2012年广州市初中毕业生学业考试数学试卷
2012年广东广州中考数学试题(含答案)
一、选择题(共10小题,每题3分,共30分)1.实数3的倒数是()A.-13 B.13C.-3 D.32.将二次函数2=y x的图象向下平移1个单位,则平移后的二次函数的解析式为()A.2=1y x-B.2=+1y xC.2=(1)y x-D.2=(+1)y x3.一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱第3题图第5题图4.下面的计算正确的是()A.6a-5a=1 B.a+2a2= 3a3C.-(a-b) =-a+b D.2(a+b)=2a+b5.如图,在等腰梯形ABCD中,BC∥AD,AD =5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()A.26 B.25 C.21 D.206.已知|1|+7+a b-=0,则a+b=()A.-8 B.-6 C.6 D.87.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365B.1225C.94D.3348.已知a>b,若c是任意实数,则下列不等式中总是成立的是()A.a +c<b+ c B.a-c>b-cC.ac<bc D.ac>bc9.在平面中,下列命题为真命题的是()A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形10.如图,正比例函数y1=k1x和反比例函数22kyx=的图象交于A (-1,2),B(1,-2)两点,若y1<y2,则x的取值范围是()A.x<-1或x>1B.x<-1或0<x<1C.-1<x<0或0<x<1D.-1<x<0或x>1二、填空题(共6小题,每题3分,共18分)11.已知∠ABC=30°,BD是∠ABC的平分线,则∠ABD=_________度.12.不等式x-1≤10的解集是_____________.13.分解因式:a2-8a=_____________________.14.如图,在等边△ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为_____.15.已知关于x的一元二次方程223=0x x k--有两个相等的实数根,则k的值为____________.16.如图,在标有刻度的直线l上,从点A开始,以AB=1为直径画半圆,记为第1个半圆;2012年广东广州中考数学试题(满分150分,考试时间120分钟)BAyx-3213-32-21-13-2-1O以BC =2为直径画半圆,记为第2个半圆; 以CD =4为直径画半圆,记为第3个半圆; 以DE =8为直径画半圆,记为第4个半圆; ……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的_____倍,第n 个半圆的面积为______________.(结果保留π)三、解答题(共9小题,共102分) 17. (9分)解方程组:{=83+=12x y x y -.18. (9分)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C .求证:BE =CD .19. (10分)广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006~2010这五年各年的全年空气质量优良的天数,绘制折线图如图所示,根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是________,极差是________;(2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是_____年(填写年份); (3)求这五年的全年空气质量优良天数的平均数.20. (10分)已知11+=5a ba ≠b ),求()ab a b --()ba ab -的值.21. (12分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7、-1、3,乙袋中的三张卡片上所标的数值分别为-2、1、6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数值,把x 、y 分别作为点A 的横坐标,纵坐标.(1)用适当的方法写出点A (x ,y )的所有情况; (2)求点A 落在第三象限的概率.22. (12分)如图,⊙P 的圆心为P (-3,2),半径为3,直线MN 过点M (5,0)且平行于y 轴,点N 在点M 的上方.(1)在图中作出⊙P 关于y 轴对称的⊙P ',根据作图直接写出⊙P '与直线MN 的关系; (2)若点N 在(1)中的⊙P '上,求PN 的长.23. (12分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨2.8元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出每月用水量未超过20吨和超过20吨时,y 与x 间的函数关系式;(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨.24. (14分)如图,抛物线233384y x x =--+与x轴交于A ,B 两点(点A 在点B 的左侧),与y轴交于点C .(1)求点A ,B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.25. (14分)如图,在平行四边形ABCD 中,AB =5,BC =10,F 为AD 的中点,CE ⊥AB 于点E ,设∠ABC=α(60°≤α<90°). (1)当α=60°时,求CE 的长. (2)当60°<α<90°时,①是否存在正整数k ,使得∠EFD =k ∠AEF ?若存在,求出k 的值;若不存在,请说明理由. ②连接CF ,当CE 2-CF 2取最大值时,求tan ∠DCF 的值.2012年广东广州中考数学参考答案y xOCBA一、选择题二、填空题(共18分,每题3分)三、解答题(共102分)17.53 xy=⎧⎨=-⎩18.证明略19.(1)345,24;(2)2008;(3)343.22021.(1)树状图略,共9种情况;(2)2 922.(1)图略,⊙P'与直线MN相交;(2)PN23.(1)当每月用水量未超过20吨时,y与x间的函数关系式:y=1.9x(0≤x≤20);当每月用水量超过20吨时,y与x间的函数关系式:y=2.8x-18(x>20);(2)30吨24.(1)A(-4,0),B(2,0);(2)点D的坐标(-1,274-)或(-1,94-);(3)334y x=-+或334y x=-25.(1)(2)①存在,k=3;②3。
2012年广东省中考数学试题及答案
2012年广东省中考数学试卷一、选择题(本大题共5小题,每小题3分,共15分)1.﹣5的绝对值是()A. 5 B.﹣5 C.D.﹣2.地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×1043.数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.84.如图所示几何体的主视图是()A.B.C.D.5.)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11 D.16二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.分解因式:2x2﹣10x=_________.7.不等式3x﹣9>0的解集是_________.8.如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是_________.9.若x,y为实数,且满足|x﹣3|+=0,则()2012的值是_________.10.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是_________(结果保留π).三、解答题(一)(每小题6分,共30分)11.(2012•广东)计算:﹣2sin45°﹣(1+)0+2﹣1.12.(2012•广东)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.13.(2012•广东)解方程组:.14.(2012•广东)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.15.(2012•广东)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(2012•广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?17.(2012•广东)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x 轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.18.(2012•广东)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).19.(2012•广东)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=_________=_________;(2)用含有n的代数式表示第n个等式:a n=_________=_________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(2012•广东)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.21.(2012•广东)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C 落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC 相切的圆的面积(结果保留π).2012年广东省初中数学毕业生学业考试答案6.2(5)x x - 7.3x > 8.509.1 10.13π3-三、解答题(一)(本大题5小题,每小题7分,共35分) 11. 12-. ························································································································ 7分12.解:原式=2292x x x --+ ························································································ 3分 =29x -. ···································································································· 5分 当4x =时,原式=2491⨯-=-. ····················································································· 7分 13∴原方程组的解是51x y =⎧⎨=⎩,.····························································································· 7分14.解:(1)如图所示(作图正确得4分);(2)363672B D C A A B D ∴=+=+=∠∠∠. ························································ 7分 四、解答题(二)(本大题共3小题,每小题9分,共27分) 16.解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x .依题意,得25000(1)7200x +=.···················································································· 3分 解得120.2 2.2x x ==-,(不合题意,舍去).(2)若2012年仍保持相同的年平均增长率,则预测2012年我国公民出境旅游总人数约7200(120%)8640⨯+=(万人次).17.解:(1) 点(42)A ,在反比例函数(0)k y x x=>的图象上,24k ∴=,解得8k =. ······························································································ 2分将0y =代入26y x =-,得260x -=,解得3x =,则3O B =.∴点B 的坐标是(3,0). ······················································································· 4分(2)存在.∴点C 的坐标是(5,0). ··············································································· 9分 18.解:设小山岗的高A B 为x 米.解得300x =. ····················································································································· 7分 答:小山岗的高A B 为300米. ·························································································· 9分 19.解:(1)311119112911a ⎛⎫==⨯- ⎪⨯⎝⎭. ····································································· 2分 (2)1111(21)(21)22121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭. ·························································· 6分 (3)123100a a a a ++++…=1111133557199201++++⨯⨯⨯⨯…=1112201⎛⎫⨯- ⎪⎝⎭=100201. ························································································································· 9分五、解答题(三)(本大题3小题,每小题9分,共27分) 20.解:方法一:树状图如下:············································································································································ 3分所有()x y ,可能的结果共有9种,分别是:(22)--,,(21)--,,(21)-,,(12)--,,(11)--,,(11)-,,(12)-,,(11)-,,(11),. ································································································ 4分(2)由题意知,要使分式有意义,则220x y -≠且0x y -≠.即x y ≠且x y ≠-. ············································································································ 5分上述9种可能的结果中,共4种能使分式有意义,分别是:(21)-,,(21)--,,(12)-,,(12)--,.············································································································································ 7分 所以,使分式2223x xy y x yx y-+--有意义的()x y ,出现的概率是49. ································· 8分(3)原式2223()()()()()x xy xy y x y x y x y x y x y x y x y-++--===+-+-+. ··········································· 10分由(2)可知,有4种可能的结果能使分式有意义,其中能使分式的计算结果是整数的结果有2种,分别是:(21)-,,(12)-,. 所以,使分式2223x xy y x yx y-+--的值为整数的()x y ,出现的概率是29. ······················· 12分21.(1)证明: 四边形A B C D 为矩形,90C B A D A B C D ∴===∠∠,, ················································································· 1分由图形的折叠性质,得90C D C D C C ''===,∠∠,B A DC A B CD ''∴==∠∠,. ························································································· 3分又A G B C G D '= ∠∠, A B G C D G '∴△≌△(AAS ). ······················································································· 4分 (2)解:设A G 为x .8A B G C D G A D A G x '== △≌△,,, 8B G D G A D A G x ∴==-=-. ····················································································· 5分 在R t A B G △中,有222B G A G A B =+,6A B = ,222(8)6x x ∴-=+.解得74x =. ························································································································· 7分7tan 24A G AB G A B∴==∠. ······························································································· 8分(3)解法一:由图形的折叠性质,得904E H D D H A H ===∠,,A B E F ∴∥, D H F D A B ∴△∽△,H F D H A BA D∴=,即162H F =,3H F ∴=. ·························································································································· 9分又A B G C D G ' △≌△, A B G H D E ∴=∠∠,tan tan E H A B G H D E H D∴==∠∠,即7244E H =,76E H ∴=. ························································································································ 11分725366E F E H H F ∴=+=+=. ··················································································· 12分22.解:(1) 当0y =时,2139022x x --=,解得1263x x ==-,. ····································································································· 1分∴点A 的坐标为(30)-,,点B 的坐标为(60),, 6(3)9A B ∴=--=, ······································································································ 2分 当0x =时,9y =-,∴点C 的坐标为(09)-,, |9|9O C ∴=-=. ················································································································ 3分(2)l B C ∥,A D E A CB ∴△∽△,2A D E A CB S A E S A B ⎛⎫∴= ⎪⎝⎭△△, ········································································································ 4分 118199222A CB S A B OC =∙=⨯⨯=△,- 11 - 22811922A D Em S m ⎛⎫∴=⨯= ⎪⎝⎭△. ························································································· 6分 21(09)2S m m ∴=<<. ···································································································· 7分 (3)解法一:1199222A E C S A E O C m m =∙=⨯= △, 2291198122228C D E A E C A D E S S S m m m ⎛⎫∴=-=-=--+ ⎪⎝⎭△△△. ····································· 9分 09m << , ∴当92m =时,C D E S △取得最大值,最大值为818. ······················································· 10分 此时,99922B E A B A E =-=-=.记E ⊙与B C 相切于点M ,连结E M ,则E M B C ⊥,设E ⊙的半径为r . 在R t B O C △中,B C ===90C B O E B M C O B E M B === ∠∠,∠∠,B OC B M E ∴△∽△.E ME BO C C B ∴=.99r∴=. r =. ······················································································································· 11分∴所求E ⊙的面积为:2729ππ52⎛= ⎝. ······························································ 12分。
2012年广州市初中毕业生学业考试数学试题(解析版)
2012年广东省广州市中考数学试卷解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(2012•广州)实数3的倒数是()A.﹣B.C.﹣3 D.3考点:实数的性质。
专题:常规题型。
分析:根据乘积是1的两个数互为倒数解答.解答:解:∵3×=1,∴3的倒数是.故选B.点评:本题考查了实数的性质,熟记倒数的定义是解题的关键.2.(2012•广州)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2考点:二次函数图象与几何变换。
专题:探究型。
分析:直接根据上加下减的原则进行解答即可.解答:解:由“上加下减”的原则可知,将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x2﹣1.故选A.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.3.(2012•广州)一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱考点:由三视图判断几何体。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形,可得为棱柱体,所以这个几何体是三棱柱;故选D.点评:本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.4.( 2012•广州)下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b考点:去括号与添括号;合并同类项。
分析:根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.解答:解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣(a﹣b)=﹣a+b,故此选项正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.点评:此题主要考查了合并同类项,去括号,关键是注意去括号时注意符号的变化,注意乘法分配律的应用,不要漏乘.5.(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()A.26 B.25 C.21 D.20考点:等腰梯形的性质;平行四边形的判定与性质。
2012年广东省初中毕业生学业考试数学模拟试卷(一)及答案
2012年广东省初中毕业生学业考试数学模拟试卷(一)(时间:100分钟,满分120分)一、选择题(本大题共5小题,每小题3分,共15分;在每小题给出的四个选项中,只有一个是正确的) 1.-4的倒数是( D )A .4B .-4 C.14 D .-142.一种细菌的半径是0.000 045米,该数字用科学记数法表示正确的是( C )A .4.5×105B .45×106C .4.5×10-5D .4.5×10-4 3.函数y =-x x -1中自变量x 的取值范围是( D )A .x ≥0B .x <0且x ≠1C .x <0D .x ≥0且x ≠14.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解是( A )A.⎩⎪⎨⎪⎧ x =1y =2B.⎩⎪⎨⎪⎧ x =1y =-2C.⎩⎪⎨⎪⎧ x =2y =1D.⎩⎪⎨⎪⎧x =0y =-1 5.下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是( C )A. B. C. D.二、填空题(本大题共5小题,每小题4分,共20分) 6.因式分解:ab 2-2ab +a =a (b -1)2.7.如果点P (4,-5)和点Q (a ,b )关于y 轴对称,则a 的值为-4. 8.一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是5. 9.双曲线y =2k -1x 的图象经过第二、四象限,则k 的取值范围是k <12.10.如图1-1,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有100个.图1-1三、解答题(本大题共5小题,每小题6分,共30分) 11.计算:(-2 011)0+⎝⎛⎭⎫22-1+||2-2-2cos60°. 解:原式=1+2+2-2-1=212.先化简,再求值:x -y x ÷⎝⎛⎭⎫x -2xy -y 2x ,其中x =2,y =-1.解:原式=x -y x ·x x 2-2xy +y 2=1x -y , 当x =2,y =-1时,原式=1x -y =13.13.如图1-2,在边长为1个单位长度的小正方形组成的网格中,△ABC 与△DFE 关于点O 成中心对称,△ABC 与△DFE 的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O 的位置;(2)将△ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到△A 1B 1C 1,请画出△A 1B 1C 1;(3)在网格中画出格点M ,使A 1M 平分∠B 1A 1C 1.图1-2解:(1)如图D58,图中点O 为所求.图D58(2)如图D58,图中△A 1B 1C 1为所求. (3)如图D58,图中点M 为所求.14.如图1-3,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0),B (0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.图1-3解:(1)把A (2,0),B (0,-6)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧ -2+2b +c =0c =-6,解得⎩⎪⎨⎪⎧b =4c =-6. ∴这个二次函数的解析式为y =-12x 2+4x -6.(2)∵该抛物线对称轴为直线x =-42×⎝⎛⎭⎫-12=4,∴点C 的坐标为(4,0),∴AC =OC -OA =4-2=2, ∴S △ABC =12×AC ×OB =12×2×6=6.15.某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB =6 m , ∠ABC =45°,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使∠ADC =30°(如图1-4所示).(1)求调整后楼梯AD 的长; (2)求BD 的长(结果保留根号).图1-4解:(1)已知AB =6 m ,∠ABC =45°, ∴AC =BC =AB ·sin45°=6×22=3 2,∵∠ADC =30°,∴AD =2AC =6 2. 答:调整后楼梯AD 的长为6 2m. (2)CD =AD ·cos30°=6 2×32=3 6,∴BD =CD -BC =3 6-3 2. 答:BD 的长为(3 6-3 2)m.四、解答题(本大题共4小题,每小题7分,共28分)16.从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生;(2)抽取2名,恰好是1名男生和1名女生.解:(1)抽取1名,恰好是女生的概率是25.(2)分别用男1、男2、男3、女1、女2表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共10种,它们出现的可能性相同.所有结果中,满足抽取2名,恰好是1名男生和1名女生(记为事件A )的结果共6种,所以P (A )=610=35.17.如图1-5,P 是矩形ABCD 下方一点,将△PCD 绕P 点顺时针旋转60°后恰好D 点与A 点重合,得到△PEA ,连接EB ,问△ABE 是什么特殊三角形?请说明理由.图1-5解:△ABE 是等边三角形,理由如下: △PCD 绕点P 顺时针旋转60°得到△PEA ,PD 的对应边是P A 、CD 的对就边是EA , 线段PD 旋转到P A ,旋转的角度是60°,即∠APD 为60°, ∴△P AD 是等边三角形, ∴∠DAP =∠PDA =60°, ∴∠PDC =∠P AE =30°,∠DAE =30°, ∴∠P AB =30°,即∠BAE =60°, 又∵CD =AB =EA , ∴△ABE 是等边三角形.18.绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿有几种方案安排甲、乙两种货车可一次性地将水果运到销售地?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意得⎩⎪⎨⎪⎧4x +2 8-x ≥20x +2 8-x ≥12, 解此不等式组得2≤x ≤4. ∵x 是正整数, ∴x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:甲种货车 乙种货车 方案一 2辆 6辆 方案二 3辆 5辆 方案三4辆4辆(2)方案一所需运费为300×2+240×6=2 040元; 方案二所需运费为300×3+240×5=2 100元; 方案三所需运费为300×4+240×4=2 160元. ∴王灿应选择方案一运费最少,最少运费是2 040元.19.已知:如图1-6,在Rt △ABC 中,∠C =90°,∠BAC 的角平分线AD 交BC 边于D .(1)以AB 边上一点O 为圆心,过A 、D 两点作⊙O (不写作法,保留作图痕迹),再判断直线BC 与⊙O 的位置关系,并说明理由; (2)若(1)中的⊙O 与AB 边的另一个交点为E ,AB =6,BD =2 3,求线段BD 、BE 与劣弧DE 所围成的图形面积(结果保留根号和π).图1-6解:(1)如图D59(需保留线段AD 中垂线的痕迹).图D59直线BC 与⊙O 相切.理由如下: 连接OD ,∵OA =OD ,∴∠OAD =∠ODA . ∵AD 平分∠BAC ,∴∠OAD =∠DAC . ∴∠ODA =∠DAC . ∴OD ∥AC . ∵∠C =90°,∴∠ODB =90°,即OD ⊥BC . 又∵直线BC 过半径OD 的外端, ∴BC 为⊙O 的切线. (2)设OA =OD =r ,在Rt △BDO 中,OD 2+BD 2=OB 2, ∴r 2+(2 3)2=(6-r )2,解得r =2. ∵tan ∠BOD =BD OD =3,∴∠BOD =60°.∴S 扇形ODE =60π·22360=23π.∴所求图形面积为S △BOD -S 扇形ODE =2 3-23π.五、解答题(本大题共3小题,每小题9分,共27分)20.对于任何实数,我们规定符号⎪⎪⎪ a c ⎪⎪⎪b d 的意义是⎪⎪⎪ a c⎪⎪⎪b d =ad -bc . (1)按照这个规定请你计算⎪⎪⎪ 57⎪⎪⎪68的值; (2)按照这个规定请你计算:当x 2-3x +1=0时,⎪⎪⎪⎪⎪⎪x +1x -23xx -1的值. 解:(1)⎪⎪⎪ 57⎪⎪⎪68=5×8-6×7=-2.(2)⎪⎪⎪ x +1x -2⎪⎪⎪3x x -1=()x +1()x -1-3x ()x -2 =x 2-1-3x 2+6x =-2x 2+6x -1. 又∵x 2-3x +1=0, ∴x 2-3x =-1,原式=-2(x 2-3x )-1=-2×(-1)-1=1.21.如图1-7(1),将菱形纸片AB (E )CD (F )沿对角线BD (EF )剪开,得到△ABD 和△ECF ,固定△ABD ,并把△ABD 与△ECF 叠放在一起.(1)操作:如图1-7(2),将△ECF 的顶点F 固定在△ABD 的BD 边上的中点处,△ECF 绕点F 在BD 边上方左右旋转,设旋转时FC 交BA 于点H (H 点不与B 点重合),FE 交DA 于点G (G 点不与D 点重合).求证:BH ·GD =BF 2.(2)操作:如图1-7(3),△ECF 的顶点F 在△ABD 的BD 边上滑动(F 点不与B 、D 点重合),且CF 始终经过点A ,过点A 作AG ∥CE ,交FE 于点G ,连接DG .探究:FD +DG =________.请予以证明.图1-7(1)证明:∵将菱形纸片AB (E )CD (F )沿对角线BD (EF )剪开, ∴∠B =∠D , ∵将△ECF 的顶点F 固定在△ABD 的BD 边上的中点处,△ECF 绕点F 在BD 边上方左右旋转,∴BF =DF , ∵∠HFG =∠B , ∴∠GFD =∠BHF , ∴△BFH ∽△DGF ,∴BF DG =BH DF , ∴BH ·GD =BF 2.(2)证明:∵AG∥CE,∴∠F AG=∠C,∵∠CFE=∠CEF,∴∠AGF=∠CFE,∴AF=AG,∵∠BAD=∠C,∴∠BAF=∠DAG,△ABF≌△ADG,∴FB=DG,∴FD+DG=BD.22.如图1-8,已知二次函数y=x2-2mx+4m-8.(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围;(2)以抛物线y=x2-2mx+4m-8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M、N两点在抛物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由;(3)若抛物线y=x2-2mx+4m-8与x轴交点的横坐标均为整数,求整数m的值.图1-8解:(1)∵y=(x-m)2+4m-8-m2,∴由题意得,m≥2.(2)如图D60,根据抛物线和正三角形的对称性,可知MN⊥y轴,设抛物线的对称轴与MN交于点B,则AB=3BN.设N(a,b),∴BN=a-m(m<a),又AB=y B-y A=b-(4m-8-m2)=a2-2ma+4m-8-(4m-8-m2)=a2-2ma+m2=(a-m)2,∴(a-m)2=3(a-m),∴a-m=3,∴BN=3,AB=3,∴S△AMN=12AB·2BN=12×3×2×3=3 3.∴△AMN的面积是与m无关的定值.图D60(3)令y =0,即x 2-2mx +4m -8=0时,有: x =2m ±2m 2-4m +82=m ±m -2 2+4,由题意,(m -2)2+4为完全平方数, 令(m -2)2+4=n 2,即(n +m -2)(n -m +2)=4 ∵m 、n 为整数,∴⎩⎪⎨⎪⎧ n +m -2=2n -m +2=2或⎩⎪⎨⎪⎧n +m -2=-2n -m +2=-2, 解得⎩⎪⎨⎪⎧ m =2n =2或⎩⎪⎨⎪⎧m =2n =-2,综合得m =2.。
2012广州中考数学答案解析
2012年广东省广州市中考数学试卷解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(2012•广州)实数3的倒数是()A.﹣B.C.﹣3D.3考点:实数的性质。
专题:常规题型。
分析:根据乘积是1的两个数互为倒数解答.解答:解:∵3×=1,∴3的倒数是.故选B.点评:本题考查了实数的性质,熟记倒数的定义是解题的关键.2.(2012•广州)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2﹣1B.y=x2+1C.y=(x﹣1)2D.y=(x+1)2考点:二次函数图象与几何变换。
专题:探究型。
分析:直接根据上加下减的原则进行解答即可.解答:解:由“上加下减”的原则可知,将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x2﹣1.故选A.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.3.(2012•广州)一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱考点:由三视图判断几何体。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形,可得为棱柱体,A.四棱锥B.四棱柱C.三棱锥D.三棱柱考点:由三视图判断几何体。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形,可得为棱柱体,PS:双击后Ctrl+A,Ctrl+C然后粘贴到word即可不能直接提供word版,抱歉。
2012年广东省中考数学试卷
错误!未指定书签。
一、选择题(本大题5小题,每小题3分,共15分) 1.﹣5的绝对值是( ) A .5 B .﹣5 C .51 D .51答案:A.解析过程:根据负数的绝对值等于它的相反数,得|﹣5|=5. 知识点:绝对值. 题型区分:选择题. 专题区分:数与式. 难度系数:★ 分值:3分.试题来源:广东省. 试题年代:2012年.2.地球半径约为6 400 000米,用科学记数法表示为( )A .0.64×107B .6.4×106C .64×105D .640×104答案:B.解析过程:6 400 000=6.4×106. 知识点:科学记数法. 题型区分:选择题. 专题区分:数与式. 难度系数:★ 分值:3分.试题来源:广东省. 试题年代:2012年.3.数据8、8、6、5、6、1、6的众数是( ) A .1 B .5 C .6 D .8 答案:C.解析过程:6出现的次数最多,故众数是6. 知识点:众数. 题型区分:选择题.专题区分:抽样与数据分析. 难度系数:★ 分值:3分.试题来源:广东省. 试题年代:2012年.4.如图所示几何体的主视图是( )A .B .C .D .答案:B.解析过程:从正面看,此图形的主视图由3列组成,从左到右小正方形的个数是1,3,1.知识点:简单组合体的三视图.题型区分:选择题.专题区分:图形的变化.难度系数:★分值:3分.试题来源:广东省.试题年代:2012年.5.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16答案:C.解析过程:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.知识点:三角形三边关系.题型区分:选择题.专题区分:图形的性质.难度系数:★分值:3分.试题来源:广东省.试题年代:2012年.二、填空题(本大题5小题,每小题4分,共20分)6.分解因式:2x2﹣10x=.答案:2x(x﹣5).解析过程:原式=2x(x﹣5).知识点:因式分解——提公因式法.题型区分:填空题.专题区分:数与式.难度系数:★分值:4分.试题来源:广东省.试题年代:2012年.7.不等式3x﹣9>0的解集是.答案:x>3.解析过程:移项,得3x>9,系数化为1,得x>3.知识点:解一元一次不等式.题型区分:填空题.专题区分:方程与不等式.难度系数:★分值:4分.试题来源:广东省.试题年代:2012年.8.如图,A 、B 、C 是⊙O 上的三个点,∠ABC =25°,则∠AOC 的度数是 . 答案:50°.解析过程:因为圆心角∠AOC 与圆周角∠ABC 都对AC ,所以∠AOC =2∠ABC .又∠ABC =25°,则∠AOC =50°. 知识点:圆周角定理. 题型区分:填空题. 专题区分:图形的性质. 难度系数:★ 分值:4分.试题来源:广东省. 试题年代:2012年.9.若x ,y 为实数,且满足|x ﹣3|+3+y =0,则2012⎪⎪⎭⎫⎝⎛y x 的值是 .答案:1.解析过程:根据题意得⎩⎨⎧=+=-,03,03y x 解得⎩⎨⎧-==.3,3y x 则().1133201220122012=-=⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛y x知识点:非负数的性质,算术平方根,绝对值.题型区分:填空题. 专题区分:数与式. 难度系数:★ 分值:4分.试题来源:广东省. 试题年代:2012年.10.如图,在平行四边形ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 (结果保留π). 答案:3﹣π31.解析过程:过点D 作DF ⊥AB 于点F . ∵AD =2,AB =4,∠A =30°, ∴DF =AD •sin30°=1,EB=AB ﹣AE =2.∴阴影部分的面积为4×1﹣3602302⨯π﹣⨯212×1=4﹣π31﹣1=3﹣π31.知识点:扇形面积的计算,平行四边形的性质.题型区分:填空题.难度系数:★★ 分值:4分.试题来源:广东省. 试题年代:2012年.三、解答题(一)(本大题共5小题,每小题6分,共30分) 11.计算:2﹣2sin45°﹣(1+8)0+2-1. 答案:21-. 解析过程:原式=212112222-=+-⨯-. 知识点:实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值.题型区分:解答题(简).专题区分:数与式,图形的变化. 难度系数:★ 分值:6分.试题来源:广东省. 试题年代:2012年.12.先化简,再求值:(x +3)(x ﹣3)﹣x (x ﹣2),其中x =4. 答案:﹣1.解析过程:原式=x 2﹣9﹣x 2+2x =2x ﹣9.当x =4时,原式=2×4﹣9=﹣1. 知识点:整式的混合运算——化简求值. 题型区分:解答题(简). 专题区分:数与式. 难度系数:★ 分值:6分.试题来源:广东省. 试题年代:2012年.13.解方程组:⎩⎨⎧=+=-②①.163,4y x y x答案:⎩⎨⎧==.1,5y x解析过程:①+②,得4x =20,解得x =5.把x =5代入①,得5﹣y =4,解得y =1.故此不等式组的解为⎩⎨⎧==.1,5y x知识点:解二元一次方程组.专题区分:方程与不等式. 难度系数:★ 分值:6分.试题来源:广东省. 试题年代:2012年.14.如图,在△ABC 中,AB=AC ,∠ABC =72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法); (2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数. 答案:(1)如图所示;(2)72°. 解析过程:(1)如图所示,①以点B 为圆心,以小于BC 长为半径画弧,分别交BA ,BC 于点E ,F ; ②分别以点E ,F 为圆心,以大于21EF 长为半径画弧,两弧相交于点G ,连接BG 交AC 于点D ,则BD 即为∠ABC 的平分线. (2)∵在△ABC 中,AB=AC ,∠ABC =72°, ∴∠A =180°﹣2∠ABC=180°﹣144°=36°. ∵BD 是∠ABC 的平分线, ∴∠ABD =21∠ABC =21×72°=36°. ∵∠BDC 是△ABD 的外角,∴∠BDC =∠A +∠ABD =36°+36°=72°.知识点:基本作图,等腰三角形的性质. 题型区分:解答题. 专题区分:图形的性质. 难度系数:★ 分值:6分.试题来源:广东省. 试题年代:2012年.15.已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点O ,BO=DO .求证:四边形ABCD 是平行四边形.答案:证明AB=CD ,进而四边形ABCD 是平行四边形. 解析过程:∵AB ∥CD , ∴∠ABO =∠CDO . 在△ABO 与△CDO 中,∠ABO =∠CDO ,BO=DO ,∠AOB =∠COD , ∴△ABO ≌△CDO . ∴AB=CD. ∴四边形ABCD 是平行四边形.知识点:平行四边形的判定,全等三角形的判定与性质. 题型区分:解答题.EG FD专题区分:图形的性质. 难度系数:★ 分值:6分.试题来源:广东省. 试题年代:2012年.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次? 答案:(1)20%;(2)约8640万人次. 解析过程:(1)设这两年我国公民出境旅游总人数的年平均增长率为x .根据题意得5000(1+x )2=7200.解得 x 1 =0.2=20%,x 2 =﹣2.2 (不合题意,舍去). 答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则预测2012年我国公民出境旅游总人数约为 7200(1+x )=7200×120%=8640(万人次).答:预测2012年我国公民出境旅游总人数约8640万人次. 知识点:一元二次方程的应用. 题型区分:解答题.专题区分:方程与不等式. 难度系数:★ 分值:7分.试题来源:广东省. 试题年代:2012年.17.如图,直线y =2x ﹣6与反比例函数xky =(x >0)的图象交于点A (4,2),与x 轴交于点B . (1)求k 的值及点B 的坐标;(2)在x 轴上是否存在点C ,使得AC=AB ?若存在,求出点C 的坐标;若不存在,请说明理由. 答案:(1)k =8,B (3,0);(2)存在,C (5,0). 解析过程:(1)把(4,2)代入反比例函数xky =,得k =8. 把y =0代入y =2x ﹣6中,可得x =3. 故k =8,点B 坐标是(3,0); (2)存在.如图,过点A 作AH ⊥x 轴于点H ,则OH =4. ∵AB=AC , ∴BH=CH . ∵BH=OH ﹣OB=4-3=1,H C∴OC=OB+BH+HC=3+1+1=5. ∴点C 的坐标是(5,0).知识点:一次函数,反比例函数. 题型区分:解答题. 专题区分:函数. 难度系数:★★ 分值:7分.试题来源:广东省. 试题年代:2012年.18.如图,小山岗的斜坡AC 的坡度是tan α=43,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB (结果取整数;参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50). 答案:300米.解析过程:∵在Rt △ABC 中,43tan ==αBC AB , ∴BC =43AB . ∵在Rt △ADB 中,BDAB=tan26.6°=0.50, ∴BD =2AB .∵BD ﹣BC=CD =200, ∴2AB ﹣43AB =200,解得AB =300米. 答:小山岗的高AB 为300米.知识点:解直角三角形——仰角、俯角、坡度、坡角问题. 题型区分:解答题(简). 专题区分:图形的变化. 难度系数:★★ 分值:7分.试题来源:广东省. 试题年代:2012年.19.观察下列等式: 第1个等式:a 1=⎪⎭⎫ ⎝⎛-⨯=⨯31121311; 第2个等式:a 2=⎪⎭⎫ ⎝⎛-⨯=⨯513121531;第3个等式:a 3=⎪⎭⎫ ⎝⎛-⨯=⨯715121751; 第4个等式:a 4=⎪⎭⎫ ⎝⎛-⨯=⨯917121971; ……请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;(2)用含有n 的代数式表示第n 个等式:a n = = (n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值. 答案:(1)1191⨯ ⎪⎭⎫ ⎝⎛-⨯1119121;(2)()()12121n n -+ 11122121n n ⎛⎫- ⎪-+⎝⎭;(3).201100 解析过程:(1)a 5=1191⨯=⎪⎭⎫⎝⎛-⨯1119121; (2)a n =()()12121n n -+=11122121n n ⎛⎫- ⎪-+⎝⎭;(3)a 1+a 2+a 3+a 4+…+a 100 =311⨯+531⨯+751⨯+…+2011991⨯ =⎪⎭⎫ ⎝⎛-⨯31121+⎪⎭⎫ ⎝⎛-⨯513121+⎪⎭⎫ ⎝⎛-⨯715121+…+⎪⎭⎫ ⎝⎛-⨯2011199121 =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋯+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⨯201119917151513131121 =⎪⎭⎫ ⎝⎛-⨯2011121=.201100知识点:规律型:分式的变化. 题型区分:解答题. 专题区分:数与式. 难度系数:★★ 分值:7分.试题来源:广东省. 试题年代:2012年.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y ). (1)用树状图或列表法表示(x ,y )所有可能出现的结果;(2)求使分式yx yy x xy x -+--2223有意义的(x ,y )出现的概率; (3)化简分式yx yy x xy x -+--2223,并求使分式的值为整数的(x ,y )出现的概率. 答案:(1)略;(2)94;(3)92. 解析过程:(1)用树状图表示(x ,y )所有可能出现的结果如下:开始x -2 -1 1y -2 -1 1 -2 -1 1 -2 -1 1用列表法表示(x ,y )所有可能出现的结果如下: y﹣2 ﹣1 1 ﹣2 (﹣2,﹣2) (﹣2,﹣1) (﹣2,1) ﹣1 (﹣1,﹣2) (﹣1,﹣1) (﹣1,1) 1(1,﹣2)(1,﹣1)(1,1)(2)由题意知,要使分式有意义,则x 2﹣y 2≠0且x ﹣y ≠0,即x ≠y 且x ≠﹣y . 上述9种可能的结果中,共4种能使分式有意义,分别是(﹣2,﹣1)、(﹣2,1)、(﹣1,﹣2)、(1,﹣2).所以使分式yx y y x xy x -+--2223有意义的(x ,y )出现的概率是94. (3)原式=()()()()().3222y x y x y x y x y x y x y x y xy xy x +-=-+-=-+++-由(2)可知,有4种可能的结果能使分式有意义,其中能使分式的计算结果是整数的有2种,分别是(–2,1),(1,–2).所以使分式yx y y x xy x -+--2223的值为整数的(x ,y )出现的概率是92. 知识点:列表法与树状图法,分式有意义的条件,分式的化简求值.题型区分:解答题.专题区分:统计与概率,数与式.x难度系数:★★ 分值:9分.试题来源:广东省. 试题年代:2012年.21.如图,在矩形纸片ABCD 中,AB =6,BC =8.把△BCD 沿对角线BD 折叠,使点C 落在C'处,BC'交AD 于点G ;E 、F 分别是C'D 和BD 上的点,线段EF 交AD 于点H ,把△FDE 沿EF 折叠,使点D 落在D'处,点D'恰好与点A 重合. (1)求证:△ABG ≌△C'DG ; (2)求tan ∠ABG 的值; (3)求EF 的长.答案:(1)利用“AAS ”证明△ABG ≌△C'DG ;(2)247;(3)625. 解析过程:(1)∵四边形ABCD 是矩形, ∴∠C =∠BAD =90°,AB=CD .由图形的折叠性质,得CD=C'D ,∠C =∠C'=90°, ∴∠BAD =∠C',AB =C'D . 又∠AGB =∠C'GD , ∴△ABG ≌△C'DG . (2)设AG=x . ∵△ABG ≌△C'DG ,AD =8, ∴BG=DG=AD ﹣AG =8﹣x .在Rt △ABG 中,有AB 2+AG 2=BG 2,即62+x 2=(8﹣x )2,解得x =47. ∴tan ∠ABG =.247AB AG (3)∵△AEF 是△DEF 翻折而成, ∴EF 垂直平分AD . ∴HD =21AD =4. ∵tan ∠ABG =tan ∠ADE =247. ∴EH=HD ·247=4×247=67.∵EF 垂直平分AD ,AB ⊥AD ,∴HF 是△ABD 的中位线,∴HF =21AB =21×6=3. ∴EF=EH+HF =67+3=625.知识点:全等三角形的判定与性质,矩形的性质,解直角三角形.题型区分:解答题.专题区分:图形的性质,图形的变化.难度系数:★★分值:9分.试题来源:广东省.试题年代:2012年.22.如图,抛物线y =21x 2﹣23x ﹣9与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC 、AC .(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B不重合),过点E 作直线l 平行BC ,交AC 于点D .设AE 的长为m ,△ADE 的面积为S ,求S 关于m 的函数关系式,并写出自变量m 的取值范围;(3)在(2)的条件下,连接CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).答案:(1)AB =9,OC =9;(2)S =21m 2(0<m <9);(3)52729π. 解析过程:(1)抛物线y =21x 2﹣23x ﹣9. 当x =0时,y =﹣9,则C (0,﹣9);当y =0时,21x 2﹣23x ﹣9=0,解得x 1=﹣3,x 2=6,则A (﹣3,0)、B (6,0). ∴AB =9,OC =9.(2)∵ED ∥BC ,∴△AED ∽△ABC. ∴2⎪⎭⎫ ⎝⎛=∆∆AB AE S S ABC AED ,即299921⎪⎭⎫ ⎝⎛=⨯⨯m S ,则S =21m 2(0<m <9). (3)∵S △AEC =21AE •OC =29m ,S △AED =21m 2, ∴S △EDC =S △AEC ﹣S △AED =﹣21m 2+29m =﹣21881292+⎪⎭⎫ ⎝⎛-m . ∴△CDE 的最大面积为881,此时,AE =m =29,BE=AB ﹣AE =29. 在Rt △BOC 中,BC =223681313OB OC +=+=.过点E 作EF ⊥BC 于点F ,则Rt △BEF ∽Rt △BCO ,得BC BE OC EF =,即133299=EF.∴EF =13227.∴以点E 为圆心,与BC 相切的圆的面积 S ⊙E =π•EF 2=52729π.知识点:二次函数综合.题型区分:解答题.专题区分:函数.难度系数:★★★分值:9分.试题来源:广东省.试题年代:2012年.。
2012年广东省中考数学试卷
2012年广东省中考数学试卷一.选择题(共5小题)1.(2012广东)﹣5的绝对值是()A. 5 B.﹣5 C.D.﹣考点:绝对值。
解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.2.(2012广东)地球半径约为6400000米,用科学记数法表示为()A. 0.64×107B. 6.4×106C. 64×105D.640×104考点:科学记数法—表示较大的数。
解答:解:6400000=6.4×106.故选B.3.(2012广东)数据8、8、6、5、6、1、6的众数是()A. 1 B. 5 C. 6 D. 8 考点:众数。
解答:解:6出现的次数最多,故众数是6.故选C.4.(2012广东)如图所示几何体的主视图是()A.B.C.D.考点:简单组合体的三视图。
解答:解:从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1.故选:B.5.(2012广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是() A. 5 B. 6 C. 11 D. 16 考点:三角形三边关系。
解答:解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选C.二.填空题(共5小题)6.(2012广东)分解因式:2x2﹣10x=2x(x﹣5).考点:因式分解-提公因式法。
解答:解:原式=2x(x﹣5).故答案是:2x(x﹣5).7.(2012广东)不等式3x﹣9>0的解集是x>3.考点:解一元一次不等式。
解答:解:移项得,3x>9,系数化为1得,x>3.故答案为:x>3.8.(2012广东)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是50.考点:圆周角定理。
解答:解:∵圆心角∠AOC与圆周角∠ABC都对,∴∠AOC=2∠ABC,又∠ABC=25°,则∠AOC=50°.故答案为:509.(2012广东)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是1.考点:非负数的性质:算术平方根;非负数的性质:绝对值。
2012年广东省中考真题(word版含答案)
2012年广东省初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答题前,考生务必用黑色笔迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.5-的绝对值是( )(A )5 (B )5- (C )15 (D )15- 2.地球半径约为6 400 000米,用科学记数法表示为( ) (A )70.6410⨯ (B )66.410⨯ (C )56410⨯ (D )464010⨯ 3.数据8,8,6,5,6,1,6的众数是( ) (A )1 (B )5 (C )6 (D )84.如左图所示几何体的主视图是( )5.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( ) (A )5 (B )6 (C )11 (D )16二、填空题(本大题共5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.分解因式:2210x x -=___________. 7.不等式390x ->的解集是___________.8.如图,A 、B 、C 是O ⊙上的三个点,25ABC =∠,则A O C ∠的度数是___________.9.若x 、y为实数,且满足|3|0x -,则2012x y ⎛⎫⎪⎝⎭的值是___________.10.如图,在ABCD Y 中,2430AD AB A ===,,∠.以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连结CE ,则阴影部分的面积是___________(结果保留π).三、解答题(一)(本大题共5小题,每小题6分,共30分) 11012sin 45(12--+.12.先化简,再求值:(3)(3)(2)x x x x +---,其中4x =.13.解方程组:4316x y x y -=⎧⎨+=⎩, ①. ②14.如图,在ABC △中,72AB AC ABC ==,∠.(1)用直尺和圆规作ABC ∠的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法); (2)在(1)中作出ABC ∠的平分线BD 后,求BDC ∠的度数.15.已知:如图,在四边形ABCD 中,AB CD ∥,对角线AC BD 、相交于点O ,BO DO =.求证:四边形ABCD 是平行四边形.四、解答题(二)(本大题4小题,每小题7分,共28分)16.据媒体报道,我国2009年公民出境旅游总人数约5 000万人次,2011年公民出境旅游总人数约7 200万人次.若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?17.如图,直线26y x =-与反比例函数(0)ky x x=>的图象交于点(42)A ,,与x 轴交于点B .(1)求k 的值及点B 的坐标;(2)在x 轴上是否存在点C ,使得AC AB =?若存在,求出点C 的坐标;若不存在,请说明理由.18.如图,小山岗的斜坡AC 的坡度是3tan 4α=,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6,求小山岗的高AB .(结果取整数;参考数据:sin 26.60.45cos 26.60.89tan 26.60.50===,,)19.观察下列等式:第1个等式:111111323a ⎛⎫==⨯- ⎪⨯⎝⎭; 第2个等式:2111135235a ⎛⎫==⨯- ⎪⨯⎝⎭; 第3个等式:3111157257a ⎛⎫==⨯- ⎪⨯⎝⎭; 第4个等式:4111179279a ⎛⎫==⨯- ⎪⨯⎝⎭; ……请解答下列问题:(1)按以上规律列出第5个等式:5a =____________=___________;(2)用含n 的代数式表示第n 个等式:n a =____________=___________(n 为正整数); (3)求1234100a a a a a +++++…的值.五、解答题(三)(本大题3小题,每小题9分,共27分)20.有三张正面分别写有数字211--,,的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为()x y ,. (1)用树状图或列表法表示()x y ,所有可能出现的结果;(2)求使分式2223x xy yx y x y-+--有意义的()x y ,出现的概率; (3)化简分式2223x xy yx y x y-+--;并求使分式的值为整数的()x y ,出现的概率.21.如图,在矩形纸片ABCD 中,68AB BC ==,.把BCD △沿对角线BD 折叠.使点C 落在C '处,BC '交AD 于点G ;E F 、分别是C D '和BD 上的点,线段EF 交AD 于点H ,把FDE △沿EF 折叠,使点D 落在D '处,点D '恰好与点A 重合. (1)求证:ABC C DG '△≌△; (2)求tan ABG ∠的值; (3)求EF 的长.22. 如图,抛物线213922y x x =--与x 轴交于A B 、两点,与y 轴交于点C ,连接BC AC 、.(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A B 、不重合),过点E 作直线l 平行BC ,交AC 于点D .设AE 的长为m ,ADE △的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围;(3)在(2)的条件下,连接CE ,求CDE △面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).2012年广东省初中毕业生学业考试参考答案及评分标准数 学6.2(5)x x - 7.3x > 8.50 9.1 10.13π3- 三、解答题(一)(本大题5小题,每小题7分,共35分) 11.解:原式=12122⨯-+················································································· 4分 112+ =12-. ········································································································· 7分 12.解:原式=2292x x x --+ ························································································ 3分 =29x -. ····································································································· 5分 当4x =时,原式=2491⨯-=-. ····················································································· 7分 13.解:①+②,得420x =. ·························································································· 3分 解得5x =. ··························································································································· 4分 将5x =代入①,得54y -=. ··························································································· 5分 解得1y =. ··························································································································· 6分∴原方程组的解是51x y =⎧⎨=⎩,.································································································· 7分14.解:(1)如图所示(作图正确得4分); (2)BD 平分ABC ∠,72ABC =∠,1362ABD ABC ∴==∠∠. ·························································································· 5分AB AC =,72C ABC ∴==∠∠. ······································································································ 6分 36A ∴=∠,363672BDC A ABD ∴=+=+=∠∠∠. ·································································· 7分15.解:四、解答题(二)(本大题共3小题,每小题9分,共27分) 16.解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x .依题意,得25000(1)7200x +=. ···················································································· 3分 解得120.2 2.2x x ==-,(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%. ········································· 5分 (2)若2012年仍保持相同的年平均增长率,则预测2012年我国公民出境旅游总人数约7200(120%)8640⨯+=(万人次).答:预测2012年我国公民出境旅游总人数约8 640万人次. ············································ 7分 17.解:(1)点(42)A ,在反比例函数(0)ky x x=>的图象上, 24k∴=,解得8k =. ········································································································ 2分 将0y =代入26y x =-,得260x -=,解得3x =,则3OB =.∴点B 的坐标是(3,0). ································································································· 4分 (2)存在.过点A 作AH x ⊥轴,垂足为H ,则4OH =.AB AC =,.BH CH ∴= ······················································································································ 7分 431BH OH OB =-=-=,3115OC OB BH HC ∴=++=++=. ··········································································· 8分∴点C 的坐标是(5,0). ································································································· 9分 18.解:设小山岗的高AB 为x 米.依题意,得在Rt ABC △中,3tan 4AB x BC BC α===, 43BC x ∴=. ······················································································································· 2分 42003BD DC BC x ∴=+=+. ························································································ 3分在Rt ABD △中,tan ABADB BD=∠,tan 26.60.50=, 0.5042003xx∴=+. ··········································································································· 5分 解得300x =. ······················································································································ 7分 经检验,300x =是原方程的解. ······················································································· 8分 答:小山岗的高AB 为300米. ··························································································· 9分 19.解:(1)311119112911a ⎛⎫==⨯- ⎪⨯⎝⎭. ······································································ 2分 (2)1111(21)(21)22121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭. ·························································· 6分 (3)123100a a a a ++++…=1111133557199201++++⨯⨯⨯⨯… =111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… ························· 7分 =111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦… ········································ 8分=1112201⎛⎫⨯- ⎪⎝⎭=100201. ·························································································································· 9分 五、解答题(三)(本大题3小题,每小题9分,共27分) 20.解:方法一:树状图如下:············································································································································· 3分所有()x y ,可能的结果共有9种,分别是:(22)--,,(21)--,,(21)-,,(12)--,,(11)--,,(11)-,,(12)-,,(11)-,,(11),.································································ 4分(2)由题意知,要使分式有意义,则220x y -≠且0x y -≠.即x y ≠且x y ≠-. ············································································································· 5分上述9种可能的结果中,共4种能使分式有意义,分别是:(21)-,,(21)--,,(12)-,,(12)--,. ···························································································································· 7分 所以,使分式2223x xy yx y x y-+--有意义的()x y ,出现的概率是49. ································· 8分 (3)原式2223()()()()()x xy xy y x y x yx y x y x y x y x y-++--===+-+-+. ··········································· 10分 由(2)可知,有4种可能的结果能使分式有意义,其中能使分式的计算结果是整数的结果有2种,分别是:(21)-,,(12)-,.所以,使分式2223x xy y x y x y-+--的值为整数的()x y ,出现的概率是29. ······················· 12分 21.(1)证明:四边形ABCD 为矩形,90C BAD AB CD ∴===∠∠,, ················································································· 1分 由图形的折叠性质,得90CD C D C C ''===,∠∠,BAD C AB C D ''∴==∠∠,. ·························································································· 3分 又AGB C GD '=∠∠,ABG C DG '∴△≌△(AAS ). ························································································ 4分(2)解:设AG 为x .8ABG C DG AD AG x '==△≌△,,,8BG DG AD AG x ∴==-=-. ····················································································· 5分 在Rt ABG △中,有222BG AG AB =+, 6AB =,222(8)6x x ∴-=+. 解得74x =. ························································································································· 7分 7tan 24AG ABG AB ∴==∠. ································································································ 8分(3)解法一:由图形的折叠性质,得904EHD DH AH ===∠,, AB EF ∴∥,DHF DAB ∴△∽△,HF DH AB AD ∴=,即162HF =, 3HF ∴=. ··························································································································· 9分 又ABG C DG '△≌△,ABG HDE ∴=∠∠,tan tan EH ABG HDE HD ∴==∠∠,即7244EH =, 76EH ∴=. ······················································································································· 11分。
2012年广东省初中毕业生学业考试数学试卷
2012年广东省初中毕业生学业考试数 学一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. —5的相反数是( A )A. 5B. —5C.51 D. 51- 2. 地球半径约为6 400 000米,用科学记数法表示为( B )A. 0.64×107B. 6.4×106C. 64×105D. 640×104 3. 数据8、8、6、5、6、1、6的众数是( C )A. 1B. 5C. 6D. 8 4. 如左图所示几何体的主视图是( B )5. 已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( C )A. 5B. 6C. 11D. 16二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6. 分解因式:2x 2 —10x = 2x (x —5) .7. 不等式3x —9>0的解集是 x>3 。
8. 如图,A 、B 、C 是⊙O 上的三个点,∠ABC = 250, 则∠AOC 的度数是 500 。
9. 若x 、y 为实数,且满足033=++-y x ,则2012⎪⎪⎭⎫⎝⎛y x 的值是 1 。
10. 如图,在□ABCD 中,AD =2,AB =4,∠A =300,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连结CE ,则阴影部分的面积是 π313- (结果保留π)。
三、解答题(一)(本大题5小题,每小题6分,共30分) 11. 计算:()10028145sin 22-++--。
A. B. C. D题4图ABCO题8图250A E BD C题10图300解:原式2112222+-⨯-= 21-=12. 先化简,再求值:)2()3)(3(---+x x x x ,其中x = 4. 解:原式x x x 2922+--=92-=x当x = 4时,原式194292-=-⨯=-=x13. 解方程组:解:① + ②,得:4x = 20,∴ x = 5,把x = 5代入①,得:5—y = 4,∴ y = 1, ∴ 原方程组的解是⎩⎨⎧==15y x 。
广东省广州市2012年中考数学试题解析版
2012年广东省广州市中考数学试卷解析一选择题本大题共10小题每小题3分满分30分.在每小题给出的四个选项中只有一项是符合题目要求的 1.2012广州实数3的倒数是A.-B.C.-3 D.3 考点实数的性质专题常规题型分析根据乘积是1的两个数互为倒数解答.解答解∵3× 1 ∴3的倒数是.故选B.点评本题考查了实数的性质熟记倒数的定义是解题的关键.2.2012广州将二次函数y x2的图象向下平移一个单位则平移以后的二次函数的解析式为A.y x2-1 B.y x21 C.y x -12 D.y x12 考点二次函数图象与几何变换专题探究型分析直接根据上加下减的原则进行解答即可.解答解由上加下减的原则可知将二次函数y x2的图象向下平移一个单位则平移以后的二次函数的解析式为y x2-1.故选A.点评本题考查的是二次函数的图象与几何变换熟知函数图象平移的法则是解答此题的关键. 3.2012广州一个几何体的三视图如图所示则这个几何体是A.四棱锥B.四棱柱C.三棱锥D.三棱柱考点由三视图判断几何体分析主视图左视图俯视图是分别从物体正面左面和上面看所得到的图形.解答解由于主视图和左视图为长方形可得此几何体为柱体由俯视图为三角形可得为棱柱体所以这个几何体是三棱柱故选D.点评本题考查了由三视图来判断几何体还考查学生对三视图掌握程度和灵活运用能力同时也体现了对空间想象能力. 4. 2012广州下面的计算正确的是A.6a-5a 1 B.a2a2 3a3 C.-a-b -ab D.2ab 2ab 考点去括号与添括号合并同类项分析根据合并同类项法则把同类项的系数相加所得结果作为系数字母和字母的指数不变去括号法则如果括号外的因数是正数去括号后原括号内各项的符号与原来的符号相同如果括号外的因数是负数去括号后原括号内各项的符号与原来的符号相反进行计算即可选出答案.解答解A6a-5a a故此选项错误 Ba与2a2不是同类项不能合并故此选项错误 C-a-b -ab故此选项正确 D2ab 2a2b故此选项错误故选C.点评此题主要考查了合并同类项去括号关键是注意去括号时注意符号的变化注意乘法分配律的应用不要漏乘. 5.2012广州如图在等腰梯形ABCD中BC‖ADAD 5DC 4DE‖AB交BC于点E且EC 3则梯形ABCD的周长是A.26 B.25 C.21 D.20 考点等腰梯形的性质平行四边形的判定与性质分析由BC‖ADDE‖AB即可得四边形ABED是平行四边形根据平行四边形的对边相等即可求得BE的长继而求得BC的长由等腰梯形ABCD可求得AB的长继而求得梯形ABCD的周长.解答解∵BC‖ADDE‖AB ∴四边形ABED是平行四边形∴BE A D 5∵EC 3 ∴BC BEEC 8 ∵四边形ABCD是等腰梯形∴AB DC 4 ∴梯形ABCD 的周长为ABBCCDAD 4845 21.故选C.点评此题考查了等腰梯形的性质与平行四边形的判定与性质.此题比较简单注意判定出四边形ABED是平行四边形是解此题的关键同时注意数形结合思想的应用. 6.2012广州已知a-1 0则ab A.-8 B.-6 C.6 D.8 考点非负数的性质算术平方根非负数的性质绝对值专题常规题型分析根据非负数的性质列式求出ab的值然后代入代数式进行计算即可得解.解答解根据题意得a-1 07b 0 解得a 1b -7 所以ab 1-7 -6.故选B.点评本题考查了非负数的性质几个非负数的和为0时这几个非负数都为0. 7.2012广州在Rt△ABC中∠C 90°AC 9BC 12则点C到AB的距离是A.B.C.D.考点勾股定理点到直线的距离三角形的面积专题计算题分析根据题意画出相应的图形如图所示在直角三角形ABC中由AC及BC的长利用勾股定理求出AB的长然后过C作CD垂直于AB由直角三角形的面积可以由两直角边乘积的一半来求也可以由斜边AB乘以斜边上的高CD除以2来求两者相等将ACAB及BC的长代入求出CD的长即为C到AB的距离.解答解根据题意画出相应的图形如图所示在Rt△ABC中AC 9BC 12 根据勾股定理得AB 15 过C作CD⊥AB交AB于点D 又S△ABC ACBC ABCD ∴CD 则点C到AB的距离是.故选A 点评此题考查了勾股定理点到直线的距离以及三角形面积的求法熟练掌握勾股定理是解本题的关键. 8.2012广州已知a>b若c是任意实数则下列不等式中总是成立的是A.ac<bc B.a-c>b-c C.ac<bc D.ac>bc 考点不等式的性质分析根据不等式的性质分别将个选项分析求解即可求得答案注意排除法在解选择题中的应用.解答解A∵a>bc是任意实数∴ac>bc故本选项错误 B∵a>bc是任意实数∴a-c>b-c故本选项正确 C当a>bc<0时ac<bc而此题c是任意实数故本选项错误 D当a>bc>0时ac>bc而此题c是任意实数故本选项错误.故选B.点评此题考查了不等式的性质.此题比较简单注意解此题的关键是掌握不等式的性质 1不等式两边加或减同一个数或式子不等号的方向不变. 2不等式两边乘或除以同一个正数不等号的方向不变. 3不等式两边乘或除以同一个负数不等号的方向改变. 9.2012广州在平面中下列命题为真命题的是A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形考点正方形的判定平行四边形的判定菱形的判定矩形的判定命题与定理分析分析是否为真命题需要分别分析各题设是否能推出结论从而利用排除法得出答案不是真命题的可以举出反例.解答解A四边相等的四边形不一定是正方形例如菱形故此选项错误 B对角线相等的四边形不是菱形例如矩形等腰梯形故此选项错误 C四个角相等的四边形是矩形故此选项正确 D对角线互相垂直的四边形不一定是平行四边形如右图所示故此选项错误.故选C.点评此题主要考查命题的真假判断正确的命题叫真命题错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 10. 2012广州如图正比例函数y1 k1x和反比例函数y2 的图象交于A-12B1-2两点若y1<y2则x 的取值范围是A.x<-1或x>1 B.x<-1或0<x<1C.-1<x<0或0<x<1 D.-1<x<0或x>1 考点反比例函数与一次函数的交点问题专题数形结合分析根据图象找出直线在双曲线下方的x的取值范围即可.解答解由图象可得-1<x<0或x>1时y1<y2.故选D.点评本题考查了反比例函数与一次函数的交点问题数形结合是解题的关键.二填空题本大题共6小题每小题3分满分18分 11.2012广州已知∠ABC 30°BD是∠ABC的平分线则∠ABD 15 度.考点角平分线的定义专题常规题型分析根据角平分线的定义解答.解答解∵∠ABC 30°BD是∠ABC的平分线∴∠ABD ∠ABC ×30° 15°.故答案为15.点评本题考查了角平分线的定义熟记定义是解题的关键. 12.2012广州不等式x-1≤10的解集是x≤11 .考点解一元一次不等式分析首先移项然后合并同类项即可求解.解答解移项得x≤101 则不等式的解集是x≤11.故答案是x≤11.点评本题考查了解简单不等式的能力解答这类题学生往往在解题时不注意移项要改变符号这一点而出错. 13.2012广州分解因式a3-8a aa2a -2 .考点提公因式法与公式法的综合运用专题常规题型分析先提取公因式a再对余下的多项式利用平方差公式继续分解.解答解a3-8a aa2-8 aa2a-2.故答案为aa2a-2.点评本题考查了用提公因式法和公式法进行因式分解一个多项式有公因式首先提取公因式然后再用其他方法进行因式分解同时因式分解要彻底直到不能分解为止.。
2012年广东省中考数学试卷及详细参考答案
2012年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2011•河南)﹣5的绝对值是()A.5B.﹣5 C.D.﹣考点:绝对值。
分析:根据绝对值的性质求解.解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.点评:此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2012•广东)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×104考点:科学记数法—表示较大的数。
分析:科学记数法的形式为a×10n,其中1≤a<10,n为整数.解答:解:6400000=6.4×106.故选B.点评:此题考查用科学记数法表示较大的数,其规律为1≤|a|<10,n为比原数的整数位数小1的正整数.3.(2012•广东)数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.8考点:众数。
分析:众数指一组数据中出现次数最多的数据,根据众数的定义即可求解.解答:解:6出现的次数最多,故众数是6.故选C.点评:本题主要考查了众数的概念,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的,比较简单.4.(2012•广东)如图所示几何体的主视图是()A.B.C.D.考点:简单组合体的三视图。
分析:主视图是从立体图形的正面看所得到的图形,找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.解答:解:从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1.故选:B.点评:本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,关键是掌握主视图所看的位置.5.(2012•广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11 D.16考点:三角形三边关系。
2012年广州市初中毕业生学业数学考试试卷WORD版(附答案)
2012年广州市初中毕业生学业数学考试试卷(含答案)第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的4个选项中只有一项是符合题目要求的)1.实数3的倒数是( )。
(A )、31-(B )、31(C )、3- (D )、32.将二次函数2x y =的图象向下平移1个单位,则平移后的二次函数的解析式为( )。
(A )、12-=x y (B )、 12+=x y (C )、2)1(-=x y(D )、2)1(+=x y3.一个几何体的三视图如图1所示,则这个几何体是( )。
(A )、四棱锥 (B )、 四棱柱 (C )、三棱锥 (D )、三棱柱4.下面的计算正确的是( ) 。
(A )、156=-a a(B )、 223a a a =+(C )、b a b a +-=--)((D )、b a b a +=+2)(25.如图2,在等腰梯形ABCD 中,BC ∥AD ,AD =5,DC =4,DE ∥AB 交BC 于点E ,且EC =3,则梯形ABCD 的周长是( ) (A )、26(B )、25 (C )、21(D )、206..已知,071=++-b a 则=+b a ( ) 。
(A )、-8 (B )、 -6 (C )、6(D )、87. Rt ABC △中,∠C=900,AC =9,BC =12,则点C 到AB 的距离是( )。
(A )、536(B )、2512 (C )、49(D )、433 8.已知a >b .若c 是任意实数,则下列不等式中总是成立的是( )。
(A )、a+c <b+c (B )、 a-c >b-c (C )、ac <bc (D )、ac >bc9.在平面中,下列命题为真命题的是( )。
(A )、四边相等的四边形是正方形 (B )、对角线相等的四边形是菱形 (C )、四个角相等的四边形是矩形 (D )、对角线互相垂直的四边形是平行四边形 10.如图3,正比例函数x ky 11=和反比例函数xky 22=的图象交于A(-1,2)、B (1,-2)两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年广州市初中毕业生学业考试
数 学
本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟。
【注意事项】
1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分 选择题 (共30分)
一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)
1. 实数3的倒数是( )
A .31-
B .31
C .―3
D .3 2. 将二次函数2x y =的图像向下平移1个单位,则平移后的二次函数的解析式为( )
A .12-=x y
B .12+=x y
C .2)1(-=x y
D .2
)1(+=x y 3. 一个几何体的三视图如图1所示,则这个几何体是( )
A .四棱锥
B .四棱柱
C .三棱锥
D .四棱柱 4.下面的计算正确的是( )
A .156=-a a
B .3233a a a =+
C .b a b a +-=--)(
D .b a b a +=+22)(
5.如图2,在等腰梯形ABCD 中,BC ∥AD ,AD=5, DC=4,DE ∥AB 交BC 于点E ,且EC=3,则梯形ABCD 的周长是( )
A .26
B .25
C .21
D .20
6. 已知07|1|=-+-b a ,则b a +=( )
A .―8
B .―6
C .6
D .8
7.在Rt △ABC 中,∠C=90°, AC=9 , BC=12.则点C 到AB 的距离是( )
A .5
36 B .2512 C .49 D .4
33 8.已知b a >,若c 是任意实数,则下列不等式总是成立的是( )
A .c b c a +<+
B .c b c a ->-
C .bc ac <
D .bc ac > 9.在平面中,下列命题为真命题的是( )
A .四边相等的四边形是正方形
B .对角线相等的四边形是菱形
C .四个角相等的四边形是矩形
D .对角线互相垂直的四边形是平行四边形
10.如图3,正比例函数x k y 11=和反比例函数x
k y 22=的图象交于A (―1,2)、B (1,―2)两点,若21y y <,则x 的取值范围是( )
A .1-<x 或1>x
B .1-<x 或10<<x
C .01<<-x 或10<<x
D .01<<-x 或1>x
第二部分 非选择题 (共120分)
二、填空题(本大题共6小题,每小题3分,满分18分.)
11.已知∠ABC=30°, BD 是∠ABC 的平分线,则∠ABD=_______度.
12.不等式101≤-x 的解集是_______.
13.分解因式:a a 83
-=_______.
14.如图4,在等边△ABC 中,AB=6,D 是BC 上一点.且BC=3BD ,△ABD 绕点A 旋转后的得到△ACE.,则CE 的长为_______.
E
B
15.已知关于x 的一元二次方程0322=--k x x 有两各项等的实数根,则k 的值为
_______.
16.如图5,在标有刻度的直线l 上,从点A 开始.
以AB=1为直径画半圆,记为第1个半圆
以BC=2为直径画半圆,记为第2个半圆
以CD=4为直径画半圆,记为第3个半圆
以DE=8为直径画半圆,记为第4个半圆
……,按此规律,继续画半圆,
则第4个半圆的面积是第3个半圆面积的_______倍,第n 个半圆的面积为_______. (结果保留π)
三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分9分)
解方程组:⎩⎨⎧=+=-1238y x y x 18.(本小题满分9分)
如图6,点D 在AB 上,点E 在AC 上,AB=AC ,∠B=∠C .
E
D A
求证:BE=CD
19.(本小题满分10分)
广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境局公布的2006~2010这五年的全年空气质量优良的天数,绘制折线图如图7,根据图中信息回答:
(1)这五年的全年空气质量是优良的天数的中位数是_______ ;极差是_______ ;
(2)这五年的全年空气质量优良天数与它的前一年相比较,增加最多的是______年(填写年份);
(3)求这五年的全年空气质量优良天数的平均数.
20.(本小题满分10分)
已知
5
1
1
=
+
b
a)
(b
a≠,求)
(
)
(b
a
a
b
b
a
b
a
-
-
-的值.
21.(本小题满分12分)
甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上的所标的数值分别为―7,―1,3,乙袋中的三张卡片上所标的数值分别为―2,1,6,先从甲袋中
随机取一张卡片,用x表示取出的卡片上标的数值,再从乙袋从随机取出一张卡片,用y 表示取出的卡片上标的数值.把x、y分别作为点A的横坐标、纵坐标.
(1)用适当的方法写出点A(x,y)的所有情况;
(2)求点A落在第三象限的概率.
22.(本小题满分12分)
如图8,⊙P的圆心为P(―3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.
(1)在图中作出⊙P关于y轴的对称的⊙P′,根据作图直接写出⊙P′与直线MN的位置关系;
(2)若点N在(1)中的⊙P′上,求PN的长.
23.(本小题满分12分)
某城市居民用水实施阶梯收费.每户每月用水量如果未超过20吨,按每吨1.9元收费:每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨
2.8元收费.设某户每月用水量为x吨,应收水费为y元。
y与x间的函数关系式;
(1)分别写出每月用水量未超过20吨和超过20吨时,
(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?
24.(本小题满分14分)
如图9,抛物线343832+--=x x y 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴
交于点C
(1)求点A 、B 的坐标;
(2)设D 为已知抛物线的对称轴上任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;
(3)当直线l 过点)(0,4E ,M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.
25.(本小题14分)
如图10,在平行四边形ABCD 中,AB=5,BC=10,F 为AD 中点,CE ⊥AB 于点E ,
设∠ABC=a )(οο9060<≤x
(1)当ο60=a 时,求CE 的长;
(2)当ο
ο9060<<a ,
①是否存在正整数k ,使得∠EFD=k ∠AEF ?若存在,求出k 的值;若不存在,请说明理由;
②连接CF ,当22CF CE -取最大值时,求tan ∠DCF 的值.
F
A
D E
C
B。