电控汽车点火系统的控制
第四章 电控点火系统
提示:传感器的输出特性出厂时都已调整好,使用 中拧紧力矩不得随意调整。
学习目标二:桑塔纳轿车爆震传感 器的检修
1. 爆震传感器导线的检测
桑塔纳2000GSi、3000型轿车爆震传感器电路连 接及插头与插座上端子位置如图所示,检修时用 万用表电阻OHM×100KΩ 档测量传感器电阻。 第一步:断开点火开关,拔下传感器线束插头, 检查结果应符合规定。 判断:若电阻过大或为无穷大,说明线束与端子 接触不良或断路,应予以维修。
【点评】
点火线圈受热后出现匝间短路,不能储 存足够的能量,使点火电压达不到额定电 压,造成发动机燃烧不完全,而出现冒黑 烟的故障。因此,发动机的点火系统必须 能够提供足够高的点火电压和点火能量, 才能击穿火花塞间隙,充分引燃可燃混合 气。
【引言】
发动机混合气燃烧不完全,废气缺氧, 氧传感器输出低电压信号(0.45V以下), 一般情况下ECU认为是空气流量计故障,通 过检查确认流量计或其他传感器工作良好 时,就要考虑点火系是否工作正常。
次级线 圈检查
学习目标四:点火器的检测
1)霍尔效应式电子点火系点火控制器检测 第一步:接通点火开关,用万能表测量1与4端子之间的电阻 应为0.52~0.76Ω,2与4端子之间的电压应为12V,3与5端子 之间的电压应为11~12V。 第二步:慢慢转动分电器轴,测3与6端子之间的电压。 判断:若电压交替在0.3~0.4V和11~12V范围内变化,则点 火控制器检测良好;否则,点火控制器有故障,应更换。 第三步:把万能表接在点火线圈的“+”与“-”接线柱上,接通 点火开关,观察电压表读数。 判断:若电压大于2V,且经1~2s后电压将为0,则点火线圈 良好;否则,点火线圈有故障,应更换。
图6 初级电路接反
电控点火系统的分类
电控点火系统的分类
电控点火系统是一种通过电子控制来点火的系统,广泛应用于现代车辆中。
根据不同的分类标准,电控点火系统可以分为以下几类: 1.按照点火方式分类
传统的点火方式是通过机械方式产生电火花点燃燃料,而电控点火系统是通过电子信号来点火。
根据点火方式的不同,可以将电控点火系统分为点式点火和火花塞连续点火两种。
2.按照点火系统的结构分类
电控点火系统根据系统内部结构的不同,可以分为功率型和信号型两种。
功率型电控点火系统主要是通过电子模块控制点火线圈产生高压电流,点燃发动机所需的燃料。
而信号型电控点火系统则是通过传感器采集引擎的信息,控制点火时间和点火时机,从而实现点火操作。
3.按照点火控制方式分类
电控点火系统的点火控制方式可以分为两种:分别是非直接点火和直接点火。
非直接点火是指电子控制器通过控制点火线圈产生的高压电流来点燃燃料,而直接点火则是通过电子控制器直接控制火花塞的点火操作。
总之,电控点火系统的分类可以从不同的角度进行划分,不同的分类标准对应着不同的应用场景和控制方式。
了解这些分类可以帮助我们更好地理解电控点火系统的工作原理和特点。
- 1 -。
活动二电控点火系统的组成和工作原理
活动二电控点火系统的组成和工作原理电控点火系统是现代汽车发动机的关键部件之一,它通过精确的控制点火时间和点火能量,确保发动机正常运行。
本文将详细介绍活动二电控点火系统的组成和工作原理。
一、电控点火系统的组成电控点火系统一般由以下几个主要组成部分组成:1. 发动机控制单元(ECU):发动机控制单元是电控点火系统的核心,负责感知发动机的工作状态,并控制点火系统的工作。
ECU内置有微处理器,负责处理各种传感器信号,并根据算法决定点火时机和点火能量。
2. 入气量传感器:入气量传感器用于测量空气的流量和温度,以便ECU根据实际情况进行点火控制。
入气量传感器通常位于进气歧管或进气道上。
3. 节气门位置传感器:节气门位置传感器用于测量节气门的开度,以便ECU根据节气门的位置调整点火时机和点火能量。
4. 水温传感器:水温传感器用来测量发动机冷却水的温度,从而帮助ECU控制点火系统的工作。
在发动机冷启动时,水温传感器还可以提供必要的冷启动丰富混合气的信号。
5. 曲轴位置传感器:曲轴位置传感器用于感知曲轴的转动位置和转速,从而帮助ECU确定点火时机和点火能量。
6. 高压线圈:高压线圈是电控点火系统中负责产生高电压的关键部件。
它将电池供电的低电压转换为足够高的电压,以点燃火花塞。
7. 火花塞:火花塞是电控点火系统中用于点燃混合气的元件。
它位于汽缸的燃烧室内,通过高压线圈产生的高电压,在ECU的控制下产生火花,引燃混合气。
二、电控点火系统的工作原理电控点火系统的工作原理可以概括为以下几个步骤:1. 传感器信号采集:电控点火系统通过各种传感器感知发动机的工作状态,比如水温、气温、气压、节气门开度、曲轴位置等。
这些传感器会将感知到的信号发送给ECU。
2. 信号处理:ECU会接收并处理传感器发送的信号。
通过内置的算法,ECU可以根据实际情况计算出最佳的点火时机和点火能量。
3. 点火时机控制:根据传感器信号的处理结果,ECU会控制点火时机,确保在每个汽缸的最佳位置点燃混合气。
电控点火系统的组成与工作原理
一、点火器 3、检查:
(1)将点火线圈与点火器的导线连接器插接 好,用电压表或示波器检查发动机ECU端子 间的电压,应符合要求: 端子 +B—接地 IGT—接地 IGF—接地 标准电压 9~14V 脉冲发生 脉冲发生 条件 点火开关“ON” 发动机工作 发动机工作
一、点火器
(2)检查IGF的接地电压。
(3)无分电器点火次级高压波形、 图8—19所示为无分电器双缸同时点火系统(一个点火线圈给两个气缸点火) 波形测试。采用示波器的两个通道,以测试做功和排气的点火波形。由于压缩压 力的不同,其中做功的气缸所需要的点火电压较高。
2.点火初级波形 由于点火初级和次级线圈有互感作用,在次级线圈产生高压时还会反馈给初级 电路。点火初级波形如图8—20所示。 点火初级陈列波主要用于检查火花塞、高压线的短路或断路故障,及火花塞 是否污损。当点火次级不易测试时(例如,无火花塞高压线的汽车),就需测试点 火初级波形。 让发动机怠速运转、急加速或路试汽车,使行驶性能或点火不良等故障现象 再现,并确认各缸信号的幅值、频率、形状和脉冲宽度等是否一致。观察各缸点 火击穿峰值电压高度是否相对一致。如果一个缸的点火峰值电压明显比其他缸高 出很多,则说明这个气缸的点火次级线路中电阻过高,如点火高压线开路或阻值 太高;如果一个缸的点火峰值电压比其他缸低,则说明点火高压线短路或火花塞 间隙过小、火花塞破裂或污浊。 点火初级单缸波形的测 试内容、项目和方法与 分电器次级单缸波形完 全相同,只是测试时要 确认一下闭合角是否随 发动机的负荷和转速变 化而改变。
二、有分电器电控点火系统 DI
丰田皇冠3.0轿车2JZ-GE发动机点火系原理图:
二、有分电器电控点火系统 DI
丰田皇冠3.0轿车2JZ-GE发动机点火系: 该发动机曲轴位置传感器装在分电器内,其 中G1、G2耦合线圈和G转子产生G1、G2信号,用来 确定活塞上止点的位置;Ne耦合线圈和Ne转子产 生Ne信号,用来确定曲轴转速。
汽车电子控制技术第5章-点火系统控制
5.1.3 点火时刻 1.点火提前角
因为混合气在气缸内燃烧需要占用一定的时间,所以 混合气不应在压缩行程的上止点处燃烧,而应适当提前, 使活塞到达上止点时,混合气已充分燃烧,从而使发动机 获得较大的功率。点火的提前量称为点火提前角。
点火提前角: 从发出电火花开始到活塞到达上止点为止的一段时间 内曲轴转过的角度。 点火过早,会造成爆震,活塞上行受阻,效率降低, 磨损加剧; 点火过迟,气体做功效率低,排气声大。
4 进气压力 进气压力减小,混合气燃烧速度变慢,最佳点火提前 角相应增大。 5 火花塞的数量 气缸体同时装有两个火花塞,混合气燃烧速度变快, 最佳点火提前角比装有一个火花塞相应减小。
3.其它因素:
1 启动和怠速 发动机启动和怠速时,发动机转速低,但混合气燃烧 速度也较慢,最佳点火提前角适当减小或不提前。 2 汽油的辛烷值 汽油的辛烷值,也就是汽油牌号,越高抗爆震能力越 强,相应允许更大的点火提前角。
暖机修正
当ECU给出的实际点火提前角超过允许范围时,发动 机将难以运转。当超过允许范围时,则ECU就按预先设定 的点火提前角的最大值或最小值进行控制。
丰田汽车点火系统(TCCS系统)
电子控制点火系统的框图
5.3.2日产汽车点火系统提前角控制
1.正常工况点火提前角控制 当ECU无怠速信号输入时, 实际点火提前角=基本点火提前角×水温修正系数 基本点火提前角预先设定并存放在ECU中。 2.怠速点火提前角控制 当ECU怠速信号输入时,进入怠速点火提前角控制模 式,主要根据发动机转速和冷却水温度控制点火提前角。 3.启动时点火提前角控制 根据冷却水的温度确定启动时点火提前角控制。
2.影响最佳点火提前角的因素
最佳点火提前角就是在各种不同工况下使气体膨胀趋 势最大段处于活塞做功下降行程。 这样效率最高,振动最小,温升最低。不论点火过早 或过迟,这是应该防止的。最佳点火角受很多因素影响。 影响最佳点火提前角的因素可归结为一下两点: 1)活塞的运行速度快,最佳点火提前角相应增大; 反之,最佳点火提前角相应减小。 2)混合气燃烧速度快,最佳点火提前角相应减小; 反之,最佳点火提前角相应增大。
电控发动机的工作原理
电控发动机的工作原理
电控发动机是一种通过电子控制设备来控制燃料喷射和点火时机的发动机。
它主要包括以下几个部分:
1. 传感器:电控发动机中设置了多个传感器,用于监测发动机的工作状态。
例如,空气流量传感器用于测量进气量,进气温度传感器用于测量进气温度,氧气传感器用于监测尾气中氧气浓度等。
2. 控制单元:电控发动机的控制单元是一个特定的电子装置,用于接收传感器所采集到的各种数据,并根据预设的程序进行计算和判断。
它能够通过控制喷油器和点火系统来实现发动机的控制。
3. 喷油器:电控发动机中的喷油器是非常重要的部件。
控制单元会根据传感器所监测到的数据,计算出适当的燃油量,并通过电子信号控制喷油器喷射相应的燃油量到发动机燃烧室。
4. 点火系统:点火系统用于在正确的时机点燃混合气体。
电控发动机中的点火系统主要包括火花塞和点火线圈。
控制单元会根据传感器数据计算出适当的点火时机,并通过点火线圈产生高压电流,点燃混合气体。
电控发动机的工作原理可以总结为:传感器监测实时数据,控制单元根据这些数据计算出相应的控制信号,控制喷油器喷射适当的燃油量,并通过点火系统点燃混合气体。
通过精确的控制,电控发动机可以提供更高的燃烧效率和更低的排放。
电控点火系统的基本原理
电控点火系统的基本原理
嘿,朋友们!今天咱来聊聊电控点火系统的基本原理,这可真是个神奇又重要的玩意儿呢!
你想想看,汽车的心脏是什么呀?那当然是发动机啦!而电控点火系统就像是给发动机注入活力的魔法棒。
它就好比是一场精彩演出的导演,得把每个环节都安排得妥妥当当,才能让发动机这个“大明星”在舞台上完美表演。
电控点火系统主要由传感器、电子控制单元和点火线圈等部分组成。
传感器就像是敏锐的侦察兵,时刻关注着发动机的各种状态,比如转速啦、负荷啦等等,然后把这些信息迅速传递给电子控制单元,这个“大脑”可厉害了,它能快速分析处理这些信息,然后下达精确的指令。
点火线圈呢,就像是大力士,接到指令后就会产生强大的电火花,点燃混合气体,让发动机有力地运转起来。
这就好比我们划一根火柴,瞬间就能点燃一堆火,让火烧得旺旺的。
那为什么要用电控点火系统呢?这还用问吗?它可比以前的传统点火系统厉害多啦!它能更精确地控制点火时刻,让发动机燃烧更充分,动力更强,还更省油呢!这就好像是你跑步,本来是瞎跑,现在有了专业教练指导,那肯定跑得又快又好呀!
而且哦,电控点火系统还特别可靠。
它不会像有些东西那样时不时就出点小毛病,让你头疼。
它就像一个忠实的伙伴,默默地在那里工作,为你的爱车保驾护航。
你说要是没有电控点火系统,那汽车还能跑得那么顺畅吗?肯定不行呀!所以说,我们得好好感谢这个神奇的系统呢!
总之,电控点火系统就像是汽车的秘密武器,让我们的出行变得更加轻松、愉快。
它虽然看不见摸不着,但却在默默地发挥着巨大的作用。
下次你开车的时候,可别忘了这个默默奉献的“小伙伴”哦!它可是让你的车一路飞驰的重要功臣呢!。
电控独立点火系统的组成
电控独立点火系统的组成电控独立点火系统是现代汽车发动机控制系统中的重要部分,它由多个组成部分构成。
本文将从以下几个方面介绍电控独立点火系统的组成。
1. 点火控制模块点火控制模块是电控独立点火系统的核心部分之一,它负责控制点火时间和点火能量,以确保发动机正常运转。
点火控制模块的输入信号来自于车辆电脑系统,其输出信号则通过点火线圈传递给火花塞,从而引燃燃料混合物。
2. 点火线圈点火线圈是将电能转换成高压电能的元件,它是点火系统中不可或缺的一部分。
点火线圈的主要作用是将车辆电脑系统输出的低压电信号转换成高压电信号,以点燃火花塞内的燃料混合物。
在电控独立点火系统中,每个汽缸都有一个对应的点火线圈。
3. 火花塞火花塞是点火系统中的另一个重要组成部分,它被安装在发动机缸体内,负责点燃燃料混合物。
火花塞的工作原理是利用点火线圈产生的高压电信号,产生电弧击穿燃料混合物,从而引燃燃料混合物。
在电控独立点火系统中,每个汽缸都有一个对应的火花塞。
4. 传感器传感器是电控独立点火系统中的另一个重要组成部分,它负责检测发动机的状态并将其转换成电信号,以供车辆电脑系统使用。
例如,发动机转速传感器可以检测发动机转速,并将其转换成电信号,以帮助车辆电脑系统控制点火时间和点火能量。
5. 电源电源是电控独立点火系统的基础,它提供电能以驱动点火系统的各个组成部分。
在汽车中,电源通常来自于蓄电池,但也可以通过其他方式提供,例如发电机或电动机等。
电控独立点火系统由点火控制模块、点火线圈、火花塞、传感器和电源等多个组成部分构成,它们协同工作以确保发动机正常运转。
在现代汽车中,电控独立点火系统已经成为了标配,它的出现大大提高了汽车发动机的性能和可靠性。
简述电控发动机点火控制内容
简述电控发动机点火控制内容电控发动机点火控制是现代汽车发动机控制系统中的一个重要部分。
它负责控制发动机点火时机和点火能量的调节,以确保发动机的正常工作和高效燃烧。
电控发动机点火控制的主要目的是在适当的时机提供足够的火花能量,点燃气缸内的混合气体,从而驱动活塞运动,推动发动机工作。
它的实现主要依靠发动机控制单元(ECU)和传感器的协作。
ECU通过传感器获取发动机运行的相关参数,如转速、负荷、水温等。
这些参数对于确定点火时机和点火能量都至关重要。
然后,ECU根据事先设定的点火时序表和点火能量表,计算出当前工况下的最佳点火时机和点火能量,以保证发动机的高效工作。
点火时机的控制是根据发动机的转速和负荷情况来决定的。
一般来说,点火时机应该在气缸活塞上止点之前的一段时间点火,这样可以保证燃烧过程充分完成,并使发动机获得最大的功率输出。
根据不同的转速和负荷,点火时机会有所变化,ECU会根据传感器的反馈信号进行实时调整。
点火能量的控制是通过调节火花塞的高压电流来实现的。
火花塞是点火系统中的关键部件,它能够产生高压电弧,点燃气缸内的混合气体。
在发动机运行过程中,ECU会根据负荷大小和发动机工作状态,调节火花塞的电流,以控制火花的强度和持续时间。
这样可以保证燃烧过程的稳定性和高效性。
除了点火时机和点火能量的控制之外,电控发动机点火控制系统还具备其他功能。
例如,它可以监测火花塞的工作状态,诊断是否存在点火故障;它还可以根据发动机运行情况,自适应地调整点火时序和点火能量,以适应不同的工况要求;此外,它还能够与其他系统进行协同控制,如燃油喷射系统、排放控制系统等。
电控发动机点火控制是现代汽车发动机控制系统的核心部分之一。
它通过控制点火时机和点火能量,确保发动机的正常工作和高效燃烧,从而提高汽车的性能和经济性。
随着技术的不断发展,电控发动机点火控制系统将会越来越智能化和精细化,以适应未来汽车发展的需求和挑战。
电控点火系统控制内容
电控点火系统控制内容电控点火系统是一种现代化的点火系统,它利用电子设备来控制发动机的点火时机和点火能量,从而提高发动机的性能和效率。
本文将介绍电控点火系统的工作原理、功能和优势。
电控点火系统是由几个关键部件组成的,包括车载计算机(ECU)、触发模块、点火线圈和传感器。
车载计算机是系统的控制中心,负责收集和分析各种传感器数据,并根据实时的运行状态决定点火时机和点火能量的调整。
触发模块负责产生点火信号,并将信号传递给点火线圈,点火线圈则将高压电流转化为高压电火花,点燃混合气体。
电控点火系统的工作原理是通过车载计算机实时监测和分析发动机的运行状态,包括转速、负荷、空气温度、冷却液温度、进气压力等参数。
根据这些参数,系统可以计算出最佳的点火时机和点火能量,以提供最佳的性能和燃烧效率。
系统还可以根据驾驶员的需求和行驶条件进行调整,以实现更好的驾驶体验。
电控点火系统具有多种功能,包括点火时机的自适应调整、点火能量的调整、点火故障诊断和热度管控。
点火时机的自适应调整是通过系统对发动机运行状态的实时监测和分析,以确保点火时机始终处于最佳状态。
点火能量的调整是根据不同的驾驶需求和行驶条件,对点火能量进行自动调整,以提供更好的动力和燃烧效率。
点火故障诊断是系统的一个重要功能,它可以自动检测点火系统的故障,并提供相应的故障代码和警告信息,以方便维修和排除故障。
热度管控则是通过调整点火能量和点火时机,以有效控制发动机的温度和排放,从而实现更好的环保性能。
电控点火系统相比传统的机械点火系统具有很多优势。
首先,电控点火系统可以实现更精准的点火控制,提供更好的燃烧效率和动力输出。
其次,电控点火系统具有更好的适应性和稳定性,可以根据不同的驾驶需求和行驶条件进行自动调整,以提供最佳的驾驶体验。
此外,电控点火系统还具有更高的可靠性和故障诊断能力,并且可以及时提供故障代码和警告信息,方便维修和排除故障。
总结起来,电控点火系统是一种先进的点火技术,它通过电子设备的控制和调整,可以实现更好的燃烧效率和驾驶性能。
点火控制的控制内容 包括点火提前角控制 通电时间控制和爆燃控制
(2)基本点火提前角:分为怠速和正常行驶两种情况。 ①怠速的基本点火提前角在空调系统工作时为8°,空调不
工作时为4°。 ②正常行驶时的基本点火提前角,以表格的形式存储在
2. 电子点火控制系统工作过程
按高压配电方式可分为两大类:一类是有分电器的,另一类是 无分电器的。
1) 分电器式电控点火系统
ECU根据各输入信号,确定点火时间,并将点火正时信号IGt送 至点火控制器(简称点火器)。
当IGt信号变为低电平时,点火线圈初级电路由于功率晶体管的 截止而被切断,次级感应出高电压,再由分电器按发火顺序送至相 应气缸的火花塞上产生电火花。
2.3 电控点火系统
点火控制的控制内容:包括点火提前角控制、通电时间控 制和爆燃控制。
1. 电控点火系统的组成
2.
由信号输入装置、
ECU和执行器三部分组
成。
在所有用的传感器中, 除爆燃传感器为电控点火系 统所专用之外,其他传感器 基本上都与电控燃油喷射系 统所共用,而且都由一个 ECU集中控制。
1—转速传感器;2—基准位置传感器;3—空气流量计;4—水温传感器;5—节气门位置传感 器;6—启动信号;7—空调开关A/C;8—车速传感器;9—输入接口回路;10—输入接口回路; 11—A/D转换器;12—输出接口回路;13—存储器;14—恒定电压电源;15—点火器;16—IG线圈; 17—分20电20器/3/29
ECU的存储器中。
2020/3/29
2020/3/29
丰田IG-GEL发动机正常行驶的基本点火提前角
2020/3/29
汽车电控发动机系统结构和原理-发动机点火控制
发动机点火控制汽油发动机采用微机控制点火控制点火系统能将点火提前将点火提前角控制在最佳值,使可燃混合气燃烧后产生的温度和压力达到最大值,从而通过发动机的动力性,同时还能提高燃油经济型和减少有效气体的伤害。
发动机点火能量的高低取决于点火线圈通电时间的长短即点火导通角,点火导通角的大小与蓄电池的电压和转速有着直接的关系,在电控发动机上可以实现对点火导通角有效的控制。
使发动机产生最大动力的有效方法增大点火提前角。
但是点火提前角过大又会引起发动机爆震,发动机爆震一方面会导致发动机输出功率降低,另一方面会导致发动机使用寿命缩短甚至损坏。
消除爆震最有效的方法就是推迟点火提前角。
在电控发动机上采用爆震控制。
任务一点火提前角的控制任务目标1.发动机的点火控制学习目标1.了解发动机的点火控制一、点火提前角的确定汽油发动机的可燃混合气表适当的提前一些。
通常把发动机发出最大功率和油耗最小的点火提前角称为最佳点火提前角。
点火提前角大小直接影响发动机的输出功率、油耗、排放等。
发动机工况不同需要的最佳点火提前角也不相同,怠速时最佳点火提前角是为了使怠速运转平稳,降低有效气体的排放量和减少燃油消耗量;部分负荷时最佳点火提前角是为了减少燃油消耗量和有害气体的排放量,提高经济性和排放性能;大负荷时最佳点火提前角是为了增大输出转距,提高动力性能。
微机控制的点火提前角0由初始点火提前角0 i、基本点火提前角0 b和修正点火提前角0 c 三部分组成,即0 =0 i+0 b+0 c1.初始点火提前角初始点火提前角又称为固定点火提前角,其值大小取决于发动机的结构形式,一般为上止点BTDC°6 - BTDC12 °。
在下列情况时,由于发动机转速变化大,空气流量不稳定,点火提前角不能准确控制,因此采用固定点火提前角进行控制,其实际点火提前角等于初始点火提前角。
1)发动机启动时;2)发动机转速低于400r/min 时;3)检查初始点火提前角时。
简述电控点火系的工作原理
简述电控点火系的工作原理
电控点火系统是现代汽车发动机的一种点火系统,它使用电子控制模块(ECM)来控制点火时机,从而实现点火。
其工作
原理可以描述如下:
1. 传感器测量:电控点火系统中,有多种传感器用于测量发动机的工作状态,如曲轴位置传感器、气缸压力传感器等。
这些传感器会实时地将相关的工作参数反馈给ECM。
2. 数据分析:ECM会根据传感器的反馈数据进行计算和分析,确定最佳的点火时机。
通过算法和预设的点火曲线,ECM会
判断当前发动机的运行状态,包括转速、负载、温度等,从而决定点火的时机和强度。
3. 点火控制:在确定好点火时机后,ECM会通过点火线圈产
生高压电流。
这个高压电流通过分电器和导线传递到每个火花塞,最终触发火花塞产生火花。
4. 火花触发:火花触发是实现点火的关键步骤。
当高压电流通过火花塞,形成一个电火花,这个火花会引燃混合气体,从而点燃燃料。
点火时机的精确控制,可以实现最佳的燃烧效果,提高车辆的燃油经济性和动力性能。
5. 循环反馈:电控点火系统还可以通过传感器实时地监测燃烧效果,例如通过氧传感器来检测尾气中的氧含量,通过爆震传感器来检测爆震的情况。
ECM会根据这些反馈信号进行调整,以实现最佳的点火效果。
总之,电控点火系统通过传感器测量发动机的工作状态,并通过ECM进行数据分析和点火控制,最终点燃燃料,实现发动机的正常运行。
这种系统具有灵活性高、能效高、控制准确等优点,被广泛应用于现代汽车。
第三章 汽油机电控点火系统
第三章汽油机电控点火系统第一节电控点火系统的功能汽油机电控点火系统的功能主要包括点火提前角、通电时间及爆燃控制三个方面。
一、点火提前角控制1、点火提前角对发动机性能的影响定义:点火提前角是从火花塞发出电火花,到该缸活塞运行至压缩上止点时曲轴转过的角度。
对应于发动机每一工况都存在一个“最佳”点火提前角,对于现代汽车而言,最佳的点火提前角不仅保证发动机的动力性和燃油经济性都达到最佳值,还必须保证排放污染最小。
点火提前角过大(点火过早),则大部分混合气在压缩过程中燃烧,活塞所消耗的压缩功增加,且缸内最高压力升高,末端混合气自燃所需的时间缩短,爆燃倾向增大。
点火提前角过小(点火过迟),则燃烧延长到膨胀过程,燃烧最高压力和温度下降,传热损失增多,排气温度升高,功率、热效率降低,但爆燃倾向减小,NOx排放量降低。
试验证明,最佳的点火提前角,应使发动机气缸内的最高压力出现在上止点后10°~15°。
如图所示,适当点火提前角,可使发动机每循环所做的机械功最多(C曲线下阴影部分)。
2、最佳点火提前角的确定依据最佳点火提前角的数值必须视燃料性质、转速、负荷、混合气浓度等很多因素而定。
(1)发动机转速如图所示,点火提前角应随发动机转速升高而增大。
因为随发动机转速的提高,以秒计的燃烧过程所需时间缩短,但燃烧过程所占的曲轴转角增大,为保证发动机气缸内的最高压力出现在上止点后10°~15°的最佳位置,就必须适当提前点火(即增大点火提前角)。
与采用机械式离心提前器的传统点火系统相比,采用电控点火(ESA,electronic spark advance)系统时,可以使发动机的实际点火提前角接近于理想的点火提前角。
(2)负荷汽油发动机的负荷调节是通过节气门进行的量调节,随负荷减小,进气管真空度增大,进气量减少,气缸内的温度和压力均降低,燃烧速度变慢,燃烧过程所占的曲轴转角增大,应适当增大点火提前角,如图所示。
简述电控点火系的工作原理
简述电控点火系的工作原理电控点火系统是一种用于汽车发动机点火的系统,它通过电子控制单元(ECU)来控制点火时机和点火能量,以提高发动机的燃烧效率和性能。
电控点火系统的工作原理主要包括信号输入、信号处理、点火控制和点火输出四个步骤。
信号输入阶段是指将来自于发动机的各种传感器信号输入到电子控制单元中。
这些传感器包括曲轴位置传感器、气门位置传感器、进气温度传感器等,用于测量发动机的工作状态和环境条件。
这些传感器的信号将作为输入数据,为电子控制单元提供判断和调整的依据。
接下来,信号处理阶段是指电子控制单元对输入信号进行处理和分析。
它根据传感器信号的变化情况,实时计算出发动机的工作状态,如发动机转速、气缸压力等。
在这个阶段,电子控制单元还会根据预设的点火曲线和燃油配比,计算出适当的点火时机和点火能量。
然后,点火控制阶段是指电子控制单元根据信号处理的结果,控制点火线圈的工作。
点火线圈是电控点火系统中的重要部件,它负责将低电压的电力信号转换为高电压的火花,以点燃气缸中的混合气体。
电子控制单元会根据计算出的点火时机和点火能量,通过控制点火线圈的工作时间和电流,来控制火花的产生和能量的大小。
在点火输出阶段,点火线圈将接收到的控制信号转化为高压电信号,然后通过高压导线传输到火花塞上。
当高压电信号通过火花塞间隙时,会产生一道强大的电弧,将点火能量释放到气缸中的混合气体中,引发燃烧过程。
这样,发动机的燃烧过程就得到了精确的控制和调整。
总结来说,电控点火系统通过传感器采集发动机的工作状态和环境条件,经过电子控制单元的处理和分析,再通过点火线圈的控制和点火输出,实现对发动机点火时机和点火能量的精确控制。
这种系统可以提高发动机的燃烧效率和性能,使汽车更加节能环保,并且提高了发动机的可靠性和稳定性。
简述电控点火系的功能
电控点火系是电子控制点火系统的简称,其主要功能如下:
1. 控制点火提前角:根据发动机的工况和负荷,电控点火系可以自动调整点火提前角,以实现最佳的燃烧效率和动力输出。
2. 控制点火能量:通过控制点火线圈的充电时间和放电电流,电控点火系可以精确控制点火能量,确保每个气缸的点火正常。
3. 提高点火可靠性:电控点火系可以实时监测点火系统的工作状态,一旦发现故障,可以及时采取保护措施,避免对发动机造成损害。
4. 降低排放:通过优化点火提前角和点火能量,电控点火系可以降低发动机的尾气排放,满足环保要求。
5. 提高燃油经济性:电控点火系可以根据发动机的负荷和转速,精确控制点火提前角,使燃烧更加充分,从而提高燃油经济性。
总之,电控点火系可以提高发动机的性能、可靠性和经济性,是现代汽车发动机中不可或缺的重要组成部分。
电控点火系统的组成与工作原理
1、同时点火方式:
两个气缸共用一个点火线圈,该点火 线圈的高压电同时送往两缸的火花塞,同 时跳火。
1、同时点火方式:
同时跳火的两缸必须满足如下条件: 当一缸处于压缩行程上止点时,另一缸处于 排气行程上止点。曲轴旋转一圈后,两缸所处的 行程正好相反。 如6缸发动机,第一缸与第六缸、第二缸与 第五缸、第三缸与第四缸共用一个点火线圈,火 花塞串联,同时点火。
同时点火系的高压配电方式有两种: 二极管分配方式、点火线圈分配方式。
1、同时点火方式:
(1)二极管分配方式:
1、同时点火方式:
结构特点:
有两个初级绕组和一个次级绕组(4缸发动 机),次级绕组的两端分别通过高压二极管与4 个火花塞形成回路。
当发动机点火顺序为1-3-4-2时,1缸和4缸、 2缸和3缸分别配对,同时点火。 点火器内部有两个功率三极管,分别控制 点火线圈中的两个初级绕组。
(3)无分电器点火次级高压波形、 图8—19所示为无分电器双缸同时点火系统(一个点火线圈给两个气缸点火) 波形测试。采用示波器的两个通道,以测试做功和排气的点火波形。由于压缩压 力的不同,其中做功的气缸所需要的点火电压较高。
2.点火初级波形 由于点火初级和次级线圈有互感作用,在次级线圈产生高压时还会反馈给初级 电路。点火初级波形如图8—20所示。 点火初级陈列波主要用于检查火花塞、高压线的短路或断路故障,及火花塞 是否污损。当点火次级不易测试时(例如,无火花塞高压线的汽车),就需测试点 火初级波形。 让发动机怠速运转、急加速或路试汽车,使行驶性能或点火不良等故障现象 再现,并确认各缸信号的幅值、频率、形状和脉冲宽度等是否一致。观察各缸点 火击穿峰值电压高度是否相对一致。如果一个缸的点火峰值电压明显比其他缸高 出很多,则说明这个气缸的点火次级线路中电阻过高,如点火高压线开路或阻值 太高;如果一个缸的点火峰值电压比其他缸低,则说明点火高压线短路或火花塞 间隙过小、火花塞破裂或污浊。 点火初级单缸波形的测 试内容、项目和方法与 分电器次级单缸波形完 全相同,只是测试时要 确认一下闭合角是否随 发动机的负荷和转速变 化而改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车点火控制包括: 1.点火提前角控制 2.通电时间控制
3.爆震控制
影响点火提前角的因素
转速:转速传感器 负荷:空气流量传感器或进气压力传感器和节气门位 置传感器信号 启动及怠速 汽油的辛烷值 压缩比 混合汽的浓度 火花塞的数量 进气压力 进气温度 冷却水温度
怠速修正
怠速期间,发动机负荷变化导致转速变 化,ECU调整点火提前角使发动机在规 定的怠速转速下运转。
怠速工况基本点火提前角
怠速修正点火提前角
空燃比反馈修正
氧传感器的反馈信号使空燃比增加或减 少,发动机的转速在一定范围内波动,为 提高发动机运转的稳定性,必须对点火 提前角进行相应的修正
空燃比反馈修正
启动期间的点火提前角控制之一
可调点火提前角
启动时,专设的启动开关闭合,微机进入启动 时点火提前角控制模式,如图所示: 点火提前角随发动机的温度、启动转速等参数 变化而变化。 当发动机以100rpm的转速运转时,对点火提 前角有如图修正 有些控制系统在启动时还考虑了进气温度的影 响。
发动机启动时的点火提前角控制特性
过热修正
发动机在正常运行工况时,当冷却水温 度过高时,为避免产生爆震现象,将点 火提前角推迟。 发动机在怠速工况运行时,当冷却水温 度过高时,应适当增加点火提前角,使 燃烧尽早结束。 过热修正曲线如下图所示
过热修正曲线
蓄电池电压修正
点火线圈初级线圈电流是按照指数规律 变化化的,只有通电时间达到一定值时, 初级电流才可能达到饱和。 点火时间过长,点火线圈过热,电能消 耗增加。 蓄电池电压变化时,必须进行校正。
启动时点火提前角的转速修正
启动后点火提前角的控制
点火提前角的数据表格存储形式
点火提前角特性图
基本点火提前角
ECU根据发动机转速信号和发动机负荷 (或进气量)在存储器中查到此工况下 运行时的基本提前角。
暖车修正
暖车修正 如图所示暖车过程中点火提前角与发动 机冷却水温的关系曲线
暖车时点火提前角的修正
蓄电池电压变化时初级电流导通时间的修正
点火提前角控制的分类
启动期间点火提前角的控制 在启动时,以固定的点火提前角点火, 与发动机工况无关。 启动后发动机正常运转期间的点火提前角。 基本点火提前角:空气流量信号和转速信号决 定。 修正量:根据发动机的特性曲线进行修正。
启动期间的点火提前角控制之一
固定点火提前角
点火提前角与水温、转速等因素无关。 控制方式简单,但在气温、水温极低等 特殊情况下启动时,控制效果不够理想。