物理光学-第4章, 多光束干涉与光学薄膜
光学 第四章光的衍射
杨氏双缝
2
3 4
薄膜
劈尖 牛顿环
5 迈克尔逊干涉仪
1 杨氏双缝 θ δ = d sin + kλ ={ λ + ( 2 k + 1) 2
( k =0,1,2,... ) 明纹 ( k =0,1,2,... ) 暗纹
明条纹的位置: + k λ x = D d
相邻两明纹或暗纹的间距:
λ Δx = D d
三、光栅(Grating) 1 基本概念 (1)光栅 (2)光栅常数(Grating Constant)
2 光栅衍射的本质 透射光栅的实验装置图
光栅衍射图样是单缝衍射和多缝干涉的 综合结果。
屏
b a
f
0
x
a d= a + b
b 缝宽 不透光部分宽度 4 6 ~ 10 ~ 10 m 光栅常数
3 光栅衍射图样的描述 ① 产生主极大的条件
例 在通常亮度下,人眼睛瞳孔直径约 为3mm,问人眼的最小分辨角是多大? 远处两根细丝之间的距离为2.0mm,问 离开多远时恰能分辨?
五、X射线(X-ray) 布拉格条件(Bragg Condition):
当 时, 原子散射线相干加强。波动性的体现。
布喇格父子(W.H.Bragg, W.L.Bragg)
一、基本概念 1 衍射现象 光在传播过程中遇到障碍物时,能够绕 过障碍物的边缘前进,光的这种偏离直线 传播的现象称为光的衍射现象。
屏幕 阴 影
屏幕
缝较大时, 光是直线传播的
缝很小时, 衍射现象明显
2 衍射的本质(惠更斯—菲涅尔原理) (Huygens-Fresnel Principle)
波阵面S 上每个面元 ds 都可以看成是发 出球面子波的新波源,空间任一点 P 的振 动是所有这些子波在该点的相干叠加。
第四章:多光束干涉与光学薄膜
注:透射光的干涉条纹极为明锐,是多光束干 涉最显著的特点。
§4-1平行平板的多光束干涉
四、多光束干涉条纹的锐度:
为了表示多光束干涉条纹极为明锐这一特点, 引入条纹的锐度概念。
条纹的锐度用条纹的位相差半宽度来表示,即:
条纹中强度等于峰值强度
I(t) I(i)
1
一半的两点间的位相差距离,
记为Δδ,对于第m级条纹, 1
n2 sin 2 0
2 2nh cos m 2
所以对于同一个干涉级,不同波长光的亮纹
位置将有所不同,两组亮纹的圆心虽然重合,
但它们的半径略有不同,位置互相错开。
考虑到楔形板内表面镀金属膜的影响:如图4
-7所示,对于靠近条纹中心的某一点 0
对应于两个波长的干涉级差为
§4-2法布里-珀罗干涉仪 和陆末-盖尔克板
(2)、随着R增大,透射光暗条纹强度降低,
亮条纹的宽度变窄,锐度和对比度增大。
(3)、R 1时,透射光干涉图样由在几乎全 黑的背景上的一组很细的亮条纹所组成。反射 光干涉图样和透射光干涉图样互补,由在均匀 明亮背景上的很细的暗条纹组成,这些暗条纹 不如透射光图样中暗背景上的亮条纹看起来清 楚,故在实际中都采用透射光的干涉条纹。
对应于两个波长的干涉级差为
m
m1
m2
2h
1
2h
2
2h1 2
12
而m e / e,
Δe 两个波长的同级条纹的相对位移。e:同
一波长的条纹间距。
2
1
e 2he
12
e 2he
2
2
则:
1
2
§4-2法布里-珀罗干涉仪 和陆末-盖尔克板
是λ1和λ2的平均波长,其值可预先测出。 h是标准具间隔
物理光学第四章梁铨廷
➢上一章在讨论平板的干涉时,仅仅讨论了最先出射 的两光束的干涉问题,这是在特定条件下采取的一种 近似处理方法。 ➢事实上,光束在平板内经过多次的反射和透射,严 格地说,干涉是一种多光束干涉。 ➢多光束干涉与两光束干涉相比,干涉条纹更加精细, 利用多光束干涉原理制造的干涉仪是最精密的光学测 量仪器,多光束干涉原理在现代激光技术和光学薄膜 技术中也有着重要的应用。
Et2 r 2a1 exp( j )
Er1 Er2 Er3 E0
i
Et3 r 4a1 exp( 2 j )
B
n i'
d
AC
Etk r 2(k1)a1 exp[ j(k 1) ]
D
在无穷远定域面上的合振幅:
Et1 Et 2 Et 3
Et Etk
由于反射系数:
k 1
Et
1
r2
a1 exp(
j
)
4.1.2 多光束干涉图样的特点
1. 反射光、透射光的干涉条纹互补; 2. 干涉条纹的明暗和光强值由位相差决定。
对于反射光
当
2m 1 时为亮纹,其光强为
I M r
F 1 F
I
i
当 2m 时为暗纹,其光强为 Imr 0;
对于透射光
当 2m 时为亮纹,其光强为 I M t I i
当
2m 1时为暗纹,其光强为
由于F-P干涉仪产生的条纹非常细锐、明亮,所以它的分 辩能力很强。
2、激光器的谐振腔,用于选模(选频)。
4.1 平行平板的多光束干涉
若平行平板的反射率很低,则Er1、 Er2的强度接近, Er3、 Er4…的光强 与前两束相差较大。
因此考虑反射光的干涉时,只考虑 前两束光的干涉可以得到很好的近 似。 若平行平板的反射率较高,则除 Er1外,其余反射光的强度相差不 大,因此必须考虑多光束干涉。
第4章 光学干涉测量技术
武汉大学 电子信息学院
25
§4.1 干涉测量基础
(二)干涉条纹的处理方法 1、数字波面的获取 干涉仪检测光学元件面形,对获得的干涉图进行数字化转换,并 由计算机替代人眼进行判读,即为数字干涉法。在对模拟干涉图像进 行数字化转换后,需要提取干涉图上的条纹信息,即确定干涉条纹的 中心点坐标及干涉级次。一般处理过程需要如下几个步骤: (1)背景滤除:对原始图像进行预处理; (2)二值化:使干涉图变为二值化图像; (3)细化:保留条纹中心曲线,从而提取出条纹上点的坐标; (4)修像:去除细化图像中的干扰信息,修改间断点; (5)标记:对干涉条纹进行跟踪、标记不同条纹的干涉级次; (6)采样:用等间距采样现贯穿干涉图像区间,均匀设置采样点。 采样结束后即完成了对数字化干涉图像的图像处理过程,获得了 离散的、采样点基本均布的波面数据集合(x,y,p)。在经过后续的波 面拟合计算等可以得到波面数字分布。
光学测试技术
第四章 光学干涉测量技术
2013年5月26日
干涉技术和干涉仪在光学测量中占有重要地位。近年来,随 着数字图像处理技术的不断发展,使干涉测量这种以光波长作为 测量尺度和测量基准的技术得到更为广泛的应用。 在光学材料特性参数测试方面,用干涉法测量材料折射率精度 可达10-6;对材料光学均匀性的测量精度则可达10-7; 用干涉法可测量光学元件特征参数,用球面干涉仪测量球面曲 率半径精度达1μm,测量球面面形精度为1/100λ;用干涉法测量 平面面形精度为1/1000λ;用干涉法测量角度时测量精度可达 0.05″以上; 在光学薄膜厚度测试方面,用干涉法测厚的精度可达0.1nm; 在光学系统成像质量检验方面,利用干涉法可测定光学系统的 波像差,精度可达1/20λ,并可利用干涉图的数字化及后续处理 解算出成像系统的点扩散函数、中心点亮度、光学传递函数以 及各种单色像差。
物理光学
3.4.2光源非单色性的影响 3.4.3两相干光波振幅比的影响
3.5.1互相干函数和复相干度 3.5.2时间相干度 3.5.3空间相干度
3.6.1条纹的定域 3.6.2等倾条纹 3.6.3圆形等倾条纹 3.6.4透射光条纹
3.7.1定域面的位置及定域深度 3.7.2楔形平板产生的等厚条纹 3.7.3等厚条纹的应用
5.1惠更斯-菲 涅耳原理
2
*5.2基尔霍夫 衍射理论
3 5.3菲涅耳衍
射和夫琅禾费 衍射
4 5.4矩孔和单
缝的夫琅禾费 衍射
5
5.5圆孔的夫 琅禾费衍射
5.6光学成像系统的 衍射和分辨本领
*5.7双缝夫琅禾费 衍射
5.8多缝夫琅禾费衍 射
5.9衍射光栅
*5.11直边的菲涅 耳衍射
5.10圆孔和圆屏的 菲涅耳衍射
5.10.1菲涅耳衍射 5.10.2菲涅耳波带法 5.10.3圆孔衍射图样 5.10.4圆屏的菲涅耳衍射 5.10.5菲涅耳波带片
5.11.1菲涅耳积分及其图解 5.11.2半平面屏的菲涅耳衍射 5.11.3单缝菲涅耳衍射 5.11.4矩孔菲涅耳衍射
5.12.1什么是全息照相 5.12.2全息照相原理 5.12.3全息照相的特点和要求 5.12.4全息照相应用举例
2.1两个频率 1
相同、振动方 向相同的单色 光波的叠加
2
2.2驻波
3 2.3两个频率
相同、振动方 向互相垂直的 光波的叠加
4 2.4不同频率
的两个单色光 波的叠加
5
2.5光波的分 析
2.1.1代数加法 2.1.2复数方法 2.1.3相幅矢量加法
2.2.1驻波的形成 2.2.2驻波实验
2.3.1椭圆偏振光 2.3.2几种特殊情况 2.3.3左旋和右旋 2.3.4椭圆偏振光的强度 2.3.5利用全反射产生椭圆和圆偏振光
第四章光的干涉
§6 激光谐振腔的选模原理
据相干加强条件 2nh=m m=1,2,3…; ∵ =c/ ∴满足相干加强的频率为 m= mc / 2nh(纵模)
相邻两纵模间隔 q= m+1- m= c / 2nh
相邻两纵模间隔 q= m+1- m= c / 2nh
例: He-Ne激光器中,原子发出的0=4.7×1014HZ ( 0 =632.8nm) 谱线的宽度=1.5×109HZ。 如果He-Ne激光器的腔长h=10cm,n≈1。问有多 少个纵模输出?如果h=30cm呢?
解: 相邻的两纵模间隔 q= m+1- m= c/2nh
1) 若激光器的腔长h=10cm 激光器输出的纵模个数
N= / q=1
2) 若激光器的腔长 h=30cm
N= / q= 3
§7 光学薄膜
镀膜技术
用真空蒸发、沉淀或甩胶的方法,在璃或 光滑的金属表面涂、镀一层很薄的透明电介质 或金属膜层。
空气
三.应用
1. 可测光的波长,透明薄膜的厚度, 折射率等。
2.可测光波的相干长度 max =L0= 2/ 。
§5 法布里—珀罗干涉仪 一.法布里—珀罗干涉仪的结构
扩展源
准直透镜
分束板,内侧镀膜 会聚透镜
G1,G2间,间距h可调—法布里-珀罗干涉仪
G1,G2间,间距h固定—法布里-珀罗标准具
多光束相干光在L2焦平面上形成等倾圆环条纹
h=mmax/2。 若膜厚发生变化dh,干涉级次发生变化dm
等倾条纹
M1
M1⊥M2 M1‖M max ↓ → mmax ↓
b. 若 h↑ → max ↑→ mmax ↑ 若dm=N,则dh=N/2,测量精度数量级
2.等厚条纹
《物理光学》第4章-多光束干涉与光学薄膜解析
缝数为25000条的光栅的分辨本领约为0.1埃。 底边长5厘米的重火石玻璃棱镜的分辨本领1埃。
小结:法布里—珀罗干涉仪
I t I i
1
A
2
1 R
1 1 F sin 2
2
2
1
e
2he
2
S.R
2
2h
A
0.97mS
m
干涉图样的特点:
S
1
R R
4 h cos 2
1 0.8
I(0.9 ) 0.6 I(0.5 ) I(0.2 ) 0.4
不使两组条纹的相对位移Δe大于条纹的间距e,否则会发生
不同级条纹的重叠现象。把Δe恰好等于e时相应的波长差称
为标准具常数或标准具的光谱范围,是它所能测量的最大波
长差。
S.R
2
2h
例:标准具间隔h=5毫米,光波平均波长 5000 埃的情
况,
S。R =0.25埃。
能够分辨的最小波长差(Δλ)m (分辨极限):
1.310 6
1.310 6
例题1 F-P干涉仪中镀金属膜的两玻璃板内表面的反射系数
r=0.8944,求:1)干涉仪条纹的精细度系数F;2)条纹半宽度;3) 条纹精细度。
解:1)精细度系数
F
4
1
2
I(t)/I(i) 1
r 2 0.8944 2 0.8
F
4
1 2
4 0.8
1 0.82
80
4.2.1 法布里-珀罗干涉仪
产生的条纹要精细得多
相继两光束的位相差:
4 h cos 2
φ:金属内表面反射时的相变
设金属膜的吸收率为A,应有:
I t I i
物理光学-薄膜光学基础
λ0/4膜系的多层高反射膜示意图 膜系的多层高反射膜示意图
GHLHL…HLHA=G(HL)pHA =
这种膜系之所以能获得高反射率, 这种膜系之所以能获得高反射率 , 从多光束干涉原理看是 容易理解的:根据平板多光束干涉的讨论, 容易理解的 : 根据平板多光束干涉的讨论 , 当膜层两侧介质的 折射率大于(或小于 膜层的折射率时 折射率大于 或小于)膜层的折射率时, 若膜层的诸反射光束中 或小于 膜层的折射率时, 相继两光束的相位差等于π(λ 膜系) 相继两光束的相位差等于 0/4 膜系) , 则该波长的反射光获 得最强烈的反射。 得最强烈的反射 。 而上图所示的膜系恰恰能使它包含的每一层 膜都满足上述条件, 膜都满足上述条件 , 所以入射光在每一膜层上都获得强烈的反 射,经过若干层的反射之后, 入射光就几乎全部被反射回去。 经过若干层的反射之后, 入射光就几乎全部被反射回去。 这种膜系的优点是计算和制备工艺简单, 这种膜系的优点是计算和制备工艺简单 , 镀制时容易采用 极值法进行监控;缺点是层数多, 不能连续改变 不能连续改变。 极值法进行监控;缺点是层数多,R不能连续改变。目前发展了 一种非λ0/4膜系, 即每层膜的光学厚度不是λ0/4,具体厚度要由 一种非 膜系, 即每层膜的光学厚度不是 , 膜系 计算确定。其优点是只要较少的膜层就能达到所需要的反射率, 计算确定 。 其优点是只要较少的膜层就能达到所需要的反射率 , 缺点是计算和制备工艺较复杂。 缺点是计算和制备工艺较复杂。
2
下面我们分析一下反射率R。 下面我们分析一下反射率 。
作图。 令n1=1,n3=1.5作图。 , 作图
R
n2 = 2
1.7
1.5
1.23
0.04
1.38
π
广东工业大学--物理光学复习提纲(重点归纳)
⎪⎪⎭⎪⎪⎬⎫=∂∂-∇=∂∂-∇010*********t H H t E E υυ物理光学第一章 光的电磁理论 1.1光的电磁波性质1.麦克斯韦方程组2.物质方程3.电磁场的波动性波动方程:4.电磁波光的来历:由于电磁波传播速度与实验中测定的光速的数值非常接近,麦克斯韦以此为重要依据,语言光是一种电磁波。
麦克斯韦关系式:(注:对于一般介质,εr 或n 都是频率的函数, 具体的函数关系取决于介质的结构,色散) (注:相对介电常数通常为复数 会吸收光)折射率:可见光范围:可见光(760 nm~380 nm)每种波长对应颜色:红 色 760 nm~650 nm 绿 色 570 nm~490 nm 紫 色 430 nm~380 nm 橙 色 650 nm~590 nm 青 色 490 nm~460 nm 黄 色 590 nm~570 nm 蓝 色 460 nm~430 nms d l d E A t BCρρρρ⋅-=⋅⎰⎰⎰∂∂⎰⎰⎰⎰⎰=⋅V A dv s d D ρρρ0=⋅⎰⎰A s d B ρϖs d J l d H A t DCρρρρρ⋅+=⋅⎰⎰⎰∂∂)(tB E ∂∂-=⨯∇ρρρ=⋅∇D ρ0=⋅∇B ρtD J H ∂∂+=⨯∇ρρρs m c /1092997.21800⨯==εμr n ε=r r cn εμυ==1.2平面电磁波1.2.1波动方程的平面波解波面:波传播时,任何时刻振动位相总是相同的点所构成的面。
平面波:波面形状为平面的光波称为平面波。
球面波:波面为球面的波被称为球面波。
1.2.2平面简谐波 (1)空间参量空间周期: 空间频率: 空间角频率(波数):(2)时间参量时间周期: 时间频率: 时间角频率:(3)时间参量与空间参量关系1.2.3 一般坐标系下的波函数(三维情形)1.2.4 简谐波的复指数表示与复振幅一维简谐波波函数表示为复指数取实部的形式:不引起误解的情况下:复振幅:1.6 光在两介质分界面上的反射和折射1.6.1 反射定律和折射定律入射波、反射波和折射波的频率相同 反射定律:反射角等于入射角 折射定律:λfλ1=f kλππ/22±=±=f k T υλ=T νT 1=νωT ππνω22==υω=k []{}00(,)cos()Re exp ()E z t A kz t A i kz t ωφωφ=-+=-+r rr 0(,)exp[()]E z t A i kz t ωφ=-+r r 0()exp[()]E z A i kz φ=+r r tt i i r r i i n n n n θθθθsin sin sin sin ==1.6.2 菲涅尔公式s 分量和p 分量:通常把垂直于入射面振动的分量叫做s 分量, 把平行于入射面振动的分量称做p 分量。
第4章光学干涉测量技术
通常情况下,样板口径应大于等于被检光学元件的直径。如
果样板口径小于被检光学元件的直径,则应对检测结果进行转
换:
N1
D
2 1
N2
D
2 2
(4)光圈正负的判别: 光圈有正负之分。正光圈又叫高光圈,负光圈又叫低光圈。
定义:样板与被检元件在周边接触的是低光圈,样板与被检元 件在中心接触的是高光圈。(高低光圈的判断)
用样板法检验光学面面形时需要光学样板。所谓样板是根据 待测光学元件的标称曲率半径和口径制造出的光学元件,一般分 为标准样板和工作样板。标准样板一般成对加工,成对检测;工 作样板由标准样板传递,直接在加工过程的现场检测中使用。与 普通工件相比,样板一般采用性能稳定的光学材料制成,有一定 的厚径比,面形不易变化,曲率半径也可以用其他手段精确测量。
R'
4
R2
N
2
D
式中:λ为样板检验时用的波长,D和R分别是被测球面的口
径和名义曲率半径。
曲率半径/mm 精度等级
0.5~750 AB
>750~40000 AB
∞ AB
N
0.5 1.0
0.2 0.5
0.05 0.10
ΔN
0.1 0.1
0.1 0.1
0.05 0.10
用干涉法可测量光学元件特征参数,用球面干涉仪测量球面曲 率半径精度达1μm,测量球面面形精度为1/100λ;用干涉法测量 平面面形精度为1/1000λ;用干涉法测量角度时测量精度可达 0.05″以上;
在光学薄膜厚度测试方面,用干涉法测厚的精度可达0.1nm;
在光学系统成像质量检验方面,利用干涉法可测定光学系统的 波像差,精度可达1/20λ,并可利用干涉图的数字化及后续处理 解算出成像系统的点扩散函数、中心点亮度、光学传递函数以 及各种单色像差。
多光束干涉-FP标准距
2h
此时有m 1 2 m1
当 2 ,将无法判断是否越级。
2h
S
=
R
12
2h
2
2h
SR为标准具常数或自由光谱范围。
自由光谱范围标志了测量谱线 宽度的最大量程!
标准具的自由光谱范围很小。如 h = 5 mm, 500 nm, ( )S.R 0.025 nm
2
由于=4 h cos2 , 4 h cos2
2
定义标准具的分辨本领:
A=
1.93h cos2 S
m
cos2 1, 2h m, 有
1
2
A= 0.97mS
m
0.97s称为标准具的有效光束数, 记为N,A=mN。
由于标准具精细度 S 极大,因此标准具的分辨本领 是很高的。如
h
5mm, S
R 1 RA0
R 1 RA0
R R 1 RA0
1 R A0 R1 R A0
∴各束光的位相形成公差为 δ
的等差数列,即位相为:
n2
d0
0、、2、3、4
R2 1 R A0 R3 1 R A0
2、干涉条纹
⑴ 是等倾干涉条纹—明暗相间 同心圆环,条纹间距、干涉级 分布与迈克尔逊干涉条纹相似, 但亮纹强度增大、宽度变窄。
(2)单模间隔
c ve vm vm1 2nL (3)单模线宽
已知 ( 2 1- R)/ R
又有 d 4nLd / 2
所以有 2 1- R 2nL R
或者
c 1 1- R
v
2
2nL
R
Ar2 Aittrexp i Ar3 Aittr3 exp i2
物理光学教学大纲
物理光学Physical optics学分:4 总学时:64 理论学时:64 实验/实践学时:一、课程作用与目的1.使学生牢固地掌握有关干涉、衍射、偏振等现象的基本原理和规律,理解光的波动本性,为后续课程奠定必要的基础。
2.使学生牢固地掌握几何光学中的基本概念、近轴成像的规律和作图成像法,熟悉典型助视光学仪器的基本原理。
通过本课程的学习,使学生掌握光学的基本理论、基本知识,为后续课程打好基础。
二、课程基本要求1.要求学生牢固掌握有关光的传播及其本性,包括干涉、衍射、偏振等基本现象、原理和规律,为后继课程奠定必要的基础。
并了解它们在科研、生产和实践上的应用。
2.要求学生牢固掌握几何光学的基本概念、成像规律和作图方法。
熟悉典型助视光学仪器的基本原理。
3.培养学生在课堂教学、习题课及课外作业中的独立思考能力。
三、教材及主要参考书1.主要使用教材梁铨廷编著.物理光学.第3版.北京:电子工业出版社,2008年.2.主要参考书[1] 刘翠红编著.物理光学学习指导与题解.第1版.北京:电子工业出版社,2009年.[2] 梁铨廷,刘翠红编著.物理光学简明教程.第1版.北京:电子工业出版社,2010年.[3] 张洪欣,高宁,车树良编著.物理光学.第1版.北京:清华大学出版社,2010年.[4] 刘晨主编.物理光学.第3版.合肥:合肥工业大学出版社,2007年.四、课程内容绪论主要内容:光学的发展史。
重点和难点:光学的学习内容和学习方法,光学的发展过程和特点。
第一章光的电磁理论主要内容:光的电磁波性质、平面电磁波、球面波和柱面波、光源和光的辐射、电磁场的边值关系、光在两介质分界面上的反射和折射、全反射、重点和难点:光波在金属表面的透射和反射、光的吸收、色散和散射第二章光波的叠加与分析主要内容:两个频率相同、振动方向相同的单色光波的叠加、驻波、两个频率相同振动方向互相垂直的光波的叠加、不同频率的两个单色光波的叠加、光波的分析重点和难点:振动方向相同的单色光波的叠加、光波的分析第三章光的干涉和干涉仪主要内容:实际光波的干涉及实现方法、杨氏干涉实验、分波前干涉的其他实验装置、条纹的对比度、相干性理论、平行平板产生的干涉、楔形平板产生的干涉、用牛顿环测量透镜的曲率半径、迈克耳孙干涉仪重点和难点:杨氏干涉实验、分波前干涉的其他实验装置、用牛顿环测量透镜的曲率半径、迈克耳孙干涉仪第四章多光束干涉与光学薄膜主要内容:平行平板的多光束干涉、法布里-珀罗干涉仪和陆末-盖尔克板、多光束干涉原理在薄膜理论中的应用、重点和难点:法布里-珀罗干涉仪、多光束干涉原理第五章光的衍射主要内容:惠更斯-菲涅耳原理、菲涅耳衍射和夫琅禾费衍射、矩孔和单缝的夫琅禾费衍射、圆孔的夫琅禾费衍射、光学成像系统的衍射和分辨本领、多缝夫琅禾费衍射、衍射光栅、圆孔和圆屏的菲涅耳衍射、全息照相重点和难点:惠更斯-菲涅耳原理、菲涅耳衍射和夫琅禾费衍射、分辨本领第六章傅里叶光学主要内容:平面波的复振幅及空间频率、单色波场中复杂的复振幅分布及其分解、衍射现象的傅里叶分析方法、透镜的傅里叶变换性质和成像性质、相干成像系统分析及相干传递函数、非相干成像系统分析及光学传递函数、相干光学信息处理重点和难点:衍射现象的傅里叶分析方法、透镜的傅里叶变换性质和成像性质、相干成像系统分析及相干传递函数第七章光的偏振与晶体光学基础主要内容:偏振光和自然光、晶体的双折射、晶体光学性质的图形表示、光波在晶体表面的反射和折射、晶体光学器件、偏振光和偏振器件的矩阵表示、偏振光的干涉、旋光性、晶体、液体和液晶的电光效应、晶体的非线性光学效应重点和难点:晶体的双折射、偏振光的干涉、晶体的非线性光学效应五、习题或作业(此项可根据课程特点自行选择)根据教学需要,布置60道习题对各章重点内容加强巩固,作业完成情况作为评定课程成绩的一部分。
光学薄膜基础知识PPT教案
波动光学的建立
1845年,法拉第——光的振 动面在强磁场中的旋转
1856年,韦伯——电荷的电 磁单位和静电单位的比值= 光在真空中的速度
第36页/共120页
将光与电磁现象联系起来 37/120
1865年,麦克斯韦——光的电磁理论——麦克斯韦方程组
D
B 0
H
jc
D t
E B t
5/120
事实上,泰勒发展了一种用化学侵蚀产生“失泽” 而制作化学减反膜的方法。
目前制备光学应用的薄膜的主要方法是真空蒸发 法和溅射法,后者在十九世纪中叶就发现了,而 前者可追朔到二十世纪初。
但在1930年以前,它们不能作为实用的镀膜方法, 因为没有获得高真空的真正适用的抽气机,直到 1930年出现了油扩散泵—机械泵抽气系统以后, 制造实用的真空镀膜机才成为可能。
真空中:
2B 1 2B 0 c2 t 2
2E 1 2E 0 c2 t 2
麦克斯韦
c 1 299792458 米/秒 0 0
1832年,法拉第猜想: 电磁作用可能以波
1887年,赫兹发现了电磁波
——电磁光学建立
的形式传播,而且 光可能就是一种电
磁波动
第37页/共120页
38/120
量子论和相对论的建立
对于光学薄膜,在一块基片上淀积五、六十层膜 并非罕见,涂镀工艺是比较成熟的;
而对光学波导,则膜层层数一般不多,通常仅用 一层膜,其镀制工艺仍处在发展初期。
本课程讲的是第一种情况。
第10页/共120页
11/120
Optical thin films:通常意义的光学薄膜;
Optical coatings:一般来讲薄膜敷于光学玻璃、塑
光学薄膜及制备教程
当膜层的光学厚度为中心波长的四分之一时,则两个 复振幅反射率的矢量方向完全相反,合矢量的模最小,此时 有
r r1 r2
若要出现零反射的情况,要求
r1 r2
即,
n0 n1 n1 n2 n0 n1 n1 n2
化简得
n1
n0 n2
因此,理想的单层减反膜的条件是:膜层的光学厚 度为1/4波长其折射率为入射介质和基片介质折射率乘积 的平方根。
2.2 介质反射膜
介质反射膜特点: 反射率高 性能稳定 不易受损伤 对入射角敏感 带宽窄
介质反射膜应用场合: 多元件复杂光学系统 激光谐振腔 高功率激光 不要求宽带的场合
介质反射膜的结构是在折射率为ns基片上镀制光学厚度为 λ0/4的高折射率(n1)膜层,由于空气/膜层和膜层/基片界 面的反射光同相位,是反射率大大增加。该中心波长λ0的光 垂直入射时的反射率为
1.2.3 多层减反膜
常用的三层减反膜是“λ/4-λ/2-λ/4”膜系。对于中心 波长来说,λ0/2光学厚度的膜层为“虚设层”,对反射率没有 影响,与“λ/4-λ/4”的双层减反膜效果相同。但是λ/2膜层 对其他波长有影响,选择适当的折射率值,可以使反射特性曲 线变得平坦。
2.高反膜
高反膜的作用:增加介质间界面反射,减少损耗。 应用:光学仪器、激光器等
金膜
红外区高反射率(~95%)
强度和稳定性比银膜好
与玻璃基片的附着性差,常用铬膜作为衬底层 不能擦洗
由于多数金属膜较软,容易损坏,常常在金属膜外面 加一层保护膜。这样既能改进强度,又能保护金属膜不受 大气的侵蚀。 对于光学仪器中的反射镜,单纯金属膜的特性已能够 满足常用要求。但是某些场合,如多光束干涉仪、高质量 激光器的反射膜等,由于金属膜的吸收损失较大,故应采 用地吸收、高反射率的介质高反射膜。
光学薄膜原理
E
r 0
)
N1(k0
E
t 1
)
N
0
E
i 0
N
0
E
r 0
N
1
E
t 1
N
0
(
E
i 0
E
r 0
)
N 1 E1t
(2)
(1)×N1-(2)得振幅反射系数:
r
E
r 0
E
i 0
N0 N1 , N0 N1
(1)×N0+(2)得振幅透射系数:
t
E
t 0
E
i 0
2N0 N0 N1
垂直入射时能量反射率和透射率:
12
1 2 E2
1
2 1 H 2
E
12
1 2
E2
1
2 1
H2
( e iδ1 = cosδ1+ i sinδ1, e -iδ1 = cos δ1 - i sin δ1 )
H0=YE0, H2=η2E2
E0
1 Y
cos 1
i
1
sin
1
i sin
1 cos
1
1
1
2
E
2
B
C
光学薄膜的基本原理
第一章:光学薄膜设计的理论基础
第一节: 电磁波及其传播 第二节: 单界面的反射和折射 第三节: 单层薄膜的传输矩阵 第四节: 多层薄膜的分析方法
第二章:典型薄膜系统的设计
第一节: 增透膜(减反射膜) 第二节: 分光膜 第三节: 高反射膜 第四节: 干涉截止滤光片 第五节: 带通滤光片
第一章
光学薄膜设计的理论基础
第一节 电磁波及其传播
《物理光学》简答题
第4章光的电磁理论1由“玻片堆”产生线偏振光的原理是什么?答:采用“玻片堆”可以从自然光获得偏振光。
其工作原理是:“玻片堆”是由一组平行平面玻璃片叠在一起构成的,当自然光以布儒斯特角(B)入射并通过“玻片堆”时,因透过“玻片堆”的折射光连续不断地以布儒斯特角入射和折射,每通过一次界面,都会从入射光中反射掉一部分振动方向垂直于入射面的分量,当界面足够多时,最后使通过“玻片堆”的透射光接近为一个振动方向平行于入射面的线偏振光。
2解释“半波损失”和“附加光程差”。
答:半波损失是光在界面反射时,在入射点处反射光相对于入射光的相位突变,对应的光程为半个波长。
附加光程差是光在两界面分别反射时,由于两界面的物理性质不同(一界面为光密到光疏,而另一界面为光疏到光密;或相相反的情形)使两光的反射系数反号,在两反射光中引入的附加相位突变,对应的附加光程差也为半个波长。
第5章光的干涉1相干叠加与非相干叠加的区别和联系?区别:非相干叠加(叠加区域内各点的总光强是各光波光强的直接相加);相干叠加(叠加区域内各点的总光强不是各光波光强的直接相加,有强弱分布)。
联系:相干叠加与非相干叠加都满足波叠加原理。
2利用普通光源获得相干光束的方法答:可分为两大类:分波阵面法由同一波面分出两部分或多部分子波,然后再使这些子波叠加产生干涉。
(杨氏双缝干涉是一种典型的分波阵面干涉。
)分振幅法:1)利用薄膜的上、下表面反射和透射,将一束光的振幅分成两部分或多部分,再将这些波束相遇叠加产生干涉。
(薄膜干涉、迈克耳逊干涉仪和多光束干涉仪都利用了分振幅干涉。
)2)利用晶体的双折射将一束线偏振光分为两束正交的偏振光,经过不同的相移后叠加(在同一方向的分量叠加)产生干涉(分振动面干涉)。
3常见的分波面双光束干涉实验有哪些?其共同点是什么?1)杨氏双缝实验2)菲涅耳双棱镜实验:d=2l(n-1)3)菲涅耳双面镜实验:d=2l4)洛挨镜实验:d=2a(有半波损失)共同点:1)在整个光波叠加区内都有干涉条纹,这种干涉称为非定域干涉;2)在这些干涉装臵中,为得到清晰的干涉条纹,都要限制光束的狭缝或小孔,因而干涉条纹的强度很弱,以致于在实际上难以应用。
薄膜光学第四章光学镀膜工艺教学讲义
➢薄膜厚度监控技术
1)直接观测薄膜颜色变化的目视法; 一定结构的膜层对不同波长的光具有不同的透过率。白
光入射,反射光就会表现出颜色。 互补色原理:紫色黄绿,紫蓝黄,蓝橙,红蓝
绿,绿紫红。 特点:结构简单,操作方便,但精度低,受外界、人为因素 影响较大。
2)测量薄膜透过率和反射率极值法; 测量正在镀制膜层的反射率或透过率随膜层厚度增加过
教学目的和要求
了解和掌握影响光学薄膜质量的主要因素以及控制方法。
4.1 光学薄膜器件的质量要素
➢ 光学镀膜器件的光学性能 光学薄膜的光学常数:折射率和厚度。
膜层折射率误差来源、膜层厚度误差来源 膜层折射率误差来源 1)膜层的填充密度,也叫聚集密度。它是膜层的实材体积和 膜层的几何轮廓之比。 2)膜层的微观组织物理结构。即使用同样的膜层材料,采用 不同的物理气态沉积技术(PVD),得到的膜层具有不同的 晶体结构状态,具有不同的介电常数和折射率。
基片清洁的影响:残留在基片表面的污物和清洁剂将导致 1)膜层对基片的附着力差; 2)散射或吸收增大,抗激光损伤阈值低; 3)透光性能变差。
基片的表面污染来源: 1)基片表面抛光后存储时间较长,表面水渍、油斑和霉斑; 2)工作环境中的灰尘及纤维物质被零件表面吸附; 3)离子轰击时负高压电极溅射,在基片表面形成斑点; 4)真空系统油蒸汽倒流造成基片表面污染等。 提高清洁度的方法: 1)常打扫工作环境(最好建无尘车间)、经常打扫真空室; 2)对于新抛光基片表面,可用脱脂纱布蘸乙醇与乙醚混合物 进行擦洗;对于存储时间较长的基片表面,可用脱脂纱布或 棉花蘸最细的氧化铈或红粉进行更新,擦拭时要尽量均匀, 不要破坏表面面形。 3)基片表面油脂、水或其它溶剂的表面薄层,可利用离子轰 击来清洁。
华中科技大学物理光学第四章-多光束干涉与光学薄膜
• 多层高反膜
– 膜厚均为λ0/4,折射率高低交替,接近基片和空气 的膜层为高折射率,结构:G(HL)pHA – 十几层的高反膜可使λ0的反射率达到99.6%
4-3
• 冷光膜
– 结构:G(HL)14H1L2(HL)34H3A,下标表示控 制波长,上标表示层数。若λ1=650nm, λ =650nm λ2=565nm,λ3=480nm,则该结构高效反射 可见光、高效透射红外光 – 用途:用反射光给电影放映机提供冷光源
I 增益曲线 振荡阈值
ν
4-2
• 纵模频率
– 2nL=mλ⇒ ν=mc/(2nL)
• 纵模间隔
– ∆ν=c/(2nL)
• 单模线宽
– 对δ=2π/λ×2nL两边求微分,∆δ ⇒ ∆ν
– ∆ν=c(1-R)/(2πnLR1/2)
4-3 多光束干涉原理在薄膜理 论中的应用
• 薄膜:在玻璃或金属等基片的光滑表面 上,用物理、化学方法生成的透明介质 膜。 • 薄膜的用途:增强原基片的光学性能, 如增强透射率、增强反射率、调整光束 的光谱分布等
4-3 几种常用的薄膜系统
• 双层增透膜
– 膜厚均为λ0/4,n2=(nG/n0)1/2n1时,对λ0, R=0,但光 谱响应呈现V字形[图(4-16)] – n1h1= λ0/4,n2h2= λ0/2,n2提高,尽管对λ0,R≠0, 但光谱响应呈W字形[图(4-17)],高透过率光谱范围 增加了
4-2
• • • • 近似条件:sin(ε/2)≈ ε/2 ε=4.15/F1/2=2.07π/S A=0.97mS 若令0.97S为有效光束数N,则 A=mN
4-2
FP干涉仪的应用二:激光谐振腔
• FP标准具内放入激光介质, 构成激光谐振腔 • 只有特定频率(纵模)的 光波可以在腔内形成稳定 驻波 • 只有少数纵模可以受激放 大,变成激光输出