人教版高一数学必修一《函数的概念》教学设计新部编版
人教版高一数学必修1课件:1.2.1+函数的概念+情境互动课型
“八五”计划以来我国城镇居民恩格尔系数变化情况
时间(年) 城镇居 民恩格 尔系数 (﹪)
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
(2) f ( 3)
1 x2
有意义的实数x的集合是{x|x≠-2},所以,这个函数
1 3 3 1; 3 2
2 f( ) 3
2 1 11 3 3 33 3 . 2 3 3 8 8 3 2 3
(3)因为a>0,所以f(a),f(a-1)有意义.
f (3) 3 3 2 7.
值域为 2,1, 4,7,13.
【总结提升】
初中各类函数的对应关系、定义域、值域分别是什么?
函数
正比例函数 反比例函数 一次函数
探究点1 函数的概念
观察下列三个实例有什么不同点和共同点? 1.炮弹的射高与时间的变化关系问题 一枚炮弹发射后,经过26s落到地面击中目标,炮 弹的射高为845m,且炮弹距地面的高度h(单位:m)随 时间t(单位:s)变化的规律为:h=130t-5t2.
这里,炮弹飞行时间t的变化范围是数集
A={t|0≤t≤26},炮弹距地面的高度h的变化范围是数
53.8
52.9
50.1
49.9
49.9Biblioteka 48.646.444.5
41.9
39.2
37.9
提示:
不同点
实例1是用解析式刻画变量之间的对应关系, 实例2是用图象刻画变量之间的对应关系, 实例3是用表格刻画变量之间的对应关系.
人教课标版高中数学必修一《函数的概念(第1课时)》教案(1)-新版
1.2.1函数的概念(第1课时)一、教学目标 (一)核心素养通过这节课学习,了解构成函数的基本要素,理解并掌握函数的概念,熟悉用“区间”、“无穷大”等符号表示取值范围,在数学抽象、数学建模中体会对应关系在刻画函数概念中的作用. (二)学习目标 1.通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型.2.学习用集合语言和对应关系刻画函数,并明确函数的基本要素,掌握判别两个函数是否相同的方法.3.会求一些简单函数的定义域,并能正确使用“区间”表示.(三)学习重点 1.体会函数的重要模型化思想,了解构成函数的要素并理解函数的概念.2.会求一些简单函数的定义域,并能正确使用“区间”表示.(四)学习难点1.体会并理解函数概念中的“任意性”和“唯一性”.2.符号“y=f (x )”的含义. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第15页至第18页,填空:设B A ,是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作()x f y =,A x ∈.其中,x 叫做自变量,x 的取值范围A 叫做定义域,与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈叫做函数的值域. (2)写一写:区间(设a <b )定义名称区间数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b } 开区间 (a ,b ){x |a ≤x <b } 半开半闭区间 [a ,b ) {x |a <x ≤b } 半开半闭区间 (a ,b ] {x |x ≥a } 半开半闭区间 [a ,+∞) {x |x >a } 开区间 (a ,+∞) {x |x ≤a } 半开半闭区间 (-∞,a ] {x |x <a } 开区间(-∞,a )2.预习自测(1)()x f 与()a f 的区别与联系?答:()a f 表示当a x =时函数()x f 的值,是一个常量,而()x f 是自变量x 的函数,在一般情况下,它是一个变量;()a f 是()x f 的一个特殊值.(2)通过学习函数的概念,你觉得函数的基本要素有哪些?定义两个函数是否相等时,是否需要函数的几个基本要素必须都相同?答:基本要素有定义域、对应关系、值域。
高中数学函数概论教案模板
高中数学函数概论教案模板
一、教学目标
1. 理解函数的概念及其特点;
2. 掌握函数的定义、性质和基本性质;
3. 熟练运用函数的相关知识解决实际问题。
二、教学内容及安排
1. 函数的概念
- 什么是函数?
- 函数的符号表示:y = f(x)、f: x → y
- 自变量和因变量的概念
2. 函数的性质
- 定义域和值域
- 函数的奇偶性
- 函数的增减性
3. 函数的基本性质
- 函数的连续性
- 函数的周期性
- 函数的单调性
4. 函数的运算
- 函数的相加、相减、相乘、相除
- 函数的复合
5. 实际问题的解决
- 利用函数解决实际问题
- 实际问题的函数建模
三、教学重点与难点
1. 函数的概念及其特点是本节课的重点,学生需要掌握清楚;
2. 函数的运算和实际问题的解决是本节课的难点,需要帮助学生理解和应用。
四、教学方法
1. 讲授与示范结合
2. 分组讨论与合作学习
3. 案例分析与实践应用
五、教学资源
1. 教材
2. 多媒体设备
六、教学评价
1. 课堂练习
2. 作业完成情况
3. 知识掌握程度
七、教学进度安排
第一课:函数的概念
第二课:函数的性质
第三课:函数的基本性质
第四课:函数的运算
第五课:实际问题的解决
八、教学反馈
1. 教师定期对学生学习情况进行诊断和反馈
2. 学生可以提出问题和建议,促进教学质量的提高。
以上为高中数学函数概论教案模板范本,可根据实际教学情况进行调整和修改。
新人教版高一数学必修一教案(实用13篇)
新人教版高一数学必修一教案(实用13篇)高一数学必修二教案(1)理解函数的概念;。
(2)了解区间的概念;。
2、目标解析。
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;。
【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。
要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
【教学过程】。
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t 按照给定的图象,都有的一个臭氧层空洞面积s与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
高一数学必修一第三章教案细胞膜、细胞壁、细胞核、细胞质均不是细胞器。
一、细胞器之间分工。
1.线粒体:细胞进行有氧呼吸的主要场所。
双层膜(内膜向内折叠形成脊),分布在动植物细胞体内。
2.叶绿体:进行光合作用,“能量转换站”,双层膜,分布在植物的叶肉细胞。
3.内质网:蛋白质合成和加工,以及脂质合成的“车间”,单层膜,动植物都有。
分为光面内质网和粗面内质网(上有核糖体附着)。
最新人教版高一数学必修1第一章《函数的概念》教案1
1.2 函数及其表示我们生活的世界时刻都在发生变化,变化无处不在.这些变化着的现象都可以用数学有效地描述它们的变化规律.函数正是描述客观世界变化规律的重要数学模型,通过函数模型可以帮助我们科学地预测将发生什么,进而解决实际问题.因此,学习函数知识对研究客观世界、掌握事物变化规律具有重要的意义.教科书采用了从实际例子中抽象概括出用集合与对应的语言定义函数的方式介绍函数概念.这样不仅为学生理解函数概念打了感性基础,而且注重培养了学生的抽象概括能力,启发学生运用函数模型表述、思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.函数的表示是本节的主要内容之一.学生在学习用集合与对应的语言刻画函数之前,比较习惯的是用解析式表示函数,但这是对函数很不全面的认识.在本节中,教科书从引进函数概念开始就比较注重函数的不同表示方法:解析法、图象法、列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在数与形两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象直观的作用;在研究图象时,又要注意代数刻画以求思考和表述的精确性.本教科书将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,并让学生将更多的精力集中于理解函数的概念,同时,也体现了特殊到一般的思维过程.1.2.1 函数的概念(1)从容说课函数是中学数学的一个重要概念,也是高中数学的一条主线.函数在初中已学过,不过较肤浅,本课主要是从两集合间对应来描绘函数的概念,是一个抽象过程,学生学习可能有所不适应.教学中宜逐步设计合理的阶梯,从实际问题逐步建构函数的初步定义,对于“对应”二字宜进行适当解释.函数概念的引入,一般有两种方式,一种方式是先学习映射,再学习函数;另一种方式是通过具体实例,体会两个非空数集之间的一种特殊的对应关系(单值对应),即函数.考虑到多数高中学生的认知特点,为了有助于他们对函数概念本质的理解,教材采用后一种方式,从学生已掌握的具体函数和函数的描述性定义入手,引导学生联系自己的生活经历和实际问题,尝试列举各种各样的函数,构建函数的一般概念.《标准》对函数概念的处理方式是强调函数是刻画现实世界中一类重要变化规律(运动变化)的模型,一种通过某一事物的变化信息可推知另一事物信息的对应关系的数学模型.并要求结合实际问题,感受运用函数概念建立模型的过程与方法.三维目标一、知识与技能1.了解函数是特殊的数集之间的对应,理解函数的概念,了解构成函数的要素.2.了解“区间”“无穷大”等概念,掌握区间的符号表示.二、过程与方法1.进一步体会函数是描述变量之间的依赖关系的重要数学模型,能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用.2.通过现实事物本质,进行数学抽象与概括,重视其经历,总结经验,体会由具体逐步过渡到符号化、代数式化的数学思想.三、情感态度与价值观1.能对以往学过的知识理性化思考,对事物间的联系有一种数学化的思考.2.函数知识是学好数学后继知识的基础和工具,通过本节的学习,培养学生的抽象思维能力、渗透静与动的辩证唯物主义观点.教学重点在对应的基础上理解函数的的概念.教学难点对函数概念的理解.教具准备多媒体.教学过程一、创设情景,引入新课师:我们生活在这个世界上,每时每刻都在感受其变化,请大家看(多媒体播放:把教科书上的三个实例制成多媒体)镜头1:教科书P17实例(1).(旁白:随着时间t的变化,炮弹距地面的高度h在变化)镜头2:教科书P17实例(2).(旁白:南极上空臭氧层空洞的面积随着时间的变化而变化)镜头3:教科书P18实例(3).(旁白:我国城镇居民家庭恩格尔系数在逐年减少)……师:这些都说明了当时间变化时,另一个量也随之变化.(多媒体播放)镜头4:某人1元钱买1件商品,另一个人2元钱买1件商品.(旁白:不同的钱数买不同量的商品)镜头5:一只盒子有6只乒乓球,拿出10盒子,再拿出20盒子.(旁白:盒子增多球量增大)师:这些变化着的现象,说明当一个变量变化时,另一个变量随之变化.同学们能否再举出类似事例来?生1:我们的身高随着我们的岁数变化.生2:不对,20岁后,我们身高不长了.师:不错,但身高随着年龄的变化而变化是一个事实,这里变化是一个抽象的概念,说对应更确切.其实在初中我们已初步用函数来刻画和描述两个变量之间的依赖关系,今天我们进一步研究函数的知识.(板演函数的概念)二、讲解新课与学生共同分析、归纳上面的几个例子,寻求它们的共性,发现:对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y和它对应,记作f:A→B.由此得出函数的概念.1.函数的概念(1)函数的传统定义设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量.(2)函数的近代定义设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.我们所熟悉的一次函数y =ax +b (a ≠0)的定义域是R ,值域也是R .对于R 中的任意一个数x ,在R 中都有唯一的数y =ax +b (a ≠0)和它对应.二次函数y =ax 2+bx +c (a ≠0)的定义域是R ,值域是B .当a >0时,B ={y |y ≥ab ac 442-};当a <0时,B ={y |y ≤ab ac 442-}.对于R 中的任意一个数x ,在B 中都有唯一的数y =ax 2+bx +c(a ≠0)和它对应.对函数概念的理解(老师和学生共同探讨得出以下结论):①函数的两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合与对应的观点出发.这样,就不难得知函数实质是从非空数集A 到非空数集B 的一个特殊的对应.函数的近代定义更具有一般性,例如函数f (x )=⎩⎨⎧,0,1 ,,是无理数时当是有理数时当x x 如果用运动变化的观点来解释,会显得十分勉强,但用集合、对应的观点来解释,就十分自然.②函数的三要素:定义域、值域和对应关系f .其中核心是对应关系f ,它是函数关系的本质特征.y =f (x )的意义是:y 等于x 在关系f 下的对应值,而f 是“对应”得以实现的方法和途径,是联系x 与y 的纽带,所以是函数的核心.至于用什么字母表示自变量、因变量和对应关系,这是无关紧要的.两个函数相同当且仅当它们的定义域与对应关系在实质上(不必在形式上)分别相同.③函数的定义域是自变量x 的取值范围,它是构成函数的一个不可缺少的组成部分.忽视了函数的定义域,我们将寸步难行,由此,我们也往往把函数的定义域称之为函数的“灵魂”.【例1】 判断下列对应是否为函数:(1)x →x2,x ≠0,x ∈R ; (2)x →y ,这里y 2=x ,x ∈N ,y ∈R . 解:(1)对于任意一个非零实数x ,x 2被唯一确定,所以当x ≠0时,x →x2是函数,这个函数也可以表示为f (x )=x2(x ≠0). (2)当x =4时,y 由y 2=4给出,得y =2和y =-2,即给定一个x =4,有两个y 的值(±2)和它对应,所以x →y (y 2=x )不是函数.(自己输入一个x 的值试一试)方法引导:判断函数的标准可以简记成:两个非空数集A 、B ,一个对应关系f ,A 中任一对B 中唯一.【例2】 求下列函数的定义域:(1)f (x )=1-x ;(2)g (x )=11+x . 解:(1)因为当x -1≥0,即x ≥1时,1-x 有意义;当x -1<0,即x <1时,1-x 没有意义,所以这个函数的定义域是{x |x ≥1}.(2)因为当x +1≠0,即x ≠-1时,11+x 有意义;当x +1=0,即x =-1时,11+x 没有意义,所以这个函数的定义域是{x |x ≠-1,且x ∈R }.方法引导:求函数的定义域开偶次方其根号里面需非负,分母不为零. 2.区间研究函数时常用到区间的概念. (1)区间的概念设a 、b 是两个实数,而且a <b ,我们规定:①满足不等式a ≤x ≤b 的实数x 的集合叫做闭区间,表示为;[a ,b ]; ②满足不等式a <x <b 的实数x 的集合叫做开区间,表示为(a ,b ); ③满足不等式a ≤x <b 或a <x ≤b 的实数x 的集合叫做半开半闭区间,分别表示为;[a ,b ],(a ,b ).注意:按照国际标准前闭后开区间记作;[a ,b ),前开后闭区间记作(a ,b ].区间符号里面两个字母(或数字)之间用“,”间隔开.(2)区间的端点和长度区间定义中的实数a 与b 叫做相应区间的端点,其中a 叫左端点,b 叫右端点.称b -a 为区间长度.注意:①区间是集合的又一种表示方法,这样某些以实数为元素的集合就有三种表示法:集合表示法(列举法,描述法)、不等式表示法和区间表示法.例如大于-1小于2的实数的集合可以表示为如下三种形式:{x |-1<x <2};-1<x <2;(-1,2),至于用哪一种形式,可根据习惯或简明的原则来选用.在数轴上,区间可以用一条以a 和b 为端点的线段来表示,(如下表)在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点.(3)无穷大的概念①实数集R 也可以用区间表示为(-∞,+∞),其中“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.注意:无穷大是一个符号,不是一个数.②关于用-∞,+∞作为区间的一端或两端的区间称为无穷区间,它的定义和符号如下表:特别说明: ①区间是集合;②区间的左端点必小于右端点;③区间中的元素都是点,可以用数字表示; ④任何区间均可在数轴上表示出来;⑤以“-∞”或“+∞”为区间的一端时,这一端必须是小括号. 三、课堂练习 1.反比例函数y =xk(k ≠0)的定义域、对应关系和值域各是什么?请用上面的函数定义描述这个函数.2.教科书P 22练习题1.答案:1.定义域为(-∞,0)∪(0,+∞),对应关系f :y =xk(k ≠0),值域为(-∞,0)∪(0,+∞).对于任意一个非零实数x ,x k 被唯一确定,所以当x ≠0时,y =xk(k ≠0)是函数.2.(1)因为4x +7≠0,得x ≠-47,所以,函数f (x )=741+x 的定义域为{x ∈R |x ≠-47}. (2)因为1-x ≥0,且x +3≥0,得-3≤x ≤1,所以,函数f (x )=x -1+3+x -1的定义域为{x ∈R |-3≤x ≤1},定义域用区间也可表示为[-3,1].四、课堂小结1.本节学习的数学知识:(1)函数的概念和函数的定义域、值域等概念;(2)区间与无穷大的概念. 2.本节学习的数学方法:观察与归纳的思想方法、定义法、渗透了静与动的辩证唯物主义观点. 五、布置作业1.教科书P 28习题1.2 A 组第1题.2.求下列函数的定义域.(1)f (x )=21-x ; (2)f (x )=23+x ; (3)f (x )=1+x +x-21.板书设计1.2.1 函数的概念(1)函数的概念函数的传统定义函数的近代定义对函数概念的理解例1例2区间的有关概念课堂练习课堂小结。
最新人教版高一数学必修1第一章《函数的概念》教材梳理
最新人教版高一数学必修1第一章《函数的概念》教材梳理XXX巧解牛知识·巧学·升华一、函数1.函数的定义传统的函数定义是指,在某个变化过程中有两个变量x和y,如果对于x在某一范围内的每个确定的值,都有唯一确定的y值与之对应,那么就称y是x的函数,x被称为自变量。
近代的函数定义则是指,设A和B都是非空的数集,如果按照某个确定的对应关系f,使得对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),其中x为自变量,x的取值范围A为函数的定义域,函数值的集合{f(x)|x∈A}为函数的值域。
2.函数的三要素1)定义域定义域是自变量x的取值范围,有时可以省略。
如果未加特殊说明,函数的定义域就是指能使这个式子有意义的所有实数x的集合。
在实际问题中,还必须考虑自变量x所代表的具体量的允许值范围。
例如,函数y=x+3,由于没有指出它的定义域,则我们认为它的定义域是x≥-3且x≠的实数。
又如,一矩形的宽为x m,长是宽的2倍,其面积为y=2x^2,此函数的定义域为x>0而不是全体实数。
2)对应法则对应法则f是核心,它是对自变量x进行“操作”的“程序”或者“方法”,是连结x与y的纽带。
按照这一“程序”,从定义域集合A中任取一个x,可得到值域{y|y=f(x)且x∈A}中唯一y与之对应。
一般地,函数f(x)中,“f”可以用具体的文字来描述,如f(x)=x^2,f表示为“求平方”;f(x)=2x+1,f表示为“乘2加1”。
但有时,由于函数f(x)没有解析式,我们就无法用文字写出它的对应法则。
同一“f”,可以“操作”于不同形式的变量,如f(x)是对x进行操作,而f(x^2)是对x^2进行“操作”,f(3)是对3进行“操作”。
由此可知,对应法则f可以用具体的文字、图象或列表来表达。
3)值域值域是函数值的集合{f(x)|x∈A},它是对应法则f作用于定义域A中所有元素所得到的函数值的集合。
人教版高中数学必修一《函数概念》教学设计
《1.2.1函数的概念》
教学设计
《函数的概念》的教学设计
一、教学目标
知识与技能——通过函数概念这节课的学习,了解函数的定义及其三要素,掌握区间的符号表
示,会求简单函数的定义域和值域。
培养学生分析、判断、抽象、归纳概括的逻辑思维能力
过程与方法——通过函数定义获得的学习过程,体会由具体逐步过渡到符号化、代数化,特殊到
一般的数学思想。
情感态度与价值观—— 通过本节的学习,培养学生的抽象思维能力、渗透静与动的辩证唯物主
义观点;树立“数学源于实践,又服务于实践”的数学应用意识。
二、教学重点与难点
重点:了解函数定义及其三要素,掌握区间的符号表示方法,会求简单函数的定义域和值域。
难点:理解函数符号)(x f y 的含义,掌握区间的符号表示方法及无穷大的概念。
人教版高中数学必修一《函数概念》教学设计
《1.2.1函数的概念》
教学设计
《函数的概念》的教学设计
一、教学目标
知识与技能——通过函数概念这节课的学习,了解函数的定义及其三要素,掌握区间的符号表
示,会求简单函数的定义域和值域。
培养学生分析、判断、抽象、归纳概括的逻辑思维能力
过程与方法——通过函数定义获得的学习过程,体会由具体逐步过渡到符号化、代数化,特殊到
一般的数学思想。
情感态度与价值观—— 通过本节的学习,培养学生的抽象思维能力、渗透静与动的辩证唯物主
义观点;树立“数学源于实践,又服务于实践”的数学应用意识。
二、教学重点与难点
重点:了解函数定义及其三要素,掌握区间的符号表示方法,会求简单函数的定义域和值域。
难点:理解函数符号)(x f y 的含义,掌握区间的符号表示方法及无穷大的概念。
高一数学必修1《函数的基本性质》教案
高一数学必修1《函数的基本性质》教案教学目标:1. 理解函数以及函数的各种表达方式。
2. 掌握函数的基本性质,包括单调性、奇偶性、周期性和零点。
3. 实现函数的简单变换,例如平移、伸缩和反转等。
4. 能够应用函数的基本性质,解决实际问题。
教学重点:1. 理解函数的概念以及函数的各种表达方式。
2. 掌握函数的基本性质,实现函数的简单变换。
3. 能够应用函数的基本性质,解决实际问题。
教学难点:1. 如何理解函数的概念以及函数的各种表达方式。
2. 如何应用函数的基本性质,解决实际问题。
教学方法:一、讲授法。
二、探究法。
三、案例分析法。
教学过程:一. 引入新知识(5分钟):教师简单介绍函数的概念和历史背景,引导学生关注函数在实际生活中的应用,引出本节课的学习目标,激发学生的学习兴趣。
二. 讲解函数的概念(10分钟):1. 函数的定义:任何能够使$x$值唯一对应一个$y$值的规律都称为函数,可以表示为$y=f(x)$。
$x$为自变量,$y$为因变量,函数$f(x)$表示$y$与$x$之间的关系。
2. 函数的图像:函数可以通过绘制它们的图像进行可视化。
函数的图像是平面直角坐标系上的一条曲线。
3. 函数的表示方法:函数可以用表格、图像、公式等多种方式表示。
例如$f(x)=x^2$就是一种表示方式。
三. 掌握函数的基本性质(30分钟):1. 单调性:单调递增和单调递减;2. 奇偶性:奇函数、偶函数和常函数;3. 周期性:周期函数和非周期函数;4. 零点:零点定义以及求零点的方法。
四. 实现函数的简单变换(10分钟):1. 平移变换:表示为$f(x-a)$或$f(x)+b$,注意$a$和$b$的正负性;2. 伸缩变换:表示为$f(kx)$或$f(x)/k$,注意$k$的正负性;3. 反转变换:表示为$f(-x)$或$f(-y)$,注意反转后的坐标轴位置变化。
五. 应用函数的基本性质(10分钟):1. 求函数的最值。
高中数学专题函数教案模板
高中数学专题函数教案模板
一、教学目标:
1. 理解函数的基本概念;
2. 掌握函数的定义和性质;
3. 能够求解函数的定义域、值域和单调性;
4. 能够绘制函数的图像。
二、教学重点:
1. 函数的定义和性质;
2. 函数的图像绘制。
三、教学难点:
1. 函数的单调性;
2. 函数的图像绘制。
四、教学准备:
1. 课件、教材、作业本;
2. 黑板、彩色粉笔;
3. 实验器材。
五、教学过程:
1. 导入:通过举例引入函数的概念,让学生了解函数的意义;
2. 讲解:讲解函数的定义和性质,重点讲解函数的单调性;
3. 实验:让学生通过实验验证函数的性质,如函数的定义域和值域;
4. 练习:让学生通过练习巩固所学内容,并解决相关问题;
5. 辅导:对学生提出的问题进行解答和辅导;
6. 总结:对本节课的内容进行总结,并布置下节课的作业。
六、教学反思:
1. 学生的学习情况:学生是否理解了函数的定义和性质;
2. 教学方法的效果:教师采用的教学方法是否得当;
3. 改进措施:针对学生的学习情况和教学效果,进行相应的改进措施。
七、作业布置:
1. 完成课堂练习;
2. 阅读教材相关章节。
以上就是本次高中数学专题函数教案的模板范本,可根据实际情况进行调整和完善。
希望对您有所帮助!。
高中数学必修1教案 最新人教版高一数学必修一教案(大全(优秀11篇)
高中数学必修1教案最新人教版高一数学必修一教案(大全(优秀11篇)高中数学必修一教案全套篇一本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。
本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。
更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。
因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。
二、教学目标定位为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。
根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:一、知识与技能.理解合力、分力、力的合成的概念。
理解力的合成本质上是从等效的角度进行力的替代。
.探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。
二、过程与方法.通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。
.通过实验探究方案的设计与实施,体验科学探究的过程。
三、情感态度与价值观.培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。
.培养认真细致、实事求是的实验态度。
根据以上分析确定本节课的重点与难点如下:一、重点.合力和分力的概念以及它们的关系。
.实验探究力的合成所遵循的法则。
二、难点平行四边形定则的理解和运用。
三、重、难点突破方法——教法简介本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。
因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。
体现学生主体性。
实验归纳法的步骤如下。
人教版高一数学教案
人教版高一数学教案人教版高一数学教案1一、教材分析及处理函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。
对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。
教学重点是函数的概念,难点是对函数概念的本质的理解。
学生现状学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。
二、教学三维目标分析1、知识与技能(重点和难点)(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。
并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。
不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。
(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。
(3)、掌握定义域的表示法,如区间形式等。
(4)、了解映射的概念。
2、过程与方法函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题: (1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。
高一数学教案《函数概念》
高一数学教案《函数概念》高一数学教案《函数概念》高一数学教案《函数概念》篇1一、教材分析^p函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。
函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在详细的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。
这一章内容浸透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深化的影响。
本节《函数的概念》是函数这一章的起始课。
概念是数学的根底,只有对概念做到深化理解,才能正确灵敏地加以应用。
本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。
也为进一步学习函数这一章的其它内容提供了方法和根据。
二、重难点分析^p二、重难点确实定根据对上述对教材的分析^p 及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。
三、学情分析^p1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并详细研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了根底。
2、不利因素:函数在初中虽已讲过,不过较为浅薄,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析^p 、概括的才能比较高,学生学起来有一定的难度。
四、目的分析^p1、理解函数的概念,会用函数的定义判断函数,会求一些最根本的函数的定义域、值域。
2、通过对实际问题分析^p 、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的才能。
3、通过对函数概念形成的探究过程,培养学生发现问题,探究问题,不断超越的创新品质。
五、教法学法本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探究。
高中数学试讲教案函数
高中数学试讲教案函数
一、教学目标:
1. 知识目标:学生能够理解函数的定义,掌握函数的符号表示和性质。
2. 能力目标:学生能够运用函数的相关知识解决实际问题。
3. 情感目标:培养学生对数学的兴趣和探索精神。
二、教学重点:
1. 函数的定义和符号表示。
2. 函数的性质和特点。
三、教学难点:
1. 运用函数的相关知识解决实际问题。
2. 培养学生对函数的理解和探索能力。
四、教学过程:
1. 导入:通过实际问题引入函数的概念,引发学生对函数的思考和讨论。
2. 讲授:简要讲解函数的定义和符号表示,介绍函数的性质和特点,引导学生理解函数的基本概念。
3. 练习:让学生通过练习题目巩固函数的相关知识,培养运用函数解决问题的能力。
4. 拓展:引导学生探索函数的更多应用领域,激发学生对函数的兴趣和热爱。
五、归纳总结:总结本节课学习的重点和难点,强化学生对函数的理解和掌握。
六、作业布置:布置相关作业,巩固学生对函数的学习成果。
七、评价反馈:通过课堂练习和作业检查,评价学生对函数的理解和掌握情况,及时给予反馈和指导。
八、课后反思:对本节课的教学过程进行反思,总结教学中的不足之处,为下一次的教学改进提供参考。
高中数学必修一《函数的概念》教学设计
函数的概念教学设计一、教学目标1、知识与技能:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2、过程与方法:(1)回顾初中阶段函数的定义,通过实例深化函数的定义.(2)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(3)了解构成函数的要素;3、情感.态度和价值观(1)通过学习函数概念,培养学生观察问题,提出问题的探究能力,进一步培养学生学习数学的兴趣和抽象概括能力;(2) 启发学生用函数模型表述和解决现实世界中蕴含的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.(3)在函数概念深化的过程中,体会数学形成和发展的一般规律;由函数所揭示的因果关系,培养学生的辨证思想.(4) 让学生体会现实世界充满变化,要用发展的眼光看待问题。
使学生感受到学习函数的必要性的重要性,激发学习的积极性。
二、教学重点与难点:重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数三要素的理解;三、学法与教学方法1、学法(尝试自学辅导法).:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 .2..教学方法:建构主义观点的教学方式,即通过大量实例,遵循“特殊到一般”的认识规律,提出问题,大胆猜想,确定方向,分组研究,尝试验证,归纳总结;教师通过问题诱导→启发讨论→探索结果,引导学生直观感知→观察分析→归纳类比→抽象概括,使学生在获得知识的同时,能够掌握方法、提升能力.通过搭建新概念与学生原有认识结构间的桥梁,使学生心理上得到认同,建立新的认识结构。
内容分析:函数是数学的重要的基础概念之一进一步学习的数学分析,包括极限理论、微分学、积分学、微分方程乃至泛函分析等高等学校开设的数学基础课程,无一不是以函数作为基本概念和研究对象的其他学科如物理学等学科也是以函数的基础知识作为研究问题和解决问题的工具函数的教学内容蕴涵着极其丰富的辩证思想,是对学生进行辩证唯物主义观点教育的好素材泛地诊透到中学数学的全过程和其他学科中函数是中学数学的主体内容它与中学数学很多内容都密切相关,初中代数中的“函数及其图象”就属于函数的内容,高中数学中的指数函数、对数函数、三角函数是函数内容的主体,通过这些函数的研究,能够认识函数的性质、图象及其初步的应用后续内容的极限、微积分初步知识等都是函数的内容本节的函数是用初中代数中“对应”来描述的函数概念,高一学生的数学知识较少,接受能力有限,用原始概念“对应”一词来描述函数定义是合适的四:教学过程1.复习回顾:初中(传统)的函数的定义是什么?初中学过哪些函数?设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的定义.初中已经学过:正比例函数、反比例函数、一次函数、二次函数等 初中已学习过函数的概念,函数的概念从运动变化的观点描述了变量之间的依赖关系. 本节将进一步学习函数及其构成要素.2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;提问:你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t 的变化范围是什么?炮弹距离地面高度h 的变化范围是什么?炮弹飞行时间t 的变化范围是数集}260{≤≤=t t A ,炮弹距地面的高度h 的变化范围是数集}8450{≤≤=h h B .从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系h=130t-5t ²,在数集B 中都有唯一确定的高度h 和它对应,满足函数定义,应为函数。
人教A版高中数学必修一函数的概念第课时示范教案新(1)
1.2 函数及其表示1.2.1 函数的概念整体设计教学分析函数是中学数学中最重要的基本概念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图象、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念.三维目标1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数的概念,培养学生观察问题、提出问题的探究能力,进一步培养学习数学的兴趣和抽象概括能力;启发学生运用函数模型表述思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.2.掌握构成函数的三要素,会求一些简单函数的定义域,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性的重要性,激发学生学习的积极性.重点难点教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数.教学难点:符号“y=f(x)”的含义,不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值.课时安排2课时教学过程第1课时函数的概念导入新课思路1.北京时间2005年10月12日9时整,万众瞩目的“神舟”六号飞船胜利发射升空,5天后圆满完成各项任务并顺利返回.在“神舟”六号飞行期间,我们时刻关注“神舟”六号离我们的距离y随时间t是如何变化的,本节课就对这种变量关系进行定量描述和研究.引出课题.思路2.问题:已知函数y=1,x∈瘙綂下标RQ,0,x∈瘙綂下标RQ,请用初中所学函数的定义来解释y与x的函数关系?先让学生回答后,教师指出:这样解释会显得十分勉强,本节将用新的观点来解释,引出课题.推进新课新知探究提出问题(1)给出下列三种对应:(幻灯片)①一枚炮弹发射后,经过26 s落到地面击中目标.炮弹的射高为845 m,且炮弹距地面的高度为h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2.时间t的变化范围是数集A={t|0≤t≤26},h的变化范围是数集B={h|0≤h≤845}.则有对应f:t→h=130t-5t2,t∈A,h∈B.②近几十年来,大气层的臭氧迅速减少,因而出现了臭氧洞问题.图1-2-1-1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106 km2)随时间t(单位:年)从1991~2001年的变化情况.图1-2-1-1根据图1-2-1-1中的曲线,可知时间t的变化范围是数集A={t|1979≤t≤2001},空臭氧层空洞面积S的变化范围是数集B={S|0≤S≤26},则有对应:f:t→S,t∈A,S∈B.③国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.下表中的恩格尔系数y随时间t(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.集B={S|37.9≤S≤53.8}.则有对应:f:t→y,t∈A,y∈B.以上三个对应有什么共同特点?(2)我们把这样的对应称为函数,请用集合的观点给出函数的定义.(3)函数的定义域是自变量的取值范围,那么你是如何理解这个“取值范围”的?(4)函数有意义又指什么?(5)函数f:A→B的值域为C,那么集合B=C吗?活动:让学生认真思考三个对应,也可以分组讨论交流,引导学生找出这三个对应的本质共性. 解:(1)共同特点是:集合A、B都是数集,并且对于数集A中的每一个元素x,在对应关系f:A→B 下,在数集B中都有唯一确定的元素y与之对应.(2)一般地,设A、B都是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数,记作y=f(x),x∈A,其中x叫自变量,x的取值范围A叫做函数的定义域,函数值的集合{f(x)|x∈A}叫做函数的值域.在研究函数时常会用到区间的概念,设a,b 是两个实数,且a<b,如下表所示:(3)自变量的取值范围就是使函数有意义的自变量的取值范围.(4)函数有意义是指:自变量的取值使分母不为0;被开方数为非负数;如果函数有实际意义时,那么还要满足实际取值等等. (5)C ⊆B. 应用示例思路11.已知函数f(x)=3x ++21+x , (1)求函数的定义域; (2)求f(-3),f(32)的值; (3)当a>0时,求f(a),f(a-1)的值. 活动:(1)让学生回想函数的定义域指的是什么?函数的定义域是使函数有意义的自变量的取值范围,故转化为求使3x +和21+x 有意义的自变量的取值范围;3x +有意义,则x+3≥0, 21+x 有意义,则x+2≠0,转化解由x+3≥0和x+2≠0组成的不等式组. (2)让学生回想f(-3),f(32)表示什么含义?f(-3)表示自变量x=-3时对应的函数值,f(32)表示自变量x=32时对应的函数值.分别将-3,32代入函数的对应法则中得f(-3),f(32)的值.(3)f(a)表示自变量x=a 时对应的函数值,f(a-1)表示自变量x=a-1时对应的函数值.分别将a,a-1代入函数的对应法则中得f(a),f(a-1)的值. 解:(1)要使函数有意义,自变量x 的取值需满足⎩⎨⎧≠+≥+.02,03x x 解得-3≤x<-2或x>-2,即函数的定义域是[-3,-2)∪(-2,+∞). (2)f(-3)=33-++231+-=-1;f(32)=2321332+++=23383+.(3)∵a>0,∴a∈[-3,-2)∪(-2,+∞), 即f(a),f(a-1)有意义.则f(a)=3a ++21+a ; f(a-1)=21131-a +-++a =112+++a a .点评:本题主要考查函数的定义域以及对符号f(x)的理解.求使函数有意义的自变量的取值范围,通常转化为解不等式组.f(x)是表示关于变量x 的函数,又可以表示自变量x 对应的函数值,是一个整体符号,分开符号f(x)没有什么意义.符号f 可以看作是对“x”施加的某种法则或运算.例如f(x)=x 2-x+5,当x=2时,看作“2”施加了这样的运算法则:先平方,再减去2,再加上5;当x 为某一代数式(或某一个函数记号时),则左右两边的所有x 都用同一个代数式(或某一个函数)来代替.如:f(2x+1)=(2x+1)2-(2x+1)+5,f [g(x)]=[g(x)]2-g(x)+5等等.符号y=f(x)表示变量y 是变量x 的函数,它仅仅是函数符号,并不表示y 等于f 与x 的乘积;符号f(x)与f(m)既有区别又有联系,当m 是变量时,函数f(x)与函数f(m)是同一个函数;当m 是常数时,f(m)表示自变量x=m 对应的函数值,是一个常量.已知函数的解析式,求函数的定义域,就是求使得函数解析式有意义的自变量的取值范围,即: (1)如果f(x)是整式,那么函数的定义域是实数集R .(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合. (4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合(即求各部分定义域的交集).(5)对于由实际问题的背景确定的函数,其定义域还要受实际问题的制约. 变式训练1.求函数y=x x x --++11)1(2的定义域.答案:{x|x≤1,且x≠-1}.点评:本题容易错解:化简函数的解析式为y=x+1x -1-,得函数的定义域为{x|x≤1}.其原因是这样做违背了讨论函数问题要保持定义域优先的原则.化简函数的解析式容易引起函数的定义域发生变化,因此求函数的定义域之前时,不要化简解析式. 2.2007山东滨州二模,理1若f(x)=x1的定义域为M,g(x)=|x|的定义域为N,令全集U=R ,则M∩N 等于( )A.MB.NC.M D.N分析:由题意得M={x|x>0},N=R ,则M∩N={x|x>0}=M. 答案:A3.已知函数f(x)的定义域是[-1,1],则函数f(2x-1)的定义域是________. 分析:要使函数f(2x-1)有意义,自变量x 的取值需满足-1≤2x -1≤1,∴0≤x≤1. 答案:[0,1]思路21.2007湖北武昌第一次调研,文14已知函数f(x)=221xx +,那么f(1)+f(2)+f(21)+f(3)+f(31) +f(4)+f(41)=________. 活动:观察所求式子的特点,引导学生探讨f(a)+f(a1)的值. 解法一:原式=22222222222222)41(1)41(414)31(1)31(313)21(1)21(212111+++++++++++++=21+17117161011095154+++++=27. 解法二:由题意得f(x)+f(x 1)=2222)1(1)1(1xx x x +++=222111x x x +++=1. 则原式=21+1+1+1=27.点评:本题主要考查对函数符号f(x)的理解.对于符号f(x),当x 是一个具体的数值时,相应地f(x)也是一个具体的函数值.本题没有求代数式中的各个函数值,而是看到代数式中含有f(x)+f(x 1),故先探讨f(x)+f(x1)的值,从而使问题简单地获解.求含有多个函数符号的代数式值时,通常不是求出每个函数值,而是观察这个代数式的特 ?找到规律再求解.受思维定势的影响,本题很容易想到求出每个函数值来求解,虽然可行,但是这样会浪费时间,得不偿失.其原因是解题前没有观察思考,没有注意经验的积累. 变式训练1.已知a 、b∈N *,f(a+b)=f(a)f(b),f(1)=2,则)2006()2007()2()3()1()2(f f f f f f +++ =_________.分析:令a=x,b=1(x∈N *),则有f(x+1)=f(x)f(1)=2f(x), 即有)()1(x f x f +=2(x∈N *). 所以,原式=2006222++=4012. 答案:40122.2007山东蓬莱一模,理13设函数f(n)=k(k∈N *),k 是π的小数点后的第n 位数字,π=3.1415926535…,则[]{}100)10(f f f 等于________.分析:由题意得f(10)=5,f(5)=9,f(9)=3,f(3)=1,f(1)=1,…, 则有[]{}100)10(f f f =1.答案:12.2007山东济宁二模,理10已知A={a,b,c},B={-1,0,1},函数f:A→B 满足f(a)+f(b)+f(c)=0,则这样的函数f(x)有( )A.4个B.6个C.7个D.8个活动:学生思考函数的概念,什么是不同的函数.定义域和值域确定后,不同的对应法则就是不同的函数,因此对f(a),f(b),f(c)的值分类讨论,注意要满足f(a)+f(b)+f(c)=0. 解:当f(a)=-1时,则f(b)=0,f(c)=1或f(b)=1,f(c)=0, 即此时满足条件的函数有2个; 当f(a)=0时,则f(b)=-1,f(c)=1或f(b)=1,f(c)=-1或f(b)=0,f(c)=0, 即此时满足条件的函数有3个; 当f(a)=1时,则f(b)=0,f(c)=-1或f(b)=-1,f(c)=0, 即此时满足条件的函数有2个.综上所得,满足条件的函数共有2+3+2=7(个). 故选C.点评:本题主要考查对函数概念的理解,用集合的观点来看待函数. 变式训练若一系列函数的解析式相同,值域相同,但是定义域不同,则称这些函数为“同族函数”.那么解析式为y=x 2,值域是{1,4}的“同族函数”共有( )A.9个B.8个C.5个D.4个分析:“同族函数”的个数由定义域的个数来确定,此题中每个“同族函数”的定义域中至少含有1个绝对值为1的实数和绝对值为2的实数.令x 2=1,得x=±1;令x 2=4,得x=±2. 所有“同族函数”的定义域分别是{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,-2,2}, {-1,-2,2},{1,-1,-2,2},则“同族函数”共有9个. 答案:A 知能训练1.2007学年度山东淄博高三第二次摸底考试,理16已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则)9()10()5()7()8()4()5()6()3()3()4()2()1()2()1(22222f f f f f f f f f f f f f f f +++++++++=______.解:∵f(p+q)=f(p)f(q),∴f(x+x)=f(x)f(x),即f 2(x)=f(2x). 令q=1,得f(p+1)=f(p)f(1),∴)()1(p f p f +=f(1)=3.∴原式=)9()10(2)7()8(2)5()6(2)3()4(2)1()2(2f f f f f f f f f f ++++=2(3+3+3+3+3)=30. 答案:302.2006第十七届“希望杯”全国数学邀请赛(高一)第一试,2若f(x)=x1的定义域为A,g(x)=f(x+1)-f(x)的定义域为B,那么( )A.A∪B=BB.A BC.A ⊆BD.A∩B=∅分析:由题意得A={x|x≠0},B={x|x≠0,且x≠-1}.则A∪B=A,则A 错;A∩B=B,则D 错;由于则C 错,B 正确. 答案:B 拓展提升问题:已知函数f(x)=x 2+1,x∈R .(1)分别计算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值. (2)由(1)你发现了什么结论?并加以证明. 活动:让学生探求f(x)-f(-x)的值.分析(1)中各值的规律,归纳猜想出结论,再用解析式证明.解:(1)f(1)-f(-1)=(12+1)-[(-1)2+1]=2-2=0;f(2)-f(-2)=(22+1)-[(-2)2+1]=5-5=0;f(3)-f(-3)=(32+1)-[(-3)2+1]=10-10=0.(2)由(1)可发现结论:对任意x∈R ,有f(x)=f(-x).证明如下:由题意得f(-x)=(-x)2+1=x 2+1=f(x). ∴对任意x∈R ,总有f(x)=f(-x). 课堂小结本节课学习了:函数的概念、函数定义域的求法和对函数符号f(x)的理解. 作业课本P 24,习题1.2A 组1、5.设计感想本节教学中,在归纳函数的概念时,本节设计运用了大量的实例,如果不借助于信息技术,那么会把时间浪费在实例的书写上,会造成课时不足即拖堂现象.本节重点设计了函数定义域的求法,而函数值域的求法将放在函数的表示法中学习.由于函数是高中数学的重点内容之一,也是高考的重点和热点,因此对函数的概念等知识进行了适当的拓展,以满足高考的需要. (设计者:高建勇)。
统编人教A版数学高中必修第一册《3.1 函数的概念及其表示》优秀教案教学设计
【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x,g(x)=√x;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−1√2-x+1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ; ④y =2x -√x −1. 【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计 七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师学科教案[ 20 – 20 学年度第__学期]
任教学科:_____________
任教年级:_____________
任教老师:_____________
xx市实验学校
1.2.1函数的概念(第一课时)
通过交流得出以下几点:
①,A B都是非空的数集;
②任意性与唯一性;
③确定的对应关系,对应关系f可以是解析式、图象、表格.
④值域C是集合B的子集
⑤不允许一对多,允许多对一
问题五:函数由几个要素?
三要素:定义域、值域、对应法则,缺一不可.
教师引导学生归纳总结:函数的三要素是定义域、值域及对应法则。
在函数的三要素中,当其中的两要素已确定时,则第三个要素也就随之确定了。
如当函数的定义域,对应法则已确定,则函数的值域也就确定了。
问题六:比较函数的近代定义与传统定义的异同点,你对函数有什么新的认识?
学生思考、讨论,教师点拨:
函数近代定义与传统定义在实质上是一致的,两个定义中的定义域与值域的意义完全相同。
两个定义中的对应法则实际上也一样,只不过叙述的出发点不同,传统定义是从运动变化的观点出发,近代定义的对应法则是从集合与对应的观点出发。
三、典型例题:
例1(1)判断下列关系是函数吗?
射击的次数 1 2 3
击中的环数8 9 9
变式:下列四个图象中,是函数图象的是().
学生回答,教师分析:关键抓住函数的概念
11,
+=
x y y= |,(。