桥
广东广州流溪桥 (L=90m) 钢筋混凝土箱肋中承式拱,拱矢度1/4.5,全桥采用喷塑装修工艺, 建筑宏伟壮丽,已成为公园的重要景观。
2、 中承式拱桥
Pontdel‘Europe 主 跨 201.6 米 公 路桥 , 钢拱 , 钢主 梁
2、 中承式拱桥
广州丫髻沙特大桥(L=360m ) 三跨连续自锚式中承式钢管混凝土拱桥。主拱采用中承式双肋悬链线 无铰拱,钢管混凝土桁架。边拱采用上承式双肋悬链线半拱,钢筋混凝土 单箱单室截面组成。
受压构件;可充分利用主拱截面材料强度,使跨越能力增大。 拱桥优点:跨越能力较大;就地取材;耐久性好,管养方便; 外型美观;构造较简单。 拱桥缺点:自重较大;需设置制动墩;上承式拱桥的建筑高度
较高。
土建学院桥梁工程系
本节内容
§1.2
拱桥的组成及主要类型
拱桥的基本组成 主要名词术语 拱桥的主要类型
行车道梁(板)及桥面系等组成。 拱式组合体系桥将梁和拱两种基本结构组合起来,共 同承受桥面荷载和水平推力
土建学院桥梁工程系
1)无推力的组合体系拱 2)有推力的组合体系拱
3、拱片桥 行车道系与拱肋刚性联成一整体,共同承受荷载。拱片 桥可由两片以上的拱片组成,并用横向联结系将各拱片联成 整体,行车道板支承在拱片上。
拱、箱形拱、钢管混凝土拱、劲性骨架混凝土拱桥。
(一)基本组成
1、简单体系拱桥
均为有推力拱,可以做成上承
式、中承式和下承式。
按照静力体系,又可以分成三铰 拱、两铰拱、无铰拱。
(a)上承式;(b)中承式; (c)下承式
土建学院桥梁工程系
2、组合体系拱桥
拱式组合体系桥一般由拱肋、系杆、吊杆(或立柱)、
钢筋混凝土拱桥设计
钢筋混凝土拱桥设计1. 引言钢筋混凝土拱桥是一种常见的桥梁类型,以其优越的承载力和美观的外观被广泛应用于道路和铁路建设。
本文将探讨钢筋混凝土拱桥的设计原理、构造要点以及施工过程。
2. 设计原理2.1 拱桥的力学特性钢筋混凝土拱桥的力学特性主要取决于拱轴线、曲率半径和拱脚等因素。
拱桥通过将荷载转移到桥墩上,使桥墩在竖向受力的同时,通过拱的弧形将荷载分散到桥墩两侧地基,从而实现了力的平衡和传递。
2.2 荷载分析钢筋混凝土拱桥在设计中需要考虑各种荷载,包括静载荷、动载荷、自重和温度变化带来的荷载。
通过静力学和结构力学的计算方法,可以确定合理的荷载分布和桥墩位置,以确保拱桥在荷载作用下的稳定性。
3. 构造要点3.1 基础设计钢筋混凝土拱桥的基础设计是确保桥梁稳定的重要环节。
在设计中,需要考虑地基的承载力、基础的稳定性和桥墩之间的相互作用等因素。
通过对地质勘探和基础设施的分析,选择适当的基础形式和施工方法。
3.2 桥墩设计桥墩是钢筋混凝土拱桥中承担荷载的主要结构元素,其设计需要考虑桥墩的高度、宽度和形状等因素。
在桥墩的设计中,需要满足结构的承载能力和安全性,并兼顾桥梁的美观要求。
3.3 拱设计拱的设计是钢筋混凝土拱桥中最关键的部分,其稳定性和强度直接影响着整个桥梁的安全性。
在拱的设计中,需要确定拱的形状、剖面以及拱脚和拱顶的尺寸等参数,确保拱能够承担荷载并满足设计要求。
4. 施工过程4.1 基础施工钢筋混凝土拱桥的基础施工包括地基处理、基础的浇筑和养护等过程。
地基处理主要是通过加固或改造地基,提高基础的承载力和稳定性;基础的浇筑是将混凝土倒入基础模板中,并进行养护以达到设计要求。
4.2 桥墩施工桥墩的施工是在基础完成后进行的,主要包括搭模板、浇筑和养护等步骤。
搭模板是按照设计要求搭建桥墩的支模结构,浇筑是在支模中倒入混凝土进行桥墩的成型,养护是将桥墩覆盖保护层进行湿润和维护以加强混凝土的强度和耐久性。
4.3 拱施工拱的施工是钢筋混凝土拱桥施工的精华部分,需要采用合适的支撑结构和施工工艺。
钢筋混凝土拱桥实例组织设计
2009年度参评三级工法 120m跨现浇钢筋砼箱形拱桥主拱圈施工工法一百二十米跨现浇钢筋砼箱形拱桥主拱圈施工工法1.前言余姚双溪口水库大桥为净跨径120m上承式悬链线箱形拱桥,该桥为集团公司同类桥的最大跨径,其支架部分及主拱圈施工不仅难度大,而且存在着很大的施工安全风险。
我公司结合以往施工经验,针对大跨上承式钢筋混凝土箱形拱桥技术进行了科技攻关,充分利用该型拱桥结构特点制定科学合理的施工工艺,解决了施工技术难题,经总结形成本工法。
以本工法为核心的“120m跨现浇钢筋砼箱形拱桥主拱圈施工技术”获得集团公司优秀论文一等奖。
2.工法特点本桥主拱圈采用支架现浇施工法,其中支架部分为在两拱脚段根据原有的地形情况采用在硬化的地面上直接拼装碗扣式脚手架,中间段采用梁柱式复合体系:其结构构成为:明挖现浇混凝土基础;钢支架分三层,底层为置于混凝土基础上钢管立柱支墩;中层用万能杆件搭成框架结构形成纵梁;上层为满布式碗扣式脚手架。
拱部利用碗扣式支架调整成拱型,拱架卸落利用碗扣式支架顶的可调托撑完成。
而主拱圈混凝土则采用分环、分段的方法进行施工,即:整个拱圈根据支架的结构体系分为3个浇筑环;即底板环、腹板环及顶板环,每环浇筑时再分5段对应水平长度分别均为24m,先对称浇筑拱脚段,再从跨中段向两拱脚方向浇筑,拱顶段浇筑完后,再浇筑1/4段。
段与段之间预设间隔槽(顶板不设间隔槽),间隔槽宽1.5m,根据监控单位的施工加载计算,腹板和底板环两环同时合拢,使拱圈形成一个开口箱形结构,然后再进行顶板环的分段浇筑及合拢。
3.适用范围本桥施工方法可适用于大跨径现浇钢筋砼拱桥的施工。
4.工艺原理4.1主拱圈施工技术4.1.1主拱圈底模标高的确定主拱圈的支架现浇过程中,立模标高的合理确定,是关系到主拱圈的线形是否平顺、是否符合设计的一个重要问题。
如果在确定立模标高时考虑的因素比较符合实际,而且加以正确的控制,则最终主拱圈与桥面系线形较为良好;否则最终主拱圈线形会与设计线形有较大的偏差。
拱桥毕业设计正文
摘要本桥位于沪蓉国道主干线湖北省宜昌至恩施段K29+245处,跨越佑溪,沟宽约110m。
河道与路线正交,河床稳定,河道顺直,平时沟内水量较少,沟底较深,比降较大,泄洪顺畅。
设计主要分为桥型方案比较和推荐方案设计,桥型方案中拟定了三个比选方案,方案一为混凝土简支梁桥,方案二为预应力混凝土箱形连续梁桥。
方案三为上承式混凝土箱形拱桥。
通过方案比选,最终选用方案三:上承式混凝土箱形拱桥,跨径组成为净跨径64m拱跨和两边各一跨8m简支板引桥跨。
桥梁全长89.28m,桥面净空为外侧0.5m钢筋混凝土防撞护栏+桥面宽净11.0m +0.75m波形钢板防撞护栏,桥面横坡2%。
本桥上部为空腹式,下部为重力式实体桥台,引桥采用轻型桥台和柱式桥墩。
结构计算主要针对上部结构盖梁、立柱、拱箱,下部结构桥台进行了细部尺寸拟定、内力计算、配筋计算、截面验算。
桥梁下部结构为重力式墩,基础采用刚性扩大基础。
本设计仅对1号桥墩进行了强度及稳定性验算。
关键词:拱轴系数;箱形拱肋;主拱圈内力组合;截面强度;刚性扩大基础。
AbstractAccording to the graduation project task paper of the bridge engineering graduates,this bridge is located in section K249+245 of the HuRong national highway in Hubei from yichang to enshi,which crossing the creek youxi.The riverway is orthogonal with the road and is very deep with little river water at ordinary times. Bottom of trench is more depth with much gradient, and flood discharge smoothly.The design maily focus on the comparison between the project style of the bridge and the design of the recommended style. There are three alternatives on the bridge style,the fist one is a concrete simple beam bridge,the second is a prestressed concrete continuous girder bridge box,and the third one is a open spandrel top-bear arch bridge. Through comparing the three projects,and the third one is the best.The bridge has a net span across 64m arch and an 8m simply supported slab by every side.The bridge is 89.28m at length,with a 0.5m reinforced concrete impact-proof guard railing by the outboard, a net width 11m and a 0.75m waveform impact-proof guardrail and a 2% deck transverse slope.The upper of the bridge is empty arch and the below is gravity type abutment entities.The approach bridge has a light the abutment and pillar type pier.The structural calculation are mainly aimed at the detail sizes,internal forces,reinforcement and cross section area on the upper capping beam structure,upright column,arch box and the below structure of the bridge abutment.This bridge adopts the gravity type pier and rigid expanding structure in lower foundation. In this article, take the strength and stability of the number 1 bridge -'pier as an example..Key words:arch axis coefficient;arch rib; internal force; internal forcecombination; rigidity of section; rigid expanding foundation目录摘要 (I)Abstract (II)第一章结构设计方案 (1)1.1 设计资料 (1)1.1.1 桥梁名称 (1)1.1.2 基本资料 (1)1.1.3 设计标准 (2)1.2 方案比选 (2)1.2.1 方案一:简支梁桥 (2)1.2.2 方案二:等截面小箱形连续梁桥 (3)1.2.3 方案三:钢筋混凝土箱形拱桥 (4)1.3 方案选择 (5)第二章推荐方案桥梁上部结构尺寸拟定 (6)2.1 方案简介及上部结构尺寸拟定 (6)2.1.1 拱肋 (6)2.1.2 盖梁与腹孔墩 (6)2.1.3 横隔板 (6)2.1.4 桥面板及桥面铺装 (6)2.1.5 排水设施 (6)2.2 主要材料 (6)2.3 桥梁设计荷载 (7)第三章盖梁计算 (8)3.1 上部结构恒载计算 (8)3.1.1 桥面铺装及空心板计算 (8)3.1.2 恒载内力计算 (11)3.2 活载计算 (15)3.2.1 活载横向分布系数计算 (15)3.2.2 按顺桥向可变荷载移动情况求支座反力 (20)3.2.3 可变荷载横向分布后各梁支点反力 (21)3.2.4 各梁恒载、可变荷载反力组合 (24)3.2.5 三柱式反力G计算 (26)i3.3 内力计算 (27)3.3.1 各截面的弯矩 (27)3.3.2 相当于最大弯矩时的剪力 (28)3.3.3 相当于最大弯矩时的剪力组合 (29)3.3.4 盖梁内力汇总 (30)3.4 截面配筋设计与承载能力校核 (31)3.4.1 正截面抗弯承载能力验算 (31)3.4.2 腹筋及箍筋设计 (33)3.4.3 斜截面抗剪承载能力验算 (35)3.4.4 全梁承载能力校核 (37)3.4.5 裂缝验算 (38)3.4.6 挠度验算 (38)第四章腹孔墩立柱计算 (39)4.1 恒荷载计算 (39)4.2 活荷载计算 (39)4.2.1 汽车荷载计算 (39)4.2.2 风荷载计算 (40)4.3 荷载组合 (41)4.3.1 最大、最小垂直反力 (42)4.3.2 最大弯矩 (42)4.4 截面配筋计算及应力验算 (43)4.4.1 作用于墩柱顶的外力 (43)4.4.2 作用于墩柱底的外力 (43)4.4.3 截面配筋计算 (43)第五章主拱圈内力计算 (46)5.1 主拱截面尺寸的确定 (46)5.1.1 主拱尺寸和材料 (46)5.1.2 主拱截面尺寸拟定 (46)5.2 拱轴系数的确定 (47)5.2.1 主拱圈截面特性计算 (47)5.2.2 主拱圈立面布置中的计算 (47)5.3 主拱圈截面内力计算 (49)5.3.1 按无矩法计算不计弹性压缩恒载水平推力 (49)5.3.2 拱圈弹性中心及弹性压缩系数 (49)5.3.3 弹性压缩引起的恒载内力 (50)5.3.4 压力线偏离拱轴线引起的内力 (50)5.3.5 恒载内力 (56)5.3.6 活载内力 (56)5.3.7 不计弹性压缩的活载内力 (57)5.3.8 计入弹性压缩的活载内力 (57)5.3.9 温度变化引起的内力 (62)5.3.10 混凝土收缩内力 (63)5.4 荷载组合 (65)5.4.1 计入荷载安全系数的荷载效应 (66)5.4.2 荷载组合 (69)5.5 主拱圈强度验算 (69)5.5.1 拱圈强度验算 (69)5.5.2 拱圈截面合力偏心距验算 (70)5.5.3 拱脚截面直接抗剪验算 (70)5.5.4 拱的整体“强度—稳定性”验算 (73)5.5.5 横向稳定性验算 (74)第六章桥墩及基础计算 (76)6.1 桥台尺寸拟定 (76)6.2 荷载计算 (77)6.2.1 桥墩以上恒荷载计算 (77)6.2.2 活载内力计算 (81)6.2.3 内力组合 (82)6.3 正截面强度验算 (87)6.3.1 墩身截面受压承载能力验算验算 (87)6.3.2 墩身截面合力偏心矩验算 (88)6.4 基底应力及偏心距验算 (89)6.4.1 地基承载能力验算 (89)6.4.2 基底偏心距验算 (90)6.5 墩台稳定性验算 (90)6.5.1 抗倾覆稳定性验算 (90)6.5.2 抗滑动稳定性验算 (91)第七章施工方案 (93)7.1 施工准备 (93)7.2 施工方法 (93)7.3 设备组成部分 (93)7.4 主要机具 (93)7.4.1 主要机械名称 (93)7.4.2 主要机具介绍 (93)7.5 施工步骤 (94)7.5.1 桥位放样 (94)7.5.2 基础施工 (94)7.5.3 墩台施工 (94)7.5.4 主拱圈施工 (94)7.6 拱上建筑施工 (96)7.6.1 墩柱盖梁 (96)7.6.2 桥面系工程 (96)参考文献 (98)附录 (99)附录A 外文翻译 (99)第一部分英文原文 (99)第二部分汉语翻译 (105)致谢 (112)第一章结构设计方案1.1设计资料1.1.1桥梁名称沪蓉高速公路佑溪桥。
混凝土拱桥毕业设计说明书
本科毕业论文(设计)论文(设计)题目:黄家大坡大桥初步设计学院:土木工程学院专业:桥梁与隧道工程班级:土木103学号: 44学生姓名:陈刘明指导教师:王学敏2014 年 6 月 6 日贵州大学本科毕业论文(设计)诚信责任书本人郑重声明:本人所呈交的毕业论文(设计),是在导师的指导下独立进行研究所完成。
毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。
特此声明。
论文(设计)作者签名:日期:目录摘要......................................................................... . (III)ABSTRACT................................................................... .. (IV)第一章基本资料、技术标准及设计要求.......................................................................错误!未定义书签。
基本资料......................................................................... .........................................错误!未定义书签。
技术标准......................................................................... .........................................错误!未定义书签。
主要技术指标......................................................................... ......................错误!未定义书签。
钢筋混凝土拱桥实例组织设计
一百二十米跨现浇钢筋砼箱形拱桥主拱圈施工工法1.前言余姚双溪口水库大桥为净跨径120m上承式悬链线箱形拱桥,该桥为集团公司同类桥的最大跨径,其支架部分及主拱圈施工不仅难度大,而且存在着很大的施工安全风险。
我公司结合以往施工经验,针对大跨上承式钢筋混凝土箱形拱桥技术进行了科技攻关,充分利用该型拱桥结构特点制定科学合理的施工工艺,解决了施工技术难题,经总结形成本工法。
以本工法为核心的“120m跨现浇钢筋砼箱形拱桥主拱圈施工技术”获得集团公司优秀论文一等奖。
2.工法特点本桥主拱圈采用支架现浇施工法,其中支架部分为在两拱脚段根据原有的地形情况采用在硬化的地面上直接拼装碗扣式脚手架,中间段采用梁柱式复合体系:其结构构成为:明挖现浇混凝土基础;钢支架分三层,底层为置于混凝土基础上钢管立柱支墩;中层用万能杆件搭成框架结构形成纵梁;上层为满布式碗扣式脚手架。
拱部利用碗扣式支架调整成拱型,拱架卸落利用碗扣式支架顶的可调托撑完成。
而主拱圈混凝土则采用分环、分段的方法进行施工,即:整个拱圈根据支架的结构体系分为3个浇筑环;即底板环、腹板环及顶板环,每环浇筑时再分5段对应水平长度分别均为24m,先对称浇筑拱脚段,再从跨中段向两拱脚方向浇筑,拱顶段浇筑完后,再浇筑1/4段。
段与段之间预设间隔槽(顶板不设间隔槽),间隔槽宽1.5m,根据监控单位的施工加载计算,腹板和底板环两环同时合拢,使拱圈形成一个开口箱形结构,然后再进行顶板环的分段浇筑及合拢。
3.适用范围本桥施工方法可适用于大跨径现浇钢筋砼拱桥的施工。
4.工艺原理4.1主拱圈施工技术4.1.1主拱圈底模标高的确定主拱圈的支架现浇过程中,立模标高的合理确定,是关系到主拱圈的线形是否平顺、是否符合设计的一个重要问题。
如果在确定立模标高时考虑的因素比较符合实际,而且加以正确的控制,则最终主拱圈与桥面系线形较为良好;否则最终主拱圈线形会与设计线形有较大的偏差。
立模标高并不等于设计中桥梁建成后的标高,总要设一定的预抛高,以抵消施工中产生的各种变形(挠度)。
25m钢筋砼拱桥施工方案
25m钢筋砼拱桥施工方案1. 引言本文档旨在为25m钢筋砼拱桥的施工提供详细方案。
拱桥作为一种常见的桥梁结构,具有较好的承载能力和美观性,适用于各种地理环境。
在本施工方案中,将介绍拱桥施工的主要步骤、材料选择、安全措施等内容。
2. 施工步骤2.1 地基处理在拱桥施工前,需要对地基进行处理。
首先,清除地表杂物和植被,并进行地质勘察。
根据勘察结果,采取相应的处理措施,如加固软弱地基或挖掘深基坑。
2.2 基础施工拱桥的基础施工包括基础开挖、基础浇筑和基础检测等步骤。
首先,根据设计要求进行基础开挖,确保基础的稳定和坚固。
然后,在基础中设置钢筋骨架,并进行浇筑。
2.3 拱脚施工拱脚是拱桥的关键部分,负责承受桥上荷载,并将荷载传递到地基上。
拱脚的施工包括搭模板、浇筑混凝土、拆模板和喷涂防水等步骤。
在施工过程中,要确保拱脚的几何尺寸和位置满足设计要求。
2.4 拱身构筑拱身构筑是将拱脚与拱洞之间的空间填满,形成拱桥的主体结构。
拱身的施工包括设置模板、浇筑混凝土和养护等步骤。
在施工过程中,要注意控制混凝土的浇筑速度和温度,以确保拱身的质量。
2.5 桥面铺设桥面的铺设是拱桥施工的最后一步。
根据设计要求,选择合适的桥面材料进行铺设。
在铺设过程中,要注意保持桥面的平整度和防水性能。
3. 材料选择在拱桥施工中,需要使用以下主要材料:•钢筋:选择合适规格和质量的钢筋,根据设计要求进行加固。
•混凝土:选择与设计要求相匹配的混凝土材料,并按照施工工艺进行搅拌、浇筑和养护。
•模板:选择适用于拱桥施工的模板系统,确保模板的稳定和可靠性。
•桥面材料:根据设计要求和实际情况,选择合适的桥面材料,如沥青、水泥砂浆等。
4. 安全措施在拱桥施工过程中,要严格遵守相关安全规定,采取有效的安全措施,确保施工人员和施工设备的安全。
具体安全措施包括但不限于:•施工区域划定:设立合适的施工区域,并设置警示标志,确保施工区域的清晰可见。
•安全设施:根据施工需要,设置合适的安全设施,如防护网、安全带等。
钢筋砼拱桥专项施工方案
钢筋砼拱桥专项施工方案一、钻孔灌注桩施工一)施工准备及设备安装1、施工准备做好场地平整工作,再进行桩位放线,供水、供电系统,确定钢筋笼加工处,各钻机安装起止位置及搬迁路线等。
对设计单位交付的资料进行检验。
复核量基线、基点,标定钻孔桩位和高程—桩位量偏差不得大于5mm,并用长约30cm,直径约10mm的铁筋锤入土层作为标记,尖端出露地面5-8mm为宜。
设备进入现场要做到“三通一平”。
开工前,在桥侧设置两个沉淀池,为防止钻孔产生的废浆污染环境,沉淀池内,套钢套箱。
2、测量定位基准点必须浇筑混凝土固定牢靠,并做好保护装置。
选用高精度经伟仪和钢卷尺测量,保证桩位的准确。
从绝对标高点引入临时水准点,测出护筒口标高,并作好测量记录,用全站仪复核校验。
3、埋设护筒根据测量确定的桩位,埋设钢制护筒,护筒由厚8mm 钢板加工而成,内径大于钻头直径50mm,在护筒顶部开设2个溢浆口,高出地面0.2m。
护筒埋设采用挖埋式方法,用桩位定位器保证护筒中心与桩中心一致。
在挖埋时,护筒与坑壁之间用粘土填实,根据本工程地质条件,护筒埋置深度确定为1.5m。
护筒埋设好后,及时复核桩位,若有误差大于规范要求,则重新埋设。
4、钻孔钻机就位时保持底座平稳,钻机塔架头部滑轮、转盘中心和桩位三点应在一铅直线上。
并且机身牢固,保证施工过程中不位移、不倾斜。
在开钻前必须进行满负荷运转。
钻头中心采用桩定位器对准桩位。
利用双向调节标尺或线坠调整钻杆垂直。
先在护筒内用钻头造浆,在泥浆池存一部分泥浆后才正式钻孔。
开孔时做到稳、准、慢,钻进速度根据土层类别,孔径大小,钻孔深度及供浆量确定。
为保证钻孔的垂直度,在钻进过程中,设置钻机导向装置,钻进过程中若发生斜孔、弯孔、缩孔、塌孔或沿护筒周围冒浆以及地面沉陷时,应停止钻进,采取如下措施:当钻孔倾斜时,可往复扫孔修正;如纠正无效,则在孔内回填粘土至偏孔处上部0.5m,再重新钻进。
钻孔中如遇到塌孔,立即停钻,并回填粘土,待孔壁稳定后再钻。
钢筋混凝土拱桥施工—拱桥悬臂浇筑施工工序及设备
四、锚碇
锚碇是固定锚索的重要结构物。实施中将锚碇与桥台相结合,以减少工程量和节约投资,并 根据地质情况优选,分别采用了重力式锚碇加岩孔锚、轻型锚碇加岩锚等锚碇结构型式。
五、扣、锚索及其锚固系统
悬浇拱圈后未合龙前其节段须通过锚固于交界墩盖梁或扣塔顶锚箱上的扣索及锚固于锚碇的 锚索来稳定。扣、锚索采用钢绞线。扣索的固定端在拱圈节段上,张拉端在交界墩盖梁或扣塔 顶的锚箱上;锚索的固定端在锚箱上,张拉端在锚碇上。
拱圈节段施工现场
施工工艺流程:
拱脚段支架安装→拱脚段施工并养护待强→1号扣、锚索安装及张拉→ 现浇段支架拆除→悬浇挂篮安装调试→节段底板、腹板、隔板钢筋绑扎→节 段内模、侧模安装→节段顶板钢筋绑扎→节段顶压模安装→节段混凝土浇注 及养护待强→节段扣、锚索安装及张拉锚固、调索→挂篮放松并前移就位→ 循环进行下一节段施工至全部悬浇段施工完成→合龙段施工→扣、锚索分级 拆除。节段各工序施工控制的具体时间见下表,悬浇周期为12d(288h)。
锚箱图片
扣锚索图片
锚具图片
扣锚索张拉图片
六、工作天线系统
利用悬浇用扣索的扣塔及扣索锚碇布置主索,再在主索上布置起吊牵引装置,形 成起吊重量较小的小型工作天线,方便拱圈施工中所需的结构用钢材 7 8
项目 移挂蓝、底模调位 底板、侧板、隔板钢筋绑扎
内模安装 顶板钢筋绑扎、预埋件安装
预压模安装 拱圈混凝土浇注 混凝土养护等强 扣锚索扣挂、张拉、调索
时间/h 18 48 36 30 12 12 96 36
施工工艺要点:
(1)拱脚段支架地基承载力应满足设计要求,支架采用刚性连接措施以减 小非弹性变形,支架应与拱座连接以平衡倾斜拱圈重力所产生的水平分力。 (2)挂篮采用侧三角桁架挂篮,挂篮安装就位后通过底模调节螺杆调节底 模高程,施工中主要控制好挂钩支承点、后下横梁反力支承点、挂篮抗剪柱 等重要部位,挂篮行走通过在挂梁后安装千斤顶顶推挂篮前移就位。 (3)由于拱圈轴线为悬链线,每一节段的模板弧线均不相同,施工时模板 采取以直代曲的方式,每节模板长1.2m,接头处通过调节螺杆使接头位置满 足设计线形要求。 (4)拱圈钢筋注意绑扎的先后顺序,纵向主筋采用机械连接,因顶板钢筋 较重,施工时设置劲性骨架支承,埋设索导管时,尽可能地避免截割纵向主 筋,否则应补强。 (5)混凝土采用拌和站集中拌和,混凝土罐车运输到场,输送泵泵送入模, 混凝土坍落度为16~20cm,初凝时间约8h,确保混凝土的和易性。
钢筋混凝土拱桥施工方案
钢筋混凝土拱桥施工方案简介本文档旨在提供钢筋混凝土拱桥施工方案的详细说明。
拱桥作为常见的桥梁形式之一,具有良好的承载能力和美观性,适用于中跨度的桥梁。
设计与准备工作1. 进行桥梁设计,包括桥跨宽度、高度和弯曲半径的确定。
2. 绘制桥梁结构图纸,包括拱形和支承结构。
3. 选择适当的材料,如混凝土和钢筋。
4. 确定施工期限和预算。
施工步骤1. 地基处理:清理施工现场,进行地基的平整和加固处理,以确保承重能力。
2. 基础施工:按照设计要求,进行桥墩和墩台的基础施工。
3. 拱形施工:使用模板和支架进行拱形的浇筑,确保拱形的准确性和强度。
4. 桥面施工:进行桥面铺装,包括道路表面处理和排水系统的设置。
5. 支承结构施工:根据设计要求,进行桥墩、墩台和支座的施工。
6. 管线布设:根据需要进行电力、通信和排水管线的布设。
7. 桥面防护层设置:设置桥面的防水和防腐层。
8. 装饰和完善:进行桥梁的装饰和完善工作,包括栏杆、路灯等设置。
安全措施1. 针对施工现场的安全进行风险评估和管理。
2. 提供工人安全培训,确保施工人员了解安全操作规程。
3. 安装安全围栏和警示牌,限制未授权人员进入施工区域。
4. 定期检查施工现场和设备,确保其符合安全标准。
5. 在施工期间配备适当的急救设备和人员。
质量控制1. 配备合格的施工队伍,包括工程师和技术人员。
2. 严格执行施工图纸和设计要求,确保施工符合规范。
3. 进行材料测试和质量检查,确保施工材料的合格性。
4. 进行现场巡查和监控,及时发现和纠正施工质量问题。
环境保护1. 遵守环境保护法律法规,确保施工对环境影响最小化。
2. 合理管理施工废弃物,进行分类和处理。
3. 使用环保材料和工艺,减少环境污染和资源浪费。
以上是钢筋混凝土拱桥施工方案的基本内容,通过合理的设计、施工和管理,确保拱桥的安全性、质量和环保性。
钢筋混凝土拱桥建造方案
钢筋混凝土拱桥建造方案一、引言钢筋混凝土拱桥是一种常见的大型桥梁工程,其设计与建造直接关系到桥梁的安全性和使用寿命。
本文将就钢筋混凝土拱桥的建造方案进行详细阐述。
二、桥梁设计步骤1. 桥梁调查在进行钢筋混凝土拱桥的建造方案设计之前,需进行充分的调查研究。
包括对地质情况、交通流量、气象条件等的了解,以确保设计方案的科学性和可行性。
2. 桥梁设计基于已有的数据和调查结果,设计师需综合考虑桥梁的结构形式、桥墩和桥面的设计、桥梁的荷载承载能力等因素。
同时,还需要进行结构强度计算,以确保桥梁在使用过程中的安全性。
3. 施工方案制定拱桥的施工方案制定是钢筋混凝土拱桥建造的重要环节。
在制定施工方案时,需充分考虑建设期间的安全性、效率性和经济性。
例如,可以采用模块化施工技术,将拱段预制,以提高施工效率。
4. 材料准备钢筋混凝土拱桥建造所需的主要材料包括水泥、砂子、石子和钢筋。
这些材料的质量直接关系到桥梁的稳定性和安全性,因此需要进行准确的质量检测和选材。
5. 施工工序根据施工方案,按照先后顺序进行桥墩、墩台、桥面梁等的施工。
同时,在施工过程中需严格控制施工质量,包括混凝土的浇筑、钢筋的布置等工序。
6. 环境保护在施工过程中,应注重环境保护,采取相应的措施减少对环境的污染。
例如,加强对废水、废气的处理,合理利用建筑垃圾等。
三、质量控制措施1. 施工监督在整个建造过程中,应设置专业人员负责监督施工质量。
施工质量监督人员需全面了解设计方案要求,对施工进展进行实时监控和评估,并及时纠正问题。
2. 质量检测对建造过程中的主要环节,如混凝土浇筑、钢筋布置等,应进行质量把关和检测。
例如,检测混凝土的强度、厚度等,确保达到设计要求。
3. 结构安全性评估在建造完成之后,需对钢筋混凝土拱桥进行全面的结构安全性评估。
通过静荷载和动荷载的测试,在保证桥梁正常使用的基础上,进一步验证结构的安全性。
四、进一步完善的建议1. 应加强桥梁建造相关技术人员的培训,提高其技术水平和管理能力,以确保建造质量;2. 在施工过程中,注意与相关部门的沟通协调,确保施工顺利并符合法规要求;3. 加强桥梁维修与保养工作,延长桥梁的使用寿命;4. 不断推进桥梁建造技术的创新,提升工期和质量的控制能力。
钢筋混凝土拱桥施工—劲性骨架施工
二、劲性钢骨架法施工步骤
1、在现场按设计进行骨架1:1放样、下料、加工以及分段拼装成型。 2、采用缆索吊装法进行骨架的安装、成拱。对钢管混凝土骨架,在吊装形成钢管 骨架后还需采用泵送法浇筑管内混凝土,形成最终的骨架结构。 3、在骨架上悬挂模板浇筑混凝土拱圈(分环、分段、多工作面进行)。 4、拱上结构及桥面系等结构的浇筑及铺设。
四、劲性骨架拱桥施工工程实例
2、劲性骨架安装 每段平卧钢骨架利用滚筒移至桥台,再将钢骨架竖转90°。用平车将钢骨架运至
起吊位置,由吊运天线运至安装位置,先用螺栓将各段进行临时连接,待钢骨架合拢 调整后再将各段接头焊接。
桁架起吊
第一桁段安放在拱座的支座管内
第二桁段起吊准备安装
骨架桁段间法兰盘贴合面调整
图1:万县长江大桥拱箱混凝土浇筑横向分环
4、万州长江大桥拱箱混凝土浇筑分环、分段实例
(2)万州长江大桥拱箱混凝土浇筑分段:如右图2每环分为六个和八个工作面,每个工作面又细 分为12-13个工作段。
图2:万州长江大桥拱箱混凝土纵向浇筑顺序
钢筋混凝土拱桥的劲性骨架施工 ——拱圈混凝土运输及变形观测
一、拱圈混凝土运输
1、 线性控制的方法有:锚索假载法、水箱调载法、千斤顶斜拉扣挂调载 法、多工作面法四种。 (1)锚索假载法:将锚索固定在河床的地锚上,锚索与地锚之间装有拉力计 和紧固器,用以施加假载。在拱箱混凝土浇筑时,根据各施工阶段的拱圈受力 和骨架变形,调整锚索拉力,以保证劲性骨架的线性和稳定性。这种方法操作 难度大,场地要求高,效果不理想。
钢筋混凝土拱桥的劲性骨架施工 ——拱桥劲性钢骨架法
一、劲性钢骨架施工法概述
劲性骨架施工法:是指在事先架设的拱形劲性骨架上,围绕骨架分环分段浇筑 混凝土,最终形成钢筋混凝土拱圈(肋)的一种施工方法。劲性骨架在施工过程中 起拱架作用,在拱圈形成后被埋于混凝土中,所以,劲性骨架法又称埋置式拱架法, 国外也称米兰法。用这种方法施工的钢骨架,不但须满足拱圈的要求,而且施工中 还起临时拱架的作用,因此,须有一定的刚性。一般选用劲性钢材如角钢、槽钢、 钢管等作为拱圈的受力钢筋。
钢筋混凝土简支梁桥毕业设计
钢筋混凝土简支梁桥毕业设计引言(一)设计基本资料1、结构选型与布置:上部结构为钢筋混凝土简支梁桥,标准跨径为14米×3,桥面净空:净—8+2×1.0米,采用重力式桥墩和桥台1、设计荷载:公路—Ⅱ级,环境类别Ⅰ类,设计安全等级二级。
2、河床地面线为(从左到右,高程/离第一点的距离,单位:米):0/0,-3/2,-5/4,-9/6,-12/9,-14/10, -10/12,-8/14,-7/16,-6/18,-5/20,-3/22,-4/24,-5/26,-7/28,-10/30,-13/32,-15/32,-16/34,-10/36,-6/38,-2/40,0/42。
3、桥台后填土容重:18KN/m3,内摩擦角φ= 18°,粘聚力c =20 kPa。
4、材料容重:素混凝土24KN/m3,钢筋混凝土25 KN/m3,沥青混凝土23 KN/m35、人群3.0KN/m2,每侧栏杆及人行道的重量按6 KN/m计6、桥梁纵坡为0.3%,桥梁中心处桥面设计高程2.00米(二)场地土条件设计水位 -7米,无侵蚀性,枯水期施工,枯水期水位-10m,气温10℃。
地质勘察资料见下表:土层厚度(m)天然重度kN/m3承载力标准值kN/m2承载力修正系数预制桩极限侧阻力标准值qsik,极限端阻力标准值qpk(kPa)ηbηd桩周桩端淤泥0.60 17 100 0 1.0 30 - 含砾粘土 1.00 20 220 0.3 1.6 45 4500 中细砂 3.50 21 180 1.0 2.5 40 5000 强风化凝灰岩7.80 23 400 - - - 120001. 计算荷载横向分布系数1.1. 当荷载位于支点处,利用杠杆原理法计算横断面对于1#梁:1#梁对于汽车荷载 421.02842.02121m oq1=⨯=∑=q η 对于人群荷载 368.11==r or m η 对于2#梁:2#梁对于汽车荷载 632.02211.0598.0158.021m 2=⎪⎭⎫⎝⎛++=∑=q oq η对于人群荷载 2or m =0 (由于是出现负的,取零,出于安全考虑) 对于3#梁:3#梁对于汽车荷载 684.02263.00.1105.021m oq3=⎪⎭⎫⎝⎛++=∑=q η对于人群荷载 30or m =1.2. 当荷载位于跨中时此桥在跨度内设有横隔板,具有强大的横向联结刚性,且承重结构的长度比为42.19.155.13L =⨯=B 可按刚性横梁法绘制影响线并计算横向分布系数cq m ,本桥各根主梁的横向截面均相等,梁数n=5, 梁间距为1.9米。
钢管混凝土拱桥
主要内容
一、钢管混凝土拱桥概述 二、钢管混凝土拱桥的基本组成、各部构
造 三、钢管砼拱肋构件的节点与连接 四、钢管混凝土拱桥病理及改造实例
一、钢管混凝土拱桥概述
1、钢管混凝土工作的基本原理 钢管混凝土是指在钢管中填充混凝土而形成
的构件 。钢管混凝土的原理可类比于螺旋配筋的 钢筋混凝土柱来比拟:核心混凝土在密集的螺旋 筋的作用下处于三向受压状态,因而使得核心混 凝土的抗压强度明显提高 。由于钢管对混凝土的 紧箍力作用,大大提高管内混凝土的承载力,反 之,混凝土对钢管的约束作用,提高了钢管抗失 稳的能力,二者结合是完美的 。 ✓ 借助内填砼增强钢管壁的稳定性; ✓ 借助钢管对核心砼的套箍作用提高砼强度
(4)形成钢管混凝土拱桥
钢管混凝土截面形成过程
• 1. 混凝土未凝固
2. 上弦杆混凝土凝固 3. 上、下弦杆混凝土凝固 施工中拱肋截面形成过程
•四肢管分两批灌注,首先,同时灌注两根上弦管;在上弦管混凝 土达到设计强度,上弦管形成钢管混凝土截面以后,再同时灌注 两根下弦管。上下游同时进行。钢管混凝土截面分二次形成。在 灌注上弦管混凝土时,所有自重由空钢管混凝土承担(图1);在 浇筑下弦管内混凝土,新浇筑的混凝土重量由形成的一期钢管混 凝土截面承受(图2)。待下弦管内混凝土也达到强度后,形成最
2、钢管混凝土的优点 (1)构件承载力大大提高 (2)具有良好的塑性和韧性 (3)结构自重和造价均有降低 (4)施工简单、缩短工期 (5)防腐、防火性能好 (6)结构造型美观
特别适合于修建拱桥: 拱为压弯构件,钢管砼以受压为主; 拱桥施工问题 3、钢管砼的主要缺点
(1)钢管的接头连接存在的缺陷
(2)钢管内灌注砼的密实度问题
钢管材料:16Mn钢、15Mn、或A3钢; 可采用无缝钢管,也可采用钢板卷制而成, 钢板厚度不宜小于12mm。
主跨100m公路钢管混凝土拱桥毕业设计
目录摘要 (I)Abstract ........................................................................................................................................................... I I1.引言 (1)2.设计资料与技术标准 (2)2.1技术标准 (2)2.2设计规范 (2)3.结构初步设计 (3)3.1 结构总体布置拟定 (3)3.1.1 拱肋 (3)3.1.2 横向联系 (3)3.1.3 立柱 (4)3.1.4 悬挂结构 (4)3.1.4.1 吊杆 (4)3.1.4.2 桥面系 (4)3.1.4.3横梁 (5)3.1.4.4加劲纵梁 (5)3.1.4.5桥面板 (5)3.2 截面尺寸拟定 (6)3.2.1拱肋 (6)3.2.2立柱 (7)3.2.3吊杆 (7)3.2.4横梁 (7)3.2.5加劲纵梁 (8)3.2.6桥面板 (8)4.结构计算 (9)4.1建立坐标系 (9)4.1.1单元划分 (9)4.1.2单元材料特性 (12)4.1.2.1主拱圈 (12)4.1.2.2吊杆单元 (12)4.1.2.3横梁、立柱、加劲纵梁、桥面板 (12)4.1.3结构边界条件 (13)4.1.4生成模型 (13)4.2内力计算 (14)4.2.1 恒载内力计算 (14)4.2.2活载内力计算 (15)4.2.3 荷载效应组合 (18)4.3应力输出 (20)4.3.1各施工阶段关键截面应力 (20)4.3.2使用极限状态各工况关键截面应力 (21)4.4位移输出 (21)4.4.1施工阶段关键节点计算累计竖向位移 (21)4.4.2使用阶段关键节点竖向位移 (21)4.5支承反力 (22)4.5.1施工阶段支承反力 (22)4.5.2使用阶段支承反力 (22)4.5吊杆初张力 (22)5.主拱验算 (24)5.1拱圈承载力验算 (24)5.2 拱肋整体稳定性验算 (25)5.2.1纵向稳定性验算 (25)5.2.2横向稳定性验算 (26)5.3主拱圈变形验算 (26)5.3.1正常使用极限状态验算 (26)5.3.1.1长期效应组合挠度验算 (26)5.3.1.2短期效应组合挠度验算 (26)5.3.2短暂状况验算 (26)5.4主拱圈应力验算 (27)5.4.1持久状况验算 (27)5.4.1短暂状况验算 (27)6.吊杆复核 (29)7.加劲纵梁分析 (31)7.1 计算结果 (31)7.4.1承载能力极限状态验算 (32)7.4.2加劲纵梁正常使用极限状态应力验算 (33)8.横梁分析 (36)8.1计算模型 (36)8.2横梁计算 (36)8.3横梁验算 (37)8.3.1施工阶段应力验算 (37)8.3.2持久状况下正常使用极限状态抗裂验算 (37)8.3.3长期效应组合 (38)8.3.3正常使用极限状态应力验算 (39)8.3.4承载能力极限状态强度验算 (40)9.桥面板分析 (42)9.1施工阶段应力验算 (42)9.2正常使用极限状态抗裂验算 (42)9.2.1短期效应组合 (42)9.2.2长期效应组合 (43)9.3正常使用极限状态应力验算 (44)9.4正常使用极限状态挠度验算 (45)9.5承载能力极限状态强度验算 (45)结束语 (47)参考文献 (49)致谢 (50)摘要钢管混凝土拱桥由于具有承载力高、塑性和韧性好、施工方便、经济效果好和地基适应性强等优点,是发展前景广阔的一种组合桥梁结构。
钢筋混凝土拱桥结构受力特点及设计
钢筋混凝土拱桥结构受力特点及设计摘要:钢筋混凝土拱桥形式古朴、优美,是景观桥梁常用的结构形式。
拱桥结构能够充分利用混凝土的抗压能力,养护维修费用低。
本文以北京新八里桥为例,通过有限元软件对该桥梁进行静力、抗震分析,最后得出结论。
希望为今后同类型的桥梁设计提供一些借鉴作用。
关键词:钢筋混凝土拱桥有限元、结构分析设计实例Mechanical Characteristics and Design of Reinforced Concrete Arch Bridge1 前言拱桥造型优美、庄重、大气,同时其结构形式多样,在城市景观桥设计中经常选用拱桥结构。
拱式结构在荷载作用下,两端将产生水平推力,从而使拱内产生轴向压力,从而大大减小了拱圈的截面弯矩,使之成为偏心受压构件,截面应力分布均匀,可以充分利用主拱截面材料强度。
2 钢筋混凝土拱桥结构特点2.1 钢筋混凝土拱桥优点外形美观,跨越能力较大,截面应力均匀,能充分的利用混凝土抗压能力,耐久性好,维修、养护费用低,构造较简单[1]。
2.2 钢筋混凝土拱桥缺点自重较大,相应的水平推力也较大,增加了下部结构工程量,当采用无铰拱时,对地基条件要求较高,由于拱桥水平推力较大,在连续多孔的大、中桥梁中,为防止一孔破坏而影响全桥的安全,需要采用较复杂的措施,如单向推力墩。
3 新八里桥工程3.1 工程概况新建八里桥位于通燕高速旁通惠河上现状八里桥上游。
新建桥梁全长81.0m,桥梁断面全宽26.6m,断面布置为:3.0米(人行道)+10米(行车道)+0.6米(双黄线)+10米(行车道)+3.0米(人行道)。
上部结构为一孔等截面悬链线钢筋混凝土箱型拱桥,主拱跨径为1-55m,矢高f=8.1米,矢跨比f/L =1/6.79,拱轴系数m=2.8398,主拱高1.35m,宽24.3m;腹拱拱轴跨径6.0米、矢高f=1.2米,矢跨比f/L =1/5的等截面圆弧板拱,腹拱高0.3m,宽24.3m;下部结构桥台为薄壁台身接承台, 基础为钻孔灌注桩,台身厚1.2m,在距离承台4.5m位置渐变宽至2.932m,桥台宽26.3m;承台尺寸:长x宽x厚为26.3x13.2x3m;桩基直径2m,每个桥台布置15根桩,顺桥向布置3排,每排5根。
钢筋混凝土桥梁设计——毕业设计
桥梁安全等级为二级,环境条件为II类,计算收缩徐变时,考虑存梁期为90天
通航要求:不通航
设计洪水频率:
地震基本烈度: 度,地震峰值加速度0.05g(地区为南昌)
一般均为桥面连续结构,行车平顺,但后期维护量较大
外形美观,行车平顺,后期维护量较小
外形轻巧美观,行车平顺,后期维护量较小
根据相关施工经验以及桥梁建设安全,在致估算桥梁的建造价格.
跨径为20米
桥 型
比较项目
T型梁
(组合梁)
组合箱梁
空心板梁
宽幅空心板梁
现浇连续箱梁
建筑高度
(m)
1.50
1.20
0.95
1.00
图4—3(尺寸单位:cm)
查表可知:
表4-1
t/b
1
0.9
0.8
0.7
0.6
02
0.1
<0.1
c
0.141
0.155
0.171
0.189
0.209
0.229
0.250
0.270
0.291
0.312
1/3
根据表可得:
;
。
所以
单位宽度抗弯及抗扭惯矩:
横梁抗弯及抗扭惯矩
翼板的有效宽度 计算(图4-4)[2]:
In the design,firstaccording to specification and experience first preliminary component of structure and the structure size and layout design,thencalculation of the superstructure emphasized analyzes the function of the constant load and active load in the stage run. The lever principle and the G-M method are made to seek the transverse distribution coefficient of active load, and making use of the line of influence increase the weight in disadvantage conditions. I account the content of main beam、thedesign of section and choose steel rod、the check of the weight、the check of crack、the check of deformation and so on.
桥梁工程钢筋混凝土框架结构毕业设计
桥梁工程钢筋混凝土框架结构毕业设计目录第1章桥梁方案比选 (4)1.1桥梁设计工程资料 (4)1.1.3 水文及工程地质 (4)1.2 桥梁方案拟定 (5)1.2.1 方案一:简支转连续分离式箱梁桥 (5)1.2.2 方案二:连续梁桥 (8)1.3 桥型方案综合比选 (11)1.3.1 拟定方案比较 (11)1.3.2 选定桥梁细部尺寸拟定 (11)第2章 MIDAS建模 (15)2.1特性值 (15)2.1.1定义材料: (15)2.1.2时间依存材料(收缩徐变) (16)2.1.4截面 (17)2.1.5修改单元的材料依存特性(修改截面计算厚度) (18)2.2 结构 (19)2.2.1节点 (19)2.2.1单元 (19)2.3 边界条件 (20)2.3.1支撑 (20)2.4 静力荷载 (21)2.3.1 自重 (21)2.3.2 二期 (21)2.3.3预应力 (22)2.3.4 温度 (23)2.4 张拉钢束 (23)2.4.1钢束特性值 (23)2.4.2 钢束形状 (24)2.5 移动荷载分析 (24)2.5.1移动荷载规范 (24)2.5.2 车道 (25)2.5.3车辆 (25)2.5.4移动荷载工况 (26)2.6支座沉降分析 (27)2.6.1支座沉降组 (27)2.6.2支座沉降荷载工况 (28)2.7施工阶段 (29)2.7.1 施工阶段数据分析 (29)1第3章桥面板计算 (30)3.1 自由悬臂板 (30)3.1.1 永久作用 (30)3.1.2 可变作用 (31)3.1.3 荷载内力组合 (32)3.2 连续单向板 (32)3.2.1 永久作用效应 (32)3.2.2 可变作用效应 (34)3.2.3 可变作用效应组合 (36)3.3 截面配筋设计以及承载能力验算 (37)3.3.1 悬臂板支点截面配筋设计 (37)3.3.2 连续板跨中截面配筋设计 (38)第4章MIDAS参数计算 (39)4.1 车道荷载计算 (39)4.2 人群荷载标准值计算 (39)4.3 二期恒载计算 (39)4.4 施工方法: (40)第5章内里组合 (40)5.1 作用分类 (40)5.2 承载能力极限状态设计组合 (41)5.2.1 基本组合 (41)5.2.2 输出基本组合内力图 (42)5.2.3 偶然组合 (42)5.3 正常使用极限状态设计组合 (42)5.3.1 作用短期效应组合 (43)5.3.2 输出短期效应组合图形 (43)5.3.3 作用长期效应组合 (43)5.3.4 输出长期效应组合图形 (44)第6章钢束计算 (44)6.1跨中截面预应力钢束估算 (44)6.2 钢束配束原则 (45)6.3 预应力钢束参数计算 (46)第7章截面验算 (47)7.1. 设计规范 (47)7.2. 设计资料 (47)7.3. 主要材料指标 (47)7.3.1. 混凝土 (47)7.3.2. 预应力钢筋 (48)7.3.3. 普通钢筋 (48)7.4. 模型简介 (48)7.4.6. 成桥阶段 (48)7.5. 荷载组合说明 (49)7.5.1. 荷载工况说明 (49)7.5.2. 荷载组合说明 (49)27.6. 验算结果表格 (51)7.6.1. 施工阶段法向压应力验算 (51)7.6.2. 使用阶段正截面抗裂验算 (56)7.6.3. 使用阶段斜截面抗裂验算 (63)7.6.4. 使用阶段正截面压应力验算 (66)7.6.5. 使用阶段斜截面主压应力验算 (69)7.6.6. 使用阶段正截面抗弯验算 (72)7.6.7. 使用阶段抗扭验算 (74)3第1章桥梁方案比选1.1桥梁设计工程资料1.1.1 方案比选原则在桥梁方案比选中要注意以下四项主要指标:安全、功能、经济与美观,其中安全与经济最为重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 方案拟定与比选1.1 工程背景介绍及使用要求1.1.1 工程背景介绍魏家寨至竹子公路工程(以下简称魏竹公路)是提高国道209线在保靖县迁陵镇地段通行能力、满足保靖县迁陵镇发展规划、解决保靖县酉水桥危桥问题、实现国家西部大开发战略所需要的重要工程。
酉水二桥是魏竹公路的关键工程。
1.1.2 工程使用要求保靖县魏竹公路酉水二桥,必须遵照“安全、使用、经济、美观”的基本原则进行设计,同时应充分考虑建造条件的先进性以及环境保护和可持续发展的要求。
(1)公路等级:山岭重丘区二级公路。
计算行车速度:40Km/h;(2)桥梁全长:305m;(3)桥面宽的布置:净9m+2×(2.25人行道+0.25人性栏杆);(4)桥下通航等级:6级;(5)地震:不设防。
1.2设计依据及参考书:《公路工程技术标准》JTG B01-2003《公路桥涵设计通用规范》JTG D60-2004《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004《公路圬工桥涵设计规范》JTG D61-2005《桥梁计算示例集》易建国,顾安邦编著. 人民交通出版社。
1.3施工方案的确定。
1.3.1方案拟定:设计方案一:钢筋混凝土拱桥设计方案二:单塔斜拉桥设计方案三:连续梁桥1.3.2方案比选表1-1方案比选表梁结构的经济性、实用性、安全性、美观性和施工的难易程度为考虑因素,综合个设计方案的优缺点,最终选定一个最优方案:钢筋混凝土拱桥。
2 毛截面几何特性计算2.1 基本资料2.1.1 主要技术指标桥型布置:37m+2×126m+16m悬链线箱形拱桥桥面净宽:0.25m(人行栏杆)+2.25m(人行道)+2×4.5m(双车道)+2.25m(人行道)+0.25m(人行栏杆)设计荷载:公路—Ⅱ级桥面纵坡:双向2 %图2.1 拱脚横截面(单位:cm)图2.2 拱顶截面(单位:cm)2.1.2 材料规格主拱圈、立柱:采用50号混凝土,容重为25kN/m 3,弹性模量取3.0×107 kPa ; 桥面铺装:采用防水混凝土,厚度为10cm ,容重为25kN/m 3; 人行道、栏杆:采用20号混凝土,容重为25kN/m 3;横隔板:采用30号混凝土,容重为25kN/m 3,弹性模量取3.0×107 kPa 。
2.2 结构计算简图由于对称关系,全桥两跨只计算单个主拱圈共取14个单元,15个结点,各单元分别为(1×5+12×9+1×5) m 。
桥墩简化为固定支座。
结点x 、y 坐标按各结点对应截面的形心点的位置来确定,结构计算简图,如图2.2所示。
图2.2 结构计算简图2.3 主拱圈横截面设计2.3.1 主拱圈横截面设计拱圈截面高度按经验计算公式计算:8m 7.10.01)100/11800(60/b)K (a H 0=⨯+=+=l取为H=1.95 m (包括底梁0.15m ),拱圈有七个各为 1.95m 宽的拱箱组成,全宽m B 6.120= 。
图2.3 主拱圈截面图(单位:cm )2.3.2 箱形拱圈截面几何特性由桥博计算有 12.09320=A 2m 绕箱底边缘静面矩 S=12.726 4m 主拱圈截面重心轴m y y m A S y 0023.395.10523.10.1/=-====下上下2.3.3 主拱圈受力荷载 2.3.3.1桥面系荷载人行道构件重:q 1 =75.5 kN/m 桥面铺装重:q 2 =535.325 kN/m 合计:q = q 1+q 2 =610.825 kN/m将桥面系荷载作为二期恒载以均布荷载的形式加在主梁上。
2.3.3.2主梁自重按γ=25kN/m 3的容重,以计主梁自重的形式计入恒载中。
由于拱桥弯矩分布比较均匀,所以主拱圈从桥台开始每段设立7块横隔板,取水平间距为9.833/2m(方便桥博建模)。
一截面有7块横隔板,板重力为:m=9.723 kN2.4 主拱圈系数m 计算假设m=1.756,有20.0/4/=f y l ,7/1/00=l f (五点重合法), 2.4.1计算横隔板j l M M ,4/59)125124123122121(723.95259723.92592723.94/⨯++++⨯-⨯⨯+⨯=l M =860.5 kN/m)121121(59723.9111∑=-+⨯⨯=i j iM=3441.9 kN/m2.4.2 计算主拱圈自重j l M M ,4/因为][)4(2表值⨯=l A M k γ 由《拱桥》表[Ⅲ]-19查得半拱悬臂自重对l/4截面和拱脚截面的弯矩为: 5529.32298112571.0)4118250932.12(24/=⨯⨯⨯=l M kN/m3125.5394970.51263)4118250932.12(2=⨯⨯⨯=j M kN/m 2.4.3计算立柱的4/l M ,j M将m=1.756导入桥博,输入相关数据,得出拱轴线,得出拱轴线与立柱的角的坐标。
表2-1 立柱长度(单位:m)4根立柱单位长度重力5.78251442=⨯⨯⨯⨯=πQ kN/m设i 节点立柱压力为 +⨯=9825.610i N 78.5×i L 得:2181245.25.115.205.29243214/=⨯+⨯+⨯+⨯=N N N N M l kN/m .93.313397514233241505927654321=⨯+⨯+⨯+⨯+⨯+⨯+⨯=N N N N N N NM j kN/m 得:353.42181242.737515.8603.7313393.5394979.34414/=++++=∑∑i jMM768.11)2353.4(21`2=--⨯=mm 与m`之差小于半级,因此取拱轴系数m=1.756 将截面信息输入桥博,得出表2-2表2-2 毛截面几何特性表3 内力计算及组合3.1 桥博建模及计算1结构离散,将求解区域变成有限元模型。
用所选单元划分有限元网络,给节点,单元编号;选定整体坐标系,测量节点坐标;准备好单元几何尺寸,材料常数。
2 单元分析,建立单元平衡方程组。
(1) 在典型方程内选定位移函数,并将它表示成节点位移的插值形式;(2) 用虚功原理或变分法推导单元平衡方程;(3) 求每个单元的单元刚度矩阵。
3整体分析,形成和求解整体方程组。
(1) 单元组合集成整体刚度矩阵,节点位移列向量和节点荷载列向量形成整体平衡方程组;(2) 引入边界条件,求解节点位移;(3) 进行计算,根据需要计算变形,反力.在桥梁的施工过程中,往往要计算各施工状态的结构变形和内力。
由于各施工状态的结构一般都不相同,通常随着施工的进行,结构在不断的变大,如果要将各施工状态逐一进行受力计算,并进行变形和内力的累计,则利用桥梁博士程序很不方便。
现采用满堂支架施工方法,只对成桥后的内力进行计算。
3.2 活载汽车:公路Ⅱ级车道荷载(由均布荷载q k和集中荷载P k组成),q k=7.875kN/m,P k=270kN;计算剪力效应时,P k=324kN。
3.3 结构重力作用以及影响线计算3.3.2 截面影响线图(图3.4-3.8)图3.6 7#节点影响线图3.7 10#节点影响线图3.8 13#节点影响线3.4 公路-Ⅱ级汽车冲击系数计算公路-Ⅱ级汽车荷载加载于影响线上,其中均布荷载为q=10.5×0.75=7.875KN/m ;集中荷载P k 当计算跨径l 0为5m 时,P k =180×0.75=135KN ,当l 0为50m 以上时,P k =360×0.75=270KN 。
故取P k =270KN 。
按《通规》条文说明公式(4-7)、(4-8),自振频率计算如下:ccm EI l f 2112πω=4221186733445.16504.5105f f f +++⨯=ω 1f —自振频率(HZ );1ω—频率系数;0l —计算跨径,近似去净跨径168m ;E —结构材料弹性模量(N/m 2),E=3.45×104Mpa=3.45×1010 N/m 2; I —结构跨中截面惯性矩,c I = 5.49 m 4;m c —结构跨中处的单位长度质量,以Kg/m 计,主拱圈结构跨中处自重为12.0932×25=302.33kN/m 换算成质量,其值为:2962.834kg/m ;f —拱矢跨比,f=1/7。
计算得1ω=28.037801f =834.296249.51045.3118203780.28102⨯⨯⨯⨯π=2.56HZ 所以汽车冲击系数μ=0.1767lnf-0.0157=0.153.5 基本可变荷载(汽车、人群)内力计算活载信息:人行道宽度: 2.25m 人群荷载: 3.5kN/m 行车道宽度: 9m 公路等级: Ⅱ级图3.9 汽车荷载轴力包络图(单位:kN )图3.10 人群荷载轴力包络图(单位:kN)图3.11 汽车荷载剪力包络图(单位:kN)图3.12 人群荷载剪力包络图(单位:kN)图3.13 汽车荷载弯矩包络图(单位:kN ·m )图3.14 人群荷载弯矩包络图(单位:kN ·m )3.6 温度变化荷载由于均匀温度变化,即C t t ο2021-==,如取α=1.0E-5,则20.1-=⋅=t o αε×510-,χ=0,各单元均相同.3.6.1阶段升温结果及图表(温度上升20℃):表3-1 升温内力图3.15 升温轴力图(单位:kN)图3.16 升温剪力图(单位:kN)图3.17 升温弯矩图(单位:kN·m)3.6.2阶段降温结果及图表(温度下降20℃):表3-2 降温内力续表 3-2图3.18 降温轴力图(单位:kN)图3.19 降温剪力图(单位:kN)图3.20 降温弯矩图(单位:kN ·m )3.7 主要设计荷载(1)永久作用:结构重力(2)可变作用:汽车荷载(含汽车冲击力) 3.7.1作用效应组合根据《公路桥涵设计通用规范》第4.1.6条规定:公路桥涵结构按承载能力极限状态设计时,应采用以下两种作用效应组合:基本组合—永久作用的设计值效应与可变作用设计值效应相组合,其效应组合表达式为:0γ)(21110∑∑==++=nj Qjk Qj c k Q Q m i Gik Gi ud S S S S γψγγγ式中 ud S —承载能力极限状态下作用基本组合的效应组合设计值;Gi γ—第i 个永久作用效应的分项系数,按表4.1.6的规定采用; Gik S —第i 个永久作用效应的标准值和设计值; 1Q γ—汽车荷载效应(含汽车冲击力)的分项系数,取1Q γ=1.4;1Q S —汽车荷载效应(含汽车冲击力)的标准值和设计值;Qj γ—在作用效应组合中除汽车荷载效应(含汽车冲击力)、风荷载外的其他第j 个可变作用效应的分项系数,取Qjγ=1.4;Qjk S —在作用效应组合中除汽车荷载效应(含汽车冲击力)、风荷载外的其他第j 个可变作用效应的标准值和设计值;c ψ—在作用效应组合中除汽车荷载效应(含汽车冲击力)外的其他可变作用效应的组合系数,当只有一种其他可变作用(温度)参与组合时,取c ψ=0.8。