1函数项级数的一致收敛性
函数列与函数项级数一致收敛性解析
第十三章函数列与函数项级数§1 一致收敛性(一) 教学目的:掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(二) 教学内容:函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法.基本要求:1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法.2、教学基本要求:理解并掌握函数列与函数项级数的概念及一致收敛的概念和性质;掌握函数项级数的几个重要判别法,并能利用它们去进行判别;掌握一致收敛函数列与函数项级数的极限与和函数的连续性,可积性,可微性,并能应用它们去解决问题。
3、教学重点难点:重点是函数列一致收敛的概念、性质;难点是一致收敛性的概念、判别及应用。
(三) 教学建议:(1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法.————————————————————一函数列及其一致收敛性对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。
使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。
若函数列})({x f n 在数集E D ⊂上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值)()(lim x f x f n n =∞→与之对应,由这个对应关系所确定的函数,称为函数列})({x f n 的极限函数。
函数项级数一致收敛的定义
函数项级数一致收敛的定义函数项级数指的是形如$\sum_{n=1}^{\infty} f_n(x)$的无穷级数,其中$f_n(x)$表示一个与自变量$x$有关的函数序列。
一个函数项级数的一致收敛性是指当自变量$x$在其中一个区间$I$上时,函数项级数的部分和函数序列$\{S(x,N)\}$在该区间上一致收敛。
具体地说,给定函数项级数$\sum_{n=1}^{\infty} f_n(x)$,它的部分和函数序列定义为$S(x,N)=\sum_{n=1}^{N} f_n(x)$。
那么函数项级数的一致收敛定义如下:对于任意给定的正数$\varepsilon$,存在一个正整数$N_0$,当$n>N_0$时,对于任意$x\in I$,都有$,S(x,n)-S(x,N_0),<\varepsilon$。
换句话说,对于任意的正数$\varepsilon$,存在一个正整数$N_0$,当$n>N_0$时,级数的部分和与部分和函数之间的距离都小于$\varepsilon$,也就是说,在该区间$I$上,级数的每一项与级数的和之间的误差都可以无限接近于零。
要理解函数项级数一致收敛的定义,我们可以通过与其他类型的收敛进行比较。
首先,如果函数项级数在其中一点$x_0$处点态收敛,即级数的部分和序列$\{S(x_0,N)\}$收敛到其中一实数$L$,但这个$L$可能依赖于$x_0$,则我们无法将这个级数称为一致收敛的。
因为一致收敛要求对于任意的$x\in I$,部分和函数序列都收敛到同一个极限,也就是说,部分和函数序列不依赖于$x$。
类似地,如果部分和函数序列在其中一个区间上都是逐点收敛的,并且对于每个$x$都收敛到不同的极限,则也不能称为一致收敛。
一致收敛的概念可以看作是逐点收敛的一个强化版。
因为在逐点收敛中,对于每个$x\in I$,都要存在一个正整数$N_0(x)$使得当$n>N_0(x)$时,$,S(x,n)-S(x,N_0(x)),<\varepsilon$,这样的$N_0(x)$依赖于$x$。
函数项级数一致收敛性判别及应用
函数项级数一致收敛性判别及应用函数项级数是由一系列函数的和组成的级数,通常用于描述函数的展开式或泰勒级数。
对于某些函数项级数,我们希望判断其在一定的条件下是否具有一致收敛性,这对于分析和解决问题具有很大的价值。
本文将介绍一些函数项级数一致收敛性的判别方法及其应用。
一、函数项级数收敛的定义设 $f_n$ 为定义在区间 $I$ 上的函数序列,如果存在函数 $f$ 使得$\lim_{n\to\infty}f_n(x)=f(x)$ 对于所有 $x\in I$ 成立,则称函数序列$\{f_n\}$ 在 $I$ 上逐点收敛于函数 $f$,并记为 $f_n\to f$($n\to\infty$)。
二、Weierstrass 判别法Weierstrass 判别法是判断函数项级数一致收敛性的重要方法之一。
它通常用于非负函数项级数。
证明如下:设 $s_N(x)=\sum_{n=1}^{N}f_n(x)$ 为前 $N$ 项和函数,$s(x)=\sum_{n=1}^{\infty}f_n(x)$ 为级数的和函数。
由于 $|f_n(x)|\leq M_n$,所以对于 $m>n$,有 $|s_m(x)-s_n(x)|=|\sum_{k=n+1}^{m}f_k(x)|\leq\sum_{k=n+1}^{m}|f_k(x)|\leq \sum_{k=n+1}^{m}M_k$。
三、Abel 判别法1. 证明 Riemann 积分的线性性如果函数 $f(x)$ 和 $g(x)$ 在区间 $[a,b]$ 上 Riemann 可积,则它们的线性组合$\alpha f(x)+\beta g(x)$ 也在 $[a,b]$ 上 Riemann 可积,并且$$\int_a^b(\alpha f(x)+\beta g(x))dx=\alpha \int_a^bf(x)dx+\beta\int_a^bg(x)dx$$如果 $f(x)$ 和 $g(x)$ 在 $[a,b]$ 上一致连续,则它们的线性组合也在$[a,b]$ 上一致连续。
函数项级数一致收敛性判别及应用
函数项级数一致收敛性判别及应用1. 引言1.1 研究背景函数项级数是数学分析中一个重要的研究对象,它是由无穷个函数组成的无穷级数求和。
在实际的应用中,往往需要研究级数的收敛性,其中一致收敛性是一个重要的性质。
一致收敛性指的是对于每一个给定的ε>0,存在一个N,使得当n>N时,级数的部分和与其极限的差的绝对值小于ε。
函数项级数一致收敛性的研究有着重要意义,它可以帮助我们更好地理解函数序列之间的关系,从而应用到不同的数学问题中。
函数项级数的一致收敛性判别方法有多种,比较判别法和魏尔斯特拉斯判别法是常用的方法之一。
比较判别法通过比较级数与已知收敛的级数的大小关系来判断级数的收敛性,而魏尔斯特拉斯判别法则利用函数项级数中的Cauchy收敛原理来判断其收敛性。
在实际应用中,函数项级数的一致收敛性判别方法可以帮助我们解决各种数学问题,例如在微积分和数学分析中的应用。
通过深入研究函数项级数的一致收敛性,我们可以更好地理解其数学性质,为进一步的研究提供基础。
【研究背景】1.2 研究意义函数项级数是数学中重要的概念之一,它在分析学、数学物理等领域中有着广泛的应用。
研究函数项级数的一致收敛性对于深入理解这一概念的性质和特点具有重要意义。
一致收敛性是函数项级数收敛的一种较强的方式,它能够保证收敛的速度和稳定性,从而使得我们能够更好地掌握级数的性质和行为。
研究函数项级数的一致收敛性,不仅可以帮助我们更好地理解级数的收敛性质,还可以为我们解决实际问题提供有力的数学工具。
在实际应用中,我们经常会遇到需要考察函数项级数的收敛性的情况,比如在数值计算、信号处理、概率论等领域中都会涉及到函数项级数的处理。
研究函数项级数的一致收敛性具有重要的理论意义和实际应用价值。
1.3 研究目的研究目的是对函数项级数的一致收敛性进行深入探讨,通过研究不同的判别方法来确定函数项级数是否在整个定义域上一致收敛。
通过对比比较判别法和魏尔斯特拉斯判别法的优缺点,可以更好地理解和判断函数项级数的收敛性。
函数项级数一致收敛性判别及应用
函数项级数一致收敛性判别及应用函数项级数是指由函数组成的序列求和的过程,它在数学中具有重要的应用。
函数项级数一致收敛性判别及应用是函数序列求和过程中的一个重要问题,它涉及到函数项级数的收敛性和应用方面。
本文将介绍函数项级数一致收敛性的判别方法和应用,让读者对这个重要的数学问题有一个更深入的了解。
我们来介绍一下函数项级数一致收敛性的概念。
函数项级数的一致收敛性是指函数项级数在定义域上一致收敛。
在数学中,一致收敛是指序列或者函数在某个范围内均匀收敛。
对于函数项级数来说,一致收敛性意味着在整个定义域上,序列的收敛性都是均匀的,而不是局部的。
一致收敛性是函数项级数的重要性质,它在微积分、实分析和复分析等领域都有广泛的应用。
要判断函数项级数是否一致收敛,有一些常用的判别法则,下面我们将介绍其中的几种。
首先是Weierstrass判别法。
Weierstrass判别法是判断函数项级数一致收敛性的常用方法之一,它要求被求和的函数的绝对值在定义域上有一个上界,而且这个上界在定义域上是一致的。
具体而言,如果对于函数项级数中的每一个函数f(x)都存在一个数M,使得|f(x)|≤M对于定义域D中的所有x都成立,那么函数项级数就一致收敛。
Cauchy判别法也是判断函数项级数一致收敛的一种方法。
Cauchy判别法是根据函数项级数的收敛性和余项来判断一致收敛性的,它要求余项趋于零,即对于任意的ε>0,存在一个正整数N,当n和m都大于N时,|Rn- Rm|<ε成立。
如果余项满足这个条件,那么函数项级数就一致收敛。
我们要介绍的是Abel判别法。
Abel判别法适用于交错级数,它要求函数项级数的前n项和收敛,并且有界,而且收敛序列是单调递减的,这时交错级数就是一致收敛的。
这三种判别法则是判断函数项级数一致收敛性的常用方法,在实际应用中非常有用。
函数项级数一致收敛性的判别法则是实际问题的抽象和理论总结,它在实际应用中有广泛的用途。
函数项级数一致收敛性判别及应用
函数项级数一致收敛性判别及应用函数项级数的一致收敛性是数学分析中的重要概念,对于研究函数项级数的性质和应用具有重要意义。
本文将从一致收敛性的定义开始,介绍一致收敛性的判别定理和具体的应用,希望读者通过本文的了解和学习,能够更好地理解和应用函数项级数的一致收敛性。
一、一致收敛性的定义在介绍一致收敛性的判别定理和应用之前,我们首先来了解一下一致收敛性的定义。
对于一般的数项级数来说,我们只需要关注级数的部分和序列是否收敛即可。
但对于函数项级数来说,因为级数的每一项都是函数,所以我们不仅需要考察级数的部分和序列的收敛性,还需要考察函数序列在定义域上的收敛性。
设对于定义在区间上的函数序列,对于给定的,如果对于任意,都存在一个自然数,使得当时,有∣∣fn(x)−f(x)∣∣<ε那么我们称函数序列在区间上一致收敛于函数,并记作。
换句话说,对于一致收敛的函数序列而言,不仅级数的部分和序列收敛于函数,且对于每一个自然数,其函数项序列在整个区间上都趋向于函数。
二、一致收敛性的判别定理对于函数项级数的一致收敛性,我们有一些判别定理可以帮助我们进行判断。
这里我们简要介绍几个重要的判别定理:1. 魏尔斯特拉斯判别定理(Weierstrass判别定理)魏尔斯特拉斯判别定理是判别函数项级数一致收敛性的重要定理之一。
该定理表述如下:若对于区间上的函数序列,存在一个数项级数使得对于任意和有∣∣fn(x)−an∣∣<bn,则级数在区间上一致收敛。
通过以上判别定理的介绍,我们可以看到,判别函数项级数一致收敛性的方法有多种多样,我们可以根据具体的情况选择不同的方法来进行判断,更好地理解和应用函数项级数的一致收敛性。
三、一致收敛性的应用函数项级数的一致收敛性不仅在理论上具有重要意义,而且在实际问题中也有着广泛的应用。
下面我们将介绍一些函数项级数一致收敛性在实际问题中的应用。
1. 函数项级数的积分和微分操作在实际问题中,我们经常会遇到需要对函数项级数进行积分和微分操作的情况。
函数项级数一致收敛性判别及应用
函数项级数一致收敛性判别及应用【摘要】本文主要讨论了函数项级数的一致收敛性判别及其应用。
首先介绍了一致收敛性判别定理,然后探讨了函数项级数在实际问题中的应用。
接着列举了几个常见的一致收敛性判别法则,帮助读者更好地理解一致收敛性。
通过应用举例,展示了函数项级数一致收敛性在数学和工程领域的实际应用。
最后讨论了函数项级数一致收敛性的收敛区域,为读者进一步深入研究提供了指导。
通过本文的学习,读者可以更好地理解函数项级数的一致收敛性及其实际应用,为相关领域的研究和应用提供了理论支持。
【关键词】函数项级数、一致收敛性、判别定理、应用、常见法则、收敛区域、举例、总结1. 引言1.1 引言函数项级数一致收敛性是函数分析中一个重要的概念,它涉及到函数序列在整个定义域上的一致收敛性问题。
在实际应用中,我们常常需要判断函数项级数是否一致收敛,以及在一致收敛的条件下如何进行求和。
掌握函数项级数一致收敛性的判别方法和应用是非常必要的。
在本文中,我们将深入探讨函数项级数的一致收敛性判别定理以及其应用。
我们将介绍一致收敛性的判别定理,包括一些常见的判别法则,以及如何判断函数项级数在整个定义域上的一致收敛性。
接着,我们将讨论函数项级数一致收敛性在实际问题中的应用,通过具体的示例来说明如何利用一致收敛性来求出函数项级数的和函数。
我们将讨论函数项级数一致收敛性的收敛区域,即函数序列的收敛性对应的区域范围。
通过本文的学习,读者将能够更加深入地理解函数项级数的一致收敛性及其在实际问题中的应用。
希望本文能够帮助读者更好地理解函数分析中关于一致收敛性的重要概念,进而提高对函数序列和级数问题的认识和应用能力。
2. 正文2.1 一致收敛性判别定理一致收敛性是函数项级数收敛性中的重要性质,它在分析数学中有着广泛的应用。
一致收敛性判别定理是判断函数项级数是否一致收敛的重要工具。
在实际问题中,我们经常需要判断一个函数项级数是否一致收敛,以确保我们得到的结果是可靠的。
函数项级数的一致收敛性及基本性质
问题 对什么级数,能从每一项的连续性得出和 函数的连续性,从每一项的导数及积分所成的级 数之和得出原来级数的和函数的导数及积分呢?
二、函数项级数的一致收敛性
定义 设有函数项级数 un ( x) .如果对于任意 n1
n1
于是 nqn1 0 (n ),
故数列 nqn1有界,必有M 0 ,使得
nqn1 1 M x1
(n 1,2,)
又 0 x1 R,级数
an
xn 1
收敛,
n1
由比较审敛法即得级数 nan xn1 收敛. n1 由定理 4,级数 nan xn1 在( R, R)内的任意 n1
闭区间[ a,b ]上一致连续,
逐项积分即得 an xn , n1
因逐项积分所得级数的收敛半径不会缩小,
所以 R R, 于是 R R.
即 nan xn1 与 an xn 的收敛半径相同.
n1
n1
四、小结
1、函数项级数一致收敛的定义; 2、一致收敛级数的判别法——魏尔斯特拉斯 判别法; 3、一致收敛级数的基本性质; 4、幂级数的一致收敛性.
练习题
一、已知函数序列 sn
sin
x n
(n
1,2,3,)
在
(,)
上收敛于 0.
1.问 N ( , x) 取多大,能使当 n N 时, sn ( x) 与其极限 之差的绝对值小于正数 ;
2. 证明sn ( x) 在任一有限区间[a, b] 上一致收敛.
二、按定义讨论级数
n1
(1)n1
x2 (1 x2
由于N 只依赖于 而于 x0 , x 无关,
函数项级数一致收敛性判别及应用
函数项级数一致收敛性判别及应用一、前言函数项级数是数学中重要的研究对象之一,其研究内容包含了级数的一切,而函数的性质使得函数项级数的研究更加复杂。
本文主要讨论函数项级数的一致收敛性判别及其应用。
二、一致收敛性定义及判别定义:对于一列函数 $f(x)$ 的级数:$f_1(x)+f_2(x)+...+f_n(x)+...$,如果当$n→∞$ 的时候,级数 $f_1(x)+f_2(x)+...+f_n(x)+...$ 的部分和 $S_n(x)$ 对于 x ∈D 讨论存在极限,即 $\lim_{n→∞} S_n(x)=S(x)$,则称函数项级数:$\displaystyle\sum_{n=1}^{\infty}f_n(x)$ 在域 D 上一致收敛于 S(x)。
S(x)称为函数项级数 $\displaystyle\sum_{n=1}^{\infty}f_n(x)$ 的和函数。
函数项级数的Cauchy准则:函数项级数 $\displaystyle\sum_{n=1}^{\infty}f_n(x)$ 在区间 I 上一致收敛的充分必要条件为:对于任意的 $\epsilon>0$,存在正整数 N 和任意的 n,m>N,使得当$x∈I$ 时,$|f_n(x)+...+f_m(x)|≤\epsilon$.总结:定义、定理和准则都给我们对函数项级数一致收敛性的一个综合的认识,通过这些理论知识,我们下面可以看到函数项级数在实际应用中的一些具体应用。
三、函数项级数的应用函数项级数在数学和物理学等方面有广泛的应用,例如傅里叶级数、泰勒级数、泊松方程和热传导方程等。
下面我们主要介绍函数项级数在傅里叶级数中的应用。
傅里叶级数是标准基函数与一般函数之间的线性组合,可以看作是将一个周期为T的函数展开为不同频率的正弦函数和余弦函数的和。
傅里叶级数的求解过程主要分为两步:第一步确定基函数,第二步利用基函数求解待定系数。
假设一个周期函数$f(x)$可以表示为完备正弦函数和余弦函数的和,表示为:$$f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}[a_n\cos(\frac{n\pix}{l})+b_n\sin(\frac{n\pi x}{l})]$$其中 $a_0$,$a_n$ 和 $b_n$ 分别为待定系数,$l$为周期。
函数项级数的一致收敛性及一致收敛级数的基本性质
y S(x)
y Sn (x)
I
x
定理(柯西收敛原理)
un ( x)在I上一致收敛于S( x) 0, N ( ) N ,
n1
当n N ( )时, x I ,p N , un1( x) un p( x) .
推论 若 un ( x)在I上一致收敛,则 {un( x)}在I上一致 n1
即 0, N ( x0 , ) 0,当n N ( x0 , )时, | fn ( x0 ) f ( x0 ) |
定义 设 fn(x)在点集I上逐点收敛于f (x),且对
任意 0, 存在与x无关N ( ), 使得当n N时, 对一
切x I , 都有 fn(x) f (x) , 则称 fn(x)在I上一
>
N
时有
rn (x) (0 x )
这说明级数在 [0, +∞) 上一致收敛于 S(x) 1 . x 1
余项 rn (x) 一致收敛于 0
几何解释 : (如图)
0, N N , 当n > N 时, S(x) Sn (x) 表示 曲线 y Sn (x) 总位于曲线 y S(x) 与y S(x)
之间.
y S(x)
y S(x)
例.
求证fn ( x)
1
x n2
x2
在(, )上一致收敛.
证明: x (, ),
lim
n
fn ( x)
x
lim
n
1
n2
x
2
0, 逐点收敛于f ( x)
函数列和函数项级数一致收敛的判别方法
函数列和函数项级数一致收敛的判别方法1. Cauchy准则:对于函数列{f_n(x)},如果对于任意给定的ε>0,存在一个正整数N,当m,n>N时,对于任意的x,有,f_m(x)-f_n(x),<ε,那么函数列{f_n(x)}一致收敛。
类似地,对于函数项级数∑{f_n(x)},如果对于任意给定的ε>0,存在一个正整数N,当m>n>N时,对于任意的x,有,∑{f_n(x)}-∑{f_m(x)},<ε,那么函数项级数是一致收敛的。
2. Abel定理:对于函数项级数∑{f_n(x)g_n(x)},如果存在一个正整数N,对于任意的x,当m>n>N时,有,∑{f_n(x)g_n(x)},<M,且∑{f_n(x)}一致收敛于函数f(x),那么函数项级数∑{f_n(x)g_n(x)}也是一致收敛的。
3. Weierstrass判别法:对于函数列{f_n(x)}或函数项级数∑{f_n(x)},如果存在一个正数M_n,使得,f_n(x),≤M_n对于任意的n和x成立,并且∑{M_n}在给定的区间上收敛,那么函数列{f_n(x)}或函数项级数∑{f_n(x)}一致收敛。
4. Dini定理:对于函数列{f_n(x)}或函数项级数∑{f_n(x)},如果存在一个连续函数f(x)和{f_n(x)}一致收敛于f(x),并且{f_n(x)}的极限函数或函数项级数∑{f_n(x)}的和函数f(x)在给定区间上都是单调的,那么函数列{f_n(x)}或函数项级数∑{f_n(x)}是一致收敛的。
5. Dirichlet判别法:对于函数项级数∑{f_n(x)g_n(x)},如果存在一个正整数N,使得对于任意的x,当m>n>N时,函数列{f_n(x)}递减趋向于0,且对于任意的x和n,∑{g_k(x)},≤M成立(M为常数),那么函数项级数∑{f_n(x)g_n(x)}是一致收敛的。
函数项级数一致收敛性
函数项级数一致收敛性有关问题的讨论函数项级数是微积分的主要内容之一,是数学分析研究的重点.用函数项级数(或函数列)来表示(或定义)一个函数,判断其一致收敛性是关键.从函数项级数一致收敛的定义及性质出发,下面主要讨论函数项级数(或函数列)一致收敛性的判别及其应用.1 函数项级数一致收敛的相关定义定义1.1[]1(31)P 设函数列{})(x S n 是函数项级数∑∞=1)(n nx u的部分和函数列,若,0>∀ε 存在正整数)(εN ,当n >)(εN 时,不等式∑=-nk kx S x u1)()(=)()(x S x S n -<ε对I 上一切x 都成立,则称∑∞=1)(n nx u在I 上一致收敛于()S x .一致收敛的定义还可以用下面的方式来表达: 定义1.1[]2(67)'P 函数列{})(x S n (或∑∞=1)(n nx u)在I 上一致收敛于()S x⇔∞→n lim Ix ∈sup )(x R n =0)()(sup lim =-∈∞→x S x S n Ix n ,其中)(x R n =()()n S x S x -称为函数项级数∑∞=1)(n nx u的余项.定义1.2 函数列{})(x S n 在I 上非一致收敛于()S x⇔00>∃ε,0>∀N ,N n >∃0,I x ∈∃0,使得)()(000x S x S n -≥0ε.定义 1.3 函数列{})(x S n 在区间()b a ,内的任一闭区间上一致收敛时,称{})(x S n 在区间()b a ,内闭一致收敛.2 一致收敛函数项级数的性质[]3(417430)P -定理2.1(逐项取极限) 设级数∑∞=1)(n nx u在0x 的某个空心邻域0U (0x )={}δ<-<||0:0x x x 内一致收敛,0lim x x →()n n u x c =.则∑∞=1n nc收敛,且limx x →∑∞=1)(n nx u=∑∞=→1)(lim 0n n x x x u =∑∞=1n n c . (1)定理2.2(连续性) 若)(x u n 在区间I 上连续(1,2,n =⋅⋅⋅),∑∞=1)(n nx u在I 上一致收敛,则()S x≡∑∞=1)(n n x u 在I 上连续.定理2.2' 若)(x u n 在(,)a b 内连续(1,2,n =⋅⋅⋅),∑∞=1)(n nx u在(,)a b 内闭一致收敛,则()S x ≡∑∞=1)(n nx u在(,)a b 内连续.定理2.3(逐项求导) 若级数∑∞=1)(n nx u区间I 上满足以下三条:(1)级数∑∞=1)(n nx u在I 上收敛(或验证在I 上至少有一个收敛点);(2))(x u n 在I 上有连续导数(1,2,n =⋅⋅⋅); (3)1()n n u x ∞='∑在I 上一致收敛(或在I 的任一内闭区间上一致收敛),则∑∞=1)(n nx u区间I 上可微,且可逐项求导,即在I 上有d dx∑∞=1)(n n x u =1()n n d u x dx ∞=⎛⎫⎪⎝⎭∑ (2) 定理2.4(逐项求积分) 若级数∑∞=1)(n nx u的各项连续,并且此级数在[,]a b 上一致收敛,则有11()()b bn n aan n u x dx u x dx ∞∞===∑∑⎰⎰(3)一般地,若当∞→n 时,()0bn aR x dx →⎰,则上式为真.3 一致收敛性的判断判别一致收敛的方法有多种,下面将分别进行介绍和讨论.3.1 利用一致收敛的定义通常称定义1.1为“N -ε法”,定义1.2为“确界法”,从中还可以得到一种更简便的方法“放大法”:若,0n n N α+∀∈∃>,使得)(,)()(I x x S x S n n ∈∀≤-α,且n →∞时,0n α→,则n →∞时,()n S x 在I 上一致收敛于()S x .例1 讨论级数2321()()()n n u x x xx x x ∞==+-+-+⋅⋅⋅∑在下列区间的一致收敛性.(1)210≤≤x , (2)10≤≤x . 解 令nnk k n x x u S ==∑=1)(,则001;()lim ()1 1.nn x S x S x x →∞≤<⎧==⎨=⎩ (1)当210≤≤x 时,()0S x =. ,0>∀ε若)()(x S x S n -=ε<⎪⎭⎫⎝⎛≤nn x 21,只要2ln 1lnε>n ,取1ln[]ln 2N ε=,则当N n >时,∀]21,0[∈x 均有)()(x S x S n -=0)(-x S n <ε. 因此∑∞=1)(n nx u 在]21,0[上一致收敛于零. (2)方法1 取0ε,使2100<<ε,不论n 多大,只要取nx 21=,就有)21()21(n n n S S -=021ε>.因此,∑∞=1)(n nx u在[0,1]上收敛而非一致收敛.方法2 01;()()()11.nn n x x R x S x S x x ⎧≤<=-=⎨=⎩故01sup ()1n x R x ≤≤≡.因此,∑∞=1)(n nx u在[0,1]上非一致收敛.注意在(1)中找N 的方法与技巧,对()()n S x S x -适当放大时,应使N 与x 无关,只与ε有关. 例2 设101()()n n i if x f x nn -==+∑,1,2,n =⋅⋅⋅,其中()f x 为连续函数,证明序列{}()n f x 在任何有限闭区间[,]a b 上一致收敛.证 记{}()n f x 的极限函数为()F x ,则111101()lim ()()()()(01;0,1,,1).i n n x x i n i n xn x i i n i i F x f x f t dt f t dt f x nn n i n θθ+--++→∞+======++<<=⋅⋅⋅-∑∑⎰⎰由于()f x 在[,1]a b +上连续,故在[,1]a b +上一致连续,即,0>∀ε()0δδε∃=>,使对于',''[,1]x x a b ∀∈+,只要当'''x x δ-<时,就有(')('')f x f x ε-<.取1[]1N δ=+,则当,n N a x b >≤≤时,有()11()()[,1][,1]0,1,,1i i i i i i x x x a b x a b i n n n n n N n n nθθδ++-+<<<+∈+++∈+=⋅⋅⋅-且,.于是110011()()()().n n i n i i i i F x f x f x f x n n n n nθεε--==-≤++-+<=∑∑因此{}()n f x 在[,]a b 上一致收敛于()f x .例3 试证:221(1)nn n n x∞=-+∑在(,)-∞+∞内一致收敛. 证 易知(,)x ∀∈-∞+∞,当n 充分大时,22n n x ⎧⎫⎨⎬+⎩⎭单调减且趋于0.故该级数为莱布尼茨型级数.则有2211()0(1)1n n R x n x n +≤≤→+++ ()n →+∞所以级数 221(1)nn n n x ∞=-+∑在(,)-∞+∞内一致收敛. 3.2 柯西准则判断一致收敛性[]5(31)P定理3.2(一致收敛的柯西准则) 函数项级数1()n n u x ∞=∑ (部分和函数列()nSx )在I 上一致收敛的充分必要条件为:,0>∀ε总存在正整数N =)(εN ,使N n >时,不等式12()()()n n n p u x u x u x +++++⋅⋅⋅+<ε )()((x S x S n p n -+<)ε对任意的正整数p 和I 上任意的x 都成立.当1=p 时得到函数项级数一致收敛的必要条件.推论 函数项级数1()n n u x ∞=∑在数集I 上一致收敛⇒函数列{})(x un在I 上一致收敛于零,即,0>∀ε+∈∃N N ,当n N >时,I x ∈∀都有)(x u n <ε.例4 设{}()n u x 为[,]a b 上的可导函数列,且在[,]a b 上1()nk k u x C ='≤∑,C 是不依赖与x 和n的正数.证明:若1()n n u x ∞=∑在[,]a b 上收敛,则必为一致收敛.证 0ε∀>,取m 充分大,将[,]a b m 等分,使得4b a m Cε-<.顺次以12,,,m x x x ⋅⋅⋅表示各小区间段的中点.由已知得,∑∞=1)(n i nx u收敛⇒()0,,,i i i i N N x n N εε∀>∃=>时,有1()2n pk i k n u x ε+=+<∑,()p N +∀∈.令12max{,,,}m N N N N =⋅⋅⋅,则[,]x a b ∀∈(不妨设x 位于第i 个小区间段,{}1,2,,i m ∈⋅⋅⋅),于是11111()()(())()()iin p n pn p n pn pxxkkikkikx x k n k n k n k n k n u x u x u t dt u x u t dt +++++=+=+=+=+=+''=+≤+∑∑∑∑∑⎰⎰2.222i C x x εεεε<+-≤+=原命题得证.注意:在证明过程中对1()n pkk n u x +=+∑进行变形时,有一个重要方法可利用—阿贝尔变换.3.3 判别函数项级数一致收敛性的常用方法判别函数项级数一致收敛性除根据定义和柯西准则外,还可以根据级数各项的特性来判别,常用以下判别法.3.3.1 Weierstrass 判别法 定理3.3.1 (Weierstrass 判别法)[]1(32)P 设函数项级数1()n n u x ∞=∑定义在数集I 上,1nn M∞=∑为收敛的正项级数,若对一切x I ∈,有(),n n u x M ≤1,2,n =⋅⋅⋅,则函数项级数1()n n u x ∞=∑在I 上一致收敛.其中1nn M∞=∑称为1()n n u x ∞=∑的优级数,因此该定理也称为优级数判别法.求优级数的方法有多种,主要有以下方法:(1)观察法; 例5 证明:21cos n nxn ∞=∑在x <+∞时一致收敛. 提示:22cos 1nx n n≤可证. (2)找出()n u x 的最大值法; 例6 证明21(1)nn xx ∞=-∑在[0,1]上一致收敛.提示:求出通项()n u x 的最大值点(求导法),2nx n =+时. (3)利用已知不等式法; 例7 讨论5211n nxn x∞=+∑在区间x <+∞上的一致收敛性. 解 当x <+∞时,552212n x n x +≥,于是,3522112nx n x n ≤+.又因31212n n ∞=∑收敛,故级数 5211n nxn x∞=+∑在(,)-∞+∞上一致收敛. (4)利用某些已知公式进行变形,等等. 例8 证明21nxn x e∞-=∑在(0,)+∞内一致收敛.证 利用泰勒公式,2212nxn x e nx =+++⋅⋅⋅ ()x R ∈.从而 222222222122nxx x x en x n x nnx -=<=+++⋅⋅⋅(0)x >. 而级数212n n∞=∑一致收敛,因此由优级数判别法可知原级数在(0,)+∞内一致收敛.3.3.2 Abel 判别法和Dirichlet 判别法对级数1()nn u x ∞=∑,若()n u x =()()n na xb x .定理3.3.2 (Abel 判别法)[]1(33)P 设(1)()1n n a x ∞=∑在区间I 上一致收敛;(2)对于每一个x I ∈,{}()n b x 是单调的;(3){}()n b x 在I 上一致有界,即对一切x I ∈和n N +∈,存在正数M ,使得()n b x M ≤,则级数1()n n u x ∞=∑在I 上一致收敛.定理3.3.3 (Dirichlet 判别法)[]1(34)P 设(1)()1n n a x ∞=∑的部分和函数列1()()nnk k Sx a x ==∑(1,2,)n =⋅⋅⋅在I 上一致有界;(2)对于每一个x I ∈,{}()n b x 是单调的; (3)在I 上,()0n b x →→,()n →∞,则级数1()nn ux ∞=∑在I 上一致收敛.例9讨论1n ∞=在区间0x <<+∞上的一致收敛性.解(1)n -=.由于1(1)n n ∞=-∑收敛,且与x 无关,故它对x 而言是一对于每一个(0,)x ∈+∞1≤.因此由Abel 判别法可知原级数在(0,)+∞上一致收敛.例10讨论(1)211)n n n -∞=10x ≤上的一致收敛性.解(1)21(1)2k k nk -=-≤∑,记()n b x =.>,故()nb x≤→(10)x≤,故()nb x单调一致地趋于零.因此,由Dirichlet判别法知,级数在[10,10]-上一致收敛.例11 证明21(1)sin1nnnxx nxx∞=--∑在1(,1)2内一致收敛.证原级数=11(1)sin11nn nnx xnxx x∞=-⋅+-∑.其中11n x+对任意1(,1)2x∈关于n单调,且一致有界:111n x≤+.下面考察级数1(1)sin1nnnx xnxx∞=--∑.因为111sin2sin sin22sin2n nk kxkx kxx===∑∑1111[cos()cos()]222sin2nkk x k xx==--+∑1cos cos()112212sin sin sin224xx nxx-+=≤≤1((,1),1,2,)2x n∈=⋅⋅⋅所以1sinnkkx=∑在1(,1)2内一致有界.而21(1)1,(,1)112n nn nx x xxx x x x--=∈-+++⋅⋅⋅+关于n单减,又2111001n nn nx xx x x nx n--≤≤<→+++⋅⋅⋅+1(,1)2x∈.所以(1)1nnx xx--在1(,1)2上单减一致收敛于0.由Dirichlet判别法可知,级数1(1)sin1nnnx xnxx∞=--∑在1(,1)2内一致收敛.则由Abel判别法可知原级数在1(,1)2上一致收敛.3.3.3 Dini定理定理3.3.4(Dini定理)[]3(407)P设()0nu x≥,在[,]a b上连续,1,2,n=⋅⋅⋅.又1()nnu x∞=∑在[,]a b上收敛于连续函数()f x ,则1()n n u x ∞=∑在[,]a b 上一致收敛于()f x .证 (反证法) 若1()n n u x ∞=∑在[,]a b 上非一致收敛,则00ε∃>,使得0,,[,]N N n N x a b +∀∈∃>∃∈,有00()n R x ε≥.取1N =,知11n ∃>,1[,]x a b ∃∈使110()n R x ε≥,令1N n =知21n n ∃>,2[,]x a b ∃∈ ,使220()n R x ε≥,如此下去,我们得到{}n 的子序列12k n n n <<⋅⋅⋅<<⋅⋅⋅使得0()k n k R x ε≥(1,2,)k =⋅⋅⋅ (1) 利用致密性原理,在有界数列{}k x 里,存在收敛子列{}0[,]j k x x a b →∈ ()j →+∞,因()n R x 单减(关于n ),所以m N +∀∈,当jk n m >时,有0()()j k j jm k n k R x R x ε≥≥ (因式(1)) 由于()()()m m R x f x S x ≡-连续,所以j →+∞时,对0()j m k R x ε≥取极限,知 00()m R x ε≥, ()m N +∀∈, 与1()n n u x ∞=∑在[,]a b 上收敛矛盾.证毕.注意:Dini 定理在和函数便于求得的情况下应用比较方便.例12 证明函数列1(),(1,2,)(1)n x nnf x n xe n==⋅⋅⋅++在区间[0,1]上一致收敛.证 当n →∞时,(1)n x x e n +→,且(1)(1,2,),n x xn e n+=⋅⋅⋅都在[0,1]上连续,故由Dini 定理可知函数列(1)n x n ⎧⎫+⎨⎬⎩⎭在[0,1]上一致收敛于xe .由于(1)1111e (1)(1)(1)x n x nx x xn x n n n xe e n x x e e e n n ++---=+⎡⎤+++++⎢⎥⎣⎦(1)1xn x n x e e n ≤+-+- 1(1)1xnn x e e n =-++-在[0,1]上一致收敛于0()n →∞.又11xe+,11nx nx e n ⎛⎫++ ⎪⎝⎭(1,2)n =⋅⋅⋅在[0,1]上连续,因此,在[0,1]上,当n →∞时,原函数列一致收敛于11xe+. 3.4 一致有界与等度连续 定义3.4.1{}()n f x 在I 上一致有界,是指:,0>∃M 对一切I x ∈,都有()(1,2,n f x M n ≤=)⋅⋅⋅成立.例13[]3(410)P 设{}()n f x 在区间[0,1]上一致有界,试证存在一个子序列,在[0,1]的一切有理点收敛.证 我们知道[0,1]的全体有理点可以排成一个数列{}n a .因{}()n f x 一致有界,故{}1()n f a 是有界数列.由致密性原理知其中存在收敛的子序列.为了便于叙述,记此收敛的子序列为{}1,1()n f a ,于是{}{}1,()()n n f x f x ⊂在1x a =处收敛.同理,因{}1,2()nfa 是有界数列,又必存在收敛子列{}2,2()n f a .即{}{}2,1,()()n n f x f x ⊂,{}2,()n f x 在12,x a a =处都收敛.如此不断地进行下去,不断地在子序列里取子序列,使{},()k n f x 在12,,,k x a a a =⋅⋅⋅处收敛,于是得到一串子序列:1,11,21,31,2,12,22,32,3,13,23,33,,1,2,3,(),(),(),,(),(),(),(),,(),(),(),(),,(),(),(),(),,(),n n n n n n n n f x f x f x f x f x f x f x f x f x f x f x f x f x f x f x f x ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅最后能用上表对角线元素组成一个子序列{},()n n f x ,即1,12,23,3(),(),(),f x f x f x ,⋅⋅⋅,(),n n f x ⋅⋅⋅易知此序列在点(1,2,)i a i =⋅⋅⋅上收敛.事实上,{}(1,2,)i a i ∀∈⋅⋅⋅,已知上面的子序列中第i 个子序列在i a 处收敛,而,1,1(),()i i i i f x f x ++⋅⋅⋅是第i 个子序列的子序列,故{},()n n f x 在i a 点上收敛.由此知{},()n n f x 在{}12,,,,n a a a ⋅⋅⋅⋅⋅⋅上收敛.定义 3.4.2 设Ω是区间I 上定义的函数族,Ω上的函数在I 上等度连续,是指:0ε∀>,0δ∃>,当12x x I ∈,且12x x δ<-时有12()()()f x f x f ε-<∀∈Ω.特别,I 上定义的函数序列{}()n f x ,在I 上等度连续,是指:0,0εδ∀>∃>,当12x x I∈,且12x x δ<-时有12()()()n n f x f x n N ε+-<∀∈.例14 设函数序列()n f x 在区间[,]a b 上等度连续的,且有()0,1,2,n f x n ≥=⋅⋅⋅.试证:若在[,]a b 上有()()n f x f x →()n →∞,则在[,]a b 上有()()n f x f x →→()n →∞.证 因{}n f 等度连续,0,0εδ∀>∃>,当12x x I ∈,且12x x δ<-时有12()()2n n f x f x ε-<,令∞→n 取极限可得εε<≤-2)()(21x f x f .此即表明)(x f 在I 上一致连续,从而()f x 连续.由Dini 定理知,在[,]a b 上,()()n f x f x →→()n →∞.4 函数项级数非一致收敛的判断这里也给出几种巧证函数项级数非一致收敛的方法,这些方法为一些教科书所忽视,但对判别函数项级数非一致收敛却十分有用.4.1 利用定义法判别(见例1用“N ε-法”) 4.2 利用柯西准则法判别由函数项级数一致收敛的柯西准则,可以得到以下命题. 命题 4.2.1 ()1n n u x ∞=∑在区间I 上非一致收敛⇔00,,,,,N N n N x I p N ε++∃>∀∈∃>∃∈∃∈有1().n pkk n u x ε+=+≥∑(证明略)特别,当n →∞时,若通项n u 在区间I 上非一致收敛于0,则函数项级数()nu x ∑在区间I 上非一致收敛.根据函数列一致收敛的概念,又有以下命题.命题 4.2.2 若函数项级数1()nn ux ∞=∑在区间I 上逐点收敛,且在区间I 中存在一点列{}n x ,使lim ()0n n n u x →∞≠,则函数项级数1()n n u x ∞=∑区间I 上非一致收敛.(证明略) 例15 证明级数1sin n nxn ∞=∑在0x =的邻域内非一致收敛.分析 要证片段01sin n pk n kx k ε+=+≥∑(某个事先给定的正数).取p n =,又在[,]42ππ上恒有sin sin 4x π≥,则只要使[,]42kx ππ∈,就有2211sin 11sin sin 424nn k n k n kx k k ππ=+=+≥⋅≥∑∑. 为此,取4n x x nπ==,因为12n k n +≤≤,所以(1)244442n k n nnnπππππ<+≤⋅≤⋅=,即[,]442k n πππ⋅∈.则n N +∀∈,有2220111sin()sinsin 144sin 24nnnnk n k n k n k kx n k kk πππε=+=+=+⋅=≥>==∑∑∑因此可取0ε=(证明略) 例16 证明:11(1)x n n x e n n ∞=⎡⎤-+⎢⎥⎣⎦∑在(0,)+∞上非一致收敛. 证 因为n N +∀∈,当x →+∞时,易知1(1)x n x e n n ⎡⎤-+⎢⎥⎣⎦→∞. 所以对任意(0,)x ∈+∞,当n →∞时,通项1(1)x n x e n n ⎡⎤-+⎢⎥⎣⎦非一致收敛于0. 所以原级数在(0,)+∞非一致收敛.例17 讨论级数112sin3n n n x∞=∑在(0,)+∞上的一致收敛性. 解 显然原级数在(0,)+∞上逐点收敛,取2(0,)3nn n x =∈+∞,1,2,n =⋅⋅⋅,有1()2sin1()2n n n nu x n =→→∞,故原级数在(0,)+∞上非一致收敛. 4.3 利用一致收敛函数列的性质判别[8](3637)P -一致收敛函数列的性质:设各项连续的函数列{})(x S n 在区间上一致收敛于)(x S ,则对任何以)(00I x x ∈为极限的数列{}n x ,都有 )()(lim 0x S x S n n =∞→.由上性质可得如下命题: 命题4.3.1 若连续的函数项级数1()n n u x ∞=∑(记1()()nnk k Sx u x ==∑)在区间I 上逐点收敛于)(x S ,且{}0,:n x I x I ∃∈∃⊂ 0lim n n x x →∞=有0lim ()()n n n S x S x →∞≠,则函数项级数1()nn ux ∞=∑在区间I 上非一致收敛于)(x S .(证明略)例18 讨论函数项级数1sin ([0,1))pn nxp n ∞=∈∑在[0,]π上的一致收敛性. 解 由Dirichlet 判别法易知该级数在区间[0,]π上逐点收敛,设其和函数为()S x ,则(0)0S =.取1[0,](1,2,)n x n nπ=∈=⋅⋅⋅,则0()n x n →→∞,而11111sinsin sin 1()sin n nn n nknp k k k k k k k kk n n n u x k k n n n ======≥≥=∑∑∑∑∑所以 10111lim ()lim sin sin 0(0)nn k n n n k k ku x xdx S n n →∞→∞==≥=>=∑∑⎰.故原级数在[0,]π上非一致收敛.4.4 利用和函数的连续性质及端点发散性判别 命题4.4.1 若连续函数项级数1()nn ux ∞=∑在区间I 上逐点收敛于和函数)(x S ,且0x I ∃∈,)(x S 在0x 处不连续,则函数项级数1()nn ux ∞=∑在区间I 上非一致收敛于)(x S .(证明略)命题4.4.2[9](63)P 若函数项级数1()nn ux ∞=∑在区间(,]a b (或(,)a +∞)上逐点收敛,但在左端点x a =处发散,n N +∀∈,()n u x 在左端点x a =(右)连续,则函数项级数1()n n u x ∞=∑在区间(,]a b(或(,)a +∞)上非一致收敛.证 用反证法. 假设函数项级数1()nn ux ∞=∑在区间(,]a b (或(,)a +∞)上一致收敛.即0,,,(,]N N n N x a b ε+∀>∃∈∀>∀∈或(,)a +∞,有12()()()n n n p u x u x u x ε+++++⋅⋅⋅+<.又因n N +∈,()n u x 在左端点x a =(右)连续,令x a →(或a +),对上式两端取极限,得12()()()n n n p u a u a u a ε+++++⋅⋅⋅+≤则级数收敛,与已知矛盾,故函数项级数1()n n u x ∞=∑在区间(,]a b (或(,)a +∞)上非一致收敛.例19 讨论函数项级数1nxn ne∞-=∑在区间为(0,)+∞上的一致收敛性.解 易知函数项级数1nxn ne∞-=∑在区间(0,)+∞上逐点收敛,且每一项都在0x =处连续,而函数项级数1nxn ne∞-=∑在0x =处发散,故该函数项级数在(0,)+∞上非一致收敛.该题还可利用其它方法判别,但相比较而言此方法更为简便. 例20 讨论0(1)nn x x∞=-∑在区间01x ≤≤上的一致收敛性.解 10()(1)(1)1nnkk n n k k S x x xx x x +===-=-=-∑∑.于是101;()lim ()0 1.n n x S x S x x →∞≤<⎧==⎨=⎩取0ε,使0102ε<<,不论n多么大,只要取x = ,就有011122n S S ε-=-=>因此,级数(1)nn x x∞=-∑在[0,1]上收敛而非一致收敛.5 综合应用例21[]4(368)P证明级数2312(1)x nn e n∞=+-∑在任何有界区间[,]a b 上一致收敛.证 [,]x a b ∀∈,12(1)nn n∞=-∑,且余项()()23221()0()111cn e R x n n n n ≤≤+→→∞+++ {}(max ,)c a b =, 故 [,]lim sup ()0n n x a b R x →∞∈=.所以级数12(1)nn n∞=-∑[,]a b 上一致收敛.例22 证明:级数(1)1(1)nxn x n nxen xe ∞---=⎡⎤--⎣⎦∑在闭区间01x ≤≤上收敛但非一致收敛,而它的和在此区间上是连续函数.证 考虑部分和(1)1()(1)nkx k x nxn k S x kxe k xe nxe ----=⎡⎤=--=⎣⎦∑,显然在[0,1]上其极限函数()S x 存在(即级数的和)且连续:()lim ()0n n S x S x →∞==.但此级数在[0,1]上非一致收敛.用反证法.若不然,则对任给的0ε>,存在数()N N ε=,使当n N ≥时,对于[0,1]上的一切x 值,均有()()n S x S x ε-<.今取1012e ε-=,应有11()()2n S x S x e --<.取01x x n ==,则也应有11()()2n S x S x e --<,但另一方面,却有10000()()()n n S x S x S x eε--==>,矛盾.证毕.例23[]4(385)P 证明函数11()x n f x n ∞==∑在(1,)+∞无穷次可微. 证 (1)先证()f x 在(1,)+∞上可微.任取0(1,)x ∈+∞,则0δ∃>使得00112x x δδ<+≤<+<∞.在0[1,2]x δδ++上,考察111ln ()x x n n nn n∞∞=='=-∑∑.由于01ln ln 0,[1,2]x n n x x n n δδδ+≤≤∈++ 而121ln lim 0n n n n δδ++→∞⋅=.由比较判别法知11ln n n nδ∞+=∑收敛.从而函数项级数1ln x n nn ∞=-∑在0[1,2]x δδ++一致收敛.故函数()f x 在0[1,2]x δδ++上可微且111ln ()()x x n n n f x n n ∞∞==''==-∑∑,则001ln ()x n nf x n∞='=-∑.由0(1,)x ∈+∞的任意性,()f x 在(1,)+∞上可微,且1ln ()x n nf x n ∞='=-∑. (2)再证对任意自然数k ,均有 ()1(1)ln ()k k k xn nfx n ∞=-=∑. 事实上,当1k =时,由(1)知结论成立.假设m k =时结论成立,则当1m k =+时,考察: 1111(1)ln (1)ln ()k k k k x xn n n nn n ++∞∞==--'=∑∑. 由于1111(1)ln ln k k k x n n n n δ++++-≤,0[1,2]x x δδ∈++.而1121ln lim 0k n n n n δδ+++→∞⋅=.故级数111ln k n n nδ+∞+=∑收敛,从而函数项级数1(1)ln ()k k xn nn ∞=-'∑在0[1,2]x δδ++一致收敛,故函数()()k f x 在0[1,2]x δδ++可微,且 11()'11(1)ln (1)ln (())()k k k k k x xn n n nfx n n ++∞∞==--'==∑∑. 由以上证明可知函数()f x 在(1,)+∞无穷次可微.通过以上对函数项级数(函数列)一致收敛非一致收敛相关问题的讨论,希望能对这部分内容的学习提供一些参考.。
函数项级数的一致收敛性及一致收敛级数的基本性质
sin n x
2
1
cos x cos 2 2 x cos n 2 x
其一般项不趋于0, 所以对任意 x 都发散 .
问题: 对什么样的函数项级数才有:
逐项连续 和函数连续;
逐项求导 = 和函数求导; 逐项积分 = 和函数积分
函数序列的一致收敛
回忆
设 fn ( x) 是区间I 上的函数列, 若x0 I , 数列
n 1
例1. 研究级数 1 1 1 ( x 1)( x 2) ( x 2)( x 3) ( x n)( x n 1)
若 lim n 0, 则 0, N ( ) 0, n N ( )时 反之, n
fn ( x) f ( x)
n ,
x I , fn ( x) f ( x) n .
{ fn ( x)}在I 上一致收敛于f ( x).
例.
x 求证f n ( x ) 在( , )上一致收敛. 2 2 1 n x x lim f n ( x ) lim 0, 逐点收敛于f ( x ) 0. 2 2 n n 1 n x x 1 2n x 1 fn ( x) f ( x) 2 2 2 2 1 n x 2n 1 n x 2n 1 n sup f n ( x ) f ( x ) 0. 2n x( , )
任意 0,
切x I , 都有 fn ( x) f ( x) , 则称 fn ( x) 在I 上一
致收敛于f ( x )。
定理
记: n sup f n ( x ) f ( x ) ,则 fn ( x) 在I 上
函数项级数一致收敛性判别及应用
函数项级数一致收敛性判别及应用函数项级数是数学中的重要概念,它是指由一系列函数相加而成的级数。
函数项级数的一致收敛性是一个重要的性质,它描述了级数是否在整个定义域上收敛于一个函数。
在实际应用中,我们常常需要判断函数项级数的一致收敛性,并利用这一性质来解决各种问题。
本文将介绍函数项级数一致收敛性的判别方法以及其在实际问题中的应用。
我们来介绍一下函数项级数的一致收敛性的定义。
设有一列函数序列{f_n(x)},若对于任意给定的ε>0,存在N∈N,使得当n>N时,对于任意的x∈D,有|f(x)-f_n(x)|<ε成立,则称函数项级数{f_n(x)}在D上一致收敛于f(x),记作f_n(x)→f(x)(n→∞)。
(其中D为函数的定义域)接下来,我们来介绍一些判别函数项级数一致收敛性的方法。
1. 初等法通过直接比较函数序列{f_n(x)}的各个函数项来判别其是否一致收敛。
可以通过计算级数的通项函数的极限来判断级数的一致收敛性。
3. Weierstrass判别法若对于函数序列{f_n(x)}的每个函数f_n(x)以及定义域D,存在非负数序列{M_n},使得|f_n(x)|≤M_n成立,且级数∑M_n在D上一致收敛,则{f_n(x)}在D上一致收敛。
以上方法是判别函数项级数一致收敛性的常用方法,通过这些方法我们可以判断函数项级数在定义域上的一致收敛性。
二、函数项级数一致收敛性在实际中的应用函数项级数的一致收敛性在实际问题中有着广泛的应用,下面我们就来介绍一些实际问题中函数项级数一致收敛性的应用。
1. 逼近问题逼近问题是函数项级数一致收敛性的一个重要应用,它研究如何用简单的函数序列来逼近更为复杂的函数。
通过函数项级数的一致收敛性,我们可以得到更加紧密的逼近结果,从而解决实际问题中的逼近需求。
2. 微分方程的级数解在微分方程的求解中,函数项级数的一致收敛性也有着重要的应用。
通过对微分方程的解进行级数展开,并判断级数的一致收敛性,我们可以得到微分方程的级数解,从而解决实际问题中的微分方程求解需求。
函数列和函数项级数一致收敛的判别方法
函数列和函数项级数一致收敛的判别方法函数列的一致收敛是指对于任意给定的正数ε,存在自然数N,使得当n>N时,对于任意的x,都有,fn(x)-f(x),<ε。
函数列一致收敛的判别方法有几种:1. 利用函数列的收敛性:若函数列fn(x)一致收敛于f(x),则对于任意给定的ε>0,存在自然数N,当n>N时,fn(x)-f(x),<ε对于所有的x成立。
2. Cauchy准则:若函数列fn(x)满足对于任意给定的ε>0,存在自然数N,当n,m>N时,对于所有的x,有,fn(x)-fm(x),<ε。
3. Weierstrass判别法:若函数列fn(x)满足对于任意给定的ε>0和x,存在自然数N,当n>N时,fn(x)-f(x),<ε,则函数列一致收敛。
函数项级数是指形式为∑an(x)的级数,其中an(x)为函数项。
函数项级数的一致收敛是指对于任意给定的正数ε,存在自然数N,当n>N时,对于任意的x,都有,S(x)-Sn(x),<ε,其中S(x)为函数项级数的和函数。
函数项级数一致收敛的判别方法有几种:1. 利用级数的收敛性:若函数项级数∑an(x)一致收敛,则对于任意给定的ε>0,存在自然数N,当n>N时,对于所有的x,有,S(x)-Sn(x),<ε。
2. Abel判别法:若函数项级数∑an(x)满足以下两个条件:a)对于所有的x,函数项an(x)单调;b)∑an(x)在其中一区间上一致收敛则函数项级数一致收敛。
3. Dirichlet判别法:若函数项级数∑an(x)满足以下两个条件:a)∑an(x)在其中一区间上部分和有界;b)函数项bn(x)单调并趋于0则函数项级数一致收敛。
以上是函数列和函数项级数一致收敛的一些判别方法。
在实际应用中,我们需要根据具体问题的特点选择合适的方法进行判断。
一致收敛的函数列和函数项级数在数学分析、微积分等领域中有广泛的应用,深入理解并正确应用这些判别方法对于解决实际问题具有重要意义。
函数项级数一致收敛性判别及应用
函数项级数一致收敛性判别及应用函数项级数是指形如∑an(x)的无穷级数,其中an(x)是关于变量x的函数序列。
函数项级数是数学分析中重要的研究对象,其一致收敛性判别和应用有着广泛的应用背景和数学意义。
一、一致收敛性定义对于函数项级数∑an(x),如果对于任意给定的ε>0,存在正整数N,当n>N时,对于任意的x∈D(D是定义域),都有|∑an(x)-Sn(x)|<ε成立,则称∑an(x)在D上一致收敛。
Weierstrass判别法为函数项级数的一致收敛性提供了重要的判别标准。
通过找到一个收敛的函数项级数作为比较序列,即可判定原函数项级数的一致收敛性。
Abel判别法通过研究函数项级数的部分和序列来判定其一致收敛性。
如果部分和序列是有界的,并且各个部分和序列的差异在逐渐缩小,则可以判断函数项级数的一致收敛性。
3. Dini判别法设函数项级数∑an(x)在闭区间[a,b]上对于任意的x∈[a,b],都有an(x)单调递减(或递增),且∑an(x)在[a,b]上收敛,则∑an(x)在闭区间[a,b]上一致收敛。
Dini判别法是针对闭区间的函数项级数的一致收敛性进行判别。
如果函数项级数在闭区间上对于任意的点都是单调递减(或递增)的,并且收敛,则该函数项级数在闭区间上一致收敛。
三、函数项级数的应用1. 函数项级数的积分和导数若∑an(x)在[a,b]上一致收敛到f(x),则在[a,b]上可以逐项积分和逐项求导得到∑∫an(x)dx和∑d(an(x))/dx成立。
这意味着可以通过积分和导数的特性对函数项级数进行处理,从而得到函数项级数的性质。
3. 函数项级数的逐项表示对于某些函数,可以通过将其展开成函数项级数的形式,从而简化对函数的研究和操作。
三角函数的展开成傅里叶级数等。
总结:函数项级数一致收敛性判断是研究函数项级数性质的重要方法。
Weierstrass判别法、Abel判别法和Dini判别法为判断函数项级数一致收敛性提供了有效的工具。
函数项级数的一致收敛-精品文档
的任一正数)一致收敛,但在 0,1 非一致收敛.这说明了 一致收敛与所讨论的区间有关,当 S n ( x ) 在某一区间一致 收敛时,它当然在含这区间内的任一区间一致收敛,
但在含这个区间的较大的区间上却不一定一致收敛.另 一方面,这两个例子也说明了虽然在 a, b 内的任一闭 区间上 S n ( x ) 一致收敛,但 S n ( x ) 在区间 a, b 却不一定 一致收敛.当 S n ( x ) 在 a, b 内任一 闭区间上一致收敛时, 称 S n ( x ) 在区间 a, b 内闭一致收敛.因此在 a, b 一致收 敛一定内闭一致收敛,但反之不然.但从 S n ( x ) 在 a, b 内 闭收敛,却可得到它在区间 a, b 也收敛,这是因为对 a, b 上每一点,恒可取 a, b 内的一个闭区间包含这个点,于 是 S n ( x ) 在这闭区间上的收敛性就得到它在这个点收 敛.这正是由于一致收敛是整体性质而收敛是局部性质 的缘故.
如果
lim S S 0 n
n
x X
就称 S ( x )在 X 上一致收敛于 S ( x )。
x ) 例3 S n(x 2 2 1n x
例4 讨论
一致收敛。 , 在 X
的一致收敛性。 x 在 S ) n(x X 0 , 1 2 2 1n x
1 1 x
二、一致收敛的定义
u ( x ) x ( x x ) ( x x ) 例1
2 3 2
它的每一项都在 0x 上连续,其 n 次部分和为 1 n S ( x ) x n 。很明显有 0 , 0 x 1 时 lim s ( x ) s ( x ) n n 1 , x 1 时 级数的和S ( x )在 x 1 不连续,因此,它不是 0,1 上的 连续函数。这个例子还告诉我们,上述级数的 每一项 都在 0,1 上可导,但它的和函数 S ( x ) 在 x 1 不可导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数列与函数项级数
§1. 函数项级数的一致收敛性
1. 讨论下列函数序列在所示区域的一致收敛性:
⑴ ()n f x =
,(,);x ∈-∞+∞
⑵ ()sin
,n x f x n
=
i) (,),x l l ∈- ii) (,);x ∈-∞+∞ ⑶ (),1n nx f x nx =+ (0,1);x ∈ ⑷ 1(),1n f x nx
=
+
i) [,),0,x a a ∈+∞> ii) (0,);x ∈+∞
⑸ 2
233
(),1n n x
f x n x
=
+
i) [,),0,x a a ∈+∞> ii) (0,);x ∈+∞ ⑹ (),1n nx f x n x
=
++ [0,1];x ∈
⑺ (),1n n n
x
f x x
=
+
i) [0,],1,x b b ∈< ii) [0,1];x ∈ iii) [,),1;x a a ∈+∞>
⑻ 2(),n n
n f x x x =- [0,1];x ∈
⑼ 1
(),n n n f x x x +=- [0,1];x ∈
⑽ ()ln
,n x x f x n n
= (0,1);x ∈
⑾ 1()ln(1),nx
n f x e n
-=
+ (,);x ∈-∞+∞
⑿ 2
()(),x n n f x e --=
i) [,],x l l ∈- ii) (,)x ∈-∞+∞ . 2. 设()f x 定义于(,)a b ,令
[()]
()n nf x f x n
=
(1,2,)n =⋅⋅⋅.
求证:{()}n f x 在(,)a b 上一致收敛于()f x . 3. 参数α取什么值时,
(),nx
n f x n xe
α
-= 1,2,3,n =⋅⋅⋅
在闭区间[0,1]收敛?在闭区间[0,1]一致收敛?使10
lim ()n n f x dx ->∞
⎰
可在积分号下取极
限?
4. 证明序列2
()nx n f x nxe -=(1,2,)n =⋅⋅⋅在闭区间[0,1]上收敛,但
1
100
lim ()lim
().n n n n f x dx f x dx ->∞
->∞
≠⎰
⎰
5. 设{()}n f x 是[,]a b 上的连续函数列,且{()}n f x 在[,]a b 一致收敛于()f x ;又
[,]n x a b ∈(1,2,)n =⋅⋅⋅,满足0lim n n x x ->∞
=,求证 0lim ()().n n n f x f x ->∞
=
6. 按定义讨论下列函数项级数的一致收敛性:
⑴ 0
(1), [0,1];n n x x x ∞
=-∈∑
⑵ 12
2
1
(1)
, (,)(1)
n n
n x
x x -∞
=-∈-∞+∞+∑
.
7. 设()n f x (1,2,)n =⋅⋅⋅在[,]a b 上有界,并且{()}n f x 在[,]a b 上一致收敛,求证:
()n f x 在[,]a b 上一致有界.
8. 设()f x 在(,)a b 内有连续的导数()f x ',且
1()[()()],n f x n f x f x n
=+
-
求证:在闭区间[,]αβ()a b αβ<<<上,{()}n f x 一致收敛于()f x '. 9. 设1()f x 在[,]a b 上黎曼可积,定义函数序列
1()()x n n a
f x f t dt +=
⎰
(1,2,)n =⋅⋅⋅
求证:{()}n f x 在[,]a b 上一致收敛于零.
10. 设{()}n f x 在(,)a b 内一致收敛于()f x ,0(,)x a b ∈且
lim (),n n x x f x a ->= (1,2,)n =⋅⋅⋅.
证明:lim n n a ->∞
和0
lim ()x x f x ->存在且相等,即
0lim lim ()lim lim ()n n n x x x x n f x f x ->∞->->->∞
=.
11. 讨论下列函数项级数的一致收敛性:
⑴
1 (,);n x ∞
=∈-∞+∞∑
⑵ 42
1
, (,);1n x
x n x
∞
=∈-∞+∞+∑
⑶ 22
1(1)(1)
, [0,);n
nx
n e
x n x
-∞
=--∈ +∞+∑
⑷ 1sin , (2,);2n
n nx x x ∞
=∈-+∞+∑
⑸ 5
21, (,);1n nx
x n x
∞
=∈-∞+∞+∑
⑹
2
11),
||2;2
n n
n x x
x ∞
-=+≤ ≤∑
⑺ 21
, [0,);nx n x e x ∞
-=∈+∞∑
⑻ 1ln , [0,1];!
n n
n x x x n ∞
=∈∑
⑼
2
, (,);n x ∞
=∈-∞+∞∑ ⑽ 1
, ||1;n
n n x r x
∞
=≥>∑
⑾ 1
ln(1), [,), 1.n
n nx x a a nx
∞
=+∈+∞> ∑
12. 讨论下列函数项级数的一致收敛性:
⑴
1
2cos
(,);n n x π∞
=∈-∞+∞∑
⑵
1
[0,2];n x π∞
=∈∑
⑶ 1(1)
, (1,);n
n x x n ∞
=-∈-+∞+∑
⑷ 1(1)
, (,);sin n
n x n x
∞
=-∈-∞+∞+∑
⑸ 1
1
2sin
, (0,);3n n
n x x
∞
=∈+∞∑
⑹
(1)
21 ||;n n n x a -∞
=≤∑
⑺
1 [1,0];n
n x ∞
=∈-∑
⑻ 21
1
(1)
, [1,1].21
n n
n x
x n +∞
=-∈-+∑
13. 设每一项()n x ϕ都是[,]a b 上的单调函数,如果()n x ϕ∑在[,]a b 的端点为绝对收
敛,那么这级数在[,]a b 上一致收敛.
14. 证明级数1
2
1
1(1)n n n x
∞
-=-+∑关于x 在(,)-∞+∞上为一致收敛,但对任何x 并非绝
对收敛;而级数22
1
(1)
n
n x
x ∞
=+∑
虽在(,)x ∈-∞+∞上绝对收敛,但并不一致收敛.
15. 若1
()n n u x ∞
=∑的一般项|()|(), ,n n u x c x x X ≤∈并且1
()n n c x ∞
=∑在X 上一致收敛,证明
1
()n
n u
x ∞
=∑在X 上也一致收敛且绝对收敛.
()
000
()
()().!
n n
n f
x f x x x n ∞
==
-∑。