第三章刚体力学

合集下载

第三章刚体力学基础

第三章刚体力学基础
(1)轴通过棒的一端并与棒垂直轴。z
(2)轴通过棒的中心并与棒垂直;
dm
解:
J
r 2dm
dm dx m dx
o x dx
x
l
J l x2 m dx 1 m x3 l J 1 ml2
0l
3l 0
3
L
JC
2 L
x 2dx
mL2
/ 12
A
C
2
L/2
B
L/2
x
注:同一刚体,相对不同的转轴,转动惯量是不同的。
J ,r
质点A
T1 mg sin maA
质点B
mg T2 maB
滑轮(刚体) T2r T1r J
( T2 T2,T1 T1)
联系量 aA aB r
联立求解可得T1 、T2、 aA、 aB、
A
B
FN
T1 FR T1 mg T2
T2 m1g
为什么此时T1 ≠ T2 ?
mg
3、 平行轴定理与垂直轴定理
J11 J1 J2 2
ω
则B轮的转动惯量
J2
1 2 2
J1
n1 n2 n2
J1
20.0kg m2
(2)系统在啮合过程中机械能的变化为.
E
1 2
J1
J2
12
1 2
J112
1.32
104
J
质点的运动规律和刚体定轴转动规律的对比(一)
速度 加速度
质点v的运d动r
a
dt dv
dt
质量m, 力F
第一节 刚体运动的描述
一. 刚体
内部任意两点的距离在运动过程中始终保持不变的物 体,即运动过程中不发生形变的物体。

第三章刚体力学(2)

第三章刚体力学(2)

J 00 ( J 0 mR )
2
J 00 ( J 0 0)
0
J 00 J 0 mR2
R
O’ Cபைடு நூலகம்
B
(2) 球与环及地球为系统,机械能守恒
势能零点
1 1 2 1 2 2 J 00 mg 2 R mv J 00 2 2 2
v 2 gR
环上C点处对惯性系的速度为零
d A M d
1 2 Ek J 2
A Md
1
2
定轴转动动能定理 势能 刚体的机械能
1 1 2 A J 2 J 12 2 2
E p mghc
1 2 E E p Ek mghc J 2 A外 A非保 E
A外+A非保=0 ΔE=0
*
机械能守恒
三、定轴转动定理定律 力矩 角动量
M r F
L J L J z
dLz M z J dt
定轴转动定律
分析问题:对刚体列出定轴转动定律方程
对质点列出牛顿定律方程 线量与角量的关系 M = 0 L = 常量——角动量守恒 J = 常量
力(力矩)对刚体的功 定轴转动动能
各质点的位置和速度 某点的位矢 = 质心的位矢 + 该质点相对质心的位矢 某点的速度 = 质心的平动速度 + 该质点相对质心的速度
y
ri rc ri
vi vc vi vc ri
mi
ri
ri′ rc
x
质心系
ω是该质点相对质心做转动时的角速度
O
八.细杆长l,质量m.从水平位置释放后与物 体碰撞,物体质量m,与地面摩擦系数u,撞后 滑行S停止,求碰后杆质心C上升的最大高度. 解: 分三阶段考虑 杆机械能守恒

第三章 刚体力学习题答案

第三章     刚体力学习题答案

第三章 刚体力学习题答案3-1 如图3-1示,一轻杆长度为2l ,两端各固定一小球,A 球质量为2m ,B 球质量为m ,杆可绕过中心的水平轴O 在铅垂面内自由转动,求杆与竖直方向成θ角时的角加速度.解:系统受外力有三个,即A ,B 受到的重力和轴的支撑作用力,轴的作用力对轴的力臂为零,故力矩为零,系统只受两个重力矩作用. 以顺时针方向作为运动的正方向,则A 球受力矩为正,B 球受力矩为负,两个重力的力臂相等为sin d l θ=,故合力矩为2sin sin sin M mgl mgl mgl θθθ=-=系统的转动惯量为两个小球(可视为质点)的转动惯量之和22223J ml ml ml =+=应用转动定律 M J β=有:2sin 3mgl ml θβ= 解得sin 3g lθβ=3-2 计算题3-2图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮边缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg,2m =200kg,M =15kg,r =0.1m.解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对 1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有图3-1 图3-2β)21(212Mr r T r T =- ③又, βr a = ④ 联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a3-3 飞轮质量为60kg,半径为0.25m,当转速为1000r/min 时,要在5s 内令其制动,求制动力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图所示.解:以飞轮为研究对象,飞轮的转动惯量212J mR =,制动前角速度为1000260ωπ=⨯rad/s ,制动时角加速度为tωβ-=- 制动时闸瓦对飞轮的压力为N F ,闸瓦与飞轮间的摩擦力f N F F μ=,运用转动定律,得 212f F R J mR ββ-== 则 2N mR F tωμ=以闸杆为研究对象,在制动力F 和飞轮对闸瓦的压力N F -的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为(0.500.75)l =+m 和1l =0-50m ,则有10N Fl F l -=110.50600.252100015720.500.7520.4560N l l mR F F l l t ωπμ⨯⨯⨯===⨯=+⨯⨯⨯N 图3-33-4 设有一均匀圆盘,质量为m ,半径为R ,可绕过盘中心的光滑竖直轴在水平桌面上转动. 圆盘与桌面间的滑动摩擦系数为μ,若用外力推动它使其角速度达到0ω时,撤去外力,求:(1) 此后圆盘还能继续转动多少时间? (2) 上述过程中摩擦力矩所做的功.解:(1)撤去外力后,盘在摩擦力矩f M 作用下停止转动- 设盘质量密度为2mRσπ=,则有20223Rf Mg r dr mgR μπσμ==⎰ 根据转动定律 21,2f M J mR Jα-==43g Rμα-= 034R t gωωαμ-==(2)根据动能定理有 摩擦力的功2220011024f W J mR ωω=-=-3-5 如题3-6图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度.解: (1)由转动定律,有β)31(212ml mg= ∴ lg23=β(2)由机械能守恒定律,有图3-622)31(21sin 2ωθml l mg =∴ lg θωsin 3=3-6 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如3-8图所示.设R =0.20m, r =0.10m,m =4 kg,M =10 kg,1m =2m =2 kg,且开始时1m ,2m 离地均为h =2m .求:(1)柱体转动时的角加速度; (2)两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b).(a)图 (b)图(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ① 1111a m T g m =- ②βI r T R T ='-'21 ③式中 ββR a r a T T T T ==='='122211,,,而 222121mr MR I += 由上式求得22222222121s rad 13.68.910.0220.0210.042120.0102121.022.0-⋅=⨯⨯+⨯+⨯⨯+⨯⨯⨯-⨯=++-=gr m R m I rm Rm β(2)由①式8.208.9213.610.02222=⨯+⨯⨯=+=g m r m T βN由②式1.1713.6.2.028.92111=⨯⨯-⨯=-=βR m g m T N3-7 一风扇转速为900r/min,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过程中制动力做的功为44.4J,求风扇的转动惯量和摩擦力矩.解:设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移2N θπ=,摩擦力矩所做的功为2A M M N θπ=-=-摩擦力所做的功应等于风扇转动动能的增量,即2102A J ω=-2222(44.4)0.01(9002/60)AJ ωπ⨯-=-=-=⨯kg ⋅m 2 44.40.09422275A M N ππ-=-=-=⨯N ⋅m 3-8 一质量为M 、半径为r 的圆柱体,在倾斜θ角的粗糙斜面上从距地面h 高处只滚不滑而下,试求圆柱体滚止地面时的瞬时角速度ω.解: 在滚动过程中,圆柱体受重力Mg 和斜面的摩擦力F 作用,设 圆柱体滚止地面时,质心在瞬时速率为v ,则此时质心的平动动能为212Mv ,与此同时,圆柱体以角速度ω绕几何中心轴转动,其转动动能为212J ω.将势能零点取在地面上,初始时刻圆柱体的势能为Mgh ,由于圆柱体只滚不滑而下,摩擦力为静摩擦力,对物体不做功,只有重力做功,机械能守恒,于是有221122Mgh Mv J ω=+ 式中 21,2J Mr v r ω==,代入上式得 22211()22Mgh Mr Mr ω=+即 23gh r ω=3-9 一个轻质弹簧的倔强系数 2.0k =N/m,它的一端固定,另一端通过一条细绳绕过一个定滑轮和一个质量为m =80g 的物体相连,如图所示. 定滑轮可看作均匀圆盘,它的质量为M =100g,半径r =0.05m. 先用手托住物体m ,使弹簧处于其自然长度,然后松手.求物体m 下降h =0.5m 时的速度为多大?忽略滑轮轴上的摩擦,并认为绳在滑轮边缘上不打滑.解:由于只有保守力(弹性力、重力)做功,所以由弹簧、滑轮和物体m 组成的系统机械能守恒,故有222111222mgh kh I mv ω=++21,2v r I Mr ω==所以 22 1.4812mgh kh v M m -==+m/s3-10 有一质量为1m 、长为l 的均匀细棒, 静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动. 另有一水平运动的质量为2m 的小滑块, 从侧面垂直于棒与棒的另一端A 相碰撞, 设碰撞时间极短. 已知小滑块在碰撞前后的速度分别为1V 和2V ,如图示,求碰撞后从细棒开始转动到停止转动的过程所需的时间(已知棒绕O点的转动惯量2113J m l =).图3-11图3-12解:对棒和滑块组成的系统,因为碰撞时间极短,所以棒和滑块所受的摩擦力矩远小于相互间的冲量矩,故可认为合外力矩为零,所以系统的角动量守恒,且碰撞阶段棒的角位移忽略不计,由角动量守恒得22122113m v l m v l m l ω=-+碰撞后在在转动过程中棒受到的摩擦力矩为 11012tf m M gdx m gl l μμ=-=-⎰由角动量定理得转动过程中210103tfM dt m l ω=-⎰ 联立以上三式解得:12212V V t m m gμ+= 3-11 哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为1r =8.75×1010m 时的速率是1v =5.46×104m ·s -1,它离太阳最远时的速率是2v =9.08×102m ·s -1,这时它离太阳的距离2r 为多少?(太阳位于椭圆的一个焦点.)解: 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有 2211mv r mv r =∴ m 1026.51008.91046.51075.81224102112⨯=⨯⨯⨯⨯==v v r r 3-12 平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物.小球做匀速圆周运动,当半径为0r 时重物达到平衡.今在1M 的下方再挂一质量为2M 的物体,如3-14图.试问这时小球做匀速圆周运动的角速度ω'和半径r '为多少?图3-14解: 在只挂重物时1M ,小球作圆周运动的向心力为g M 1,即201ωmr g M =①挂上2M 后,则有221)(ω''=+r m g M M②重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即 v m r mv r ''=00ωω''=⇒2020r r ③联立①、②、③得10021123011213212()M g mr M g M M mr M M M M r g r m M M ωωω=+'=+'==⋅'+3-13 如图示, 长为l 的轻杆, 两端各固定质量分别为m 和2m 的小球, 杆可绕水平光滑轴在竖直平面内转动, 转轴O 距两端的距离分别为/3l 或2/3l . 原来静止在竖直位置. 今有一质量为m 的小球, 以水平速度0v 与杆下端的小球m 做对心碰撞, 碰后以0/2v 的速度返回, 试求碰撞后轻杆所获得的角速度ω.解:将杆与两端的小球视为一刚体,水平飞来的小球m 与刚体视为一系统,在碰撞过程中,外力包括轴O 处的作用力和重力,均不产生力矩,故合外力矩为零,系统角动量守恒- 选逆时针转动为正方向,则由角动量守恒得 0022323v ll mv m J ω=-+ 222()2()33l l J m m =+图3-13解得 032v lω=3-14 圆盘形飞轮A 质量为m , 半径为r , 最初以角速度0ω转动, 与A 共轴的圆盘形飞轮B质量为4m ,半径为2r , 最初静止, 如图所示, 两飞轮啮合后, 以同一速度ω转动, 求ω及啮合过程中机械能的损失.解:以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有22201114(2)222mr mr m r ωωω=+ 得 0117ωω=初始机械能为 2222100111224W mr mr ωω==啮合后机械能为222222201111114(2)2222174W mr m r mr ωωω=+=则机械能损失为 221201611617417W W W mr W ω∆=-==3-15 如图示,一匀质圆盘半径为r ,质量为1m ,可绕过中心的垂轴O 转动.初时盘静止,一质量为2m 的子弹一速度v 沿与盘半径成160θ︒=的方向击中盘边缘后以速度/2v 沿与半径方向成230θ︒=的方向反弹,求盘获得的角速度.解:对于盘和子弹组成的系统,撞击过程中轴O 的支撑力的力臂为零,不提供力矩,其他外力矩的冲量矩可忽略不计,故系统对轴O 的角动量守恒,即12L L =,初时盘的角动量为零,只有子弹有角动量,故图3-14 图3-1512sin 60L m vr ︒=末态中盘和子弹都有角动量,设盘的角速度为ω,则22211sin 3022v L m r m r ω︒=+ 故有 22211sin 60sin 3022v m vr m r m r ω︒︒=+可解得:1ω=3-16 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略不计,人的质量为'm ,转台的质量为10'm ,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.解:以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得0J mRv ω+= 人和转台的转动惯量'2'21102J m R m R =+,代入上式后得 '6mvm Rω=-人的线速度为'6mvv R mω==-其中负号表示转台角速度转向和人的线速度方向与假设方向相反-3-17 一人站在转台上,两臂平举,两手各握一个4m =kg,哑铃距转台轴00.8r =m,起初转台以02ωπ=rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r =0.2m,设人与转台的转动惯量不变,且5J =kg ⋅m 2,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?解:以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有2200(2)(2)J mr J mr ωω+=+22002225240.8212.025240.2J mr J mr ωωπ++⨯⨯==⨯=++⨯⨯rad/s 动能的增量为222200011(2)(2)22W W W J mr J mr ωω∆=-=+-+222211(5240.2)12(5240.8)(2)22π=⨯+⨯⨯⨯-⨯+⨯⨯⨯ =183J3-18 如3-20图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处.(1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒做弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ② 上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③ 由③式得2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=lg I Mgl ω由①式mlI v v ω-=0 ④ 由②式mI v v 2202ω-= ⑤所以22001)(2ωωmv ml I v -=-图18求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω(2)相碰时小球受到的冲量为⎰-=∆=0d mvmv mv t F由①式求得ωωMl l I mv mv t F 31d 0-=-=-=⎰ gl M 6)32(6--=负号说明所受冲量的方向与初速度方向相反.3-19如图示,一个转动惯量为I ,半径为R 的定滑轮上面绕有细绳,并沿水平方向拉着一个质量为M 的物体 A. 现有一质量为m 的子弹在距转轴2R 的水平方向以速度0v 射入并固定在定滑轮的边缘,使滑轮拖住A 在水平面上滑轮.求(1)子弹射入并固定在滑轮边缘后,滑轮开始转动时的角速度ω.(2)若定滑轮拖着物体A 刚好转一圈而停止,求物体A 与水平面间的摩擦系数μ(轴上摩擦力忽略不计).解:(1)子弹射入定滑轮前后,子弹、定滑轮及物体A 构成的系统角动量守恒220[]2Rmv mR I MR ω=++ 解得 0222()mv RmR I MR ω=++(2)定滑轮转动过程中物体A 受的摩擦力所做的功等于系统动能的增量 2221()22I mR MR Mg R ωμπ-++=-⨯ 解得 202216()m v RMg mR MR I μπ=++ 3-20 行星在椭圆轨道上绕太阳运动,太阳质量为1m ,行星质量为2m ,行星在近日点和远日点时离太阳中心的距离分别为1r 和2r ,求行星在轨道上运动的总能量.解:将行星和太阳视为一个系统,由于只有引力做功,系统机械能守恒,设行星在近日点图3-19和远日点时的速率分别为1v 和2v ,有2212121122121122m m m m m v G m v G r r -=- 行星在轨道上运动时,受太阳的万有引力作用,引力的方向始终指向太阳,以太阳为参考点,行星所受力矩为零,故行星对太阳的角动量守恒 111222m rv m r v =行星在轨道上运动时的总能量为2212121122121122m m m m E m v G m v G r r =-=- 联立以上三式得:1212Gm m E r r =-+3-21 半径为R 质量为'm 的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动. 圆盘边缘及/2R 处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿两轨道反向运行,相对于圆盘的线速度值同为v . 若圆盘最初静止,求两小车开始转动后圆盘的角速度.解: 设两小车和圆盘运动方向如图所示,以圆盘转动方向为正向,外轨道上小车相对于地面的角动量为()mR R v ω-,内轨道上小车相对于地面的角动量为11()22m R R v ω+,圆盘的角动量为'212J m R ωω=,由于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动量守恒,得 '2111()()0222mR R v m R R v m R ωωω-+++= '2(52)mvm m Rω=+ 3-22 如图示,一匀质圆盘A 作为定滑轮绕有轻绳,绳上挂两物体B 和C,轮A 的质量为1m ,半径为r ,物体B 、C 的质量分别为2m 、3m ,且2m >3m . 忽略轴的摩擦,求物体B 由静止下落到t 时刻时的速度.图3-21图3-22解:把滑轮和两个物体作为一个系统,其运动从整体上看对定轴O 是顺时针方向的,即轮A 沿顺时针方向转动物体B 向下运动物体C 向上运动,故以顺时针方向的运动作为系统运动的正方向,根据角动量定理,得00tMdt L L =-⎰(1)(1)式左边为系统受到的合外力矩对轴O 的冲量矩,由于轮A 所受重力和轴的作用力对轴O 的力矩为零,故只有两物体所受重力提供力矩,注意到两个重力矩的方向相反,故合力矩为2121()M m gr m gr m m gr =-=- (2)(1)式右边为系统对轴O 的角动量的增量- 0t =时系统静止,角动量00L = (3)到t 时刻,A 、B 、C 三个物体均沿顺时针方向运动,角动量均为正- 设此时轮A 的角速度ω,B 、C 两物体速率相同设为v ,则有212312A B C L L L L m r m vr m vr ω=++=++ (4)把(2)、(3)、(4)式代入(1)式有2211231()2m m grt m r m vr m vr ω-=++由于系统为一连接体,两物体的速率与轮边缘的速率相同,即有v r ω= 把此式代入(5)式即可求得物体下落t 时的速度 211232()23m m gtv m m m -=++。

刚体力学 (17)

刚体力学 (17)
注意:定轴转动 定点转动瞬时转轴的方向
五、线速度
v v v dr dn × r v v v= = = ω ×r dt dt
注意:角速度为刚体共有, 线速度应是刚体上某一点的线速度

返回
表示绕转轴的转动,3 个独立的角度表示刚体的转动
二、刚体运动的分类
1. 2. 3. 4. 5.
平动
独立坐标数:3 独立坐标数:1 独立坐标数:2+1
定轴转动
平面平行运动
Байду номын сангаас
定点转动独立坐标数:3 一般运动独立坐标数:3+3 定点转动
学习重点:定轴转动 平面平行运动
§3.2 角速度矢量
一、矢量 ♥ 有大小、有方向 v v v v ♥ 满足对易律 A + B = B + A
第三章 刚体力学
刚体:理想模型. 任何两质点间的距离 不因力的作用而改变. 刚体力学的内容: 刚体运动学 刚体动力学 刚体静力学
§3.1 刚体运动的分析
一、描述刚体的独立变量
一个质点 一个点 二个点 三个点 3个独立坐标 ; n个质点 3个坐标能否确定刚体? 6个坐标能否确定刚体? 3个不在一条直线上的点 3点间距是常数 9-3=6 9个坐标? 3n?
位移、速度等线量满足对易律
二、有限转动

角位移、角速度不满足对易律
三、无限小转动的矢量性
无限小转动角位移、角速度满足对易律 角位移、角速度可用矢量描述 证明
四、角速度矢量 定义:
v v ∆n dn v = ω = lim ∆t → 0 ∆ t dt
dθ ω的大小:ω = ω dt
ω的方向:沿转动瞬轴
结论:刚体的独立坐标数是 6 .
如何用 6 个坐标?

第三章-刚体力学基础

第三章-刚体力学基础

薄板对Z轴的转动惯量 J Z =
对X轴的转动惯量 J X
对Y轴的转动惯量 JY
Z
垂直轴定理
JZ JX JY
O
yi
Y
xi
ri
X
JZ miri2 mi xi2 mi yi2 Jx J y
五 刚体定轴转动的转动定律的应用
例1、一个质量为M、半径为R的定
滑轮(当作均匀圆盘)上面绕有细绳, 绳的一端固定在滑轮边上,另一端挂
分析: 由 每分钟150转 可知
0
t
2 150
60
5
rad
/ s
而已知 r=0.2m t=30s ω=0
可由公式求相应的物理量
解: (1) 0 0 5 (rad / s2 )
t
30
6
负号表示角加速度方向与角速度方向相反
(飞轮做匀减速转动)
2 02 2
(5 )2 2 ( )
末位置:
Ek
1 2
J 2
l
由刚体定轴转动的动能定理
1 mgl sin 1 J 2 0
2
2
mgl sin 3g sin
J
l
M
1 mgl cos
2
3g cos
J
1 ml2
2l
3
dm dl
gdm
(用机械能守恒定律解) 假设棒在水平位置时的重力势能为零势能
0 1 J2 (mg l sin ) O
动。最初棒静止在水平位置,求它由此下摆角时的
角加速度和角速度。(分别用动能定理和机械能守
恒定律求解)
解: (用动能定理解)
重力对轴的力矩为
M 1 mgl cos(M
O

大学物理第三章刚体力学

大学物理第三章刚体力学

薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理

第三章 刚体力学分析

第三章 刚体力学分析

连续分布
J r 2 dm

J S r 2 dS
J V r 2 dV
2
J l r dl
【例】如图所示,在不计质量的细杆组成的正三角形的顶 角上,各固定一个质量为m的小球,三角形边长为l。求: ⑴系统对过C点,且与三角形平面垂直轴的转动惯量; ⑵系统对过A点,且与三角形平面垂直轴的转动惯量; ⑶若A处质点也固定在B处,⑵的结果如何? m
h
代入数据,得
F 5.91×1010 N
2018/11/1
【例】 有一圆盘质量为m,均匀分布,圆盘半径为R 可绕过盘中心的光滑竖直轴在水平桌面上转动,圆 盘与桌面间的滑动摩擦系数为μ,求圆盘转动后受的 摩擦力矩。 解:摩擦力距在圆盘的不同 R部位是不相同的,在圆盘 上取一半径r—r+dr的圆环 圆环质量: r dr
T' T
o
r
T T
m
m g T m a Tr J
a r
2 gt 2 J mr ( 1) 2S
1 2 S at 2
mg
【思考】组合轮可以绕通过其中心且垂直于盘面的光滑水 平固定轴o转动,对o轴的转动惯量J=9mr2/2 。两圆盘边缘 上分别绕有轻质细绳,细绳下端各悬挂质量为m的物体A和 B,这一系统从静止开始运动,绳与盘无相对滑动且长度不 变。已知小圆盘的半径为r,质量为m;大圆盘的半径 r’=2r,质量m’ = 2m 。 求:组合轮的角加速度的大小。
与质点匀变速直线运动公式相对应.
0 t
(6) 角量与线量的关系
线量——质点做圆周运动的v、a 角量——描述刚体转动整体运动的 ,, 弧长 线速度 切向加速度
s r
y

理论力学周衍柏第三章

理论力学周衍柏第三章
一、基础知识 1. 力系:作用于刚体上里的集合. 平衡系:使静止刚体不产生任何运动的力系. 等效系:二力系对刚体产生的运动效果相同. 二、公理: 1)二力平衡原理:自由刚体在等大、反向、共线二力作 用下必呈平衡。 2)加减平衡力学原理:任意力系加减平衡体系,不改变原 力系的运动效应。 3)力的可传性原理:力沿作用线滑移,幵不改变其作用 效果,F与F’等效。 注:1)以上公理适用于刚体, 2) 力的作用线不可随便平移
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )

§3.1 刚体运动的分析

§3.1 刚体运动的分析
力的作用线迁移后,转化为一个力和一个力偶(矩)
空间力系的简化 可以简化为空间定点的一个单力F和一个力偶矩M,F称主矢, M称主矩,定点称简化中心。
Note: (1)简化中心可以任意选取(一般取质心);
(2)主矢与简化中心无关,主矩与简化中心有关。
例如:作用在A点的力F分别向B、C迁移:
B rBC
迁移到B,需添加:M
z
质点组(n个质点):自由度= 3n
确定刚体在空间的位置,最少需要几个独立变量?
B
A
C
至少需要6个独立变6个独立变量?
刚体位置的描述 (1)三点法:
C xC , yC , zC
从9个非独立坐标 中任取6个独立的
A xA, yA, zA B xB , yB , zB
定点转动的自由度:3个
§3.2 角速度矢量
设刚体绕通过定点O的某轴线转动了Δθ角度
角位移: 在转动轴上截取有向线段 n称为角位移
n的方向:与旋转方向成右手螺旋关系
n
n
角位移是不是矢量?
——矢量的合成满足平行四边形法则 满足对易律:A+B=B+A
A B
有限转动 :角位移不是矢量,不满足矢量加法对易律
dJ dt
Fe Me
刚体: mdJrC dt
i i
Fie
F
ri
Fi e
M
Note:
6个方程正好确定
①明确方程中各个量的意义。 刚体的6个独立变量
F
:主矢
J ,
M:以质心为中心得到的动量矩和主矩。
②当研究刚体对固定点的转动时,可以将第二方程换为
dJ dt
i
ri
Fi e

《建筑力学》第3章 刚体平衡

《建筑力学》第3章 刚体平衡

3. 结果
Rax=10kN,Ray=19.2kN,Rby=18.1KN
第3章 刚体平衡
上周内容回顾: 一、刚体平衡条件 二、支座反力计算
12/34
一、刚体平衡条件
∑Fx=0 水平合力为零 ∑Fy=0 竖向合力为零 ∑Mo=0 力对任一点O的力距之和为0
13/34
二、支座反力计算
Rax
q=4KN/m
A
B
L=4m
解题步骤(3步): 1. 受力图 2. 方程 3. 结果
新内容:线均布荷载
【解】
A
1. 受力图
2. 方程
∑FY=0 ∑MA=0 3. 结果
Ray Ray+Rby-qL=0 Rby×4m-qL ×L/2=0
Ray=8KN , Rby=8KN
q=4KN/m B
L=4m
Rby
【例题5】求如图所示梁支座B、D处的支座反力。
Ray
Ray+Rby-F=0 Rby×4m-F ×3m =0
Ray=5KN , Rby=15KN
F=20KN
C
B
3m
1m
Rby
【例题2】求如图所示梁支座A、B处的支座反力。
F2=10KN
F1=10KN
D
A
C
B
2m
2m
2m
【解】
F2=10KN
F1=10KN
1. 受力图
D
A
C
B
2m
2m
2m
2. 方程
1. 受力图 2. 方程 3. 结果
【解】 1. 受力图
Rax
A
F1=20KN
F2=20KN 600 B
2m
3m

大学物理 第3章 刚体力学基础

大学物理 第3章 刚体力学基础


2 1
Jd

1 2
J22

1 2
J12
2 Md (1 J2 )
1
2
力矩对刚体所做的功,等于刚体转动动能的增量。
例 如图所示,一根质量为m,长为l的均匀细棒OA,可绕固定点O在竖直平 面内转动.今使棒从水平位置开始自由下摆,求棒摆到与水平位置成30°角 时中心点C和端点A的速度.
F
·
F
式中为力F到轴的距离
F
若力的作用线不在转动在平面内,
则只需将力分解为与轴垂直、平行
r
的两个分力即可。
力对固定点的力矩为零的情况:
1、力F等于零, 2、力F的作用线与矢径r共线
(有心力对力心的力矩恒为零)。
力对固定轴的力矩为零的情况:
若力的作用线与轴平行 若力的作用线与轴相交
则力对该轴无力矩作用。
dJ R2dm
考虑到所有质元到转轴的距离均为R,所以细圆环对中心轴的转动惯量为
J dJ R2dm R2 dm mR2
m
m
(2)求质量为m,半径为R的圆盘对中心轴的转动惯量.整个圆盘可以看成许
多半径不同的同心圆环构成.为此,在离转轴的距离为r处取一小圆环,如
图2.36(b)所示,其面积为dS=2πrdr,设圆盘的面密度(单位面积上的质量)
力矩在x,y,z轴的分量式,称力对轴的矩。例如上面所列
Mx , My , Mz , 即为力对X轴、Y轴、Z轴的矩。 设力F 的作用线就在Z轴
的转动平面内,作用点到Z
轴的位矢为r,则力对Z轴
的力矩为
M z rF sin
r sin F F rF sin rF

第三章 刚体力学

第三章 刚体力学

第三章刚体力学本章介绍刚体运动状态的描述(§3.1-§3.2)以及刚体受力与运动状态的关系(§3.3-§3.10)。

其内容包括:刚体运动学、刚体静力学和刚体动力学,重点掌握刚体运动学和刚体动力学。

刚体是指在任何情况下形状、大小都不发生变化的力学体系,它是一种理想物理模型,只要一个物体中任意两点的距离不因受力而改变,它就可以称为刚体。

§3.1 刚体运动的分析一、描述刚体位置的独立变量刚体的特性是任意两点距离不因受力而变。

这种特性决定了确定刚体的位置并不需要许多变量,而只要少数变量就行。

能完全确定刚体位置的,彼此独立的变量个数叫刚体的自由度。

二、刚体运动的分类及其自由度1、平动:自由度3,可用其中任一点的坐标x、y、z描述;2、定轴转动:自由度1,用对轴的转角φ描述;3、平面平行运动:自由度3,用基点的坐标(x o,y o)及其对垂直平面过基点的轴的转角φ描述。

4、定点转动:自由度3,用描述轴的方向的θ,ψ角和轴线的转角ψ描述。

5、一般运动:自由度6,用描述质心位置的坐标(x c,y c,z c)和通过的定点的轴的三个角(θ,φ,ψ)描述。

§3.2 角速度矢量、角速度矢量及其与刚体中任本节重点是:掌握角位移矢量一点的线位移、线速度的相互关系。

理解有限转动时角位移不是矢量,只有无限小角位移才是矢量。

一、有限转动与无限小转动1、有限转动不是矢量,不满足对易律2、无限小转动是矢量,它满足矢量对易律。

①线位移△r与无限小角位移△n的关系设转轴OM,有矢量△n,其大小等于很小的转角Δθ,方向沿转轴方向,转轴的方向与刚体转动方向成右手螺旋,则△n称为角位移矢量。

由图3.2.1很容易求得即线位移△r=角位移△n与位矢r的矢量积。

②角位移和△n满足矢量对易律利用两次位移的可交换性,可证得该式表明:微小转动的合成遵循平行四边形加法的对易律,从而无限小角位移△n是一个矢量。

第三章 刚体力学

第三章 刚体力学

y’
y,η x

ψ
N
x,ξ
实际上,据刚才的分析, O 轴 可认为 是刚体绕 转动的角速度 ,绕ON轴 转动的角速度 ,和绕 z轴转动的角速度 的矢量
z θ
z

ψ
y
M ’
y’
sin sini sin cosj cosk
F2
d o1o2
P
O1 A
rAB
B
F1 F2 F
O2
为力偶面
F1
力偶臂:两平行力之间的垂直距离 如图所示的O1O2 力偶对任意一点P的力矩等于两平 行力对同一点P的力矩之代数和
M F2 .PO2 F1.PO1 F.O1O2
M
力偶矩:力和力偶臂的乘积,方向右手螺旋法则
二 角速度矢量 角速度:
lim
t 0
既然角位移 且与角位移的方向相同 转动瞬轴: 定点转动时某时刻的转轴
n是矢量,则角速度也是矢量,
线速度:因转动而具有的速度 线速度和角速度之间的关系:
r 为刚体内某质点到点O的位矢, 是刚体绕通过
该点某轴线的角速度
dr dn r v r dt dt
y,η
k

ψ N
cosi sinj
y
x,ξ
x’
x
cos sin sin x
sin sin cos y

x
cos z
已知 (t ) ,θ(t),ψ(t)可以求得ω,反之亦然。
二、刚体的运动微分方程 1.质心运动方程 根据质心运动定理,取质心为简化中心, d r 为刚体质心相对于 m F F 则 dt 某定点O的位矢 分量式: m C Fx x

大学物理教案-第3章 刚体力学基础

大学物理教案-第3章 刚体力学基础

J —描述刚体的转动惯性,称之为转动惯量。
二、力矩的功
对于 i 质点,其受外力为 F i ,则
Wi Fi dsi Fi cos α i ridθ Fiτ ridθ
Mid 对 i 求和,当整个刚体转动 d ,则力矩
的元功
dW ( Mi )d Md
∴ 当刚体转过有限角时,力矩的功为
W 2 Md 1
对于单个质点 转动惯量
J mr2 ,
质点系 转动惯量
n
J miri2 ,式中 ri 为 i 质点到轴的矩离。 i 1
质量连续分布的刚体 转动惯量 I r2dm 。 m
2
大学物理学
大学物理简明教程教案
刚体的转动惯量与
刚体的质量的有关, 刚体的质量分布有关, 。
轴的位置有关。
三、转动定律的应用
三、刚体定轴转动的动能定理
Md
J
d dt
d
J
d dt
dt
J
d
d
1 2
J2
2 1
M
d
1 2
J22
1 2
J12
力矩对刚体所做的功,等于刚体转动动能的增量。
§3.4 刚体定轴转动的角动量定理和角动量守恒定律
一、质点的角动量 角动量定理和角动量守恒定律(教材 P40 §2.4)
1、质点对固定点的角动量
ani ri 2
质点(a =常数)
v v0 at
x
x0
v0t
1 at 2 2
v2 v02 2ax x0
刚体( =常数)
0 t
0
0
t
1
2
t2
2 02 2 0
1
大学物理学

大学物理-第三章 刚体力学

大学物理-第三章 刚体力学
向力的作用点P的矢量。 M rF
大小:M rF sin Fd
M

O
z
M
r
d
P*
F
方向:右手螺旋,图中向上
0 , M o,沿转轴向上,使刚体绕转轴逆时针转
2 , M o,沿转轴向下,使刚体绕转轴顺时针转
上一页 下一页

2.外力F不在转动平面内 MFOFr FFz r F r Fz
T
N2

mg T2 T2 2m
2mg
解 : 设 整 体 顺 时 针 运 动, 即 两 滑 轮 转 轴 正 向 向内 。
右 质 点2m正 向 向 下 , 左 质 点m正 向 向 上 ,
受力分析如图。
上一页 下一页
右质点 2mg T2 2ma
左质点 T1 mg ma
右 滑 轮 T2 r
Tr
第三章 刚体力学
上一页 下一页
刚体:不发生形变的物体(理想模型)
刚体模型突出了物体的大小形状,忽略形变和振动。 刚体的运动形式:平动、转动、滚动、进动
刚体复杂运动可视为:平动 转动(绕某轴线转动) 刚体力学研究方法 把刚体看成不变质点系(任意两个质元的相对距离 保持不变),运用质点系定理和定律研究刚体的运动。

m 2
r
2
左滑轮Tr
T1r

m 2
r 2
关联方程 a r
解出 T 11 mg 8
N1
T

T1
mg
T1 m
mg
T
N2
a
mg T2
T2 2m
2mg
上一页 下一页
M,
J

第3章 刚体力学基础

第3章 刚体力学基础

刚体力学的基础知识包括刚体绕定轴转 动的动力学方程和动能定理,刚体绕定轴 转动的角动量定理及角动量守恒定律
-------------------------------------------------------------------------------
§3-1 刚体 刚体定轴转动的描述
dt
当输---出----功----率-----一----定----时----,-力----矩-----与----角----速----度-----成----反----比----。------------
3. 刚体定轴转动的动能定理:
W
2 1
Md
2 1
Jd
2 1
J d d
dt
W
2 1
Jd
第3章 刚体力学基础
§3.1 刚体 刚体定轴转动的描述 §3.2 刚体定轴转动的转动定律 §3.3 刚体定轴转动的动能定理 §3.4 刚体定轴转动的角动量定理和角动量 守恒定律
-------------------------------------------------------------------------------
➢刚体上各质元的角量(即角位移、角速度、角加速度) 相同,而各质元的线量(即线位移、线速度、线加速度) 大小与质元到转轴的距离成正比 。
-------------------------------------------------------------------------------
§3-2 刚体定轴转动的转动定律
对滑轮 , 由转动定律
T2R T1R J ④
由于绳不可伸长
aA aB R

J 1 mR2

理论力学第三章 刚体力学-3

理论力学第三章 刚体力学-3

3、求 a1 (转动加速度 ) d总 a1 r dt d总 d di 其中, (ctgi ) ctg
dt
h h 2 ctg cos 2k ctg sin 2i cos cos 2h (cos2k sin 2i ) sin
1
1 I mR 2 2
平行轴定理
I I c md
2
叙述:刚体对某一轴线的转动惯量,等于对通过质 心的平行轴的转动惯量加上刚体的质量与两 轴间垂直距离平方的乘积。
2、对定点转动惯性的大小,由于转轴的方向不断变 化,要用一个张量才能描述。 z
I xx 1 惯量张量: I yx I zx I xy I yy I zy I xz I yz I zz


N
O
y

x
§3.7 转动惯量
一、定点转动刚体的动量矩 动坐标系oxyz
z
i
设 Pi 为刚体上任一质点,该质点对定点 o的动量矩为

i
ri mii
整个刚体对同一点o的动量矩为
n J ri mii
i 1 n
o
x
ri
y
mi ri ri
2
h 2 h 2 2 大小: a1 ( ) [cos 2 sin 2 ] sin sin
2 2
2h 所以: a1 sin
3、求 a2(向轴加速度 )
a2 总 (总 r )
h h 其中,总 r ctgi ( cos 2i sin 2k ) cos cos h ctg sin 2j cos cos h 2 sin cosj sin cos 2h cosj a2 总 (总 r ) (ctgi ) (2h cosj ) 2 2 cos 2 h k sin 2 cos 2 所以: a2 a2 2 h sin

理论力学第三章刚体力学

理论力学第三章刚体力学
理论力学
电子科技大学物理电子学院 付传技
Em以看作是一种特殊 的质点组,这个质点组中任何两个质点之间的距离不 变,这使得问题大为简化,使我们能更详细地研究它 的运动性质,得到的结果对实际问题很有用。
我们先研究刚体运动的描述,在建立动力学方程 后,着重研究平面平行运动和定点运动。
1. 描写刚体位置的独立变量
质点3个变量
质点组3n个变量
确定刚体在空间的位置,需要几个变量?
B A
C 6个变量可以确定刚体位置
2. 刚体运动的分类 1)平动
平动的独立变量为三个
2)定轴转动
定轴转动的独立变量只有一个
世界最大的摩天轮——“伦敦眼”
3)平面平行运动
平面平行运动的独立变量有三个
4)定点转动
此时,有
3
e= a e (=1, 2,3) =1
可以省去求和符号,默认对重复指标自动求和,
e=a e 这种约定称为爱因斯坦约定。
用任意点的位矢点乘上式两端,得
x a x (=1,2,3)
上式即是从空间系到本体系的坐标变换,可以
将它表示成矩阵形式:
x1 a11 a12 a13 x1
rˆ Aˆ rˆ Aˆ Aˆrˆ 因为rˆ是任意的,所以 Aˆ Aˆ=1ˆ 1ˆ为单位阵,对调空间系和本体系的地位,可知上式 中Aˆ与Aˆ 的位置也可以交换,所以Aˆ是可逆的,逆阵与 逆变换相对应。
转动不改变位矢的长度,所以
rˆT rˆ ( Aˆ rˆ)T Aˆ rˆ rˆT ( AˆT Aˆ)rˆ rˆT rˆ
由rˆ的任意性可得 AˆT Aˆ=1ˆ
这表明Aˆ的逆矩阵就是其转置。
这个结论还可以写成 Aˆ AˆT=AˆT Aˆ=1ˆ
或a a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 刚体力学
刚体:质点组——任意两点的距离不因受力而
改变
理想模型
研究思路:质点组的三大定理推广到刚体
刚体力学的内容:
刚体运动学 刚体动力学
刚体静力学
§3.1 刚体运动的分析
一、刚体的自由度
完全确定刚体位置的彼此独立的变量个数
如何 确定?
结论:刚体的独立坐标数是 6 .
如何 分配? 3个平动+3转动
ri
xi
i
yi
j
zi
k
xi y j zk
J Jxi Jy j Jzk
J
x
I xx x
I xy y
I xz z
J y I yx x I yy y I yz z
J z I zx x I zy y I zz z
I xx mi ( yi2 zi2 )
i
I yy mi ( xi2 zi2 )
2、角速度矢量
lim
n
dn
t0 t dt
的大小: d
dt
角速度矢量
方向:沿转动瞬轴
角加速度矢量
lin
d
t0 t dt
五、刚体内任一点(位置矢量为 r)的线速度
v
dr
r
dt
§3.3 欧勒角
描述刚体定点转动 独立变量为3
那么选取怎样的三个独立坐标?
一、欧勒角的定义
o- 静系 o-xyz 动系 固定在刚体上,随刚体
在动系o-xyz上的投影:
xi y j zk
欧勒角
角 速 度 分 解 图
在动系上的分量
x cos
0 sin sin
y sin 0 sin cos
z
0
cos
欧勒运动方程
x sin sin cos y sin cos sin z cos
§3.4 刚体运动方程与平衡方程 • 提出问题:
n i 1
ri
mivi
1
J
2
xi yj zk
J Jxi Jy j Jzk
1 2
(
I
xx
2 x
I yy
2 y
I
zz
2 z
2I yz
y z
2Izx z x
2I xy x z )
写成矩阵形式
T
1 2
x
y
I xx
z I yx
I zx
I xy I yy I zy
三、转动惯量
Mz
0
P cos0
sin2 0 cos0
N1
h
sin
h sin0 cos2 0
0
§3.5 转动惯量
一、刚体的动量矩
mi对o点的动量矩: Ji ri mivi
刚体对o点的动量矩
J ri mivi
i
[ri mi ( ri )]
i
mi[(ri
2
ri
(
ri
)]
i
建立oxyz坐标系
写成矩阵形式:
J x I xx
J y I yx
J
z
I
zx
I xy I yy I zy
I xz x
I yz y
I zz
z
二、刚体的转动动能
T
1 2
n i 1
mi
vi
2
1 2
n i 1
mivi
vi
1 2
n i 1
mivi
(
ri )
1
2
一、力系简化
1. 力是滑移矢量
力可沿作用线移动,不能随意移动
2. 力偶及其简化
• 力偶:作用在刚体上两点,大小相等,方向相反.
力偶有转动效应,无平动效应
力偶矩
M
r1
F1
r2
F2
r F2
方向:永远垂直于力偶的作用面 大小:与o点无关。
因此:力偶矩是一自由矢量,可以平行于 自身任意移动位置,不影响其效应。
一 起转动
o-xyz 在空间的位置就是刚体的位置.
进动
章动
自转
all
xyz xyz xyz xyz
变化范围:
0 2 0 2 0
欧勒角好处:
• 简明、单值地确定刚体的位置 • 三个角度变化相互独立
因此:刚体瞬时角速度:
二、欧勒运动学方程
找出 与 的关系
i
I zz mi ( xi2 yi2 )
i
I yz I zy mi yi zi
i
I zx I xz mi zi xi
i
I xy I yx mi xi yi
i
轴转动惯量、惯量积
J
x
I xx x
I xy y
I xz z
J y I yx x I yy y I yz z
J z Izx x Izy y I z
二、刚体运动的分类
平动 定轴转动 平面平行运动 定点运动 一般运动
自由度3 坐标 (x, y, z)
自由度1 坐标
自由度3 坐标 (xc , yc ,) 自由度3 坐标 ( ,, )
自由度6 坐标 (xc , yc , zc ; ,, )
§ 3.2 角速度矢量一、矢量有大小、有向 满足对易律 A B B A
分量形式:
Fx Fy
0 0
Fz
0
M x 0 M y 0 M z 0
例题 棍子: P 2 在粗糙地面
求:棍与地面的摩擦系数
解:外力:P N1 N2 f 由平衡方程:
Fx 0 Fy 0
N1 cos(90 0 ) f 0 N1 sin(90 0 ) N2 P 0
A点为简化中心:
dJ
dt
i
n
i1
Mi
Fi(e)
M
F
结论
刚体的运动分解随质心的平动+绕质心的转动
Mxc Myc
Fx Fy
Mzc
Fz
dJ x
dt
M x
dJ y dt
M y
dJ z
dt
M z
六个独立的方程,动能定理仍适用.
三、刚体平衡方程
• 若刚体处于平衡状态: F 0 M 0
二、有限转动
角位移、角速度是否矢量?

有限转动角位移、角速度不满足对易律
三、无限小转动的矢量性
• 无限小转动角位移、 角速度满足对易律
• 角位移、角速度可用 矢量描述 • 证明
四、角速度矢量
1、角位移矢量 n
大小等于转角
方向沿转轴方向(转轴方向与刚体转动
方向成右手螺 旋法则) r n r
1. 刚体的转动动能可表为:
T
1 2
n i 1
mi (
ri
) (
ri
)
12
2
n i 1
mi ri 2
sin2 i
12
2
n i 1
mi i2
I xz x
I yz y
I zz
z
定义: I
mi
2 i
i
T 12I
2
2. 任意轴线转动惯量
3.空间力系简化
O点:简化中心 如何简化?
所有的力移至 o点的效果:
F Fi i
M o ri Fi
i
力系简化主矢 力系简化主矩
所以:
• 主矢使刚体平动状态发生变化 • 主矩使刚体转动状态发生变化
二、刚体运动微分方程
取质心为简化中心
质心运动方程: 相对质心转动方程
M
d
2
rc
dt 2
相关文档
最新文档