不等式与不等式组全章测试题含答案
不等式与不等式方程练习题(含答案)
不等式与不等式方程练习题(含答案)本文档包含了一系列关于不等式和不等式方程的练题和答案,旨在帮助读者巩固对这些概念的理解和应用。
不等式练题1. 求解不等式:$2x + 5 > 10$。
答案:$x > 2.5$2. 将不等式$3x - 4 < 7$化为标准不等式形式。
答案:$3x < 11$3. 求解不等式组:$\begin{cases} x - 2 > 5 \\ 2x + 3 < 10\end{cases}$。
答案:$x > 7$,$x < 3.5$4. 求解绝对值不等式:$|2x - 3| \leq 7$。
答案:$-2 \leq x \leq 5$5. 求解复合不等式:$-3 < 2x + 1 < 5$。
答案:$-2 < x < 2$不等式方程练题1. 求解不等式方程:$5x - 7 = 3x + 5$。
答案:$x = 6$2. 求解二次不等式方程:$x^2 + 5x - 6 < 0$。
答案:$-6 < x < 1$3. 求解分式不等式方程:$\frac{2x + 1}{x - 3} \geq 2$。
答案:$x \geq 4$4. 求解绝对值不等式方程:$|2x - 5| = 10$。
答案:$x = -2.5$,$x = 7.5$5. 求解复合不等式方程组:$\begin{cases} 3x - 2 \geq 4 \\ 2x + 5 \leq 9 \end{cases}$。
答案:$x \geq 2$,$x \leq 2$以上是一些关于不等式和不等式方程的练习题和答案。
阅读者可以利用这些题目来巩固学习并提高解题能力。
如有任何疑问,请随时提出。
人教版七年级下册第九章《不等式与不等式组》全章练习(分层分结典型练习题含答案)
第九章不等式与不等式组9.1不等式9.1.1不等式及其解集基础题知识点1不等式1.给出下面5个式子:①3>0;②4x+3y≠0;③x=3;④x-1;⑤x+2<3,其中不等式有(B)A.2个B.3个C.4个D.5个2.选择适当的不等号填空:(1)2<3;(2)-9>-4;(3)若a为正方形的边长,则a>0;(4)若x≠y,则-x≠-y.3.如图,左边物体的质量为x g,右边物体的质量为50g,用不等式表示下列数量关系是x>50.第3题第4题4.如图,身高为x cm的1号同学与身高为y cm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,那么这个式子可以表示成x<y(用“>”或“<”填空).5.用适当的符号表示下列关系:(1)x是正数:x>0;(2)m大于-3:m>-3;11(3)a-b是负数:a-b<0;(4)a的3比5大:3a>5.116.“b的2与c的和是负数”用不等式表示为2b+c<0.知识点2不等式的解和解集7.用不等式表示如图所示的解集,其中正确的是(A)A.x>-2B.x<-2C.x>2D.x≠-28.下列说法中,错误的是(C)A.x=1是不等式x<2的解;B.-2是不等式2x-1<0的一个解;C.不等式-3x>9的解集是x=-3;D.不等式x<10的整数解有无数个。
229.下列各数:-2,-2.5,0,1,6中,不等式3x>1的解有6;不等式-3x>1的解有-2,-2.5.10.把下列不等式的解集在数轴上表示出来.(1)x>-3;解:(2)x>-1;解:(3)x<3;解:3(4)x<-2.解:中档题11.x与3的和的一半是负数,用不等式表示为(C)1111A.2x+3>0B.2x+3<0C.2(x+3)<0D.2(x+3)>012.实数a,b在数轴上的位置如图所示,则下列不等式成立的是(D)A.a>bB.ab>0C.a+b>0D.a+b<013.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.x+4]=5,则x的取值可以是(C)若[10A.40B.45C.51D.5614.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:x<1;(2)-2,-1,0,1都是不等式的解:x<2;(3)0不是这个不等式的解:x>0;(4)与x<-1的解集相同的不等式:x+2<1.15.有如图所示的两种广告牌,其中图1是由两个两直角边相等的直角三角形构成的,图2是一个长方形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a,b 11的不等式表示为2a2+2b2>ab.16.用不等式表示:(1)7x与1的差小于4;(2)x的一半比y的2倍大;1(3)a的9倍与b的2的和是正数.11(3)9a+2b>0.解:(1)7x-1<4.(2)2x>2y.17.直接写出下列各不等式的解集:(1)x+1>0;解:x>-1.(2)3x<6.解:x<2.18.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x的不等式来表示小华所需支付的金额与50元之间的关系?解:列不等式为:1.5x+10×(1.5+2)<50.19.在爆破时,如果导火索燃烧的速度是每秒钟0.8cm,人跑开的速度是每秒钟4m,为了使点导火索的人在爆破时能够跑到100m以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;s解:4×0.8>100.(2)当导火索是下列哪个长度时,人能跑到安全地区(D)A.15cmB.18cmC.20cmD.25cm综合题20.阅读下列材料,并完成填空:你能比较20172018和20182017的大小吗?为了解决这个问题,先把问题一般化,即:比较n n +1和(n+1)n的大小(n>0,且n为整数).从分析n=1,2,3,…的简单情况入手,从中发现规律,经过归纳猜想出结论:(1)通过计算,填“>”或“<”;①12<21;②23<32;③34>43;④45>54.(2)根据(1)的结果,猜想n n+1和(n+1)n的大小关系;(3)根据(2)中的猜想,知20172018>20182017.解:当n=1或2时,n n+1<(n+1)n;当n>2,且n为整数时,n n+1>(n+1)n.4.若 a >b ,则 3a >3b ; > ;ac 2>bc 2(c 为非零实数).(填“>”“=”或“<”)5.如果 2m <3n ,那么不等式两边同时乘 (或除以 6),可变为 m< n.2 3 3第九章 不等式与不等式组9.1 不等式9.1.2不等式的性质第 1 课时 不等式的基本性质基础题知识点 1 不等式的性质 11.若 a >b ,则 a -3>b -3.(填“>”“<”或“=”)2.若 a -4<b -4,则 a <b.(填“>”“<”或“=”)3.已知实数 a ,b 在数轴上的对应点的位置如图所示,则 a -2<b -2.知识点 2 不等式的性质 2a b5 51 1 16 3 2知识点 3 不等式的性质 316.若- a≥b,则 a≤-2b ,其根据是(C)A.不等式的两边加(或减)同一个数(或式子),不等号的方向不变B.不等式的两边乘(或除以)同一个正数,不等号的方向不变C.不等式的两边乘(或除以)同一个负数,不等号的方向改变D.以上答案均不对7.若 a >b ,am <bm ,则一定有(B)A.m =0B.m <0C.m >0D.m 为任何实数中档题8.若 x >y ,则下列式子中错误的是(D)x y A.x -3>y -3B. >C.x +3>y +3D.-3x >-3y9.(2017·株洲)已知实数 a ,b 满足 a +1>b +1,则下列选项错误的为(D)A.a >bB.a +2>b +2C.-a <-bD.2a >3bc b12.已知关于x的不等式(1-a)x>2的解集为x<210.下列说法不一定成立的是(C)A.若a>b,则a+c>b+c;B.若a+c>b+c,则a>b;C.若a>b,则ac2>bc2;D.若ac2>bc2,则a>b11.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是(B)A.a-c>b-cB.a+c<b+ca cC.ac>bcD.<1-a,则a的取值范围是a>1.13.如图所示,A,B,C,D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为B<A<D<C.14.张华在进行不等式变形时遇到不等式b<-b,他将不等式两边同时除以b得1<-1,这显然是不成立的,你能解释这是为什么吗?你能求出b的取值范围吗?解:∵不知道b的正负,∴将不等式两边同时除以b,不等号的方向不知道改变不改变.张华把b看成大于0,所以才得出错误的结论.不等式两边同时加上b,得2b<0.不等式两边同时除以2,得b<0.3 6 3 6 7 44第 2 课时 不等式的基本性质的运用基础题知识点 1 利用不等式的性质解不等式1.不等式 x -2>1 的解集是(C)A.x>1B.x>2C.x>3D.x>42.(2016·临夏)在数轴上表示不等式 x -1<0 的解集,正确的是(C)3.利用不等式的基本性质求下列不等式的解集,并写出变形的依据.(1)若 x +2 016>2 017,则 x>1;(不等式两边同时减去 2__016,不等号方向不变)1 1(2)若 2x>- ,则 x>- ;(不等式两边同时除以 2,不等号方向不变)1 1(3)若-2x>- ,则 x< ;(不等式两边同时除以-2,不等号方向改变)x(4)若- >-1,则 x<7.(不等式两边同时乘-7,不等号方向改变)4.根据不等式的性质,将下列不等式化成“x>a”或“x<a”的形式.3(1)8x >7x +1;(2)-3x <-4x - .3解:(1)不等式两边都减 7x ,得 x >1.(2)不等式两边都加 4x ,得 x <- .知识点 2 不等式的简单应用5.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月 1 500 元租金外,每千米收 1 元;出租车公司规定每千米收 2 元,不收其他费用.设该单位每月用车 x 千米时,乘坐出租车划算,请写出 x 的取值范围.解:根据题意,得1 500+x>2x ,解得 x<1 500.∵单位每月用车 x(千米)是正数,∴x 的取值范围是 x >0 并且 x <1 500.33336.若式子3x+4的值不大于0,则x的取值范围是(D)4444A.x<-B.x≥C.x<D.x≤-7.如图是关于x的不等式2x-a≤-1的解集,则a的取值是(C)A.a≤-1B.a≤-2C.a=-1D.a=-28.利用不等式的性质解下列不等式.(1)5x≥3x-2;解:不等式两边同时减去3x,得2x≥-2.不等式两边同时除以2,得x≥-1.(2)8-3x<4-x.解:不等式两边同时加上x,得8-2x<4.不等式两边同时减去8,得-2x<-4.不等式两边同时除以-2,得x>2.9.已知一台升降机的最大载重量是1200kg,在一名体重为75kg的工人乘坐的情况下,它最多能装载多少件25kg重的货物?解:设能载x件25kg重的货物,因为升降机最大载重量是1200kg,所以有75+25x≤1200,解得x≤45.因此,升降机最多载45件25kg重的货物.a b10.已知关于 x 的不等式 ax <-b 的解集是 x >1,求关于 y 的不等式 by >a 的解集.解:∵不等式 ax <-b 的解集是 x >1,b∴a<0,- =1.∴b=-a ,b >0.a∴不等式 by >a 的解集为 y > =-1,即不等式 by >a 的解集为 y >-1.第九章 不等式与不等式组9.1 不等式9.2 一元一次不等式第 1 课时 一元一次不等式的解法基础题知识点 一元一次不等式及其解法1.下列不等式中,属于一元一次不等式的是(B)1 A.4>1B.3x -16<4C.x<2.4x -3<2y -712.(2017· 眉山)不等式-2x >2的解集是(A)11A.x <-4B.x <-1C.x >-4D.x >-13.(2017· 吉林)不等式 x +1≥2 的解集在数轴上表示正确的是(A)4.(2016· 六盘水)不等式 3x +2<2x +3 的解集在数轴上表示正确的是(D)x x -15.不等式2- 3 ≤1 的解集是(A)A.x ≤4B.x ≥4C.x ≤-1D.x ≥-16.(2017· 遵义)不等式 6-4x ≥3x -8 的非负整数解有(B)A.2 个B.3 个C.4 个D.5 个77.已知 y 1=-x +3,y 2=3x -4,当 x >4时,y 1<y 2.8.解不等式,并把解集在数轴上表示出来:(1)5x-2≤3x;解:移项,得5x-3x≤2.合并同类项,得2x≤2.系数化为1,得x≤1.其解集在数轴上表示为:(2)2(x-1)+5<3x;解:去括号,得2x-2+5<3x.移项,得2x-3x<2-5.合并同类项,得-x<-3.系数化为1,得x>3.其解集在数轴上表示为:x-27-x.(3)2≤3解:去分母,得3(x-2)≤2(7-x).去括号,得3x-6≤14-2x.移项、合并同类项,得5x≤20.解得x≤4.其解集在数轴上表示为:1+x 2x +19.(2017· 舟山)小明解不等式 2 - 3 ≤1 的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:去分母,得 3(1+x)-2(2x +1)≤1.①去括号,得 3+3x -4x +1≤1.②移项,得 3x -4x ≤1-3-1.③合并同类项,得-x ≤-3.④两边都除以-1,得 x ≤3.⑤解:错误的是①②⑤,正确的解答过程如下:去分母,得 3(1+x)-2(2x +1)≤6.去括号,得 3+3x -4x -2≤6.移项,得 3x -4x ≤6-3+2.合并同类项,得-x ≤5.两边都除以-1,得 x ≥-5.中档题10.(2017· 丽水)若关于 x 的一元一次方程 x -m +2=0 的解是负数,则 m 的取值范围是(C)A.m ≥2B.m >2C.m <2 D .m ≤2111.不等式3(x -m)>2-m 的解集为 x >2,则 m 的值为(B)31 A.4 B.2C.2D.2312.要使 4x -2的值不大于 3x +5,则 x 的最大值是(B)A.4B.6.5C.7D.不存在x +1 2x +213.(2016· 南充)不等式 2 > 3 -1 的正整数解的个数是(D)A.1B.2C.3D.414.(2017·大庆)若实数3是不等式2x-a-2<0的一个解,则a可取的最小正整数为(D)A.2B.3C.4D.515.(2017·烟台)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作.若输入x后程序操作仅进行了一次就停止,则x的取值范围是x<8.16.解不等式,并把解集在数轴上表示出来:(1)2(x+1)-1≥3x+2;解:去括号,得2x+2-1≥3x+2.移项,得2x-3x≥2-2+1.合并同类项,得-x≥1.系数化为1,得x≤-1.其解集在数轴上表示为:1(2)(2017·晋江月考)3(x-1)<4(x-2)-3;解:去括号,得3x-3<4x-2-3.移项,得3x-4x<3-2-3.合并同类项,得-x<-2.系数化为1,得x>2.其解集在数轴上表示为:(3)2x-19x+2323=23-6≤1;解:去分母,得2(2x-1)-(9x+2)≤6.去括号,得4x-2-9x-2≤6.移项,得4x-9x≤6+2+2.合并同类项,得-5x≤10.系数化为1,得x≥-2.其解集在数轴上表示为:x+1(4)2≥3(x-1)-4.解:去分母,得x+1≥6(x-1)-8.去括号,得x+1≥6x-6-8.移项,得x-6x≥-6-1-8.合并同类项,得-5x≥-15.系数化为1,得x≤3.其解集在数轴上表示为:综合题17.已知关于x的方程4(x+2)-2=5+3a的解不小于方程(3a+1)x a(2x+3)=的解,试求a的取值范围.3a-1解:解方程4(x+2)-2=5+3a,得x=4.(3a+1)x a(2x+3)9a解方程,得x=2.3a-19a11依题意,得4≥2.解得a≤-15.故a的取值范围为a≤-15.第九章不等式与不等式组9.2一元一次不等式第2课时一元一次不等式的应用基础题知识点1一元一次不等式的简单应用1.(2017·齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买(A)A.16个B.17个C.33个D.34个2.某校举行关于“保护环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,则他至少答对的题数是(B)A.17B.16C.15D.123.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是(B)A.11B.8C.7D.54.(2016·西宁)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有(C)A.103块B.104块C.105块D.106块5.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?解:设孔明应该买x个球拍,根据题意,得81.5×20+22x≤200,解得x≤711.由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.知识点2利用一元一次不等式设计方案6.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解:(1)120×0.95=114(元).答:实际应支付114元.(2)设购买商品的价格为x元,由题意得0.8x+168<0.95x,解得x>1120.答:当购买商品的价格超过1120元时,采用方案一更合算.7.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.解:设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3000-50m)元.①若3000-50m=2400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票花费少,则有3000-50m>2400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票花费少,则有3000-50m<2400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.中档题8.(2016·雅安)“一方有难,八方支援”,雅安芦山4·20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为(C)A.60B.70C.80D.909.(2017·牡丹江)某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打8折.10.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3∶2,则该行李箱的长的最大值为78cm.11.2017年的5月20日是第28个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?信息1.快餐成分:蛋白质、脂肪、碳水化合物和其他.2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍.解:设这份快餐含有x克的蛋白质,则这份快餐含有4x克的碳水化合物,根据题意,得x+4x≤400×70%,解得x≤56.答:这份快餐最多含有56克的蛋白质.12.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.假设你是决策者,你认为应该选择哪种方案?并说明理由.解:设纸箱的个数为x,则当两种方案费用一样时,4x=2.4x+16000,解得x=10000;当方案一费用低时,4x<2.4x+16000,解得x<10000;当方案二费用低时,4x>2.4x+16000,解得x>10000.答:当需要纸箱的个数为10000时,两种方案都可以;当需要纸箱的个数小于10000时,方案一便宜;当需要纸箱的个数大于10000时,方案二便宜.综合题13.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?解:若按方案一购买更省钱,则有40x+3200<36x+3600.解得x<100.即当买的领带数少于100时,方案一付费较少.若按方案二购买更省钱,则有40x+3200>36x+3600.解得x>100.即当买的领带数超过100时,方案二付费较少;若40x+3200=36x+3600,解得x=100.即当买100条领带时,两种方案付费一样.第九章不等式与不等式组周周练(9.1~9.2)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.下列各式中,是一元一次不等式的是(C)A.5+4>8B.2x-11C.2x≤5D.x-3x≥02.下列数值中不是不等式5x≥2x+9的解的是(D)A.5B.4C.3D.23.(2017·六盘水)不等式3x+6≥9的解集在数轴上表示正确的是(C)4.(2017·杭州)若x+5>0,则(D)xD.-2x<12 A.x+1<0 B.x-1<0C.5<-12+x2x-15.下列解不等式3>5的过程中,出现错误的一步是(D)①去分母,得5(x+2)>3(2x-1);②去括号,得5x+10>6x-3;③移项,得5x-6x>-10-3;④系数化为1,得x>13.A.①B.②C.③D.④6.设a,b,c表示三种不同物体的质量,用天平秤两次,情况如图所示,则这三种物体的质量从小到大排列正确的是(A)A.c<b<aB.b<c<aC.c<a<bD.b<a<c7.(2017· 毕节)关于 x 的一元一次不等式m -2x11.若不等式(a -2)x <1 的两边同时除以 a -2 后变成 x> ,则 a 的取值范围是 a <2.3 ≤-2 的解集为 x ≥4,则 m 的值为(D)A.14B.7C.-2D.28.某射击运动员在一次比赛中(共 10 次射击,每次射击最多是 10 环),前 6 次射击共中 52 环.如果他要打破 89 环的记录,那么第 7 次射击不能少于(D)A.5 环B.6 环C.7 环D.8 环二、填空题(每小题 3 分,共 18 分)1 19.用不等式表示“y 的2与 5 的和是正数”为2y +5>0.2 7 1210.不等式3x +1<3x -3 的解集是 x > 5 .1a -212.不等式 3(x -1)≤5-x 的非负整数解有 3 个.13.某校规定期中考试成绩的 40%和期末考试成绩的 60%的和作为学生成绩总成绩.该校李红同学期中数学考了 85 分,她希望自己学期总成绩不低于 90 分,则她在期末考试中数学至少应得多少分?设她在期末应考 x 分,可列不等式为 40%×85+60%x ≥90.⎧x +2y =3,14.已知关于 x ,y 的方程组⎨的解满足不等式 x +y >3,则 a 的取值范围是 a >1. ⎩2x +y =6a三、解答题(共 50 分)15.(8 分)解下列不等式,并将其解集在数轴上表示出来.(1)8x -1≥6x +3;解:移项,得 8x -6x ≥3+1.合并同类项,得 2x ≥4.系数化为 1,得 x ≥2.其解集在数轴上表示为:6 . 16.(6 分)已知式子 1-3x∴3+ m >0.10x +1(2)2x -1<解:去分母,得 12x -6<10x +1.移项,得 12x -10x <1+6.合并同类项,得 2x <7.7系数化为 1,得x<2.其解集在数轴上表示为:2 与 x -2 的差是负数,求 x 的取值范围.解:∵1-3x2 与 x -2 的差是负数,1-3x ∴ 2 -(x -2)<0.解得 x >1.17.(6 分)已知关于 x 的方程 x +m =3(x -2)的解是正数,求 m 的取值范围.解:解方程 x +m =3(x -2),1得 x =3+2m.∵方程的解是正数,12∴m >-6,即 m 的取值范围是 m >-6.2-x18.(8分)已知:不等式3≤2+x.(1)解该不等式,并把它的解集表示在数轴上;(2)若实数a满足a>2,说明a是不是该不等式的解.解:(1)2-x≤3(2+x),2-x≤6+3x,-4x≤4,x≥-1.解集表示在数轴上如下:(2)∵a>2,不等式的解集为x≥-1,而2>-1,∴a是该不等式的解.19.(10分)(2017·贵港)某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?解:(1)设甲队胜了x场,则负了(10-x)场,根据题意,得2x+10-x=18,解得x=8.则10-x=2.答:甲队胜了8场,负了2场.(2)设乙队在初赛阶段胜a场,根据题意,得2a+(10-a)>15,解得a>5.答:乙队在初赛阶段至少要胜6场.20.(12分)某市某中学要印制本校高中招生的录取通知书,有两个印刷厂前来联系制作业务.甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元六折优惠.且甲、乙两厂都规定:一次印刷数至少是500份.如何根据印刷的数量选择比较合算的方案?如果这个中学要印制2000份录取通知书,那么应选择哪个厂?需要多少费用?解:设印刷数量为x份,则当1.2x+900=1.5x+540,此时x=1200.∴当印刷数量为1200份时,两个印刷厂费用一样,二者任选其一.当1.2x+900<1.5x+540,此时x>1200.∴当印刷数量大于1200份时,选择甲印刷厂费用少,比较合算.当1.2x+900>1.5x+540,此时500≤x<1200.∴当印刷数量大于或等于500且小于1200份时,选择乙印刷厂费用少,比较合算.当印制2000份时,选择甲印刷厂比较合算,所需费用为1.2×2000+900=3300(元).∴如果要印制2000份录取通知书,应选择甲印刷厂,需要3300元.x+1>x⎪⎩⎪⎩2第九章不等式与不等式组9.3一元一次不等式组基础题知识点1一元一次不等式组1.下列不等式组中,是一元一次不等式组的是(A)⎧x>2⎧x+1>0A.⎨B.⎨⎩x<-3⎩y-2<0⎧3x-2>0⎧⎪3x-2>0C.⎨D.⎨1⎩(x-2)(x+3)>0知识点2解一元一次不等式组2.如图表示下列四个不等式组中其中一个的解集,这个不等式组是(D)⎧x≥2⎧x≤2⎧x≥2⎧x≤2A.⎨B.⎨C.⎨D.⎨⎩x>-3⎩x<-3⎩x<-3⎩x>-3⎧3x-6<0,3.下列四个数中,为不等式组⎨的解的是(C)⎩3+x>3A.-1B.0C.1D.2⎧⎪2x>x-1,4.(2017·湖州)一元一次不等式组⎨1的解集是(C)x≤1A.x>-1B.x≤2C.-1<x≤2D.x>-1或x≤2⎧2x+9≥3,5.(2017·德州)不等式组⎨1+2x的解集是(B)⎩3>x-1A.x≥-3B.-3≤x<4C.-3≤x<2D.x>4⎧x+1>2,6.(2017·自贡)不等式组⎨的解集表示在数轴上正确的是(C)⎩3x-4≤2⎧2x-1>x+1,7.(2017·襄阳)不等式组⎨的解集为2<x≤3.⎩x+8≥4x-1⎧x+1≥2,①8.(2017·天津)解不等式组:⎨⎩5x≤4x+3.②请结合题意填空,完成本题的解答.(1)解不等式①,得x≥1;(2)解不等式②,得x≤3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为1≤x≤3.9.解不等式组:⎧x-3<1,①(1)⎨⎩4x-4≥x+2;②解:解不等式①,得x<4.解不等式②,得x≥2.∴不等式组的解集为2≤x<4.⎧⎪1 x -6≤1-3x ,⎧x -1>0,①(2)(2016· 郴州)⎨⎩3(x -1)<2x.②解:解不等式①,得 x >1.解不等式②,得 x <3.∴不等式组的解集是 1<x <3.知识点 3 一元一次不等式组的运用10.已知点 P(3-m ,m -1)在第二象限,则 m 的取值范围在数轴上表示正确的是(A)⎧x +1<2a ,11.已知不等式组⎨的解集是 2<x <3,则 a =2,b =1. ⎩x -b >1中档题⎧2x +1>0,12.一元一次不等式组⎨的解集中,整数解的个数是(C) ⎩x -5≤0A.4B.5C.6D.75 13.(2017· 鄂州)对于不等式组⎨3下列说法正确的是(A) ⎪⎩3(x -1)<5x -1,7A.此不等式组的正整数解为 1,2,3;B.此不等式组的解集为-1<x ≤6;C.此不等式组有 5 个整数解;D.此不等式组无解。
人教版七年级下册数学第九章《不等式和不等式组》单元检测卷 (附答案)
人教版七年级下册数学第九章《不等式和不等式组》单元测试卷(基础)总分:100分一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个B .3个C .4个D .5个2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B . C .D .3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<-B .11a b +>+C .22a b <D .33a b->- 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥xB .1x ≤C .2x ≥D .2x ≤7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .8.(2021·全国七年级)不等式组24020x x -⎧⎨+>⎩的解集在数轴上表示正确的是( )A .B .C .D .9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a >B .0a <C .3a >D .3a <10.(2021·广西北海市·八年级期末)若不等式组无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”).12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x⎧+>+⎪⎨--⎪⎩的最大整数解为__________.13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___.16.(2020·浙江绍兴市·八年级其他模拟)关于x 的不等式组314(1)x x x a->-⎧⎨<⎩的解是3x <,那么a 的取值范围是______.三、解答题一(每小题6分,共12分) 17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件. (1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?答案解析一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个 B .3个C .4个D .5个【答案】C 【分析】根据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式进行判断即可得. 【详解】根据不等式的定义可知①-2<0;②2x-5>0;⑤x≠-2;⑥x+2>x-1为不等式, 共4个, 故选:C . 【点睛】本题考查了不等式,一般地,用不等号表示不相等关系的式子叫不等式,解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B .C .D .【答案】D 【解析】试题分析:根据一元一次不等式的解法解不等式x+2≤0,得x≤﹣2. 表示在数轴上为:.故选D考点:不等式的解集3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤【答案】D 【分析】利用不等式的定义即可得. 【详解】最高气温是9C ︒表示的是气温小于或等于9C ︒, 最低气温是零下2C ︒表示的是气温大于或等于2C -︒, 则当天我市气温变化范围是29t -≤≤, 故选:D . 【点睛】本题考查了列不等式,掌握列不等式的方法是解题关键.4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<- B .11a b +>+C .22a b <D .33a b->- 【答案】B 【分析】根据不等式的性质进行判断即可. 【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误; B 、在不等式两边同时加1,不等号方向不变,故正确; C 、在不等式两边同时乘2,不等号方向不变,故错误; D 、在不等式两边同时除以-3,不等号方向改变,故错误; 故选:B . 【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断. 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-【答案】D根据不等式的性质解题:不等式的两边同时加(或减)同一个数(或式子),不等式的结果仍成立;不等式的两边同乘以(或除以)同一个不为零的正数,不等式的结果仍成立; 不等式的两边同乘以(或除以)同一个不为零的负数,不等式的方向要改变. 【详解】A. x y >则11x y +>+,正确,故A 不符合题意;B. 若a b ->-则a b <,正确,故B 不符合题意;C. 12x y ->则2x y <-,正确,故C 不符合题意; D. 若35x -<则53x >-,错误,故D 符合题意,故选:D . 【点睛】本题考查不等式的性质,是重要考点,难度较易,掌握相关知识是解题关键. 6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥x B .1x ≤C .2x ≥D .2x ≤【答案】D 【分析】不等式移项合并,把x 系数化为1,即可求出解集. 【详解】不等式213x -≤, 移项合并得:24x ≤, 解得:2x ≤, 故选:D . 【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .【分析】首先解出不等式的解集,然后看四个答案中哪个符合,即可解答;【详解】解:不等式4x-8≥0,4x≥8,x≥2;D符合;故选:D.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.8.(2021·全国七年级)不等式组24020xx-⎧⎨+>⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】C【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】解:24020xx-⎧⎨+>⎩①②,解不等式①,得2x,解不等式②,得2x>-,∴不等式组的解集是22x-<,在数轴上表示为:,故选:C.【点睛】本题考查了一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解题的关键.9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a > B .0a <C .3a >D .3a <【答案】D 【分析】根据不等式的性质,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案. 【详解】(3)3a x a ->-的解集是1x <,∴30a -<,解得:3a <, 故答案选D . 【点睛】本题考查了解一元一次不等式,由不等号方向改变,得出未知数的系数小于0是解题的关键. 10.(2021·广西北海市·八年级期末)若不等式组04x a x无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥【答案】D 【分析】不等式组整理后,根据不等式组无解确定出a 的范围即可. 【详解】解:不等式组整理得:4x a x,由不等式组无解,得到4a ≥. 故选:D . 【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”). 【答案】< 【分析】根据不等式的性质直接求解即可.【详解】∴22a b -<- ∴2525b a故答案是:<. 【点睛】本题考查了不等式的性质,熟悉相关性质是解题的关键.12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩的最大整数解为__________.【答案】3 【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集即可得出答案. 【详解】解:()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩①②解不等式①可得:x >52-, 解不等式②可得:x <4, 则不等式组的解集为52-<x <4, ∴不等式组的最大整数解为3, 故答案为:3. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.【答案】2或3 【分析】根据不等式的基本性质分别解两个不等式,然后取公共解集,最后找出整数解即可.解:321215x x ->⎧⎨-≤⎩①② 解①,得1x > 解②,得3x ≤∴该不等式组的解集为13x <≤ ∴该不等式组的整数解为2或3 故答案为2或3. 【点睛】此题考查的是求不等式组的整数解,掌握不等式组的解法是解决此题的关键.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.【答案】13x -<≤. 【分析】根据不等式组解集确定的口诀,结合数轴,确定解集即可. 【详解】根据数轴的意义,得 不等式的解集为13x -<≤; 故答案为13x -<≤. 【点睛】本题考查了不等式组解集,利用数形结合思想,熟练掌握解集的确定要领是解题的关键. 15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___. 【答案】5≤m <6 【分析】首先解不等式组求得解集,然后根据不等式组恰好有三个整数解,确定整数解,则可以得到一个关于m的不等式组求得m的范围.【详解】解:0 721 x mx-≤⎧⎨-≤⎩①②解不等式①,得:x m≤解不等式②,得:3x≥∴不等式组的解集为:3x m≤≤∵不等式组恰有三个整数解,∴不等式组的整数解为3、4、5,则5≤m<6.故答案为:5≤m<6.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(2020·浙江绍兴市·八年级其他模拟)关于x的不等式组314(1)x xx a->-⎧⎨<⎩的解是3x<,那么a的取值范围是______.【答案】a≥3【分析】先解第一个不等式得到x<3,由于不等式组的解集为x<3,则利用同大取大可得到a的范围.【详解】解:314(1)x xx a->-⎧⎨<⎩①,解①得x<3,而不等式组的解集为x<3,所以a≥3.故答案为:a≥3.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题一(每小题6分,共12分)17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.【答案】57x <;数轴见解析 【分析】 根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x 的范围,再把所得的x 的范围在数轴上表示出来即可.【详解】431132x x +-->, 去分母,得()()243316x x +-->,去括号,得28936x x +-+>,移项、合并同类项,得75x ->-,系数化为1,得57x <. 在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集 【答案】24x -≤<,数轴见解析【分析】分别解出这两个不等式,即可得到不等式组的解集.【详解】 解:31211213x x x x +≥-⎧⎪⎨+>-⎪⎩①②,解不等式①得2x ≥-,解不等式②得4x <,∴不等式组的解集为24x -≤<,在数轴上表示不等式的解集为:【点睛】本题考查解不等式组,解题的关键是掌握解不等式组的方法.四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +【答案】1【分析】 由题意,根据方程组的解相同得到2563516x y x y +=-⎧⎨-=⎩,从而得到22x y =⎧⎨=-⎩,再代入计算,求出m 、n 的值,即可得到答案.【详解】解:根据题意,由2563516x y x y +=-⎧⎨-=⎩, 解得:22x y =⎧⎨=-⎩,代入48mx ny nx my -=⎧⎨+=-⎩, 得224228m n n m +=⎧⎨-=-⎩, 解得:31m n =⎧⎨=-⎩;则20212021(2)(32)1m n +=-=;【点睛】 本题考查了解二元一次方程组,解题的关键是掌握解二元一次方程组的方法进行解题.20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件.(1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?【答案】(1)租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;(2)这次运送的费用最少需要9000元.【分析】(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,根据题意列一元一次不等式组,解一元一次不等式组,找到符合题意的解即可;(2)由(1)中结论,分别计算租车费用,再比较大小即可解题.【详解】解:(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,得()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:5x 6≤≤,所以符合条件的x 可以取5,6,租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;⨯+⨯=9000元;(2)方案一:租车的费用:1200510003⨯+⨯=9200元;方案二:租车的费用:1200610002所以这次运送的费用最少需要9000元.【点睛】本题考查一元一次不等式(组)的实际应用,是重要考点,难度较易,掌握相关知识是解题关键.。
人教版七年级数学下册第九章不等式和不等式组练习(含答案)
第九章不等式与不等式组一、单项选择题1.假如莱州市2019 年 6 月 1 日最高气温是33o C ,最低气温是24o C ,则当日莱州市气温t o C的变化范围是()A .t33B.t33C.24t 33D.24t33 2.以下说法正确的选项是()A . 5 是不等式x 5 0 的解B. 6 是不等式x 5 10 的解集C.x 3 是不等式x 30 的解集D.x 5 是不等式 x 510 的解集3).若 a b ,则以下不等式不建立的是(A .ac2bc2B. a 4 b 4C. 1 a 1 b D.1 2a1 2b2 24 |a| x 的一元一次不等式,则 a 的值是().若 ( a 1)x 3 0 是对于A .1 B.C.1 D. 05.在数轴上表示不等式1 1 的解集,正确的选项是()1- x≥2 2A .B.C.D.6.某种商品的进价为900元,销售的标价为1650元,后出处于该商品积压,商品准备打折销售,但要保证收益率不低于10% ,则最多可打()A.6折B.7折C.8折D.9折x87.若不等式组有解,那么n 的取值范围是()x nA . n 8B . n 8C . n 8D . n 88.若对于 x 、 y3x y 1 a 的解知足xy 505 ,则 a的二元一次方程组3y 1的取值范围x 是( ).A . a 2018B . a 2018C . a 505D . a 5059.运转程序以下图, 从 “输入实数 x ”到 “结果能否 18 ”为一次程序操作, 若输入后 x 程序操作进行了两次就停止,则x 的取值范围是 ()14 B .14 C .14 x 6D . x 6A . xx 8333a ba b 1 3 10.阅读理解: 我们把d 称作二阶队列式, 规定它的运算法例为=ad ﹣ bc ,比如2 4cc d=1×4﹣ 2× 3=﹣ 22 3 x ,假如1 > 0,则 x 的解集是( )xA . x >1B . x <﹣ 1C .x > 3D . x <﹣ 3二、填空题11.若不等式 (a - 2)x > a - 2 能够变形为 x < 1,则 a 的取值范围为 _____.12.已知不等式 3x - a0 的正整数解正是 1,2,3,4,那么 a 的取值范围是 _________________.x 2⋯1 的解集为 _____.13.不等式组2x 3x9 1614.迪士尼乐园开门前已经有400 名旅客在排队检票.检票开始后,均匀每分钟又有120 名旅客前来排队.已知一个检票口每分钟能检票15 人,若要使排队现象在开始检票10分钟内消逝,则起码开放___个检票口.三、解答题15.阅读以下资料:数学识题:已知x y 2 ,且x1,y0 ,试确立x y 的取值范围.问题解法: Q x y 2 ,x y 2.又 Q x 1 ,y 2 1 , y 1 .又Q y 0 ,1 y 0 .①同理得 1 x 2 .①由①①得 1 1 y x 0 2 ,x y 的取值范围是0 x y 2 .达成任务:(1)在数学识题中的条件下,写出2x 3 y 的取值范围是_____.(2)已知x y 3,且x 2 ,y0,试确立x y 的取值范围;(3)已知 y 1 ,x1,若x y a 建立,试确立x y 的取值范围(结果用含 a 的式子表示).16.解不等式(组)(1)3 x 1 1 x 2x1( 2)22x 12( x 1) 1 x2x y m 3 0, 求 m 的取值范围.17.已知对于 x, y 的方程组y2m 的解 xy x18.跟着 “一带一路 ”国际合作顶峰论坛在北京举行, 中国同 30 多个国家签订经贸合作协议,某厂准备生产甲、 乙两种商品共 8 万件销往 “一带一路 ”沿线国家和地域. 已知甲种商品的销售单价为 900 元,乙种商品的销售单价为600 元.( 1)已知乙种商品的销售量不可以低于甲种商品销售量的三分之一,则最多能销售甲种商品多少万件?(2)在( 1)的条件下,要使甲、乙两种商品的销售总收入不低于5700 万元,恳求甲种商品销售量的范围.19.益马高速通车后, 将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一田户需要将 A ,B 两种农产品按期运往益阳某加工厂,每次运输A ,B 产品的件数不变,本来每运一次的运费是 1200 元,此刻每运一次的运费比本来减少了300 元, A ,B 两种产品本来的运费和此刻的运费(单位:元∕件)以下表所示:品种A B本来的运费45 25此刻的运费30 20( 1)求每次运输的农产品中 A ,B 产品各有多少件;( 2)因为该田户诚实守信,产质量量好,加工厂决定提升该田户的供货量,每次运送的总件数增添 8 件,但总件数中 B 产品的件数不得超出A 产品件数的 2 倍,问产品件数增添后,每次运费最少需要多少元答案1. D 2. C 3. A 4. A 5. B 6. A 7. A8. B9. B10. A11. a<212.12a1513. 3≤x<514. 1115.( 1) 1 2x 3 y 4 ;(2)x y 的取值范围是 1 x y 3;(3)x y 的取值范围是 2 a x y a 2 .16.( 1)x 2;(2) 3 x 117. 1 m 16 万件18.( 1)最多销售甲种商品 6 万件;( 2)范围为3万件到19.( 1)每次运输的农产品中 A 产品有10 件,每次运输的农产品中 B 产品有30 件,( 2)产品件数增添后,每次运费最少需要1120 元。
【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)
人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。
(完整版)不等式与不等式组练习题答案
(完整版)不等式与不等式组练习题答案第九章不等式与不等式组测试1 不等式及其解集学习要求:知道不等式的意义;知道不等式的解集的含义;会在数轴上表⽰解集.(⼀)课堂学习检测⼀、填空题:1.⽤“<”或“>”填空:⑴4______-6; (2)-3______0;(3)-5______-1; (4)6+2______5+2;(5)6+(-2)______5+(-2); (6)6×(-2)______5×(-2). 2.⽤不等式表⽰:(1)m -3是正数______; (2)y +5是负数______; (3)x 不⼤于2______; (4)a 是⾮负数______;(5)a 的2倍⽐10⼤______; (6)y 的⼀半与6的和是负数______;(7)x 的3倍与5的和⼤于x 的31______;(8)m 的相反数是⾮正数______.3.画出数轴,在数轴上表⽰出下列不等式的解集: (1)?>213x(2)x ≥-4.(3)?≤51x(4)?-<312x⼆、选择题:4.下列不等式中,正确的是( ).(A)4385-<-(B)5172< (C)(-6.4)2<(-6.4)3 (D)-|-27|<-(-3)3 5.“a 的2倍减去b 的差不⼤于-3”⽤不等式可表⽰为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-3三、解答题:6.利⽤数轴求出不等式-2<x ≤4的整数解.(⼆)综合运⽤诊断⼀、填空题:7.⽤“<”或“>”填空:⑴-2.5______-5.2; (2);125______114--(3)|-3|______-(-2.3); (4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .8.“x 的23与5的差不⼩于-4的相反数”,⽤不等式表⽰为______.⼆、选择题:9.如果a 、b 表⽰两个负数,且a <b ,则( ).(A)1>b a(B)1a 11< (D)ab <110.如图在数轴上表⽰的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4 (D)-2≤x ≤4 11.a 、b 是有理数,下列各式中成⽴的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 12.|a |+a 的值⼀定是( ).(A)⼤于零 (B)⼩于零 (C)不⼤于零 (D)不⼩于零三、判断题:13.不等式5-x >2的解集有⽆数多个. ( ). 14.不等式x >-1的整数解有⽆数多个. ( ).15.不等式32421<<-x 的整数解有0、1、2、3、4. ( ). 16.若a >b >0>c ,则.0>cab( ).四、解答题:17.若a 是有理数,⽐较2a 和3a 的⼤⼩.(三)拓⼴、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a 、b 、c 、d ,定义db a -=,已知3411<<db ,则b +d 的值为______.测试2 不等式的性质学习要求:知道不等式的三条基本性质,并会⽤它们解简单的⼀元⼀次不等式.(⼀)课堂学习检测⼀、填空题:1.已知a <b ,⽤“<”或“>”填空:⑴a +3______b +3; (2)a -3______b -3; (3)3a ______3b ;(4);2______2b a (5);7______7ba -- (6)5a +2______5b +2; (7)-2a -1______-2b -1; (8)4-3b ______6-3a . 2.⽤“<”或“>”填空: (1)若a -2>b -2,则a______b ; (2)若,33ba <则a ______b ; (3)若-4a >-4b ,则a ______b ;(4),22ba -<-则a ______b . 3.不等式3x <2x -3变形成3x -2x <-3,是根据______. 4.如果a 2x >a 2y (a ≠0).那么x______y .⼆、选择题:5.若a >2,则下列各式中错误的是( ). (A)a -2>0 (B)a +5>7 (C)-a >-2 (D)a -2>-4 6.已知a >b ,则下列结论中错误的是( ). (A)a -5>b -5 (B)2a >2b (C)ac >bc (D)a -b >0 7.若a >b ,且c 为有理数,则( ). (A)ac >bc (B)ac <bc (C)ac 2>bc 2 (D)ac 2≥bc 2 8.若由x <y 可得到ax >ay ,应满⾜的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0三、解答题:9.根据不等式的基本性质解下列不等式,并将解集表⽰在数轴上.(1)x -10<0.(2).621(3)2x ≥5.(4).131-≥-x10.⽤不等式表⽰下列语句并写出解集:⑴8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.(⼆)综合运⽤诊断⼀、填空题:11.(1)若x <a <0,则把x 2;a 2,ax 从⼩到⼤排列是______.(2)关于x 的不等式mx -n >0,当m ______时,解集是;mnx <当m ______时,解集是?>mn x 12.已知b <a <2,⽤“<”或“>”填空:(1)(a -2)(b -2)______0; (2)(2-a )(2-b )______0; (3)(a -2)(a -b )______0.13.不等式4x -3<4的解集中,最⼤的整数x =______. 14.如果ax >b 的解集为,abx >则a ______0.⼆、选择题:15.已知⽅程7x -2m +1=3x -4的根是负数,则m 的取值范围是( ).(A)25=m (B)25>m (C)25≤m 16.已知⼆元⼀次⽅程2x +y =8,当y <0时,x 的取值范围是( ).(A)x >4 (B)x <4 (C)x >-4 (D)x <-4 17.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是( ).(A)a <2 (B)a <3 (C)a <4 (D)a <5三、解答题:18.当x 取什么值时,式⼦563-x 的值为(1)零;(2)正数;(3)⼩于1的数.(三)拓⼴、探究、思考19.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解⼀元⼀次不等式会解⼀元⼀次不等式.(⼀)课堂学习检测⼀、填空题:1.⽤“>”或“<”填空:(1)若x ______0,y <0,则xy >0;(2)若ab >0,则b a ______0;若ab <0,则ab______0; (3)若a -b <0,则a ______b ;(4)当x >x +y ,则y ______0.2.当a ______时,式⼦152-a 的值不⼤于-3.3.不等式2x -3≤4x +5的负整数解为______.⼆、选择题:4.下列各式中,是⼀元⼀次不等式的是( ).(A)x 2+3x >1(B)03<-yx (C)5511≤-x(D)31312->+x x 5.关于x 的不等式2x -a ≤-1的解集如图所⽰,则a 的取值是( ).(A)0 (B)-3 (C)-2 (D)-1三、解下列不等式,并把解集在数轴上表⽰出来:6.2(2x -3)<5(x -1). 7.10-3(x +6)≤1.8.?-->+22531x x 9.-≥--+612131y y y10.求不等式361633->---x x 的⾮负整数解.11.求不等式6)125(53)34(2+<-x x 的所有负整数解.(⼆)综合运⽤诊断⼀、填空题:12.已知a <b <0,⽤“>”或“<”填空:⑴2a ______2b ;(2)a 2______b 2;(3)a 3______b 3;(4)a 2______b 3;(5)|a |______|b |(6)m 2a ______m 2b (m ≠0). 13.⑴已知x <a 的解集中的最⼤整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最⼩整数为-2,则a 的取值范围是______.⼆、选择题:14.下列各对不等式中,解集不相同的⼀对是( ).(A)72423xx +<-与-7(x -3)<2(4+2x ) (B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2⼗x )≥2(2x -1) (D)x x ->+414321与3x >-1 15.如果关于x 的⽅程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ) (A)b a 53>(B)a b 53≥(C)5a =3b(D)5a ≥3b三、解下列不等式:16.(1)3[x -2(x -7)]≤4x . (2).17)10(2383+-≤--y y y(3).151)13(21+<--y y y (4)-+≤--+15)2(22537313x x x(5)).1(32)]1(21[21-<---x x x x (6)->+-+2503.002.003.05.09.04.0x x x四、解答题:17.已知⽅程组?-=++=+②①m y x m y x 12,312的解满⾜x +y <0.求m 的取值范围.18.x 取什么值时,代数式413--x 的值不⼩于8)1(32++x 的值.19.已知关于x 的⽅程3232xm x x -=--的解是⾮负数,m 是正整数,求m 的值.*20.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4 )5(的解集.(三)拓⼴、探究、思考21.适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有⼀个整数解; (2)x ⼀个整数解也没有.22.解关于x 的不等式2x +1≥m (x -1).(m ≠2)23.已知A =2x 2+3x +2,B =2x 2-4x -5,试⽐较A 与B 的⼤⼩.测试4 实际问题与⼀元⼀次不等式学习要求:会从实际问题中抽象出不等的数量关系,会⽤⼀元⼀次不等式解决实际问题.(⼀)课堂学习检测⼀、填空题:1.若x 是⾮负数,则5231x-≤-的解集是______. 2.使不等式x -2≤3x +5成⽴的负整数有______. 3.代数式231x-与代数式x -2的差是负数,则x 的取值范围为______ 4.6⽉1⽇起,某超市开始有偿..提供可重复使⽤的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装⼤⽶3公⽄、5公⽄和8公⽄.6⽉7⽇,⼩星和爸爸在该超市选购了3只环保购物袋⽤来装刚买的20公⽄散装⼤⽶,他们选购的3只环保购物袋⾄少..应付给超市______元.⼆、选择题:5.三⾓形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ). (A)13cm (B)6cm (C)5cm (D)4cm6.⼀商场进了⼀批商品,进价为每件800元,如果要保持销售利润不低于15%,则售价应不低于( ). (A)900元 (B)920元 (C)960元 (D)980元三、解答题:7.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?8.某次数学竞赛活动,共有16道选择题,评分办法是:答对⼀题给6分,答错⼀题倒扣2分,不答题不得分也不扣分.某同学有⼀道题未答,那么这个学⽣⾄少答对多少题,成绩才能在60分以上?(⼆)综合运⽤诊断⼀、填空题:9.直接写出解集:(1)4x -3<6x +4的解集是______; (2)(2x -1)+x >2x 的解集是______;(3)5231052--≤-x x x 的解集是______. 10.若m >5,试⽤m 表⽰出不等式(5-m )x >1-m 的解集______.⼆、选择题:11.初三⑴班的⼏个同学,毕业前合影留念,每⼈交0.70元,⼀张彩⾊底⽚0.68元,扩印⼀张相⽚0.50元,每⼈分⼀张,将收来的钱尽量⽤掉的前提下,这张相⽚上的同学最少有( ). (A)2⼈ (B)3⼈ (C)4⼈(D)5⼈12.某出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不⾜1km 按1km 计).某⼈乘这种出租车从甲地到⼄地共⽀付车费19元,设此⼈从甲地到⼄地经过的路程是x km ,那么x 的最⼤值是( ). (A)11 (B)8 (C)7 (D)5三、解答题:13.已知:关于x 、y 的⽅程组?-=++=+134,123p y x p y x 的解满⾜x >y ,求p 的取值范围.14.某⼯⼈加⼯300个零件,若每⼩时加⼯50个可按时完成;但他加⼯2⼩时后,因事停⼯40分钟.那么这个⼯⼈为了按时或提前完成任务,后⾯的时间每⼩时他⾄少要加⼯多少个零件?(三)拓⼴、探究、思考15.某商场出售A 型冰箱,每台售价2290元,每⽇耗电1度;⽽B 型节能冰箱,每台售价⽐A ⾼出10%,但每⽇耗电0.55度.现将A 型冰箱打折出售(打九折后的售价为原价的⼗分之九),问商场最多打⼏折时,消费者购买A 型冰箱才⽐购买B 型冰箱更合算?(按使⽤期10年,每年365天,每度电0.4元计算)16.某零件制造车间有20名⼯⼈,已知每名⼯⼈每天可制造甲种零件6个或⼄种零件5个,且每制造⼀个甲种零件可获利150元,每制造⼀个⼄种零件可获利260元,在这20名⼯⼈中,车间每天安排x 名⼯⼈制造甲零件,其余⼯⼈制造⼄种零件.⑴若此车间每天所获利润为y (元),⽤x 的代数式表⽰y ;(2)若要使每天所获利润不低于24000元,⾄少要派多少名⼯⼈去制造⼄种零件?测试5 ⼀元⼀次不等式组(⼀)学习要求:会解⼀元⼀次不等式组,并会利⽤数轴正确表⽰出解集.(⼀)课堂学习检测⼀、填空题:1.解不等式组?>--<+)2(223)1(,423x x 时,解⑴式,得______,解(2)式,得______.于是得到不等式组的解集是______.2.解不等式组-≥--≥-)2(21)1(,3212x x 时,解⑴式,得______,解(2)式,得______,于是得到不等式组的解集是______.3.⽤字母x 的范围表⽰下列数轴上所表⽰的公共部分: (1)________________________;(2)_______________________; (3)________________________.⼆、选择题:4.不等式组+<+>-5312,243x x x 的解集为( ).(A)x <-4 (B)x >2 (C)-4<x <2 (D)⽆解5.不等式组?>+<-023,01x x 的解集为( ).(A)x >1(B)132<<-x(C)32-三、解下列不等式组,利⽤数轴确定不等式组的解集.6.≥-≥-.04,012x x7.?>+≤-.074,03x x8.??+>-≤-.3342,121x x x x9.-5<6-2x <3.四、解答题:10.解不等式组??<-+≤+321),2(352x x x x 并写出不等式组的整数解.(⼆)综合运⽤诊断⼀、填空题:11.当x 满⾜______时,235x-的值⼤于-5⽽⼩于7. 12.不等式组≤-+<25 12,912x x x x 的整数解为______.⼆、选择题:13.如果a >b ,那么不等式组?<<.,b x a x 的解集是( ).(A)x <a(B)x <b(C)b <x <a(D)⽆解14.不等式组?+>+≤+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2 (C)m <1 (D)m >1三、解答题:15.求不等式组73123<--≤x 的整数解.16.解不等式组??-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,⽅程组-=+=-52,53y x k y x 的解x 、y 都是负数?18.已知?+=+=+122,42k y x k y x 中的x 、y 满⾜且0<y -x <1,求k 的取值范围.(三)拓⼴、探究、思考19.已知a 是⾃然数,关于x 的不等式组?>-≥-.02,43x a x 的解集是x >2,求a 的值.20.关于x 的不等式组?->-≥-.123,0x a x 的整数解共有5个.求a 的取值范围.测试6 ⼀元⼀次不等式组(⼆)学习要求:进⼀步掌握⼀元⼀次不等式组.(⼀)课堂学习检测1.直接写出解集:(1)->>3,2x x 的解集是______;(2)-<<3,2x x 的解集是______;(3)??-><32x x 的解集是______;(4)??-<>3,2x x 的解集是______.2.⼀个两位数,它的⼗位数字⽐个位数字⼩2,如果这个数⼤于20且⼩于40,那么此数为______.⼆、选择题:3.如果式⼦7x -5与-3x +2的值都⼩于1,那么x 的取值范围是( ).(A)76<x (B)31>x (C)7631<4.已知不等式组?->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解⼀共有( ).(A)1个(B)2个(C)3个(D)4个5.若不等式组?>≤1有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2 (C)k <1三、解下列不等式组,并把解集在数轴上表⽰出来:6.??>-<-322,352x x x x7.??->---->-.6)2(3)3(2,132x x xx8.+>-≤+).2(28,142x x x9..234512x x x -≤-≤-(⼆)综合运⽤诊断⼀、填空题:10.不等式组<->+233,152x x 的所有整数解的和是______,积是______.11.k 满⾜______时,⽅程组?=-=+.4,2y x k y x 中的x ⼤于1,y ⼩于1.⼆、解下列不等式组:12.<+->+--.1)]3(2[21,312233x x x x x13.>-->-->-24,255,13x x x x x x三、解答题:14.k 取哪些整数时,关于x 的⽅程5x +4=16k -x 的根⼤于2且⼩于10? 15.已知关于x 、y 的⽅程组?-=-+=+3472m y x m y x ,的解为正数.(2)化简|3m +2|-|m -5|.(三)拓⼴、探究、思考16.若关于x 的不等式组+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利⽤不等关系分析实际问题学习要求:利⽤不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际⽣活中的作⽤.(⼀)课堂学习检测列不等式(组)解应⽤题:1.⼀个⼯程队原定在10天内⾄少要挖掘600m 3的⼟⽅.在前两天共完成了120m 3后,接到要求要提前2天完成掘⼟任务.问以后⼏天内,平均每天⾄少要挖掘多少⼟⽅?2.某城市平均每天产⽣垃圾700吨,由甲、⼄两个垃圾⼚处理.如果甲⼚每⼩时可处理垃圾55吨,需花费550元;⼄⼚每⼩时处理45吨,需花费495元,如果规定该城市每天⽤于处理垃圾的费⽤的和不能超过7150元,问甲⼚每天⾄少要处理多少吨垃圾?3.若⼲名学⽣,若⼲间宿舍,若每间住4⼈将有20⼈⽆法安排住处;若每间住8⼈,则有⼀间宿舍的⼈不空也不满,问学⽣有多少⼈?宿舍有⼏间?4.今年5⽉12⽇,汶川发⽣了⾥⽒8.0级⼤地震,给当地⼈民造成了巨⼤的损失.某中学全体师⽣积极捐款,其中九年级的3个班学⽣的捐款⾦额如下表:⽼师统计时不⼩⼼把墨⽔滴到了其中两个班级的捐款⾦额上,但他知道下⾯三条信息:信息⼀:这三个班的捐款总⾦额是7700元;信息⼆:(2)班的捐款⾦额⽐(3)班的捐款⾦额多300元;信息三:(1)班学⽣平均每⼈捐款的⾦额⼤于..51元...48元,⼩于请根据以上信息,帮助⽼师解决:①(2)班与(3)班的捐款⾦额各是多元;②(1)班的学⽣⼈数.(⼆)综合运⽤诊断5.某学校计划组织385名师⽣租车旅游,现知道出租公司有42座和60座客车,42座客车的租⾦为每辆320元,60座客车的租⾦为每辆460元.(1)若学校单独租⽤这两种客车各需多少钱?(2)若学校同时租⽤这两种客车8辆(可以坐不满),⽽且⽐单独租⽤⼀种车辆节省租⾦,请选择最节省的租车⽅案.(三)拓⼴、探究、思考A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建⼀间A型板房和⼀间B型板房所需板材及能安置的⼈数板房型号甲种板材⼄种板材安置⼈数A型板房54m226m2 5B型板房78m241m28问:这400间板房最多能安置多少灾民?全章测试(⼀)⼀、填空题:1.⽤“>”或“<”填空:(1)m +3______m -3;(2)4-2x ______5-2x ;(3);23______13--yy (4)a <b <0,则a 2______b 2;(5)若23yx -<-,则2x ______3y . 2.若使3233->-yy 成⽴,则y ______. 3.不等式x >-4.8的负整数解是______.⼆、选择题:4.x 的⼀半与y 的平⽅的和⼤于2,⽤不等式表⽰为( ).(A)2212>+y x (B)2212>++y x (C)222>+y x(D)221>+y x5.因为-5<-2,所以( ). (A)-5x <-2x (B)-5x >-2x (C)-5x =-2x (D)三种情况都可能 6.若a ≠0,则下列不等式成⽴的是( ). (A)-2a <2a (B)-2a <2(-a )(C)-2-a <2-a(D)aa 2(D)x >-1三、解不等式(组),并把解集在数轴上表⽰出来:9..11252476312-+≥---x x x10.<+-+--≤+.121331),3(410)8(2x x x x四、解答题:11.x 取何整数时,式⼦729+x 与2143-x 的差⼤于6但不⼤于8.12.当k 为何值时,⽅程1)(5332+-=-k x k x 的解是(1)正数;(2)负数;(3)零.13.已知⽅程组?-=+=-k y x k y x 513,2的解x 与y 的和为负数.求k 的取值范围.14.不等式m m x ->-2)(31的解集为x >2.求m 的值.15.某车间经过技术改造,每天⽣产的汽车零件⽐原来多10个,因⽽8天⽣产的配件超过200个.第⼆次技术改造后,每天⼜⽐第⼀次技术改造后多做配件27个,这样只做了4天,所做配件个数就超过了第⼀次改造后8天所做配件的个数.求这个车间原来每天⽣产配件多少个?16.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼⼲和⽜奶的标价各是多少?全章测试(⼆) ⼀、填空题1.当m______时,⽅程5(x-m)=-2有⼩于-2的根.2.满⾜5(x-1)≤4x+8<5x的整数x为______.3.若11=--xx,则x的取值范围是______.4.已知b<0<a,且a+b<0,则按从⼩到⼤的顺序排列a、-b、-|a|、-|-b|四个数为______.⼆、选择题5.若0<a<b<1,则下列不等式中,正确的是( ).,11;11;1;1babababa<><>④③②①(A)①、③(B)②、③(C)①、④(D)②、④6.下列命题结论正确的是( ).(A)(1)、(2)、(3)(B)(2)、(3)(C)(3)(D)没有⼀个正确7.若不等式(a+1)x>a+1的解集是x<1,则a必满⾜( ).(A)a<0 (B)a>-1 (C)a<-1 (D)a<18.已知x<-3,那么|2+|3+x||的值是( ).(A)-x-1 (B)-x+1 (C)x+1 (D)x-19.如下图,对a、b、c三种物体的重量判断正确的是( ).(A)a<c(B)a<b(C)a>c(D)b<c三、解不等式(组):10.3(x+2)-9≥-2(x-1).11..57321<+<-x12.>--+<-.041131xxxx13.求≤-->32,134xxx的整数解.14.如果关于x的⽅程3(x+4)-4=2a+1的解⼤于⽅程3)43(41xa的解,求a的取值范围.15.某单位要印刷⼀批北京奥运会宣传资料,在需要⽀付制版费600元和每份资料0.3元印刷费的前提下,甲、⼄两个印刷⼚分别提出了不同的优惠条件,甲印刷⼚提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,⼄印刷⼚提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费。
精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)
人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。
人教版数学七年级下册第九章不等式与不等式组 单元测试(含答案)
人教版数学七年级下册第九章不等式与不等式组一、单选题1.以下表达式:①4x+3y≤0;②a>3;③x2+xy;④a2+b2=c2;⑤x≠5.其中不等式有()A.4个B.3个C.2个D.1个2.关于m的不等式−m>1的解为().A.m>0B.m<0C.m<−1D.m>−13.若(m−2)x2m+1−1>5是关于x的一元一次不等式,则该不等式的解集为()A.m=0B.x<−3C.x>−3D.m≠24.设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】A.c<b<a B.b<c<a C.c<a<b D.b<a<c5.若式子3a−4的值不小于2,则a的取值范围是()A.a≥−23B.a≥2C.a<−23D.a<26.已知x<y,则下列不等式一定成立的是().A.x+5<y+2B.−2x+5<−2y+5C.x3>y3D.2x−3<2y−37.规定[x]为不大于x的最大整数,如[3.6]=3,[−2.1]=−3,若[x+12]=3且[3−2x]=−4,则x的取值范围为()A.52<x<72B.3<x<72C.3<x≤72D.52≤x<728.八年级某小组同学去植树,若每人平均植树7棵,则还剩9棵,若每人平均植树9棵,则有1位同学有植树但植树棵数不到3棵.则同学人数为()A.8人B.9人C.10人D.11人9.若不等式组{x +a−22≥−1,3x−22<x−12无解,则实数a 的取值范围是( )A .a ≥−1B .a <−1C .a ≤1D .a ≤−110.对一实数x 按如图所示程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次后停止,则x 的取值范围是( )A .x <64B .x >22C .22<x ≤64D .22<x <64二、填空题11.不等式3x +22<x 的解集是 .12.不等式2x>3的最小整数解是 .13.不等式组{2x−4≥0x 3<2的解集是.14.已知a <b,用“<”或“>”号填空: a−3 b−3; −4a −4b .15.用不等式表示“x 的一半减去3所得的差不大于1” .16.某品牌衬衫的进价为120元,标价为240元,如果商店打折销售但要保证利润不低于30%,则最少可以打折出售.17.若不等式组{2x +a−1>02x−a−1<0的解集为0<x <1,则a 的值为 .18.若整数m 使得关于x 的不等式组{2x +1≥5x +m ≤2无解,且使得关于x ,y 二元一次方程组{x +2y =2,3x−y =m +1 的解x ,y 均为正数,则符合条件的整数m 的和是 .三、解答题19.(1)解不等式:x +12−x−13≤1,并把它的解集在数轴上表示出来.(2)解不等式组:{3x +2≥4x−54x−3<2120.已知二元一次方程组{x+y=3a+9x−y=5a+1的解x,y均为正数.(1)求a的取值范围;(2)化简:|5a+5|−|a−4|21.如图,有一高度为20cm的容器,在容器中倒入100cm3的水,此时刻度显示为5cm,现将大小规格不同的两种玻璃球放入容器内,观察容器的体积变化测量玻璃球的体积.若每放入一个大玻璃球水面就上升0.5cm.(1)求一个大玻璃球的体积;(2)放入27个大玻璃球后,开始放入小玻璃球,若放入5颗,水面没有溢出,再放入一颗,水面会溢出容器,求一个小玻璃球体积的范围.22.关于x,y的二元一次方程组ax+by=c(a,b,c是常数),b=a+1,c=b+1.(1)当{x=3y=1时,求c的值.(2)当a=1时,求满足|x|<5,|y|<5的方程的整数解.2(3)若a是正整数,求证:仅当a=1时,该方程有正整数解.23.为了防控甲型H1N1流感,某校积极进行校园的环境消毒,为此购买了甲、乙两种消毒液,现已知过去两次购买这两种消毒液的瓶数和总费用如表所示:甲种消毒液(瓶)乙种消毒液(瓶)总费用(元)第一次4060660第二次8030690(1)求每瓶甲种消毒和每瓶乙种消毒液各多少元?(2)现在学校决定购买甲乙两种消毒液共300瓶,要求甲乙两种的数量都不少于100瓶,,请你帮助学校计算购买时最低费用为多少?并且甲的数量不少于乙数量的3224.5月22日是第28个国际生物多样性日,为联合国《生物多样性公约》第十五次缔约方大会(COP15)在昆明顺利召开.营造良好氛围,昆明市在植物园举办主题宣传活动.某班开展了此项活动的知识竞赛.小明为班级购买奖品后与小颖对话如下:(1)请用方程的知识帮助小明计算一下,为什么小颖说他搞错了;(2)小明连忙拿出发票,发现自己的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?参考答案1.B 2.C 3.B 4.A 5.B 6.D 7.B 8.A 9.D 10.C 11.x <-212.213.2≤x <614.< >15.12x−3≤116.6.517.118.1019.(1)x ≤1(2)x <620.(1)−54<a <4;(2)当−5<a ≤−1时,−4a−9;当−1<a <4时,6a +121.(1)一个大玻璃球的体积为10cm 3;(2)一个小玻璃球体积的大于5cm 3且不大于6cm 3.22.c =73;(2){x =2y =1 ,{x =−1y =2 {x =−4y =323.(1)甲种消毒每瓶6元,乙种消毒液每瓶7元;(2)最低费用1900元.24.2元或6元。
人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案
人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。
新七年级数学下册第九章《不等式与不等式组》检测试题(含答案解析)
人教版七年级下册数学第九章不等式与不等式组单元试题一、选择题(共10小题,每小题3分,共30分) 1.下列不等式变形正确的是( ) A .由a >b ,得ac >bc B .由a >b ,得a -2<b -2 C .由-12>-1,得-a2>-aD .由a >b ,得c -a <c -b2.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a -2<b -2C .a 2>b2D .-2a >-2b3.不等式组⎩⎨⎧x -2≥-1,3x >9的解集在数轴上可表示为( )4.不等式-12x +1>2的解集是( )A .x >-12B .x >-2C .x <-2D .x <-125.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( )A .82元B .100元C .120元D .160元6.如图,天平右盘中的每个砝码的质量为10 g ,则物体M 的质量m (g)的取值范围在数轴上可表示为( )7.甲、乙两人从相距24 km 的A ,B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度是( )A .小于8 km/hB .大于8 km/hC .小于4 km/hD .大于4 km/h8.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买钢笔( )A .10支B .11支C .12支D .13支 9.如果不等式组⎩⎨⎧ x >a ,x <2恰有3个整数解,则a 的取值范围是( )A .a ≤-1B .a <-1C .-2≤a <-1D .-2<a ≤-110.不等式组⎩⎨⎧x +3>0,-x ≥-2的整数解有( )A .0个B .5个C .6个D .无数个 二、填空题(共5小题,每小题4分,共20分) 11.不等式2x +1>0的解集是 . 12.不等式x -5>4x -1的最大整数解是 . 13.若不等式组⎩⎨⎧1+x >a ,2x -4≤0有解,则a 的取值范围是 .14.当x 时,式子3x -5的值大于5x +3的值. 15.“x 的4倍与2的和是负数”用不等式表示为 . 三、解答题(共5小题,每小题10分,共50分) 16.解不等式组:⎩⎨⎧1-3x ≤5-x ,4-5x >-x ,并把解集在数轴上表示出来.17.阅读以下计算程序:(1)当x =1 000时,输出的值是多少?(2)问经过二次输入才能输出y 的值,求x 的取值范围.18.某书店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠,一名同学为班级买奖品,准备买6本影集和若干支钢笔,已知影集每本15元,钢笔每支8元,问他至少要买多少支钢笔才能享受打折优惠?19.若使二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m的取值范围是什么?20.某商店欲购进A,B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元.(1)求A,B两种商品每件的进价分别为多少元?(2)若该商店每销售1件A种商品可获利8元,每销售1件B种商品可获利6元,且商店将购进A,B共50件的商品全部售出后,要获得的利润不低于348元,问A种商品至少购进多少件?参考答案一、选择题(共10小题,每小题2分,共20分)1-5 DCDCC 6-10 CBCCB二、填空题(共5人教版七年级数学下册第九章不等式与不等式组检测试题人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题。
七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)
七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)一、单选题1.若a<b ,则下列各式中不成立的是( )A .22a b +<+B .22a b < C .22a b -<- D .22a b -<-2.不等式10x -<的解集是( )A .1x >B .1x >-C .1x <D .1x <-3.不等式组 233412x x x +>⎧⎪⎨-≤-⎪⎩ 的解集在数轴上应表示为( )A .B .C .D .4.在平面直角坐标系中,点M (1+m ,2m ﹣3)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5.若(m ﹣1)x >m ﹣1 的解集是 x <1,则 m 的取值范围是( )A .m >1B .m≤﹣1C .m <1D .m≥16.如图所示,在数轴上表示了某不等式的解集,则这个不等式可能是( )A .x≤1B .x≤-1C .x≥1D .x≥-17.一次知识竞赛共有15道题.竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分.若甲同学总分超过了85分,且有1道题没答,则甲同学至少答对了() A .11道题B .12道题C .13道题D .14道题8.关于x 的不等式23x m +>的解如图所示,则m 的值为( ).A .1-B .5-C .1D .59.不等式组{5x −1>3x −4−13x ≤23−x的整数解的和为( )A .1B .0C .29D .3010.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本,共有()名同学. A .5B .6C .7D .8二、填空题11.用不等号填空:如果>0a b -,那么a b .12.某测试共有20道题,每答对一道得5分,每答错或不答一道题扣1分,设小明答对了x 道题,若小明得分要超过80分,则小明至少要答对 道题.13.如果不等式组4x x m≥⎧⎨<⎩有解,那么m 的取值范围是 .14.在平面直角坐标系中,已知点P (m ﹣3,4﹣2m ),m 是任意实数.(1)当m =0时,点P 在第 象限.(2)当点P 在第三象限时,求m 的取值范围 .三、计算题15.解不等式:215132x x -+-≤1. 16.解不等式组:()53133143x x x x ⎧-<-⎪⎨-+≥-⎪⎩四、解答题17.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?18.解不等式:2 (3x -1)≤x +3,并把它的解集在数轴上表示出来.19.解不等式组()()2810433112x x x x ⎧+≤--⎪⎨+-<⎪⎩,并写出它的所有整数解. 五、综合题20.(1)若x>y ,请比较2-3x 与 2-3y 的大小,并说明理由. (2)若x>y ,请比较(a -3)x 与(a -3)y 的大小.21.2022年是富川县大力发展香芋种植的一年,某香芋种植大户聘请了一些临时工帮种植一批香芋,每个工人每天可以种植一亩香芋,计划9天种完,种植3天后由于气象台预测几天后将会有暴雨,为使香芋的种植不受到暴雨的影响,所以该种植大户又聘请了5个工人一起种植香芋,恰好提前两天完成了种植任务.(1)问该香芋种植大户种植了多少亩香芋?第一批请了多少个工人帮种植香芋?(2)种植过程中每天中午都要给每个工人提供一份快餐,已知烧鹅饭每个21元,排骨蒸饭每个18元,在种植的最后一天,该种植大户计划帮工人们订快餐的总花费不超过300元,则最多能订多少个烧鹅饭?22.先阅读理解下面的例题,再按要求解答下列问题.例题:解不等式()()330x x -+>.解:由有理数的乘法法则“两数相乘,同号得正,异号得负”,得3030x x -<⎧⎨+<⎩①,3030x x ->⎧⎨+>⎩②解不等式组①,得3x <-,解不等式组②,得3x >,()()330x x ∴-+>的解集为3x >或3x <-.(1)满足()()22310x x -+>的x 的取值范围是 ;(2)仿照材料,解不等式()()3150x x -+<.参考答案与解析1.【答案】C【解析】【解答】解:A 、∵a <b∴a+2<b+2,故本选项不符合题意; B 、∵a <b ∴22a b< ,故本选项不符合题意; C 、∵a <b∴-2a >-2b ,故本选项符合题意; D 、∵a <b∴a-2<b-2,故本选项不符合题意; 故答案为:C .【分析】根据不等式的性质,即不等式两边同加上或同减去同一个数,不等号方向不变,不等式两边同乘以或同除以同一个正数,不等号方向不变,同乘以或同除以同一个负数,不等号方向改变,据此分别判断即可.2.【答案】A【解析】【解答】解:10x -<1x -<- 1x >故答案为:A.【分析】根据不等式的性质两边同时减1、再两边同时除以-1,把不等式的系数化为1,即可解答.3.【答案】C【解析】【解答】解: 233412x x x +>⎧⎪⎨-≤-⎪⎩①② 解①得 1x > 解②得 2x ≤∴不等式组的解集为 12x <≤ 将解集表示在数轴上如C 选项所示 故答案为:C .【分析】先解不等式组,然后按照大于向右画,小于向左画,有等号是实心圆点,无等号是空心圆点的原则即可确定答案.4.【答案】B【解析】【解答】解:A.由 10230m m +>⎧⎨->⎩ 知m > 32 ,此时点M 在第一象限;B.由 10230m m +<⎧⎨->⎩知m 无解,即点M 不可能在第二象限;C.由 10230m m +<⎧⎨-<⎩知m <﹣1,此时点M 在第三象限;D.由 10230m m +>⎧⎨-<⎩ 知﹣1<m < 32 ,此时点M 在第四象限;故答案为:B.【分析】根据各象限内点的坐标符号特点列出关于m 的不等式组,解之求出m 的范围,从而得出答案.5.【答案】C【解析】【解答】解:∵(m-1)x >m-1的解集是 x <1∴m-1<0∴m<1. 故答案为:C.【分析】根据不等式的性质可得m-1<0,求解可得m 的范围.6.【答案】C【解析】【解答】由题意得x≥1.故答案为:C.【分析】根据数轴直接写出不等式的解集即可。
不等式与不等式组单元测试题(含答案)
不等式与不等式组单元测试题一、填空题(每题3分,共30分)1、不等式组12x x <⎧⎨>-⎩的解集是2、将下列数轴上的x 的范围用不等式表示出来3、34125x +-<≤的非正整数解为 4、a>b,则-2a -2b.5、3X ≤12的自然数解有 个.6、不等式12x >-3的解集是 。
7、用代数式表示,比x 的5倍大1的数不小于x 的21与4的差 。
8、若(m-3)x<3-m 解集为x>-1,则m .9、三角形三边长分别为4,a ,7,则a 的取值范围是10、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。
在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛二、选择题(每小题2分,共20分)11、在数轴上表示不等式x ≥-2的解集,正确的是( )A B C D12、下列叙述不正确的是( )A 、若x<0,则x2>xB 、如果a<-1,则a>-aC 、若43-<-a a ,则a>0D 、如果b>a>0,则ba 11-<-13、如图1,设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小....的顺序排列为 A 、 ○□△ B 、 ○△□C 、 □○△D 、 △□○图114、如图2天平右盘中的每个砝码的质量都是1g ,则物体A的质量m(g)取值范围,在数轴上可表示为( )15、代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( ).13.31.22.22A m B m C m D m -<≤-≤<-≤<-<≤ 16、不等式45111x -<的正整数解为( ) A.1个 B.3个 C.4个 D.5个17、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩的解集是(.1.0.01.21A x B x C x D x >-><<-<<18、如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是A.-4<a<5B.a>5C.a<-4D.无解19、若关于x 的不等式组()202114x a x x ->⎧⎪⎨+>-⎪⎩的解集是x>2a,则a 的取值范围是 A. a>4 B. a>2 C. a=2 D.a ≥20、若方程组2123x y m x y +=+⎧⎨+=⎩中,若未知数x 、y 满足x+y>0,则m 的取值范围是 .4.4.4.4A m B m C m D m >-≥-<-≤-三、解答题(第1题20分,第2、3各5分,第4、5题各10分,共50分) 0 0 1 2 B 0 A A 图2 0 12 A 2 1C 1 D21、解下不等式(或不等式组)并在数轴上表示解集。
七年级数学(下)第9章《不等式与不等式组》综合测试题含答案
A CDB 七年级数学(下)第9章《不等式与不等式组》综合测试题一、选择题:(每题3分,共30分)1.下列根据语句列出的不等式错误的是( ) A. “x 的3倍与1的和是正数”,表示为3x+1>0.B. “m 的15与n 的13的差是非负数”,表示为15m-13n ≥0. C. “x 与y 的和不大于a 的12”,表示为x+y ≤12a.D. “a 、b 两数的和的3倍不小于这两数的积”,表示为3a+b ≥ab. 2.给出下列命题:①若a>b,则ac 2>bc 2;②若ab>c,则b>ca;③若-3a>2a,则a<0;•④若a<b,则a-c<b-c,其中正确命题的序号是( )A.③④B.①③C.①②D.②④ 3.解不等式3x-32<2x-2中,出现错误的一步是( ) A.6x-3<4x-4 B.6x-4x<-4+3 C.2x<-1 D.x>-124.不等式12,39x x -<⎧⎨-≤⎩ 的解集在数轴上表示出来是( )5. .下列结论:①4a>3a;②4+a>3+a;③4-a>3-a 中,正确的是( ) A.①② B.①③ C.②③ D.①②③6.某足协举办了一次足球比赛,记分规则是:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场共积7分,则甲队可能平了( ) A.2场 B.3场 C.4场 D.5场7.某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( ) A.3项B.4项C.5项D.6项8.若│a │>-a,则a 的取值范围是( ) A.a>0B.a ≥0C.a<0D.自然数9.不等式23>7+5x 的正整数解的个数是( ) A.1个B.无数个C.3个D.4个10.已知(x+3)2+│3x+y+m │= 0中,y 为负数,则m 的取值范围是( ) A.m>9 B.m<9C.m>-9D.m<-9二、填空题:(每题3分,共24分)11.若y=2x-3,当x______时,y ≥0;当x______时,y<5. 12.若x=3是方程2x a --2=x-1的解,则不等式(5-a)x<12的解集是_______. 13.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x<1,则a=_______,b=_______.14. (2008苏州)6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市 元. 15.不等式组204060x x x +>⎧⎪->⎨⎪-<⎩的解集为________.16.小明用100元钱去购买笔记本和钢笔共30分,已知每本笔记本2元,•每枝钢笔5元,那么小明最多能买________枝钢笔. 17.如果不等式组212x m x m >+⎧⎨>+⎩的解集是x>-1,那么m 的值是_______.18.关于x 、y 的方程组321431x y a x y a +=+⎧⎨+=-⎩的解满足x>y,则a 的取值范围是_________.三、解答题:(共46分)19.解不等式(组)并把解集在数轴上表示出来(每题4分,共16分)(1)5(x+2)≥1-2(x-1) (2)273125y yy+>-⎧⎪-⎨≥⎪⎩(3)42x--3<522x+; (4)32242539x xx xx+>⎧⎪->-⎨⎪->-⎩20. (5分)k取何值时,方程23x-3k=5(x-k)+1的解是负数.21. (5分)某种客货车车费起点是2km以内2.8元.往后每增加455m车费增加0.5元.现从A 处到B处,共支出车费9.8元;如果从A到B,先步行了300m然后乘车也是9.8元,求AB的中点C到B处需要共付多少车费?22.(5分)(1)A、B、C三人去公园玩跷跷板,从下面的示意图(1)•中你能判断三人的轻重吗?(2)P、Q、R、S四人去公园玩跷跷板,从示意图(2)•中你能判断这四个人的轻重吗?23. (7分)某市“全国文明村”白村果农王保收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王保如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?24.(8分) 2011年我市筹备30周年庆典,园林部门决定利用现有的3490盆甲种花卉和2950,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型盆乙种花卉搭配A B需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?参考答案一、1.D 2.A 3.D 4.A 5. C 6.C 7.B 8.B 9.C 10.A 二、11.x ≥32,x<4 ; 12.x<120; 13.a=1,b=-2; 14.8 ; 15.4<x<6 ; 16.13; 17.-3; 18.a>-6.三、19. (1)x ≥-1 (2)2≤y<8;(3)x>-3; (4)-2<x<3 20.k<1221.设走xm 需付车费y 元,n 为增加455m 的次数.∴y=2.8+0.5n,可得n=70.5=14 ∴2000+455×13<x ≤2000+455×14 即7915<x ≤8370,又7915<x-300≤8370 ∴8215<x ≤8670, 故8215<x ≤8370,CB 为2x ,且4107.5<2x≤4185, 4107.52000455-=4.63<5,41852000455-=4.8<5,∴n=5代入y=2.8+0.5×5=5.3(元) ∴从C 到B 需支付车费5.3元. 22.(1)C 的重量>A 的重量>B 的重量(2)从图中可得S>P,P+R>Q+S ,R>Q+(S-R),∴R>Q; 由P+R>Q+S ,S-P<R-Q ∴ (Q+R-P)-P<R-Q ∴P>Q, 同理R>S,∴R>S>P>Q23. 解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12, 解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案:(2)方案一所需运费 300×2 + 240×6 = 2040元; 方案二所需运费 300×3 + 240×5 = 2100元; 方案三所需运费 300×4 + 240×4 = 2160元. 所以王保应选择方案一运费最少,最少运费是2040元.24. 解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ,解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x 是整数,x ∴可取313233,,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个 ②A 种园艺造型32个 B 种园艺造型18个 ③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 方法二:方案①需成本:318001996043040⨯+⨯=(元) 方案②需成本:328001896042880⨯+⨯=(元) 方案③需成本:338001796042720⨯+⨯=元∴应选择方案③,成本最低,最低成本为42720元。
七年级数学下册第九章《不等式与不等式组》综合测试卷-人教版(含答案)
七年级数学下册第九章《不等式与不等式组》综合测试卷-人教版(含答案)一、选择题(本大题共6个小题,每小题3分,共18分.)1.已知实数a ,b ,若a >b ,则下列结论正确的是( ).A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a >3b2.不等式3(x -1)≤5-x 的非负整数解有( ).A .1个B .2个C .3个D .4个 3.关于x 的一元一次不等式m -2x3≤-2的解集为x ≥4,则m 的值为( ). A .14 B .7 C .-2 D .2 4.不等式组⎩⎪⎨⎪⎧2x +13-3x +22>1,3-x ≥2的解集在数轴上表示正确的是( ).5.如果关于x 的不等式组⎩⎪⎨⎪⎧3x -1>4(x -1),x <m 的解集为x <3,那么m 的取值范围为( ).A .m =3B .m >3C .m <3D .m ≥36.某种毛巾原零售价为每条6元,凡一次性购买两条以上,商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折付款”;第二种:“全部按原价的八折付款”.若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买毛巾( ). A .4条 B .5条 C .6条 D .7条二、填空题(本大题共6小题,每小题3分,共18分)7.不等式组⎩⎪⎨⎪⎧x ≤3x +2,3x -2(x -1)<4的解集为________.8.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.9.定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算,如:2⊕5=2×(2-5)+1=2×(-3)+1=-5.那么不等式3⊕x <13的解集为________.10.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2有解,则a 的取值范围是________.11.若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为________.12.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.三、解答题 (本大题共5小题,每小题6分,共30分)13.解不等式(组):(1)2x -1>3x -12; (2)⎩⎪⎨⎪⎧2x +5>3(x -1)①,4x >x +72②.14.解不等式4x -13-x >1,并把它的解集在数轴上表示出来.15.解不等式组⎩⎪⎨⎪⎧x -3(x -2)≥4,2x -15<x +12,并将它的解集在数轴上表示出来.16.x 取哪些整数值时,不等式4(x +1)≥2x -1与12x ≤2-32x 都成立?17.若不等式3(x +1)-1<4(x -1)+3的最小整数解是方程12x -mx =6的解,求m 2-2m -11的值.四、(本大题共3小题,每小题8分,共24分).18.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =3a +9,x -y =5a +1的解都为正数,求a 的取值范围.19.旅游者参观某河流风景区,先乘坐摩托艇顺流而下,然后逆流返回.已知水流的速度是每小时3千米,摩托艇在静水中的速度是每小时18千米.为了使参观时间不超过4小时,旅游者最远可走多少千米?20.已知关于x 的不等式组⎩⎪⎨⎪⎧-x -1≥-2x +1,12(x -2a )+12x <0,其中实数a 是不等于2的常数,请依据a 的取值情况求出不等式组的解集.五、(本大题共2小题,每小题9分,共18分).21.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),12x ≤8-32x +2a 有三个整数解,求实数a 的取值范围.22.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度. (1)求这个月晴天的天数;(2)已知该家庭每月平均用电量为150度,结合图中信息,若按每月发电550度计算,至少需要几年才能收回成本(不计其他费用,结果取整数).六、(本大题共12分)23. 为解决中小学大班额问题,东营市各县区今年将扩建部分中小学,某县计划对A 、B 两类学校进行扩建,根据预算,扩建2所A 类学校和3所B 类学校共需资金7800万元,扩建3所A 类学校和1所B 类学校共需资金5400万元.(1)扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划扩建A 、B 两类学校共10所,扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的扩建资金分别为每所300万元和500万元.请问共有哪几种扩建方案?参考答案一、选择题(本大题共6个小题,每小题3分,共18分.)1. D ; 2. C ; 3. D ; 4. B ; 5. D.; 6.D.二、填空题(本大题共6小题,每小题3分,共18分)7.-1≤x <2; 8. 0; 9. x >-1; 10. a >-1;11. x >32;12.131或26或5或45三、解答题 (本大题共5小题,每小题6分,共30分.)13.解:(1)去分母得2(2x -1)>3x -1,解得x >1.(2)解不等式①得x <8, 解不等式②得x >1.所以不等式组的解集为1<x <8.14.解:去分母,得4x -1-3x >3.移项、合并同类项,得x >4.在数轴上表示不等式的解集如图所示:15.解:⎩⎪⎨⎪⎧x -3(x -2)≥4,①2x -15<x +12.②由①得-2x ≥-2,即x ≤1. 由②得4x -2<5x +5,即x >-7. 所以原不等式组的解集为-7<x ≤1. 在数轴上表示不等式组的解集为:16.解:依题意有⎩⎪⎨⎪⎧4(x +1)≥2x -1,12x ≤2-32x , 解得-52≤x ≤1∵x 取整数值,∴当x 为-2,-1,0和1时,不等式4(x +1)≥2x -1与12x ≤2-32x 成立.17.解:解不等式3(x +1)-1<4(x -1)+3,得x >3.它的最小整数解是x =4.把x =4代入方程12x -mx =6,得m =-1,∴m 2-2m -11=-8.四、(本大题共3小题,每小题8分,共24分).18.解:解方程组,得⎩⎪⎨⎪⎧x =4a +5,y =-a +4.∵解都为正数,∴⎩⎪⎨⎪⎧4a +5>0,-a +4>0. 解得-54<a <4.19.解:设旅游者可走x 千米.根据题意,得x 18+3+x 18-3≤4,解得x ≤35. 答:旅游者最远可走35千米. 20.解:⎩⎪⎨⎪⎧-x -1≥-2x +1,①12(x -2a )+12x <0.② 解不等式①,得x ≥2. 解不等式②,得x <a .故当a >2时,不等式组的解集为2≤x <a ;当a <2时,不等式组无解.五、(本大题共2小题,每小题9分,共18分).21.解:⎩⎪⎨⎪⎧5x +2>3(x -1)①,12x ≤8-32x +2a ②.解不等式①,得x >-52,解不等式②,得x ≤4+a ,∴原不等式组的解集为-52<x ≤4+a .∵原不等式组有三个整数解, ∴0≤4+a <1, ∴-4≤a <-3.22.解:(1)设这个月有x 天晴天,由题意得:30x +5(30-x )=550, 解得x =16.(4分) 答:这个月有16天晴天.(2)设需要y 年可以收回成本,由题意得: (550-150)·(0.52+0.45)·12y ≥40000, 解得y ≥8172291.∵y 是整数,∴至少需要9年才能收回成本.六、(本大题共12分)23.解:(1)设扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意得:⎩⎪⎨⎪⎧2x +3y =7800,3x +y =5400, 解得⎩⎪⎨⎪⎧x =1200,y =1800.答:扩建一所A 类学校所需资金为1200万元,扩建一所B 类学校所需资金为1800万元. (2)设今年扩建A 类学校a 所,则扩建B 类学校(10-a )所,由题意得:⎩⎪⎨⎪⎧(1200-300)a +(1800-500)(10-a )≤11800,300a +500(10-a )≥4000, 解得3≤a ≤5 ∵a 取整数, ∴a =3,4,5.即共有3种方案:方案一:扩建A 类学校3所,B 类学校7所;方案二:扩建A类学校4所,B类学校6所;方案三:扩建A类学校5所,B类学校5所.。
七年级下册《第9章不等式与不等式组》单元测试题(含答案解析)
秋人教版七年级下《第9章不等式与不等式组》单元测试题一.选择题(共10小题)1.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<02.已知x>2,则下列变形正确的是()A.﹣x<2B.若y>2,则x﹣y>0C.﹣x+2<1D.若y>2,则3.如果不等式组有解,那么m的取值范围是()A.m>5B.m≥5C.m<5D.m≤84.一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.5.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±36.下列各式不是一元一次不等式组的是()A.B.C.D.7.用不等式表示“a的一半不小于﹣7”,正确的是()A.a≥﹣7B.a≤﹣7C.a>﹣7D.8.不等式x﹣1<2的正整数解有()A.1个B.2个C.3个D.4个9.小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买甲种饮料的瓶数是()A.4B.3C.2D.110.已知点M(1﹣a,3a﹣9)在第三象限,且它的坐标都是整数,则a的值是()A.0B.1C.2D.3二.填空题(共8小题)11.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=.12.若a<b,则﹣5a﹣5b(填“>”“<”或“=”).13.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是.14.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是.15.请写出一个一元一次不等式.16.不等式x+3<2的解集是.17.不等式组的解集为.18.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买个.三.解答题(共7小题)19.利用数轴确定不等式组的解集.20.根据下列语句列不等式并求出解集:x与4的和不小于6与x的差.21.列式计算:求使的值不小于的值的非负整数x.22.阅读下面的材料:小明在学习了不等式的知识后,发现如下正确结论:若A﹣B>0,则A>B;若A﹣B=0,则A=B;若A﹣B<0,则A<B.下面是小明利用这个结论解决问题的过程:试比较与2的大小.解:∵=﹣2+=2>0,∴2.回答下面的问题:(1)请完成小明的解题过程;(2)试比较2(x2﹣3xy+4y2)﹣3与3x2﹣6xy+8y2﹣2的大小(写出相应的解答过程).23.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:已知用“<”或“>”填空5+23+1﹣3﹣1﹣5﹣21﹣24+1(2)一般地,如果那么a+c b+d(用“<”或“>”填空).请你说明上述性质的正确性.24.定义新运算:对于任意有理数a,b,都有a*b=b(a﹣b)﹣b,等式右边是通常的加法、减法及乘法运算,例如:2*5=5×(2﹣5)﹣5=﹣20.(1)求2*(﹣5)的值;(2)若x*(﹣2)的值大于﹣6且小于9,求x的取值范围,并在如图所示的所画的数轴上表示出来.25.已知:关于x、y的方程组的解为非负数.(1)求a的取值范围;(2)化简|2a+4|﹣|a﹣1|;(3)在a的取值范围内,a为何整数时,使得2ax+3x<2a+3解集为x>1.秋人教版七年级下册《第9章不等式与不等式组》单元测试题参考答案与试题解析一.选择题(共10小题)1.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<0【分析】本题利用数与数轴的关系及数形结合解答.【解答】解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.【点评】本题主要是利用数形结合的思想,用排除法选项.2.已知x>2,则下列变形正确的是()A.﹣x<2B.若y>2,则x﹣y>0C.﹣x+2<1D.若y>2,则【分析】根据不等式的性质,可得答案.【解答】解:A、两边乘以不同的数,故A不符合题意;B、x,y无法比较,故B不符合题意;C、两边都除以﹣2,不等号的方向改变,故C符合题意;D、x,y无法比较,故D不符合题意;故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3.如果不等式组有解,那么m的取值范围是()A.m>5B.m≥5C.m<5D.m≤8【分析】依据小大大小中间找,可确定出m的取值范围.【解答】解:∵不等式组有解,∴m<5.故选:C.【点评】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.4.一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:第一个不等式的解集为:x>﹣3;第二个不等式的解集为:x≤2;所以不等式组的解集为:﹣3<x≤2.在数轴上表示不等式组的解集为:.故选:C.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±3【分析】根据一元一次不等式的定义,|m|﹣3=1,m+4≠0,分别进行求解即可.【解答】解:根据题意|m|﹣3=1,m+4≠0解得|m|=4,m≠﹣4所以m=4.故选:A.【点评】本题考查一元一次不等式的定义中的未知数的最高次数为1次,本题还要注意未知数的系数不能是0.6.下列各式不是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式组的定义进行解答.【解答】解:A、该不等式组符合一元一次不等式组的定义,故本选项错误;B、该不等式组符合一元一次不等式组的定义,故本选项错误;C、该不等式组中含有2给未知数,不是一元一次不等式组,故本选项正确;D、该不等式组符合一元一次不等式组的定义,故本选项错误;故选:C.【点评】本题考查了一元一次不等式组的定义,每个不等式中含有同一个未知数且未知数的次数是1的不等式组是一元一次不等式组.7.用不等式表示“a的一半不小于﹣7”,正确的是()A.a≥﹣7B.a≤﹣7C.a>﹣7D.【分析】抓住题干中的“不小于﹣7”,是指“大于”或“等于﹣7”,由此即可解决问题.【解答】解:根据题干“a的一半”可以列式为:a;“不小于﹣7”是指“大于等于﹣7”;那么用不等号连接起来是:a≥﹣7.故选:A.【点评】此题考查了由实际问题抽象一元一次不等式的知识,属于基础题,理解“不小于”的含义是解答本题的关键.8.不等式x﹣1<2的正整数解有()A.1个B.2个C.3个D.4个【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得不等式的解集,继而可得其正整数解.【解答】解:移项,得:x<2+1,合并同类项,得:x<3,所以不等式的正整数解为1、2,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.9.小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买甲种饮料的瓶数是()A.4B.3C.2D.1【分析】首先设小红能买甲种饮料的瓶数是x瓶,则可以买乙饮料(10﹣x)瓶,由题意可得不等关系:甲饮料的花费+乙饮料的花费≤50元,根据不等关系可列出不等式,再求出整数解即可.【解答】解:设小红能买甲种饮料的瓶数是x瓶,则可以买乙饮料(10﹣x)瓶,由题意得:7x+4(10﹣x)≤50,解得:x≤,∵x为整数,∴x=0,1,2,3,则小红最多能买甲种饮料的瓶数是3瓶.故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,找出合适的不等关系,设出未知数,列出不等式.10.已知点M(1﹣a,3a﹣9)在第三象限,且它的坐标都是整数,则a的值是()A.0B.1C.2D.3【分析】在第三象限内,那么横坐标小于0,纵坐标小于0.而后求出整数解即可.【解答】解:∵点M在第三象限.∴,解得1<a<3,因为点M的坐标为整数,所以a=2.故选:C.【点评】主要考查了平面直角坐标系中第三象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).二.填空题(共8小题)11.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=﹣4.【分析】解答此题要理解“≥”“≤”的意义,判断出a和b的最值即可解答.【解答】解:因为x≥2的最小值是a,a=2;x≤﹣6的最大值是b,则b=﹣6;则a+b=2﹣6=﹣4,所以a+b=﹣4.故答案为:﹣4.【点评】解答此题要明确,x≥2时,x可以等于2;x≤﹣6时,x可以等于﹣6.12.若a<b,则﹣5a>﹣5b(填“>”“<”或“=”).【分析】根据不等式的性质,在不等式的两边同时乘以一个负数,不等号的方向改变,即可得出答案.【解答】解:∵a<b,∴﹣5a>﹣5b;故答案为:>.【点评】此题考查了不等式的性质,掌握不等式的基本性质是本题的关键,不等式的基本性质是:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.13.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是a<3.【分析】根据不等式的性质可得a﹣3<0,由此求出a的取值范围.【解答】解:∵(a﹣3)x>1的解集为x<,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故答案为:a<3.【点评】本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a﹣3小于0.14.如图,小雨把不等式3x+1>2(x﹣1)的解集表示在数轴上,则阴影部分盖住的数字是﹣3.【分析】根据去括号、移项、合并同类项,可得不等式的解集,根据不等式解集的表示方法,可得答案.【解答】解:去括号,得3x+1>2x﹣2,移项、合并同类项,得x>﹣3,故答案为:﹣3.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来>或≥,向右画;<或≤,向左画,注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.请写出一个一元一次不等式x﹣1>0(答案不唯一).【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.【解答】解:一元一次不等式有:x﹣1>0.故答案为:x﹣1>0(答案不唯一).【点评】本题考查不等式的定义;写出的不等式只需符合条件,越简单越好.16.不等式x+3<2的解集是x<﹣1.【分析】不等式经过移项即可得到答案.【解答】解:x+3<2,移项得:x<﹣1,即不等式的解集为:x<﹣1,故答案为:x<﹣1.【点评】本题考查解一元一次不等式,熟悉解一元一次不等式的步骤是解题的关键.17.不等式组的解集为6<x<9.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不等式8x>48,得:x>6,解不等式2(x+8)<34,得:x<9,则不等式组的解集为6<x<9,故答案为:6<x<9.【点评】本题考查了不等式组的解法,求不等式组中每个不等式的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买16个.【分析】设购买篮球x个,则购买足球(50﹣x)个,根据总价=单价×购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.【解答】解:设购买篮球x个,则购买足球(50﹣x)个,根据题意得:80x+50(50﹣x)≤3000,解得:x≤.∵x为整数,∴x最大值为16.故答案为:16.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题(共7小题)19.利用数轴确定不等式组的解集.【分析】先分别求出各不等式的解集,在数轴上表示出来,即可得出不等式组的解集.【解答】解:由①得x≥﹣2由②得x<1在数轴上表示不等式①、②的解集所以,不等式组的解集是﹣2≤x<1【点评】本题考查了解一元一次不等式组:先分别解几个不等式,然后把它们的解集的公共部分作为原不等式的解集;按照“同大取大,同小取小,大于小的小于大的取中间,大于小的小于大的为空集”.也考查了利用数轴表示不等式的解集.20.根据下列语句列不等式并求出解集:x与4的和不小于6与x的差.【分析】与4的和不小于6与x的差.可表示为x+4≥6﹣x,由此可得出不等式,然后求解即可.【解答】解:根据题意可得:x+4≥6﹣x,解得:x≥1.【点评】本题考查了由实际问题抽象一元一次不等式的知识及解一元一次不等式的知识,属于基础题,注意掌握解不等式的法则.21.列式计算:求使的值不小于的值的非负整数x.【分析】根据题意列出不等式后,依据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1求得其解集,继而可得答案.【解答】解:≥,3(x+1)+4≥2(3x﹣1),3x+3+4≥6x﹣2,3x﹣6x≥﹣2﹣3﹣4,﹣3x≥﹣9,x≤3,则符合条件的非负整数有0、1、2、3.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变22.阅读下面的材料:小明在学习了不等式的知识后,发现如下正确结论:若A﹣B>0,则A>B;若A﹣B=0,则A=B;若A﹣B<0,则A<B.下面是小明利用这个结论解决问题的过程:试比较与2的大小.解:∵=﹣2+=2>0,∴>2.回答下面的问题:(1)请完成小明的解题过程;(2)试比较2(x2﹣3xy+4y2)﹣3与3x2﹣6xy+8y2﹣2的大小(写出相应的解答过程).【分析】(1)根据示例可知,一个式子减去另一个式子,如果结果大于0,则前面的式子大于后边的式子,故>2,(2)用2(x2﹣3xy+4y2)﹣3减去3x2﹣6xy+8y2﹣2,将得到的式子化简,发现总<0,则2(x2﹣3xy+4y2)﹣3<3x2﹣6xy+8y2﹣2.【解答】解:(1)根据题意可知:若A﹣B>0,则A>B,∵﹣(2﹣)>0,∴>2答案为:>,(2)2(x2﹣3xy+4y2)﹣3﹣(3x2﹣6xy+8y2﹣2)=2x2﹣6xy+8y2﹣3﹣3x2+6xy﹣8y2+2=﹣x2﹣1.∵﹣x2﹣1<0,∴2(x2﹣3xy+4y2)﹣3﹣(3x2﹣6xy+8y2﹣2)<0.∴2(x2﹣3xy+4y2)﹣3<3x2﹣6xy+8y2﹣2.【点评】本题考查不等式的性质和实数的大小比较,掌握比较实数大小的方法是解决本题的关键.23.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:已知用“<”或“>”填空5+2>3+1﹣3﹣1>﹣5﹣21﹣2<4+1(2)一般地,如果那么a+c>b+d(用“<”或“>”填空).请你说明上述性质的正确性.【分析】(1)根据不等式的性质即可判断;(2)利用(1)中规律即可判断,根据不等式的性质即可证明;【解答】解:(1)5+2>3+1,﹣3﹣1>﹣5﹣2,1﹣2<4+1;故答案为>,>,<;(2)结论:a+c>b+d.理由:因为a>b,所以a+c>b+c,因为c>d,所以b+c>b+d,所以a+c>b+d.故答案为>.【点评】本题考查不等式的性质、解题的关键是熟练掌握不等式的性质解决问题,属于中考常考题型.24.定义新运算:对于任意有理数a,b,都有a*b=b(a﹣b)﹣b,等式右边是通常的加法、减法及乘法运算,例如:2*5=5×(2﹣5)﹣5=﹣20.(1)求2*(﹣5)的值;(2)若x*(﹣2)的值大于﹣6且小于9,求x的取值范围,并在如图所示的所画的数轴上表示出来.【分析】(1)根据新定义列式计算可得;(2)根据新定义得出x*(﹣2)=﹣2x﹣2,由“x*(﹣2)的值大于﹣6且小于9”列出关于x的不等式组,解之可得.【解答】解:(1)2*(﹣5)=﹣5×[2﹣(﹣5)]﹣(﹣5)=﹣5×(2+5)+5=﹣35+5=﹣30;(2)x*(﹣2)=﹣2×(x+2)+2=﹣2x﹣4+2=﹣2x﹣2,由题意可得,解得:﹣5.5<x<2,不等式组的解集在数轴上表示为:【点评】本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.25.已知:关于x、y的方程组的解为非负数.(1)求a的取值范围;(2)化简|2a+4|﹣|a﹣1|;(3)在a的取值范围内,a为何整数时,使得2ax+3x<2a+3解集为x>1.【分析】(1)先解方程组,根据解为非负数,得出a的取值范围;(2)根据a的取值范围化简|2a+4|﹣|a﹣1|即可;(3)根据2ax+3x<2a+3解集为x>1,得出a的值即可.【解答】解:(1)由得,,∵方程组的解为非负数,∴,得﹣2≤a≤﹣1;(2)∵﹣2≤a≤﹣1,∴|2a+4|﹣|a﹣1|=2a+4﹣(1﹣a)=2a+4﹣1+a=3a+3;(3)∵2ax+3x<2a+3解集为x>1,∴2a+3<0,∵﹣2≤a≤﹣1,∴若a为整数,则a=﹣2,即在a的取值范围内,a=﹣2时,使得2ax+3x<2a+3解集为x>1.【点评】本题考查一元一次不等式的整数解、绝对值、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.。
新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)
人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是()A.B.C.D.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2b C.(1+c2)a>(1+c2)b D.1﹣a>1﹣b 3.如果的解集是,那么的取值范围是()A.B.C.D.4.如图,天平左盘中物体A的质量为,,天平右盘中每个砝码的质量都是1g,则的取值范围在数轴上可表示为()A.B.C.D.5.已知不等式组有解,则的取值范围为()A.a>-2 B.a≥-2 C.a<2 D.a≥26.将不等式组的解集在轴上表示出来,应是( )A. B.C. D.>的整数解的个数为()7.不等式组A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B 13.﹣9<x≤﹣3 14.> 15.3组. 16.3 17.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版年级数学下册第九章 不等式与不等式组单元测试题 人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题1.设a >b >0,c 为常数,给出下列不等式:①a-b >0;②ac>bc ;③1a <1b ;④b 2>ab ,其中正确的不等式有( ) A .1个B .2个C .3个D .4个2.已知,下列式子不成立的是( )A .B .C .D .如果,那么3.在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x≥0,y >0,那么m 的取值范围在数轴上应表示为( )4.方程组中,若未知数、满足,则的取值范围是( )A .B .C .D .5.某市自来水公司按如下标准收取水费:若每户每月用水不超过,则每立方米收费元;若每户每月用水超过,则超过部分每立方米收费元,小颖家某月的水费不少于元,那么她家这个月的用水量(吨数为整数)至少是( ) A .B .C .D .6.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h7.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的同学每人分5本,那么最后一人就分不到3本.则这些图书有( )A .23本B .24本C .25本D .26本8.定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A .[x ]=x (x 为整数)B .0≤x -[x ]<1C .[x +y ]≤[x ]+[y ]D .[n +x ]=n +[x ](n 为整数)9.某射击运动员在一次比赛中(共10次射击,每次射击最多是10环),前6次射击共中52环.如果他要打破89环的记录,那么第7次射击不能少于( ) A .5环B .6环C .7环D .8环10.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有( )种.A. 2B. 3C. 4D. 5二、填空题1.若点A (x +3,2)在第二象限,则x 的取值范围是________. 2.当x ________时,式子3+x 的值大于式子12x -1的值.3.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了________支.4.定义一种法则“”如下:a b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ).例如:=2.若(-2m -=3,则m 的取值范围是__________.5.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.6.不等式组⎩⎪⎨⎪⎧x +1>3(1-x ),1+2x 3≤x 的解集是____________.三、解答题1.解不等式,并把解集在数轴上表示出来:(1)2(x +1)-1≥3x+2;(2)2x -13-9x +26≤1.2.已知关于x 的方程4(x +2)-2=5+3a 的解不小于方程(3a +1)x 3=a (2x +3)2的解,试求a 的取值范围.3.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =1,①x -y =m.②(1)求这个方程组的解(用含m 的式子表示);(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1.4.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2 200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?5.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?参考答案: 一、选择题。
最新人教版七年级数学下册第九章《不等式与不等式组》测试卷(含答案解析)
七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( ) A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( ) A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( ) A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( ) A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组 有解,则 的取值范围为( )A .a>-2B .a≥-2C .a<2D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( ) A. 30x-45≥300 B. 30x+45≥300 C. 30x-45≤300 D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( )A .40B .45C .51D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个. 12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 .14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 . 15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 . 三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm. (1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1.(1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案: 一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B 二、填空题: 11、3 12、≤a≤13、a≥2 14、515、40%×85+60%x≥90 三、解答题:16、(1)4×s0.8>100.(2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-ba =1.∴b=-a ,b >0.∴不等式by >a 的解集为y >ab =-1,即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2.(2)∵2m -mx 2>12x -1,∴2m-mx >x -2.∴-mx -x >-2-2m.∴(m+1)x <2(1+m). ∵该不等式有解,∴m+1≠0,即m≠-1. 当m >-1时,不等式的解集为x <2; 当x <-1时,不等式的解集为x >2. 19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算. 20、(1)解不等式①,得x <52人教版七年级数学下册 第九章 不等式与不等式组 单元测试题(解析版)一、选择题(共10小题,每小题3分,共30分)1.2019年2月1日某市最高气温是8℃,最低气温是-2℃,则当天该市气温变化范围t (℃)是( )A .t >8B .t <2C . -2<t <8D . -2≤t ≤82.下列x 的值中,是不等式x >3的解的是( )A . -3B . 0C . 2D . 43.下列不等式变形正确的是( )A . 由a >b ,得ac >bcB . 由a >b ,得a -2<b -2C . 由-21>-1,得-2a>-a D . 由a >b ,得c -a <c -b4.如果a +b <0,且b >0,那么a ,b ,-a ,-b 的大小关系为( ) A .a <b <-a <-b B . -b <a <-a <b C .a <-b <-a <b D .a <-b <b <-a5.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <36.若关于x 、y 的二元一次方程组的解满足x -y >-2,则a 的取值范围是( )A .a <4B . 0<a <4C . 0<a <10D .a <107.已知点M (1-2m ,m -1)在第四象限内,那么m 的取值范围是( ) A .m >1 B .m <21 C .21<m <1D .m <21或m >18.已知不等式组有解,则a 的取值范围为( )A .a >-2B .a ≥-2C .a <2D .a ≥29.在关于x 、y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( ) A . B .C .D .10.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是( )A . 5B . 6C . 7D . 8二、填空题(共8小题,每小题3分,共24分)11.某不等式的解集在数轴上的表示如图所示,则该不等式的解集是___________.12.如果2x -5<2y -5,那么-x ______-y .(填“<、>、或=”) 13.若关于x 的不等式(a -2)x >a -2解集为x <1,化简|a -3|=______. 14.关于x 的方程3(x +2)=k +2的解是正数,则k 的取值范围是________. 15.不等式组:的解集是________.16.关于x 的不等式组的解集为1<x <4,则a 的值为________.17.把m 个练习本分给n 个学生.若每人分3本,则余80本;若每人分5本,则最后一个同学有练习本但不足5本.那么n =________.18.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共______张.三、解答题(共7小题,共66分) 19.(8分)解不等式:6x -1≤5;把解集在数轴上表示出来.20. (8分)阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad -bc .如=2×5-3×4=-2.如果有>0,求x 的解集.21. (8分)已知方程组的解为非负数,求整数a 的值.22. (8分)若关于x 的方程2x -3m =2m -4x +4的解不小于87-,求m 的最小值.23. (10分)解不等式组:并把解集在数轴上表示出来.24. (12分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?25. (12分)学校计划利用校友慈善基金购买一些平板电脑和打印机.经市场调查,已知购买1台平板电脑比购买3台打印机多花费600元,购买2台平板电脑和3台打印机共需8 400元.(1)求购买1台平板电脑和1台打印机各需多少元?(2)学校根据实际情况,决定购买平板电脑和打印机共100台,要求购买的总费用不超过168 000元,且购买打印机的台数不低于购买平板电脑台数的2倍.请问最多能购买平板电脑多少台?答案解析1.【答案】D【解析】由题意得-2≤t ≤8.故选D. 2.【答案】D【解析】∵不等式x >3的解集是所有大于3的数,∴4是不等式的解.故选D. 3.【答案】D【解析】A.由a >b ,得ac >bc (c >0),故此选项错误; B .由a >b ,得a -2>b -2,故此选项错误; C .由-21>-1,得-2a>-a (a >0),故此选项错误; D .由a >b ,得c -a <c -b ,此选项正确.故选D. 4.【答案】D【解析】∵设b =1,a =-2,则有-b =-1,-a =2,a <-b <b <-a .故选D. 5.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A. 6.【答案】D【解析】在关于x 、y 的二元一次方程组中,①+②,得4x -4y =2-a ,即x -y =21-4a, ∵x -y >-2,∴21-4a>-2,解得a <10,故选D. 7.【答案】B【解析】根据题意,可得解不等式①,得m <21,解不等式②,得m <1,∴m <21,故选B. 8.【答案】C 【解析】不等式组由(1)得x ≥a ,由(2)得x <2,故原不等式组的解集为a ≤x <2, ∵不等式组有解,∴a 的取值范围为a <2.故选C.9.【答案】C【解析】①×2-②,得3x=3m+6,即x=m+2,把x=m+2代入②,得y=3-m,由x≥0,y>0,得到解得-2≤m<3,表示在数轴上,如图所示:,故选C.10.【答案】B【解析】设小张同学应该买的球拍的个数为x,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.11.【答案】x>-2【解析】观察数轴可得该不等式的解集为x>-2.故答案为x>-2.12.【答案】>【解析】如果2x-5<2y-5,两边都加5可得2x<2y;同除以(-2)可得-x>-y.13.【答案】3-a【解析】∵关于x的不等式(a-2)x>a-2解集为x<1,∴a-2<0,即a<2,∴原式=3-a.故答案为3-a.14.【答案】k>4【解析】由方程3(x+2)=k+2去括号移项,得3x=k-4,∴x=,∵关于x的方程3(x+2)=k+2的解是正数,∴x=>0,∴k>4.15.【答案】x>5【解析】解①得x>1,解②得x>5,所以不等式组的解集为x>5.故答案为x>5.16.【答案】5【解析】解不等式2x+1>3,得x>1,解不等式a-x>1,得x<a-1,∵不等式组的解集为1<x <4,∴a -1=4,即a =5,故答案为5.17.【答案】41或42 【解析】根据题意得解得40<n <42.5,∵n 为整数,∴n 的值为41或42.故答案为41或42.18.【答案】152【解析】设本班有x 人(x 是正整数),最后的学生得到的贺卡为y (y 是整数,0<y ≤3), 根据题意有3x +59=5(x -1)+y ,解得x =32-21y ,由于x 取正整数,y 为整数,0<y ≤3,∴y 只能取2,∴x =32-1=31,那么班主任购买的贺卡数为3x +59=152(张),故填152.19.【答案】6x -1≤5,6x ≤6,x ≤1,在数轴上表示为【解析】利用不等式的性质1及性质2求出解集.20.【答案】解:由题意得2x -(3-x )>0,去括号得2x -3+x >0,移项合并同类项得3x >3,把x 的系数化为1得x >1.【解析】首先看懂题目所给的运算法则,再根据法则得到2x -(3-x )>0,然后去括号、移项、合并同类项,再把x 的系数化为1即可.21.【答案】解: ①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1; ②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1; 则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解.22.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =,根据题意,得≥87-,去分母,得4(5m +4)≥21-8(1-m ),去括号,得20m +16≥21-8+8m ,移项,合并同类项,得12m ≥-3,系数化为1,得m ≥-41.所以当m ≥-41时,方程的解不小于87-,m 的最小值为-41. 【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于87-,即可得到关于m 的不等式,即可求得m 的范围,从而求解. 23.【答案】解:解不等式①,得x <2,解不等式②,得x ≥-1,在数轴上表示为:∴不等式组的解集为-1≤x <2.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.24.【答案】解:(1)每辆A 型车和B 型车的售价分别是x 万元,y 万元. 则解得答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元;(2)设购买A 型车a 辆,则购买B 型车(6-a )辆, 则依题意得解得2≤a ≤341. ∵a 是正整数,∴a =2或a =3.∴共有两种方案:方案一:购买2辆A 型车和4辆B 型车; 人教版数学七年级下册单元测试卷:第9章 一元一次不等式(组)人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题(本大题共8小题,每小题3分,共32分。
中考数学不等式与不等式祖专题训练50题含答案
中考数学不等式与不等式祖专题训练含答案一、单选题1.一个不等式的解集在数轴上表示如图,则这个不等式可能是( )A .10x -≤B .10x ->C .10x -≥D .10x -<2.已知不等式组3010x x -<⎧⎨+≥⎩,则两个不等式的解集在同一数轴上表示正确的是( )A .B .C .D .3.若a b >,则下列不等式中正确的是( ) A .33a b >B .22a b ->-C .11+<+a bD .0a b -<4.已知点A (x +3,2﹣x )在第四象限,则x 的取值范围是( ) A .x >2 B .x >﹣3C .﹣3<x <2D .x <25.把不等式组的解集在数轴上表示,正确的是( )A .B .C .D .6.如果不等式组5x x a >⎧⎨>⎩的解集是5x >,则a 的取值范围是( )A .5a ≥B .5a ≤C .5a =D .5a <7.已知关于x 的一次函数y =mx+2m ﹣3在﹣1≤x≤1上的函数值总是正的,则m 的取值范围在数轴上表示正确的是( ) A . B . C .D .吉祥物礼品,借价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是( )A .()1008010900x x +->B .()1008010900x x +-<C .()1008010900x x +-≥D .()1008010900x x +-≤9.已知直线31y x 经过点2,3A m ⎛⎫⎪⎝⎭,则关于x 的不等式31x m 的解集为( )A .32x <B .23x <C .32x >-D .23x >-10.不等式组2{5x x >-≤的解集在数轴上可表示为( )A .B .C .D .11.若关于x 的不等式组214333x x x m x--⎧<⎪⎨⎪-≤-⎩恰有2个整数解,且关于x 、y 的方程组430mx y x y +=⎧⎨-=⎩也有整数解,则所有符合条件的整数m 的和为( ) A .-18B .-6C .-3D .012.平面直角坐标系中,过点32-(, )的直线l 经过第一、二、三象限,若点()0a ,,1b -(,),1c -(,)都在直线l 上,则下列判断正确的是() A .a b <B .2a <C .2b <D .3c -<13.2015年4月份的尼泊尔强震曾经导致珠峰雪崩,在珠峰抢险时,需8组登山队员步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( ) A .10B .11C .12D .1314.不等式组38023x x -<⎧⎨-<⎩的非负整数解有( ).15.当x =﹣2时,下列不等式成立的是( ) A .x ﹣5>﹣7B .x ﹣2<0C .2(x ﹣2)>﹣2D .3x >2x16.若a b >,则下列四个不等式中正确的是( ) A .33a b >B .55a b +<+C .55a b ->-D .22a b -<-17.不等式组2≤3x-7<9的所有整数解为( ) A .3,4B .4,5C .3,4,5D .3,4,5,618.已知a<b ,则下列不等式中不正确的是( ) A .a 44b < B .a+4<b+4 C .-4a>-4b D .a 2<b 219.(2017届河南安阳滑县中考二模数学试卷)若不等式组2123x a x b -⎧⎨-⎩<>的解集为−1<x<1,则(a −3)(b+3)的值为 A .1B .−1C .2D .−220.如图,正比例函数y x =的图象与反比例函数()0ky k x=≠的图象交于A ,B 两点,90CAD ∠=︒,两边分别交x 轴,y 轴于点D ,C ,四边形OCAD 的面积为1,AE x ⊥轴于点E .有下列结论:①OA OB =;①三角形OAE 的面积为12;①线段AB 的;①不等式kx x>的解集是1x >或1x <-.其中正确结论的个数是( ).A .1B .2C .3D .4二、填空题 21.不等式1-2x≥-1的解集是____. 22﹣3<2x 的解集是 ___.23.“a 的3倍与12的差是一个非负数”用不等式表示为______24在实数范围内有意义,则实数x 的取值范围是______.25.不等式的解是______.26.已知关于x 的不等式20(0)kx k ->≠的解集是3x >,则直线2y kx =-+与x 轴的交点坐标是________.27.已知m 是整数,且一次函数y =(m +3)x +m +2的图象不过第二象限,则m =______. 28.已知关于x 的不等式(a-2)x >1的解集为x <12a -,则a 的取值范围____________. 29.如果ab <,要使ac bc >,则___0c ;30.如果m <n ,则关于x 的一元一次不等式组x mx n ≤⎧⎨<⎩的解集为______.31.不等式组37x x ≤-⎧⎨>-⎩的解集为_______________.32.先化简,再求值:211933x x x -⎛⎫-⋅ ⎪+⎝⎭,其中x 为偶数且满足不等式组23213x x -<⎧⎨-≤⎩. 33.不等式350x -≤的正整数解是_________.34.某班数学兴趣小组对不等式组2x x m >⎧⎨≤⎩的解集进行讨论,得到以下结论:①若 m = 4,则不等式组的解集为 2<x ≤ 4; ①若 m = 1,则不等式组无解;①若原不等式组无解,则 m 的取值范围为 m <2;①若 7 ≤ m <8,则原不等式组有 5 个整数解.其中,结论正确的有______. 35.不等式组583(1)131722{x x x x ++-≤-的最大整数解为________.36.不等式1132x x +-<的解集是_____. 37.如果不等式组2{223xa xb +≥-<的解集是01x ≤<,那么a b +的值为 . 38.抛物线2222y x bx b b =++-+与x 轴没有交点,则b 的取值范围为 _____. 39.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______.三、解答题 40.解不等式4312163x x++≤+,并写出它的非正整数解. 41.(1)计算:2﹣2﹣2cos60°+|(π﹣3.14)0(2)解不等式数()295131x xx x --⎧⎨->+⎩,并把它的解集在数轴上表示出来.42.把下列不等式的解集在数轴上表示出来. (1)x≥-3;(2)x >-1;(3)x≤3;(4)x<-32.43.先化简,再求值2222221211x x x x x x x x x ⎛⎫+--+⎪--++⎝⎭,且x 是不等式2192136x x -+-≤的最小整数解.44.解不等式3(3)24->-x x ,并将解集在数轴上表示出来.45.解不等式组1211123x x x -≤⎧⎪+-⎨+<⎪⎩,并把解集在数轴上表示出来.46.在疫情期间,学校购买甲、乙两种消毒液,已知购买3桶甲种消毒液和4桶乙种消毒液共需170元,购买2桶乙种消毒液比购买3桶甲种消毒液少用50元. (1)求购买甲、乙两种消毒液每桶各需多少元?(2)若要购买甲、乙两种消毒液共21桶,且总费用不超过540元,求至多可购进甲种消毒液多少桶?47.某班到毕业时有经费1800元,决定拿出不少于270元但不超过300元的资金为老师买纪念品,其余资金用于给50名同学每人买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册. (1)求每件文化衫和每本相册的价格分别为多少元? (2)有几种购买文化衫和相册的方案?48.解不等式组4713112x x x -<⎧⎪⎨+≥-⎪⎩49.国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,求符合此规定的行李箱的高的最大值.参考答案:1.B【分析】分别得出每个选项的解集,继而得出答案.【详解】解:由数轴可得:1x >, A.10x -≤的解集是1x ≤,故不符合题意; B.10x ->的解集是1x >,故符合题意; C.10x -≥的解集是1x ≥,故不符合题意; D.10x -<的解集是1x <,故不符合题意; 故选:B .【点睛】本题主要考查解一元一 次不等式的基本能力, 严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 2.C【分析】分别解出不等式的解集,再根据找不等式组的解集的规律即可求解. 【详解】解:不等式30x -<,解得3x >, 不等式10x +≥,解得1x ≥-, ①原不等式组的解集为:3x >, 故选:C .【点睛】本题考查了解不等式组并把解集在数轴上表示出来,熟练掌握找不等式组的解集的规律是解题的关键. 3.A【分析】不等式加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;乘或除以一个负数,不等号的方向改变.【详解】A. 不等式两边都乘以3,不等号的方向不变,故本选项正确; B. 不等式两边都乘以−2,不等号的方向改变,故本选项错误; C. 不等式两边都减1,不等号的方向不变,故本选项错误; D. 不等式两边同时减去b ,不等号的方向不变,故本选项错误; 故选A.【点睛】本题考查不等式的性质,解题的关键是掌握不等式的性质. 4.A【分析】根据第四象限内点的坐标特征得到3020xx+>⎧⎨-<⎩,然后解不等式组即可.【详解】解:①点A(x+3,2﹣x)在第四象限,①30 20xx+>⎧⎨-<⎩,解得x>2.故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【详解】试题分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解:解得,故选B.考点:在数轴上表示不等式的解集;解一元一次不等式组.6.B【分析】根据求解规律是:大大取大,小小取小,大小小大中间找,大大小小无解可得a≥5.【详解】①不等式组5xx a>⎧⎨>⎩的解集是x>5,①a≤5,故选:B.【点睛】此题主要考查了不等式的解集,关键是正确理解不等式组确定公共解集的方法.7.A【分析】由题意可知x取最小和最大值时函数的值总是正的,所以只要将x=﹣1和x=1代入函数式即可求m的取值范围,进而在数轴上表示即可.【详解】解:根据题意得:当x=﹣1时,y=﹣m+2m﹣3=m﹣3>0,①m >3;当x =1时,y =m+2m ﹣3=3m ﹣3>0, ①m >1,①m 的取值范围是m >3. ①m 的取值范围在数轴上表示为:故选:A .【点睛】本题考查了一次函数图象与系数的关系,在数轴上表示不等式的解集,一次函数的图象是直线,只要保证两个端点的函数值恒大于0,即可求得m 的取值范围. 8.D【分析】设购买冰墩墩礼品x 件,则购买雪容融()10x -件,再根据总共花费不超过900元,列出不等式即可.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融()10x -件, 由题意得()1008010900x x +-≤, 故选D .【点睛】本题主要考查了列不等式,正确理解题意找到不等关系是解题的关键. 9.B【分析】利用函数的解析式求得m =3,然后解不等式即可. 【详解】解:①直线y =3x +1经过点2,3A m ⎛⎫⎪⎝⎭,①m =3×23+1=3,①关于x 的不等式为3x +1<3, 解得:23x <, 故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,解一元一次不等式,根据函数的解析式求得m 的值是解题的关键. 10.D【分析】本题考查不等式组的解集在数轴上表示方法.【详解】不等式组的解集为-2<5x≤,在数轴上表示为.故选D.11.C【分析】先解不等式组求出m的取值范围,再解方程组,结合m的取值范围求出m满足不等式组恰有2个整数解,方程组也有整数解的值,然后再求出所有符合条件的整数m的和即可.【详解】解:不等式组214333x xx m x--⎧<⎪⎨⎪-≤-⎩①②,解不等式①得:x>−2,解不等式①得:34mx+≤,①不等式组的解集为324mx+-<≤.①不等式组恰有2个整数解,①3014m+≤<,解得:31m-≤<,解方程组4 30 mx yx y+=⎧⎨-=⎩,得:43123xmym ⎧=⎪⎪+⎨⎪=⎪+⎩①关于x、y的方程组430mx yx y+=⎧⎨-=⎩也有整数解,①m+3为4的因数,即m+3=±1或±2或±4,①−3≤m<1,①m的值为:−2、−1,①所有符合条件的整数m的和为(−2)+(−1)=−3.故选:C.【点睛】本题考查了一元一次不等式组的解法、二元一次方程组的解法,理解相关知识是解答关键.12.D【分析】设出一次函数解析式为y mx n +=,根据图象经过的象限确定0m >,把32-(, )代入解析式,得到用m 表示的函数关系式,把三个点代入解析式,判断各个选项是否正确.【详解】解:设直线l 的解析式为y =mx +n ,由于直线l 经过第一、二、三象限,所以0m >.由于点32-(, )在直线l 上,所以23m n -+=,即32n m +=,所以一次函数解析式为:32y mx m ++=,当0x =时,32a m +=,∵0m >,∴322a m +=>,故选项B 不合题意;当1x -=时,22b m +=,∵0m >,∴222b m +=>,故选项C 不合题意,∴3222m m ++>,即a b >,故选项A 不合题意,当1y -=时,321cm m ++-=,即33c m +-()=, 因为0m >.所以30c +<,即3c -<,故选项D 符合题意,故选:D .【点睛】本题考查了一次函数图象和性质以及不等式的性质,利用不等式的性质是解决本题的关键.13.C【分析】设预定每组分配的人数为x 人,若按每组人数比预定人数多分配1人,总人数为()81x +,若按每组人数比预定人数少分配1人,总人数为()81x -,根据题意列出不等式组,即可得解集,再根据实际情况得出预定每组分配的人数.【详解】解:设预定每组分配的人数为x 人,根据题意得()()81100,8190,x x ⎧+>⎪⎨-<⎪⎩解得232<x <494, 而x 为整数,所以x =12,即预定每组分配的人数为12人.故选:C.【点睛】此题主要考查不等式组的应用.14.C【详解】分析:求不等式组的解,再判断其中非负整数解.详解:38023x x -<⎧⎨-<⎩,解得32-<x <83,非负整数解有0,1,2,故选C. 点睛:①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”,如图所示:①若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”,如图所示:①若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集.若x 表示不等式的解集,此时一般表示为a<x<b ,或a≤x≤b .此乃“相交取中”,如图所示:①若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解.此乃“向背取空” 如图所示:15.B【分析】将x=-2代入计算得到结果,即可做出判断.【详解】A 、将x =﹣2代入得:﹣2﹣5=﹣7,故此选项错误;B 、将x =﹣2代入得:﹣2﹣2=﹣4<0,故此选项正确;C 、将x =﹣2代入得:2×(﹣2﹣2)=﹣8<﹣2,故此选项错误;D 、将x =﹣2代入得:﹣6<﹣4,故此选项错误,故选:B .【点睛】此题考查一元一次不等式的解集.解题的关键是掌握不等式的解集的定义,要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.16.A【分析】本题可通过不等式两边同时乘或除一个数不等号方向是否变化,判断A 、C 选项;不等式两边同时加或减一个数,不等式大小不变与题意矛盾以判断B 、D 选项.【详解】A 选项:不等式两边同时乘一个正数,不等号方向不变,故A 选项正确; B 选项:由55a b +<+可推出a <b ,与题干a b >矛盾,故排除B 选项;C 选项:不等式两边同时乘一个负数,不等号方向改变,故正确表达应为5a -<5b -,故排除C 选项;D 选项:由22a b -<-可推出a <b ,与题干a b >矛盾,故排除D 选项;故选:A .【点睛】本题考查不等式相关性质,易错点在于不等式两边若乘或除一个负数,不等号方向必须改变.17.C【详解】试题解析:可以化为237{379x x ≤--①<②①解不等式①得:x ≥3,解不等式①得:x <163, ①不等式组的解集是3≤x <163, ①不等式组的整数解是3,4,5.故选C .【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出不等式组的解集.18.D【分析】根据不等式的性质逐个判断即可.【详解】A 、①a <b , ①a 44b <,正确,故本选项不符合题意; B 、①a <b ,①a +4<b +4,正确,故本选项不符合题意;C 、①a <b ,①−4a >−4b ,正确,故本选项不符合题意;D 、由-3<2,得(-3)2>22,故本选项符合题意;故选:D .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 19.D【详解】解不等式2x −a <1,得:x <12a +,解不等式x −2b >3,得:x >2b+3,①不等式组的解集为−1<x <1,①112231a b +⎧=⎪⎨⎪+=-⎩,解得:a=1,b=−2,当a=1,b=−2时,(a −3)(b+3)=−2×1=−2,故选D .20.B【分析】根据正比例函数y x =的图象与反比例函数()0k y k x=≠的图象的性质,结合题意,可计算得OA OB =;根据90CAD ∠=︒和四边形OCAD 的面积为1,设点C 坐标为()0,m ,设点D 坐标为(),0n ,通过勾股定理和四边形面积解方程,即可得到k 的值,从而计算得AB 和三角形OAE 的面积,以及不等式k x x>的解集.【详解】①正比例函数y x =的图象与反比例函数()0k y k x=≠的图象交于A ,B 两点 ①0k > ①y x k y x =⎧⎪⎨=⎪⎩①x =结合题意,得A,(B①OAOB =①OA OB =,故①正确;设点C 坐标为()0,m ,设点D 坐标为(),0n ,结合题意,0m >且0n >①OC m =,OD n =①四边形OCAD 的面积为1①四边形OCAD的面积)11=122OAC OAD S S OC OD m n +=+=△△①m n +=结合题意,(22AC m =+,(22AD n =+ 又①90CAD ∠=︒,且90COD ∠=︒①22222AC AD OC OD CD +=+=①((2222+m n m n =+①m n =+①=①1k =①()1,1A ,()1,1B --,AB ==,故①错误;①AE x ⊥①()1,0E ,1AE =①1OE = ①1122OAE S OE AE =⨯=△,故①正确;当0x >时,k x x>即1x x > ①21x > ①1x >或1x <-(舍去)当0x <时,k x x >即1x x > ①21x <①10x -<<①不等式k x x >的解集是1x >或10x -<<,故①错误; 故选:B .【点睛】本题考查了正比例函数、反比例函数、勾股定理、分式、不等式的知识;解题的关键是熟练掌握正比例函数、反比例函数、勾股定理、分式、不等式的性质,从而完成求解.21.x ≤3【分析】由题意先去分母,再移项合并,进而化系数为1即可得出,注意化系数为1时改变符号方向. 【详解】解:1-2x ≥-1 去分母:12x -≥-,移项合并:3x -≥-,化系数为1:3x ≤. 所以不等式1-2x ≥-1的解集是3x ≤. 故答案为:3x ≤.【点睛】本题考查解一元一次不等式,熟练掌握解一元一次不等式运算法则是解答本题的关键.22.6x >-.【分析】先移项,然后系数化为1,即可求出不等式的解集.32x -<,23x -<,①2)3x <,①x >①2)x >-,①6x >-.故答案为:6x >-.【点睛】本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键. 23.3a ﹣12≥0.【详解】试题分析:理解:差是一个非负数,即是最后算的差应大于或等于0. 解:根据题意,得3a ﹣12≥0.故答案为3a ﹣12≥0.【点评】读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.24.13x ≥且3x ≠【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组得到答案.【详解】解:由题意得:310x -≥且30x -≠, 解得:13x ≥且3x ≠, 故答案为:13x ≥且3x ≠.【点睛】本题考查的是代数式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.25. 【详解】试题分析:把x 的系数化为1即可;注意系数化为一(不等式性质—不等式左右两边同时乘或除以同一个正数,不等号的方向不变/不等式左右两边同时乘或除以同一个负数,不等号的方向改变).化x 的系数化为1得,.①原不等式的解为. 考点:解一元一次不等式.26.(3,0)【分析】解不等式,并结合不等式的解,即可求出k 的值,然后将k 的值代入直线解析式中,再将y=0代入直线解析式中,即可求出结论.【详解】解:()200kx k ->≠当k >0时,解得x >2k; 当k <0时,解得x <2k; ①关于x 的不等式20(0)kx k ->≠的解集是3x >,①k >0,且23k = 解得:23k =将23k =代入直线2y kx =-+中,得223y x =-+ 当y=0时,解得:x=3①直线2y kx =-+与x 轴的交点坐标是(3,0)故答案为(3,0).【点睛】此题考查的是解不等式和求直线与x 轴的交点坐标,掌握不等式的基本性质和坐标轴上点的坐标规律是解决此题的关键.27.﹣2.【分析】根据一次函数的图象不过第二象限可得到一个关于m 的不等式组,解不等式组确定出m 的取值范围,再根据m 是整数,即可确定m 的值.【详解】①一次函数y =(m +3)x +m +2的图象不过第二象限,①3020m m +>⎧⎨+⎩, 解得:﹣3<m ≤﹣2,而m 是整数,则m =﹣2.故答案为:﹣2.【点睛】本题主要考查一次函数的图象及不等式组的整数解,掌握一次函数的图象是解题的关键.28.a <2【分析】根据不等式的基本性质,由不等式(a-2)x >1的解集为x <12a -,可得:a-2<0,据此求出a 的取值范围即可.【详解】①不等式(a-2)x >1的解集为x <12a -, ①a-2<0,①a 的取值范围为:a <2.故答案为a <2. 【点睛】此题主要考查了不等式的解集,要熟练掌握,注意不等式的基本性质的应用. 29.<【分析】根据不等式的基本性质即可解答.【详解】如果a <b ,ac >bc,则c <0.【点睛】本题主要考查不等式的基本性质,熟记不等式的性质并应用是关键. 30.x ≤m【分析】根据同小取小,即可得到不等式的解集,从而可以解答本题.【详解】解:①不等式组x m x n≤⎧⎨<⎩,且m <n , ①x ≤m ,故答案为x ≤m .【点睛】此题考查不等式组的解集,根据不等式的解集求出即可,难度一般. 31.73x -<≤-【分析】根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,可得出不等式组的解集.【详解】不等式组的解集为:73x -<≤-.【点睛】本题考查了不等式组的解集,注意求解不等式解集的法则.32.3x x-,12-. 【分析】先化简211933x x x -⎛⎫-⋅ ⎪+⎝⎭,再求出不等式组的解集,代值计算即可. 【详解】解:211933x x x -⎛⎫-⋅ ⎪+⎝⎭ ()()3(3)(3)=333x x x x x x x x ⎡⎤++--⋅⎢⎥++⎣⎦()3(3)(3)=33x x x x x x +-+-⋅+ =3x x-, 又23213x x -<⎧⎨-⎩①② 解不等式①得x >-1,解不等式①得x ≤2,①-1<x ≤2,①x 为偶数且x ≠0,①x =2, 原式231==22--. 【点睛】此题考查的是分式的化简和求不等式组解集的综合题,掌握找分式的最简公分母的方法和不等式的性质是解题的关键.33.1【分析】先求出不等式的解集,然后求出其正整数解即可.【详解】解:①350x -≤, ①53x ≤, ①正整数解是1,故答案为:1.【点睛】本题主要考查了解一元一次不等式和解不等式的正整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.34.①①①【分析】将m =4和m =1代入不等式组,再根据口诀可得出不等式解集情况,从而判断①①;由不等式组无解,并结合大大小小的口诀可得a 的取值范围,此时注意临界值;由7≤m <8,可得不等式组3、4、5、6、7共5个整数解,从而判断①.【详解】解:①若m =4,则不等式组为24x x >⎧⎨≤⎩,此不等式组的解集为2<x ≤4,此结论正确;①若m=1,则不等式组为21xx>⎧⎨≤⎩,此不等式组无解,此结论正确;①若不等式组无解,则m的取值范围为m≤2,此结论错误;①若7≤m<8,则原不等式组有3、4、5、6、7共5个整数解,此结论正确;故答案为:①①①.【点睛】本题主要考查一元一次不等式组的整数解,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.35.4【详解】解①得,x>-2.5;解①得,x≤4;①-2.5<x≤4,①最大整数解为4.36.x>5【分析】先去分母,然后通过移项、化未知数系数为1来解不等式.【详解】解:在不等式的两边同时乘以6,得2x+2<3x﹣3,移项,得﹣x<﹣5,化系数为1,得x>5.故答案是:x>5.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.37.1【分析】先解不等式组,再根据条件得到a,b的值,然后可求出a+b的值.【详解】解2223x a x b ⎧+≥⎪⎨⎪-<⎩得3422b a x +-≤<, 因为01x ≤<,所以4202a a -==,,3112b b +==-,, 1a b +=.考点:不等式组.38.2b <【分析】根据抛物线2222y x bx b b =++-+与x 轴没有交点,可知当22220x bx b b ++-+=时,()()22241+20,b b b --⨯⨯<从而可以求得b 的取值范围. 【详解】解:①抛物线2222y x bx b b =++-+与x 轴没有交点,①22220x bx b b ++-+=无解,①()()22241+20,b b b --⨯⨯<解得:2,b <故答案为: 2.b <【点睛】本题考查抛物线与x 轴的交点,解答本题的关键是明确题意,利用一元二次方程根的判别式解答.39.01a <<或203a <<- 【分析】分当a<0时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当a<0时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值,此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值,此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键.40.4x ≥-,-4,-3,-2,-1,0.【分析】通过去分母,去括号,移项,合并同类项,未知数系数化为1,即可求解. 【详解】解:4312163x x ++≤+, 去分母得:()432126x x +≤++,去括号,移项得:34264x x -≤+-,合并同类项得:4x -≤,解得:4x ≥-,①它的非正整数解为:-4,-3,-2,-1,0.【点睛】本题主要考查解一元一次不等式,熟练掌握去分母,去括号,移项,合并同类项,未知数系数化为1,是解题的关键.41.(1)14+(2)x >2,见解析. 【分析】根据负整数指数幂的性质、特殊角的三角函数值、二次根式化简以及零指数幂的性质依次计算后,再根据实数的运算法则求得计算结果即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集即可.【详解】(1)原式=14﹣2×12+1=14﹣ =14 (2)()295131x x x x --⎧⎪⎨->+⎪⎩①② 解不等式①得:x≥﹣3,解不等式①得:x >2,则不等式组的解集为x >2,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是实数的运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.42.(1)(2)(3)(4)【详解】试题分析:将上述不等式的解集规范的表示在数轴上即可.试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点睛:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”.43.11x x +-,13【分析】先利用分式的加减乘除混合运算法则进行化简,然后把不等式2192136x x -+-≤的最小整数解代入求值即可.【详解】解:2222221211x x x x x x x x x ⎛⎫+--÷ ⎪--++⎝⎭ =()()()()()22111111x x x x x x x x x ⎡⎤+-+-⋅⎢⎥+--⎢⎥⎣⎦=2111x x x x x x+⎛⎫-⋅ ⎪--⎝⎭ =11x x x x+⋅-=11x x +-, 由不等式219236x x -+-≤1,得4x -2-9x -2≤6, ①x ≥-2,①使分式有意义的x 值是1x ≠±,0x ≠,且x 是不等式219236x x -+-≤1的最小整数解, ①x =-2,当x =-2时,原式=211213-+=--. 【点睛】此题主要考查分式的化简求值和解一元一次不等式,熟练掌握分式的混合运算法则和解一元一次不等式的步骤是解题关键.44.7x >-.在数轴上表示见解析【分析】先去括号,再移项,合并同类项,系数化为1,最后在数轴上表示出解集即可.【详解】解:去括号得:9324->-x x ,移项得:4329->-x x ,解得:7x >-.在数轴上表示如下:【点睛】此题主要考查了解一元一次不等式,以及在数轴上表示不等式的解集,解题关键是掌握不等式的性质.45.﹣1≤x <1【详解】试题分析:先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.试题解析:解:1211123x x x -≤⎧⎪⎨+-+⎪⎩①<② 解①得:x ≥﹣1,解①得:x <1.在数轴上表示如下:则不等式组的解集是:﹣1≤x <1.46.(1)购买甲种消毒液每桶需30元,乙种消毒液每桶需20元(2)12【分析】(1) 设甲种消毒液每桶x 元,乙种消毒液每桶y 元,根据题意,列方程组求解即可.(2) 设购买甲种消毒液x 桶,则购买乙种消毒液(21-x )桶,根据题意,列出不等式求解即可.(1)设甲种消毒液每桶x 元,乙种消毒液每桶y 元,根据题意,得341703250x y x y +=⎧⎨-=⎩, 解得3020x y =⎧⎨=⎩, 故购买甲种消毒液每桶需30元,乙种消毒液每桶需20元.(2)设购买甲种消毒液x 桶,则购买乙种消毒液(21-x )桶,根据题意,得30x +20(21-x )≤540,解得x ≤12,①x 是正整数,①至多可购进甲种消毒液12桶.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,熟练掌握方程组的求解,不等式整数解的求解是解题的关键.47.(1)每件文化衫和每本相册的价格分别为35元,26元(2)共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.【分析】(1)设每件文化衫和每本相册的价格分别为x 元,y 元,然后根据每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册列出方程求解即可; (2)设购买文化衫m 件,购买相册(50)m -本,然后根据拿出不少于270元但不超过300元的资金为老师买纪念品列出不等式组求解即可.(1)解:设每件文化衫和每本相册的价格分别为x 元,y 元,由题意得:925200x y x y -=⎧⎨+=⎩, 解得3526x y =⎧⎨=⎩, 答:每件文化衫和每本相册的价格分别为35元,26元;(2)解:设购买文化衫m 件,购买相册(50)m -本,由题意得,180********(50)1800270m m -≤+-≤-, 解得25222599m ≤≤,且m 为整数, ①共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.答:共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.【点睛】本题主要考查了二元一次方程组和一元一次不等式组的应用,解题的关键在于正确理解题意.48.32x -≤<【分析】先求出每个不等式的解集,再求出不等式组的解集即可. 【详解】4713112x x x -<⎧⎪⎨+≥-⎪⎩①② 由①得2x <,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 不等式与不等式组 全章测试题
一、选择题
1.下列变形错误的是( )
A .若a -c >b -c ,则a >b
B .若12a <12
b ,则a <b C .若-a -
c >-b -c ,则a >b
D .若-12a <-12
b ,则a >b 2.不等式x 2-x -13
≤1的解集是( ) A .x≤4 B.x≥4
C .x≤-1
D .x≥-1
3.将不等式组⎩⎨⎧12x -1≤7-32x ,5x -2>3(x +1)
的解集表示在数轴上,正确的是( ) 4.若关于x 的方程3(x +k)=x +6的解是非负数,则k 的取值范围是( )
A .k≥2 B.k >2
C .k≤2 D.k <2
5.若关于x 的一元一次不等式组⎩⎨⎧x -1<0,x -a >0
无解,则a 的取值范围是( ) A .a≥1 B.a >1
C .a≤-1
D .a <-1
6.若不等式组⎩⎨⎧x -b <0,x +a >0
的解集为2<x <3,则a ,b 的值分别为( ) A .-2,3 B .2,-3
C .3,-2
D .-3,2
7.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( )
A .39
B .36
C .35
D .34
8.某天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办
法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( )
A .至少20户
B .至多20户
C .至少21户
D .至多21户
9.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都收7元车费),超过3千米以后,超过部分每增加1千米,加收元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的取值范围是
( )
A .1<x≤11 B.7<x≤8
C .8<x≤9
D .7<x <8
二、填空题
10.已知x 2是非负数,用不等式表示____;已知x 的5倍与3的差大于10,且不大于20,用不等式组表示____________.
11.若|x +1|=1+x 成立,则x 的取值范围是__________.
12.若关于x ,y 的二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5
中x 的值为正数,y 的值为负数,则m 的取值范围为____________.
13.在平面直角坐标系中,已知点A(7-2m ,5-m)在第二象限内,且m 为整数,则点A 的坐标为_________.
14.一种药品的说明书上写着:“每日用量60~120 mg ,分4次服用”,则一次服用这种药品的用量x(mg)的范围是____________.
15.按下列程序(如图),进行运算规定:程序运行到“判断结果是否大于244”为一次运算.若x =5,则运算进行______次才停止;若运算进行了5次才停止,则x 的取值范围是__________.
16.为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每一个路口安排8人,那么最后一个路口不足8人,但不少于4人.则这个中学共选派值勤学生_______人,共有______个交通路口安排值勤.
三、解答题
17.解下列不等式(组),并把解集在数轴上表示出来:
(1)5x -13-x >1;
(2)x 2-1≤7-x 3
;
(3)⎩⎨⎧4x +6>1-x ,3(x -1)≤x+5;
(4)⎩⎨⎧2x +5≤3(x +2),1-2x 3+15>0.
18.解不等式组⎩⎨⎧2x +3>3x ,
x +33-x -16≥12,
并求出它的整数解的和.
19.阅读理解:解不等式(x +1)(x -3)>0.
解:根据两数相乘,同号得正,原不等式可以转化为⎩⎨⎧x +1>0,x -3>0或⎩⎨⎧x +1<0,x -3<0.
解不等式组⎩⎨⎧x +1>0,x -3>0
得x >3; 解不等式组⎩⎨⎧x +1<0,x -3<0
得x <-1. 所以原不等式的解集为x >3或x <-1.
问题解决:根据以上材料,解不等式(x -2)(x +3)<0.
20.某商场进了一批价值8万元的衣服,每件零售价为180元时,卖出了250件,但发现销售量不大,营业部决定每件降价40元,那么商场至少要再卖出多少件后才能收回成本
21.某小区前面有一块空地,现想建成一块面积大于48平方米,周长小于34米的长方形绿化草地,已知一边长为8米,设其邻边长为x 米,求x 的整数值.
22. 为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(1)求足球和篮球的单价各是多少元
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,则学校最多可以购买多少个足球
23.某地区为筹备一项庆典,利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A,B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆;搭配一个B种造型需甲种花卉50盆,乙种花卉90盆,且搭配一个A种造型的成本是200元,搭配一个B种造型的成本是300元,则有多少种搭配方案这些方案中成本最低的是多少元
答案:
1---9 CAACA ABCB
10. x 2≥0 ⎩⎨⎧5x -3>105x -3≤20
11. x≥-1
12. 83
<m <19 13. (-1,1)
14. 15≤x≤30
15. 4 2<x≤4
16. 158 20
17. (1) 解:x >2,数轴略
(2) 解:x≤4,数轴略
(3) 解:-1<x≤4,数轴略
(4) 解:-1≤x<45
,数轴略 18. 解:不等式组的解集为-4≤x<3
∴这个不等式组的整数解为-4,-3,-2,-1,0,1,2
其和为-4-3-2-1+0+1+2=-7
19. 解:由题意得⎩⎨⎧x -2>0,x +3<0或⎩
⎨⎧x -2<0,x +3>0, 解不等式组⎩⎨⎧x -2>0,x +3<0,
不等式组无解; 解不等式组⎩⎨⎧x -2<0,x +3>0,
解得-3<x <2,则原不等式的解集是-3<x <2 20. 解:设商场至少要再卖出x 件后才能收回成本
由题意得180×250+(180-40)x≥80000
解得x≥250
即商场至少要再卖出250件后才能收回成本
21. 解:根据题意得⎩⎨⎧8x >48,2(x +8)<34,
解得6<x <9
又∵x 为整数
∴x 的值为7或8
22. 解:(1)设足球的单价是x 元,篮球的单价是y 元,根据题意得⎩⎨⎧x +y =159,x =2y -9,
解得⎩⎨⎧x =103,y =56,
则足球的单价是103元,篮球的单价是56元 (2)设最多可以购买足球m 个,则购买篮球(20-m)个,根据题意得103m +56(20-m)≤1550,
解得m≤9747
,∵m 为整数,∴m 最大取9,则学校最多可以购买9个足球 23. 解:设搭配A 种造型x 个,则B 种造型为(50-x)个,依题意得⎩⎨⎧80x +50(50-x )≤3490,40x +90(50-x )≤2950,
解得31≤x≤33,∵x 是整数,∴x 可取31,32,33, ∴可设计三种搭配方案:①A 种的造型31个,B 种造型19个;②A 种造型32个,B 种造型18个;③A 种造型33个,B 种造型17个.由于B 种造型的成本高于A 种造型成本,所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为33×200+17×300=11700(元)。