同底数幂乘法.ppt
合集下载
同底数幂的乘法课件(公开课)-PPT
(2)y ·y2 ·y3
解:(1)23×24×25=23+4+5=212
(2)y ·y2 ·y3 = y1+2+3=y6
➢思考题
2.计算:
(x+y)3 ·(x+y)4 .
公式中的 a 可代表
一个数、字母、式
子等.
a3 · a4 = a3+4
解:
(x+y)3 ·(x+y)4 = (x+y)3+4 =(x+y)7
n个a
幂的意义:
同底数幂的乘法性质:
m
n
m+n
m
n
p
a ·a =a
(m,n都是正整数)
a ·a ·a = a
m+n+p
(m、n、p都是正整数)
“特殊→一般→特殊”
方法
例子
公式
应用
布置作业
教科书96页练习(2)(4);
习题14.1第1(1)(2)题 .
通过对本节课的
学习,你有哪些收获
呢?
2.填空:
(3)x5 ·x5 = x25 (× )
(4)y·y5 = y5 ( × )
x5 ·x5 = x10
y ·y5 =y6
ቤተ መጻሕፍቲ ባይዱ
3
10
7
y
3、填空: y • _______ y 5 , x 3 • _______
x .
x
2
探索并推导同底数幂的乘法的性质
a m a n a m n (m,n 都是正整数)表述了两个
次运算,它工作103 s 共进行
多少次运算?
15
列式:10 ×10
14.1.1同底数幂的乘法 课件(共20张PPT)
14.1.1同底数幂的乘法
人教版 八年级数学上
学习目标
1.理解并掌握同底数幂的乘法法则.(重点) 2.能够运用同底数幂的乘法法则进行相关计算.(难点) 3.通过对同底数幂的乘法运算法则的推导与总结,提升自
身的推理能力和计算能力.
温故旧知
指数
幂
an = a·a·a…(表示n个a相乘)
底数 n个相同因数的积的运算叫做乘方,乘方的结果叫幂.
(2) (a-b)3·(a-b)3=(__a_-_b_)_6_;
(3) -a6·(-a)2=___-_a_8__; (4) y4·y3·y2·y =__y_1_0___.
7.填空: (1)x·x2·x( 6 )=x9;
(2)xm·( x4m )=x5m; (3)16×4=2x,则x=( 6 ).
实战演练
典例精析
例1 计算: (1)x2 · x5 ; (3)(-2) × (-2)4 × (-2)3;
(2)a · a6; (4) xm · x3m+1.
解:(1) x2 · x5= x2+5 =x7
(2)a · a6= a1+6 = a7;
(3)(-2) × (-2)4 × (-2)3= (-2) 1+4+3 = (-2)8 = 256;
8.计算下列各题: (1)(2a+b)2n+1·(2a+b)4; (3) (-3)×(-3)3 ×(-3)3;
(2)(a-b)5·(b-a)4; (4)-a3·(-a)2·(-a)3.
解:(1)(2a+b)2n+1·(2a+b)4=(2a+b)2n+5; (2)(a-b)5·(b-a)4=(a-b)9; (3) (-3)×(-3)3 ×(-3)3=-37; (4)-a3·(-a)4·(-a)3=a10.
人教版 八年级数学上
学习目标
1.理解并掌握同底数幂的乘法法则.(重点) 2.能够运用同底数幂的乘法法则进行相关计算.(难点) 3.通过对同底数幂的乘法运算法则的推导与总结,提升自
身的推理能力和计算能力.
温故旧知
指数
幂
an = a·a·a…(表示n个a相乘)
底数 n个相同因数的积的运算叫做乘方,乘方的结果叫幂.
(2) (a-b)3·(a-b)3=(__a_-_b_)_6_;
(3) -a6·(-a)2=___-_a_8__; (4) y4·y3·y2·y =__y_1_0___.
7.填空: (1)x·x2·x( 6 )=x9;
(2)xm·( x4m )=x5m; (3)16×4=2x,则x=( 6 ).
实战演练
典例精析
例1 计算: (1)x2 · x5 ; (3)(-2) × (-2)4 × (-2)3;
(2)a · a6; (4) xm · x3m+1.
解:(1) x2 · x5= x2+5 =x7
(2)a · a6= a1+6 = a7;
(3)(-2) × (-2)4 × (-2)3= (-2) 1+4+3 = (-2)8 = 256;
8.计算下列各题: (1)(2a+b)2n+1·(2a+b)4; (3) (-3)×(-3)3 ×(-3)3;
(2)(a-b)5·(b-a)4; (4)-a3·(-a)2·(-a)3.
解:(1)(2a+b)2n+1·(2a+b)4=(2a+b)2n+5; (2)(a-b)5·(b-a)4=(a-b)9; (3) (-3)×(-3)3 ×(-3)3=-37; (4)-a3·(-a)4·(-a)3=a10.
同底数幂的乘法法则课件
例题三:实际应用
总结词:实际应用
详细描述:该例题将同底数幂的乘法法则与实际问题相结合,通过解决实际问题,让学习者深入理解 幂的乘法规则在实际生活中的应用。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
同底数幂的乘法法则的 练习题
基础练习题
01
02
03
04
总结词:考察基本概念和运算 规则
未来展望
深入理解幂的性质
在未来的学习中,学生需要进一步深入理解幂的性质,包括交换律、结合律、分配律等, 以便更好地应用这些性质解决实际问题。
探索同底数幂的除法法则
在掌握了同底数幂的乘法法则之后,学生可以开始探索同底数幂的除法法则,了解如何进 行同底数幂的除法运算。
应用同底数幂的乘法法则解决实际问题
难点解析
理解同底数幂的乘法法则
对于初学者来说,理解同底数幂的乘法法则可能有一定的难度, 需要强调指数相加而非数值相加的概念。
掌握幂的性质
掌握幂的性质是理解同底数幂乘法法则的基础,需要让学生充分理 解并掌握这些性质。
灵活运用法则
在掌握同底数幂的乘法法则的基础上,需要让学生学会如何在实际 问题中灵活运用这个法则。
学生可以在实际问题的解决中应用同底数幂的乘法法则,提高解决实际问题的能力。
REPORT
THANKS
感谢观看
CATALOG
DATE
ANALYSIS
SUMMAR Y
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
同底数幂的乘法法则的 例题解析
例题一:基础应用
总结词:基础运算
1.1同底数幂的乘法课件 (共20张PPT)
-x2
· (-x)3 =x5
m + m3 = m + m3
例2、计算:
(1)a a
m
2m
3 · 2 (2) (a-b) (a-b) a
am ·an = am+n (当m、n都是正整数) 底数可以是一个数、也可是一个字母或是一个多项式。
3 (b-a) 3 (a-b)
2 ·(a-b) = 2 ·(b-a) =
(4) b5 · b ( b6 )
练习二:下面的计算结果对不对?如果不对,怎 样改正? ×) 1、b5 ·b5= 2b5 (× ) 2、b5 + b5 = b10 ( b5 ·b5= b10 b5 + b5 = 2b5 3、(-7)6 · 73 = -79 (× ) 4、y5 +2 y5 =3y10 (× ) (-7)6 · 73 = 79 y5 + 2 y5 =3y5 5、-x2 · (-x)3 =-x5 (× ) 6、m + m3 = m4 (× )
(1) a ·a7- a4 ·a4 = 0
;ห้องสมุดไป่ตู้
(2)(1/10)5 ×(1/10)3 = (1/10)8
(3)(-2 x2 y3)2
4y6 4x =
;
; ;
(4)(-2 x2 )3 = -8x6
小结:
• 今天,我们学到了什么?
同底数幂的乘法: am · an = am+n
(m、n为正整数)
同底数幂相乘,底数不变,指数相加。
23 ×24
=
23+
4
= 27
a3× a5 = a3+5
= a8
猜想:
m a
同底数幂相乘课件
同底数幂相乘ppt课件
在本课件中将详细介绍同底数幂相乘的概念、规律和运算法则,以及一些实 际应用案例。
倍数的概念
倍数是指某个数相对于另一个数的整倍数关系。在同底数幂相乘中,我们将探讨如何计算同一个底数的多个幂 的乘积。
同底数幂的定义
同底数幂是指具有相同底数但不同指数的幂。它们在数学中常被用来表示重复的乘法。
例子 2
52 × 53 = 55
3
例子 3
104 × 102 = 106
同底数幂相乘的扩展应用
同底数幂相乘在数学和科学中有许多应用,如指数函数、复利计算和数列求 和,这些应用都依赖于同底数幂相乘的运算规律。
结论和要点
1 规律:
同底数幂相乘的规律是将 指数相加,底数不变。
2 应用:
同底数幂相乘的运算法则 在数学和科学中有广泛的 应用。
3 重要性:
理解同底数幂相乘的运算 法则对于解决各种数学和 科学问题至关重要。
同底数幂相乘的规律
同底数幂相乘的规律是指当两个同底数的幂相乘时,我们可以将它们的指数相加,然后保持底数不变。
同底数幂相乘的运算法则
为了相乘同底数的幂,我们只需将它们我们通过一些例子来展示同底数幂相乘的运算法则:
1
例子 1
23 × 24 = 27
2
在本课件中将详细介绍同底数幂相乘的概念、规律和运算法则,以及一些实 际应用案例。
倍数的概念
倍数是指某个数相对于另一个数的整倍数关系。在同底数幂相乘中,我们将探讨如何计算同一个底数的多个幂 的乘积。
同底数幂的定义
同底数幂是指具有相同底数但不同指数的幂。它们在数学中常被用来表示重复的乘法。
例子 2
52 × 53 = 55
3
例子 3
104 × 102 = 106
同底数幂相乘的扩展应用
同底数幂相乘在数学和科学中有许多应用,如指数函数、复利计算和数列求 和,这些应用都依赖于同底数幂相乘的运算规律。
结论和要点
1 规律:
同底数幂相乘的规律是将 指数相加,底数不变。
2 应用:
同底数幂相乘的运算法则 在数学和科学中有广泛的 应用。
3 重要性:
理解同底数幂相乘的运算 法则对于解决各种数学和 科学问题至关重要。
同底数幂相乘的规律
同底数幂相乘的规律是指当两个同底数的幂相乘时,我们可以将它们的指数相加,然后保持底数不变。
同底数幂相乘的运算法则
为了相乘同底数的幂,我们只需将它们我们通过一些例子来展示同底数幂相乘的运算法则:
1
例子 1
23 × 24 = 27
2
3.1《同底数幂的乘法》课件(共24张ppt)
解 2.566千万亿次=2.566×107×108次,24小时= 24×3.6×103秒. 由乘法的交换律和结合律,得 (2.566×107×108) × (24×3.6×103) =(2.566×24×3.6) ×(107×108×103) =221.7024×1018≈2.2×1020(次). 答:它一天约能运算2.2×1020次.
(3)64 6 641 65. (4)x3 x5 x35 x8 . (5)32 (- 3)5 32 (- 35) -32 35 -37. (6)(a b)2( a b)3 (a b)23 (a b)5 .
例2 我国“天河-1A”超级计算机的实测运算速度达到每 秒2.566千万亿次.如果按这个速度工作一整天,那么它 能运算多少次?
解 V 4 (7 104)3
3 4 73 1012
3 1.4101(5 km3).
答:木星的体积大约是1.4×1015km3.
1、 把下列各式表示成幂的形式:
(1)26 • 23 ;
2 解:原式= 63
29
(3)xm • xm1 ;
x 解:原式= m(m1)
例3 计算下列各式,结果用幂的形式表示.
(1)(107)3. (2)(a4)8. (3)(- 3)6 3.(4)(x3)4( x2)5.
解
(1) (107)3 1073 1021. (2) (a4)8 a48 a32 .
(3)(- 3)6 3 (- 3)63 (- 3)18 318.
(mn) 个a
am • an amn. (m,n都是正整数)
同底数幂相乘,底数不变,指数相加.
整理反思 z`````xx```k 知识
(3)64 6 641 65. (4)x3 x5 x35 x8 . (5)32 (- 3)5 32 (- 35) -32 35 -37. (6)(a b)2( a b)3 (a b)23 (a b)5 .
例2 我国“天河-1A”超级计算机的实测运算速度达到每 秒2.566千万亿次.如果按这个速度工作一整天,那么它 能运算多少次?
解 V 4 (7 104)3
3 4 73 1012
3 1.4101(5 km3).
答:木星的体积大约是1.4×1015km3.
1、 把下列各式表示成幂的形式:
(1)26 • 23 ;
2 解:原式= 63
29
(3)xm • xm1 ;
x 解:原式= m(m1)
例3 计算下列各式,结果用幂的形式表示.
(1)(107)3. (2)(a4)8. (3)(- 3)6 3.(4)(x3)4( x2)5.
解
(1) (107)3 1073 1021. (2) (a4)8 a48 a32 .
(3)(- 3)6 3 (- 3)63 (- 3)18 318.
(mn) 个a
am • an amn. (m,n都是正整数)
同底数幂相乘,底数不变,指数相加.
整理反思 z`````xx```k 知识
同底数幂相乘PPT课件
= 106
= 1023
(1)(34)2= 34×34 = 34+4= 34×2 = 38
(2)(a3)5= a3·a3·a3·=a3 a3+3+3+3+3 = ·aa3×3 5=a15
n个
( 3 ) ( am ) n = am·am·am……am ( 幂 的 意
义)
n个
=a m+m+…+m(同底数幂相乘的法则) =amn(乘法的意义)
(am)n =amn ( m , n 都是正整数)
不变 幂2020年的10月乘2日 方,底数_____ 指数_相__乘___. 4
(am)n =amn ( m , n 都是正整数)
幂的乘方,底数不变,指数相乘。
例1:计算
1、(102 )3 2、 (b5 )5 3、 (an )3 4、—(x2 )m 5、 (y2 )3 .y 6、 2(a2 )6_ (a3 )4
同底数幂相乘法则:
am·an=am+n(m,n都是正整数) 底数不变,指数
2020年10月2日
1
如果甲球的半径是乙球的n倍,那么甲球体积是乙球体积的n3 倍。
103
地球、木星、太阳可以 近似地看作是球体,木
星、太阳的半径分别约
是地球的10倍和102倍,
它们的体积分别约是地
(102)3 =?102 1021球0的2多少倍?
随堂练习:
1、 (103 )3 2、 —(a2 )5 3、 (x3 )4 .x2
2020年10月2日
5
同底数幂相乘法则:
am·an=am+n(m,n都是正整数) 底数不变,指数相加
幂的乘方法则 (am)n =amn ( m , n 都是正整数)
幂的乘方,底数不变,指数相乘22这四个幂中,
北师大版数学七年级下册第一章1同底数幂的乘法(共33张PPT)
栏目索引
1 同底数幂的乘法
5.计算:(1)22×23×2;(2)4×27×8;(3)(-a)4·(-a)3. 解析 (1)22×23×2=22+3+1=26. (2)4×27×8=22×27×23=22+7+3=212. (3)(-a)4·(-a)3=(-a)4+3=(-a)7.
栏目索引
1 同底数幂的乘法
栏目索引
1 同底数幂的乘法
2.(2017河北保定十七中期末)已知x+y-3=0,则2y·2x的值是 A.6 B.-6 C. 1 D.8
8
答案 D ∵x+y-3=0,∴x+y=3, ∴2y·2x=2x+y=23=8, 故选D. 3.化简(-x)3·(-x)2,结果正确的是 ( ) A.-x6 B.x6 C.x5 D.(-x)5 答案 D (-x)3·(-x)2=(-x)3+2=(-x)5.
1 同底数幂的乘法
二、填空题 3.(2019山东菏泽东明月考,15,★★☆)(2.5×102)×(4×103)= 答案 106 解析 原式=(2.5×4)×102×103=10×102×103=101+2+3=106.
栏目索引
.
1 同底数幂的乘法
栏目索引
(2018陕西西安音乐学院附中期中,2,★☆☆)已知3a=1,3b=2,则3a+b的值为 () A.1 B.2 C.3 D.27
答案 B 3a+b=3a·3b=1×2=2.
1 同底数幂的乘法
栏目索引
一、选择题 1.(2019江苏淮安中考,2,★☆☆)计算a·a2的结果是 ( ) A.a3 B.a2 C.3a D.2a2
答案 A 原式=a1+2=a3.故选A.
同底数幂的乘法PPT课件
= a( 3+2) .
猜想: am ·an=
? (当m、n都是正整
数) 分组讨论,并尝试证明你的猜想是否正确.
猜想: am ·an= am+n (当m、n都是正整数) 证明:am ·an =(aa…a) (aa…a) (乘方的意义)
m个a n个a
= aa…a
(乘法结合律)
(m+n)个a
= am+n
(乘方的意义)
即 am ·an = am+n (当m、n都是正整数)
同底数幂的乘法法则:
我们可以直接 利用它进行计算.
am ·an = am+n (当m、n都是正整数)
同底数幂相乘,底数 不变 ,指数相加 . 运算情势(同底、乘法) 运算方法(底不变、指加法)
如 43×45= 43+5 =48 幂的底数必须相同, 相乘时指数才能相加.
如 am·an·ap = am+n+p (m、n、p都是正整数)
想一想:当三个或三个以上同底数幂相乘时,是否 也 具有这一性质呢?怎样用公式表示?
例1 计算: (1)105×103; (2) x3 ·x4.
(1)105×103; 解 105×103
= 105+3 = 108.
(2)x3 ·x4; 解 x3 ·x4
a3×a2 =(a a a)(a a) = a a a a a = a( 5 ) .
3个a 2个a
5个a
思考: 视察下面各题左右两边,底数、指数有什么关
系?
103 ×102 = 10( 5 ) = 10( 3+2);
23 ×22 = 2( 5 ) = 2( 3+2);
5 a3× a2 = a( )
同底数幂的乘法课件(公开课)
幂的性质在物理中的应用
计算速度和加速度
在物理学中,速度和加速 度可以用幂函数来描述, 特别是在分析物体的运动 磁波的传 播可以用幂函数来描述, 特别是分析波的强度和频 率。
分析热传导
在热力学中,热传导可以 用幂函数来描述,特别是 在分析热量传递的速率和 温度分布时。
举例说明
3^2 + 3^3 = 3^(2+3) = 3^5。
注意事项
幂的加法运算与普通加法运算不同,指数相同时, 底数相加;指数不同时,不能直接相加。
幂的减法运算
幂的减法运算规则
同底数的幂相减时,指数相减。即,a^m - a^n = a^(m-n)。
举例说明
3^4 - 3^2 = 3^(4-2) = 3^2。
计算 $(x^2 times x)^3$ 的结 果。
综合习题2
计算 $x^{2+3} times x^{-3}$ 的结果。
综合习题3
计算 $(x^{-2})^3 times x^4$ 的结果。
综合习题4
计算 $x^{2} times (x^{-3} times x^{-4})$ 的结果。
05
CHAPTER
幂的性质在数学中的应用
01
02
03
解决几何问题
在几何学中,幂的性质可 以用于解决与面积、体积 和角度等相关的数学问题。
求解方程
在代数中,幂的性质可以 用于求解方程,例如求解 指数方程或对数方程。
证明数学定理
在数学证明中,幂的性质 可以用于证明各种数学定 理,例如幂的性质定理和 同底数幂的乘法公式。
03
CHAPTER
同底数幂的乘法应用
幂的性质在生活中的应用
计算细胞繁殖
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
具有这一性质呢? 怎样用公式表示?
➢ 练习一
1. 计算:(抢答)
(1) 105×106 (1011 )
(2) a7 ·a3
( a10 )
(3) x5 ·x5 ( x10 )
(4) b5 ·b ( b6 )
Good!
➢练习二
下面的计算对不对?如果不对,怎样改正?
(1)b5 ·b5= 2b5 (× ) (2)b5 + b5 = b10 (×)
小结
知识
我学到了 什么?
方法
同底数幂相乘, 底数不变,指数相加. am ·an = am+n (m、n正整
数)
“特殊→一般→特 殊”
例子 公式 应用
课后作业
❖ 教材142页练习题(必做) ❖ 第148页1题(选作)
❖预习 作业 : 积的乘方
P156 第1题
愿你用勤奋的汗水 浇灌智慧的花朵
变式训练:
(1) 8 = 2x,则 x = 3 ;
23 (2) 8× 4 = 2x,则 x = 5 ;
23× 22= 25 (3) 3×27×9 = 3x,则 x = 6 .
3×33 × 32 = 36
拓广探索
❖ (1)若4 m=6 。4n=8.则4m+n=_4_8
1和4或3和2
❖(2)若3a×3b=35 则a,b的值是_4和_1或2和或3
了不起!
➢变式训练
填空: 真棒!
真不错!
(1)x5 ·(x3 )= x 8 (2)a ·( a5 )= a6
(3)x ·x3(x3 )= x7 (4)xm ·(x2m )=x3m
你真行!
太棒了!
➢思考题
1.计算: (1) x n ·xn+1 ;
解: x n ·xn+1 = xn+(n+1) = x2n+1 (2) (x-y)3+2m ·(x-y)4m ·(x-y)4-2m. 解: (x-y)3+2m ·(x-y)4m ·(x-y)4-2m. = (x-y)(3+2m)+4m+(4-2m)
43 ×42 = 4( 5) = 4( 3+2); 33 ×32 = 3( 5 ) = 3( 3+2 ); a3× a2 = a( 5) = a( 3+2) 。
猜想: am ·an=
? (当m、n都是正整数)
分组讨论,并尝试证明你的猜想是否正确.
猜想: am ·an= am+n (当m、n都是正整数)
15.1 同底数幂的乘法
呼兰区长岭中学 周光远
➢思考:
➢ an 表示的意义是什么?其中a、n、an分
别叫做什么?
an
底数
指数
幂
an = a × a × a ×… a n个a
思考
❖ 43×42的意义是什么?这两个因式有什 么共同点?
两个幂相乘,是底数相同的幂相乘
➢思考:
请同学们观察下面各题左右两边,底数、指数有 什么关系?
解 : 3840 亿 次 =3.84×103×108 次 ,24 小 时 =24×3.6×103秒
(3.84×103×108)×(24×3.6×103)
=(3.84 × 24 ×3. 6) ×(103×108 ×103)
=331.776 ×1014≈3.32 ×1016(次)
答:它一天约能运算3.32 ×1016次
= (x-y)7+4m (3)(-X)2.X3X5 (4)1.2×105×5×107
=X2X3x5.
=1.2×5×105×107
=X2+3+5
=6×1012
=X10
例2.我国自行研制的“神威I”计算机的峰值运算
速度达到每秒3840亿次.如果按这个速度工作一 整天,那么它能运算多少次(用科学计数法表示, 结果保留3个有效数字)?
am ·an =(aa…a)(aa…a)(乘方的意义)
m个a
n个a
= aa…a (乘法结合律)
(m+n)个a
=am+n (乘方的意义)
即
am ·an = am+n (当m、n都是正整数)
真不错,你的猜想是正确的!
➢同底数幂的乘法性质:
请我你们尝可试以用直文接字利概 括用这它个进结行论计。算.
a ·a = a m n
m+n (当m、n都是正整数)
同 底 数 幂 相 乘 , 底数不变,指数相加。
运算形式 (同底、乘法)
运算方法(底数不变、指数 相加)
幂的底数必须相同, 相乘时指数才能相加.
如 43×45= 43+5 =48
如 am·an·ap =am+n+p
想一想: 当三个或三个以上同底(数m幂、相n乘、时p都,是是否正也整数)
b5 ·b5= b10
b5 + b5 = 2b5
(3)x5 ·x5 = x25 (× ) (4)y5 ·y5 = 2y10 (× )
x5 ·x5 = x10
y5 ·y5 =y10
(5)c ·c3 = c3 (×) (6)m + m3 = m4 (×#43; m3 = m + m3