模拟CMOS集成电路设计复习提纲
CMOS模拟集成电路设总复习
I VT ln(n) R1
Vout
mR2 R1
VT
ln(n) VEB3
Vout 2 ln(n) k VEB3 2m ln(n) 8.67 102 2.2 0
T
q T
只要满足右式的所有m,n均可 mln(n) 12.7
知识点
1.MOS器件原理 2.电流镜 3.带隙基准 4.反相器(三种类型) 5.差分放大器 6.共源共栅放大器 7.输出放大器 8.运算放大器
0.7
0.91V
M1饱和:VDS1 VGS1 VT
Vb VGS2 VGS1 VT
Vb VGS1 VGS2 VT
2I REF
K ' (W / L)2
2I REF K '(W / L)1
VT
2 0.1103
2 0.1103
110106 40 0.7 110106 40
1.11V
例题
L
COX
OX
tOX
K': 跨导参数
K ' COX 0
MOS管的大信号模型
饱和区电流(以NMOS为例):
iD
K'
W 2L
(vGS
VT
)2
线性区电流(以NMOS为例):
iD
K'W L
[(vGS
VT
)
( vDS 2
)]vDS
PMOS的饱和区和线性区电流表达式?
小信号模型
MOS管的小信号模型
输出电阻
VSG3 VDD VICmax VTN 2.5 2 0.7 1.2
VSG3
K 'P
2ID (W /
L)3
| VTP
| 1.2
模拟CMOS集成电路分析与设计总复习
第五章 无源与有源电流镜
• 基本电流镜
• 共源共栅电流镜
• 有源电流镜
– 电流镜做负载的差分放大器
• 大信号特性 • 小信号特性 • 共模特性
• 1,基本电流镜的复制关系,L的选择,电 流镜的不足
• 2,有源负载差动对小信号增益求法(辅助定 理、戴维南等效)
第六章 放大器的频率特性
– 大信号差分特性 – 大信号共模特性 – 小信号差分特性 – 小信号共模特性
• MOS管做负载的基本差分对放大器 • 差分放大器的应用-Gilbert单元
• 1,差动相对于单端的优点
• 2,共模电平的变化对简单差动对输出的影 响
• 3,基本差动对大信号特性,静态
• 4,基本差分对共模输入范围的求法,共模 输入电平与小信号增益间的关系,小信号 增益的两种求法(叠加法和半电路法),单/双 边输入与单/双边输出对增益的影响
• 4,带源极负反馈电阻的共源极:等效跨导, 小信号增益的求法(直观)
• 5,共漏极(源极跟随器):小信号增益(直观 求法),无体效应的源极跟随器,小信号特 点
• 6,共栅极:小信号增益
• 7,共源共栅极:大信号特性,输出摆幅, 屏蔽特性,折叠式共源共栅极的大信号特 性
第四章 差动放大器
• 差分放大器简介 • 简单差分放大器 • 基本差分对放大器
• 米勒定理及利用米勒定理求解输入电阻、 电容、极点等
CMOS模拟集成电路分析与设计
——总复习(2010.12)
第一章 绪论
• 研究模拟电路的重要性 • 模拟电路设计的难点 • 研究AIC的重要性 • 研究CMOS AIC的重要性 • 电路设计一般概念
– 抽象级别 – 健壮性设计 – 符号约定
模拟CMOS集成电路设计复习提纲(课堂PPT)
Summary # 20
西电微电子:模拟集成电路设计
共源共栅级的输出阻抗(3)
Rup gm3ro3ro4
Rup
Rdown gm2ro2ro1
Rdown
Rout Rup || Rdown
Av0 g R m1 out
gm1 gm2ro2ro1 || gm3ro3ro4
Summary # 21
gm1 ro2 || ro1
Summary # 13
西电微电子:模拟集成电路设计
二极管接法MOSFET负载的共源级
Rup Rdown
Rup
1 gm2
Rdown ro1
Rout
Rup
|| Rdown
1 gm2
|| ro1
ro1 1 gm2ro1
1 gm2
(
1 gm2
ro1 )
Av0
Vout Vin
Summary #2
西电微电子:模拟集成电路设计 华大微电子:模拟集成电路设计
MOSFET的I-V特性
饱和区:I D
1 2
Cox
W L
VGS
Vth 2
沟长调制:I D
1 2
Cox
W L
VGS
Vth
21
VDS
线性区:I D
Cox
W L
VGS
Vth VDS
1 2
VD2S
深线性区:I D
Rout Rup || Rdown (RD || ro )
Vout Vin
gmRout
gm (RD
|| ro )
gmRD (RD ro )
Summary # 12
西电微电子:模拟集成电路设计
模拟集成电路设计_复习大纲
《模拟集成电路设计》复习大纲一、 概念:1. 密勒定理:如果将图(a )的电路转换成图(b )的电路,则Z 1=Z/(1-A V ),Z 2=Z/(1-A V -1),其中A V =V Y /V X 。
这种现象可总结为密勒定理。
2. 沟道长度调制效应:当栅与漏之间的电压增大时,实际的反型沟道长度逐渐减小,也就是说,L 实际上是V DS 的函数,这种效应称为沟道长度调制。
3. 等效跨导Gm :对于某种具体的电路结构,定义inDV I ∂∂为电路的等效跨导,来表示输入电压转换成输出电流的能力,跨导的表达式4. N 阱:CMOS 工艺中,PMOS 管与NMOS 管必须做在同一衬底上,若衬底为P 型,则PMOS 管要做在一个N 型的“局部衬底”上,这块与衬底掺杂类型相反的N 型“局部衬底”叫做N 阱。
5. 亚阈值导电效应:实际上,V GS =V TH 时,一个“弱”的反型层仍然存在,并有一些源漏电流,甚至当V GS <V TH 时,I D 也并非是无限小,而是与V GS 呈指数关系,这种效应叫亚阈值导电效应。
6. 有源电流镜:像有源器件一样用来处理信号的电流镜结构叫做有源电流镜。
7. 输出摆幅:输出电压最大值与最小值之间的差。
8. 放大应用时,通常使MOS 管工作在饱和区,电流受栅源过驱动电压控制,我们定义跨导来表示电压转换电流的能力。
9. 在模拟集成电路中MOS 晶体管是四端器件 10. 源跟随器主要应用是起到什么作用?11. λ为沟长调制效应系数,λ值与沟道长度成反比,对于较长的沟道,λ值较小。
12. 饱和区NMOS 管的电压条件及其其沟道电流表达式。
13. 共源共栅放大器结构的一个重要特性就是输出阻抗很高,因此可以做成恒定电流源。
14. MOS 管的主要几何参数15. 共模输入电平的变化会引起差动输出发生改变的因素有哪些? 16. MOS 管的电路符号17. 增益小于1的单级放大器 18. N 阱和P 阱的概念19. MOS 管的二级效应的表达式,比如沟道长度调制效应、体效应、亚阈值效应 20. 按比例缩小理论:恒定电场、恒定电压、准恒压21. 采用电阻负载的共源级单级放大器其小信号增益Av 表达式 22. 在差动放大器设计中CMRR23. 带源极负反馈的共源级其小信号增益的表达式 24. 图示电路的小信号增益表达式。
集成电路设计方法--复习提纲
集成电路设计⽅法--复习提纲1.什么叫IC 的集成度?⽬前先进的IC规模有多⼤?集成度就是⼀块集成电路芯⽚中包含晶体管的数⽬,或者等效逻辑门数2012年5⽉ 71亿晶体管的NVIDIA的GPU 28nm2.什么叫特征尺⼨?特征尺⼨通常是指是⼀条⼯艺线中能加⼯的最⼩尺⼨,反映了集成电路版图图形的精细程度,如MOS晶体管的沟道长度,DRAM结构⾥第⼀层⾦属的⾦属间距(pitch)的⼀半。
3.⽬前主流的硅圆⽚直径是多少?12英⼨4.什么叫NRE(non-recurring engineering)成本?⽀付给研究、开发、设计和测试某项新产品的单次成本。
在集成电路领域主要是指研发⼈⼒成本、硬件设施成本、CAD⼯具成本以及掩膜、封装⼯具、测试装置的成本,产量⼩,费⽤就⾼。
5.什么叫recurring costs?重复性成本,每⼀块芯⽚都要付出的成本,包括流⽚费、封装费、测试费。
也称可变成本,指直接⽤于制造产品的费⽤,因此与产品的产量成正⽐。
包括:产品所⽤部件的成本、组装费⽤以及测试费⽤。
6.什么叫有⽐电路?靠两个导通管的宽长⽐不同,从⽽呈现的电阻不同来决定输出电压,它是两个管⼦分压的结果,电压摆幅由管⼦的尺⼨决定。
7.IC制造⼯艺有哪⼏种?双极型模拟集成电路⼯艺、CMOS⼯艺、BiCMOS⼯艺8.什么叫摩尔定律?摩尔定律⾯临什么样的挑战?当价格不变时,积体电路上可容纳的电晶体数⽬,约每隔24个⽉(现在普遍流⾏的说法是“每18个⽉增加⼀倍”)便会增加⼀倍,性能也将提升⼀倍;或者说,每⼀美元所能买到的电脑性能,将每隔18个⽉翻两倍以上。
⾯临⾯积、速度和功耗的挑战。
9.什么叫后摩尔定律?后摩尔定律下IC设计⾯临哪些挑战?解决⽅案?多重技术创新应⽤向前发展,即在产品多功能化(功耗、带宽等)需求下,将硅基CMOS和⾮硅基等技术相结合,以提供完整的解决⽅案来应对和满⾜层出不穷的新市场发展。
挑战:a单芯⽚的处理速度越来越快,主频越来越⾼,热量越来越多b.互联线延迟增⼤解决⽅案:1.多核、低功耗设计2.3D互联、⽆线互联、光互连延续摩尔定律“尺⼨更⼩、速度更快、成本更低”,还会利⽤更多的技术创新:节能、环保、舒适以及安全性架构:多核散热:研发新型散热器更薄的材料:⽤碳纳⽶管组装⽽成的晶体管速度更快的晶体管:超薄⽯墨烯做的晶体管纳⽶交叉线电路元件:忆阻器光学互联器件分⼦电路、分⼦计算、光⼦计算、量⼦计算、⽣物计算10. IC按设计制造⽅法不同可以分为哪⼏类?全定制IC:硅⽚各掩膜层都要按特定电路的要求进⾏专门设计半定制IC:全部逻辑单元是预先设计好的,可以从单元苦衷调⽤所需单元来掩模图形,可使⽤相应的EDA软件,⾃动布局布线可编程IC :全部逻辑单元都已预先制成,不需要任何掩膜,利⽤开发⼯具对器件进⾏编程,以实现特定的逻辑功能。
模拟cmos集成电路设计复习题
二、计算题,假设所有的晶体管都工作在饱和区 (用符号来表示结果, 譬如 gm, ro, RD, VOV, 等等)(共 35 分,共 2 题)
1. 假设没有衬底偏置效应 (15 分)
(a) 画出图中所示的电路图的低频小信号等效电路图 (5 分)
(b) 假设 IS = 0.75I1 ,λ = 0 ,Cox( pmos) = Cox(nmos) ,求该电路的低频小信号电压
——第 17 页——
三、计算题,假设所有的晶体管都工作在饱和区
(用符号来表示结果, 譬如 gm, ro, RD, VOV, 等等.) (共 45 分, ——第 18 页——
学院____________班级____________姓名____________学号____________
密封线内不答题
增益?用迁移率和宽长比表示。(必须给出解题过程) (10 分)
——第 4 页——
学院____________班级____________姓名____________学号____________
密封线内不答题
——第 5 页——
2. 假设下图所示电路图中的所有器件都是完全匹配和对称的,回答一下问 题。请用跨导,输出电阻和电阻表示。(必须给出解题过程) (20 分)
4. 在 NMOS 中, 衬底上加上负电压偏置, 会使阈值电压(
)。
A. 增大 B 不变
C 减小
D 可大可小
5. 采用 PMOS 二极管连接方式做负载的 NMOS 共源放大器NMOS 都存在体效应,电压放大系数与 NMOS 和 PMOS 的宽长比有
关
B. PMOS 和 NMOS 都存在体效应,电压放大系数与 NMOS 和 PMOS 的宽长比无
模拟CMOS集成电路设计复习提纲
物理验证与DRC/LVS检查
01
02
03
物理验证
检查版图是否符合工艺要 求,确保可制造性。
DRC检查
进行设计规则检查,确保 版图满足工艺要求。
LVS检查
进行电路原理图与版图一 致性检查,确保两者匹配。
03
CMOS集成电路的模拟技 术
SPICE模拟器简介
1
SPICE(Simulation Program with Integrated Circuit Emphasis):一种用于模拟和分析集成 电路性能的软件工具。
新工艺
新型工艺技术如纳米压印、电子束光刻等不断涌现,这些新工艺能够制造更小尺寸的集成电路,提高集成度并降 低制造成本。
集成电路的可扩展性挑战
制程节点
随着集成电路制程节点不断缩小,制 程技术面临物理极限的挑战,如量子 隧穿效应、漏电等问题,需要探索新 的物理机制和制程技术。
异构集成
为了实现更高效能、更低功耗的集成 电路,需要将不同材料、不同工艺的 芯片集成在一起,形成异构集成技术, 这需要解决不同芯片之间的互连、兼 容等问题。
功耗优化
总结词
功耗优化旨在降低CMOS集成电路的功 耗,以提高芯片的能效和延长电池寿命 。
VS
详细描述
功耗优化主要通过降低晶体管导通电阻、 减小时钟信号功耗和优化电路结构来实现 。例如,采用低阻抗材料和工艺技术来降 低导通电阻,采用时钟门控技术来减小时 钟信号功耗,优化电路逻辑和结构等。这 些措施有助于降低功耗,提高能效,延长 电池寿命。
和规范,如元件选择、布线规则、版图设计等。
设计实践
02
结合具体的设计案例,分析可靠性设计的实际应用和效果,总
结经过实验和仿真等方法,对设计的可靠性进行验证和评估,确
模拟cmos集成电路设计知识点总结
模拟cmos集成电路设计知识点总结模拟CMOS集成电路设计是一个涉及多个学科领域的复杂课题,包括电子工程、物理、材料科学和计算机科学等。
以下是一些关键知识点和概念的总结:1. 基础知识:半导体物理:理解半导体的基本性质,如本征半导体、n型和p型半导体等。
MOSFET(金属-氧化物-半导体场效应晶体管)工作原理:理解MOSFET的基本构造和如何通过电压控制电流。
2. CMOS工艺:了解基本的CMOS工艺流程,包括晶圆准备、热氧化、扩散、光刻、刻蚀、离子注入和退火等步骤。
理解各种工艺参数对器件性能的影响。
3. CMOS电路设计:了解基本的模拟CMOS电路,如放大器、比较器、振荡器等。
理解如何使用SPICE(Simulation Program with Integrated Circuit Emphasis)进行电路模拟。
4. 噪声:理解电子器件中的噪声来源,如热噪声、散粒噪声和闪烁噪声等。
了解如何减小这些噪声的影响。
5. 功耗:理解CMOS电路中的功耗来源,如静态功耗和动态功耗。
了解降低功耗的方法,如电源管理技术和低功耗设计技术。
6. 性能优化:理解如何优化CMOS电路的性能,如提高速度、减小失真和提高电源效率等。
7. 可靠性问题:了解CMOS电路中的可靠性问题,如闩锁效应和ESD(静电放电)等。
8. 版图设计:了解基本的版图设计规则和技巧,以及如何使用EDA(Electronic Design Automation)工具进行版图设计和验证。
9. 测试与验证:理解如何测试和验证CMOS集成电路的性能。
10. 发展趋势与挑战:随着技术的进步,模拟CMOS集成电路设计面临许多新的挑战和发展趋势,如缩小工艺尺寸、提高集成度、应对低功耗需求等。
持续关注最新的研究和技术进展是非常重要的。
以上是对模拟CMOS集成电路设计的一些关键知识点的总结,具体内容可能因实际应用需求和技术发展而有所变化。
深入学习这一领域需要广泛的知识基础和持续的研究与实践。
CMOS模拟集成电路设计复习题一复习进程
1.解释什么是体效应? 在初步分析MOSFET的时候我们假设衬底 和源级是接到地的。而实际上当VB<VS 时,器件仍能正常工作,但是随着VSB的 增加,阈值电压VTH会随之增加,这种
体电位(相对于源)的ຫໍສະໝຸດ 化影响阈值电压的效应称为体效应,也称为“背栅效 应”2.解释什么是沟道长度调制效应? 当沟道发生夹断后,如果VDS继续增大 ,有效沟道长度L'会随之减小,导致漏源 电流 Id的大小略有上升。这一效应成为 “沟道……”
4. 图(a)是什么结构?图(b)忽略了沟道调制效应和体效应。 如果体效应不能忽略,请画出Vin和Vout的关系曲线,并作 出解释。
5. 图中MOS管的作用是什么?应该工作在什么工作区?
即NMOS开关不能传递最高电位,仅对低电位是比较理想的开关 相对的,PMOS开关不能传递最低电位,仅对高电位是比较理想的开关
6. 计算电路的小信号增益
7. 画出下图的小信号等效电路,推导Rin的表达式
8.
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
CMOS模拟集成电路设计复习 题一
2. 画出一个典型P阱CMOS工艺反向器的垂直剖面示意图, 要求器件的各个端口正确连接输入、输出、电源电位和地 电位
3. 什么是MOSFET小信号跨导,给出饱和区MOSFET小信 号跨导的三种表达形式
4. 什么是 MOSFET的亚阈区,指出亚阈区的电流与栅源 电压的关系
CMOS模拟集成电路设计教学提纲
集成电路的EDA工具
1、SPICE (Simulation program with integrated circuit emphasis)是最为普遍的电路级模拟程序,各软件厂 家提供提供了Vspice、Hspice、Pspice等不同版本 spice软件,其仿真核心大同小异,都是采用了由美国 加州Berkeley大学开发的spice模拟算法。 SPICE可对电路进行非线性直流分析、非线性瞬态分 析和线性交流分析。
集成电路的特点及发展
2、集成电路的发展 ⑵世界集成电路发展历史 1971年:全球第一个微处理器4004由Intel公司推出, 采用的是MOS工艺,这是一个里程碑式的发明; 1974年:RCA公司推出第一个CMOS微处理器1802; 1976年:16kb DRAM和4kb SRAM问世; 1978年:64kb动态随机存储器诞生,不足0.5平方厘米 的硅片上集成了14万个晶体管,标志着超大规模集成 电路(VLSI)时代的来临;
第一讲 集成电路介绍
第一讲主要内容
❖ 集成电路的定义及分类 ❖ 集成电路的特点及发展 ❖ 集成电路的封装 ❖ 集成电路的EDA工具 ❖ 集成电路的设计流程
集成电路的定义及分类
1、集成电路(IC) IC:Integrated Circuit 集成电路是电路的单芯片实现 集成电路是微电子技术的核心 定义:采用一定工艺,把电阻、电 感、电容、晶体管等元件及布线互 连,一起制作在一块半导体基片上 ,然后封装在一个管壳内,成为具 备一定电路功能的微型结构。
第一讲集成电路介绍3课时第二讲cmos技术与器件模型3课时第三讲cmos子电路与放大器3课时第四讲smartspice软件介绍6课时第五讲nmos与pmos的仿真6课时第六讲cmos反相放大器的设计18课时复习考核6课时集成电路的定义及分类集成电路的特点及发展集成电路的封装集成电路的eda工具集成电路的设计流程1集成电路icic
CMOS模拟集成电路版图设计课程大纲
CMOS模拟集成电路版图设计课程大纲第一讲CMOS模拟集成电路版图基础⏹CMOS模拟版图概述⏹CMOS模拟集成电路版图的定义⏹CMOS模拟集成电路版图设计流程❑版图规划❑版图设计实现❑版图验证❑版图完成⏹CMOS模拟集成电路版图设计工具第二讲模拟集成电路版图器件与互连⏹概述⏹器件❑MOS管❑电阻❑电容❑电感❑三极管⏹互连❑金属(第一层金属,第二层金属……)❑通孔第三讲寄生参数⏹概述⏹寄生电容⏹线电阻压降(IR drop)⏹寄生电感⏹连线寄生模型⏹MOS管寄生效应第四讲器件匹配⏹概述⏹指状交叉法线⏹共质心法⏹虚拟器件⏹MOS晶体管匹配⏹电阻匹配⏹电容匹配⏹差分线布线⏹器件匹配总则第五讲设计规则⏹概述⏹工艺库中各类器件的层信息⏹设计规则细则⏹工业标准的基本数据格式第六讲验证⏹设计规则检查(DRC)Design Rule Check⏹版图与电路图的对照(LVS)Layout Versus Schematic⏹电气规则检查(ERC)Electrical Rule Check⏹天线规则检查(ANT)⏹静电放电检查(ESD)第七讲可靠性设计⏹天线效应⏹闩锁效应⏹静电放电保护(Electro-Static Discharge ,ESD)⏹数模混合集成电路版图设计第八讲工艺设计工具包(PDK)⏹ 1.PDK名称的涵义⏹ 2.PDK中包含的内容● 2.1 IO lib2.1.1 GDS文件的导入操作2.1.2 网表导入2.1.3 IO使用文档介绍● 2.2 SMIC_13_PDK_v2.6_20142.2.1 Smic13mmrf_1233文件夹2.2.2 model 文件夹2.2.3 Calibre 文件夹● 2.3 SMIC_13_TF_LG_LIST_2014122.3.1 Standard cell Timing lib2.3.2 Calview.cellmap2.3.3 Standard cell netlist及网表导入操作2.3.4 Ant rule (天线规则)第九讲Cadence spectre概述与操作界面⏹Cadence spectre 概述⏹Cadence spectre的特点⏹Cadence spectre的仿真设计方法⏹Cadence spectre与其他EDA软件的连接⏹Cadence spectre的基本操作第十讲Spectre窗口和库元件⏹模拟设计环境(Analog Design Environment)⏹波形显示窗口(Waveform)⏹波形计算器(Waveform Calculator)⏹Spectre库中的基本器件第十讲Cadence Virtuoso版图设计工具⏹Cadence Virtuoso概述⏹Virtuoso 界面介绍⏹Virtuoso 基本操作第十一讲Mentor Calibre版图验证工具⏹Mentor Calibre版图验证工具概述⏹Mentor Calibre版图验证工具调用⏹Mentor Calibre DRC验证⏹Mentor Calibre LVS验证⏹Mentor Calibre寄生参数提取(PEX)第十二讲版图设计与验证流程实例⏹设计环境准备⏹反相器链电路的建立和前仿真⏹反相器链版图设计⏹反相器链版图验证与参数提取⏹反相器链电路后仿真⏹输入输出单元环设计⏹主体电路版图与输入输出单元环的连接⏹导出GDSII文件。
模拟CMOS集成电路复习题库及解答
模拟CMOS集成电路期末复习题库及答案整理人:李明1.MOSFET跨导g m是如何定义的。
在不考虑沟道长度调制时,写出MOSFET在饱和区的g m与V GS−V TH、√I D和1V GS−V TH的关系表示式。
画出它们各自的变化曲线。
2.MOSFET的跨导g m是如何定义的。
在考虑沟道长度调制时,写出MOSFET在饱和区的g m与V GS−V TH、√I D和1V GS−V TH的关系表示式。
画出它们各自的变化曲线。
解:MOSFET跨导g m的定义:由于MOSFET工作再饱和区时,其电流受栅源过驱动电压控制,所以我们可以定义一个性能系数来表示电压转换电流的能力。
更准确地说,由于在处理信号的过程中,我们要考虑电压和电流的变化,因此我们把这个性能系数定义为漏电流的变化量除以栅源电压的变化量。
我们称之为“跨导”,并用g m来表示,其数值表示为:在不考虑沟道长度调制时:在考虑沟道长度调制时:3.画出考虑体效应和沟道长度调制效应后的MOSFET小信号等效电路。
写出r o和g mb的定义,并由此定义推出r o和g mb表示式。
解:4.画出由NMOS和PMOS二极管作负载的MOSFET共源级电路图。
对其中NMOS二极管负载共源级电路,推出忽略沟道长度调制效应后的增益表示式,分析说明器件尺寸和偏置电流对增益的影响。
对PMOS二极管负载的共源级电路,对其增益表示式作出与上同样的分析。
5.画出MOS共源共栅级电路的电路图和其对应的小信号等效电路图。
并推出此共源共栅级电路的电压增益和输出电阻表示式。
解:6.画出带源极负反馈电阻的以电阻作负载的MOS共源级电路的电路图和其对应的小信号等效电路图。
写出此电路的等效跨导定义式,并由此推出在不考虑沟道长度调制和体效应情况下的小信号电压增益表示式。
画出其漏电流和跨导随V in的变化曲线图。
7.画出带源极负反馈电阻的以电阻作负载的MOS共源级电路的电路图和其对应的小信号等效电路图。
2011年CMOS模拟集成电路复习提纲
2011年《大规模集成电路分析与设计》复习提纲一、填空题。
(每空3 分,共36分) 二、简答题(每小题10分,共40分)三、四,问答题或计算题(共计24分,(每小题6分,共12分))红色部分为本课程必须掌握的基本内容。
第一章 绪论略。
第2章MOSFET 的工作原理及器件模型分析重点内容:* CMOS 模拟集成电路设计分析的最基本最重要的知识:MOS 器件的三个区域的判断,并且对应于各个区域的I D 表达式,和跨导的定义及表达式。
* 定性分析栅源与栅漏电压对沟道电荷的影响,并能画出N 沟道增强型MOSFET 的各种情况下的横截面图。
* 体效应的概念,体效应产生的原因,及体效应系数γ。
* 沟道调制效应的概念,沟长调制效应产生的原因,沟道电阻DoI r λ1=,λ与沟道长度成反比。
* 以NMOS 为例来分析阈值电压产生的原理,并画出V GS =0,0<V GS <V TH 以及V GS >V TH 的NMOS 沟道电荷的示意图。
* MOS 管完整的小信号模型。
MOSFET 的I-V 特性1. THGS V V <,MOS 管截止2.TH GS V V ≥,MOS 管导通a.TH G S D SV V V -<,MOS 管工作在三极管区;⎥⎦⎤⎢⎣⎡--=221)(DS DS TH GS oxn D V V V V LWC I μ 当)(2TH G SD SV V V -<<时,MOS 工作于深Triode 区,此时DS TH GS ox n D V V V L WC I )(-≈μ,DSD V I ~为直线关系.导通电阻:)(1TH GS ox n DDS on V V LW C I V R -=∂∂=μ b.TH G S D SV V V -≥,MOS 管工作在饱和区;2)(21TH GS ox n D V V LWC I -=μ跨导g m :是指在一定的V DS 下,I D 对V GS 的变化率。
模拟CMOS集成电路设计复习提纲
增益的计算
Av0 gm2 gm4ro4ro2 || gm6ro6ro8
小信号带宽
• 小信号带宽通常定义为单位增益频率fu • 3dB频率f3dB与fu的示意如下(均为对数坐标)
GBW与小信号建立时间(1)
设放大器的低频增益A0 ,带宽BW fd. 则增益带宽积GBW A0fd 若该放大器为单极点系统
反馈的特性1:降低增益灵敏度
ACL
Y X
A
1 A
1
A 1 A
1
(if A 1)
dACL dA
1
1 A 2
dACL 1 dA
ACL 1 A A
反馈的特性3: 扩展带宽
Giv
en
A
1
A0 s
0
A0
1 s
A0
ACL
A
1 A
1
1
0 A0
电流-电压反馈的特性
• 输入端串联,
– 输入电阻增大
• 输出端串联,
– 输出电阻增大
Rin,cl (1 Gm RF )Rin Rout,cl (1 Gm RF )Rout Iout Gm Vin 1 Gm RF
电压-电流反馈
Vout
R0
Iin 1 R0 GmF
• 前馈网络R0:I-V;反馈网络gmF:V-I • 信号检测:前馈网络的输出,电压信号,并联 • 信号返回:前馈网络的输入,电流信号,并联 • 也称并联-并联反馈 • R0:前馈网络增益,电阻的量纲 • GmF:反馈网络增益,导纳的量纲 • R0×GmF :无量纲
共栅管的输出电阻
参考源极负反馈电阻的共源级
北京交通大学(01103)“集成电路设计基础”复习大纲(1)
《集成电路设计基础》复习大纲
重点是CMOS电路结构和设计分析。
具体范围如下:
1.模拟集成电路设计、制造过程的基本概念(包括掩膜的技术功能、掩膜在制造过程中的应用、简单版图识别)。
(参考书第1、2章)。
2.基本MOS器件的模型及其分析方法(包括MOS管基本模型、直流特性、频率特性)。
(参考书第3章)。
3.CMOS基本模拟单元电路分析(参考书第4章)
4.CMOS放大器基本结构和特性参数分析(参考书第5章)。
5. 二级运算放大器分析与设计基础(参考书第6章)
本次考试的基本形式为选择题、简答题、计算题和设计题。
本次考试不要求死记公式。
参考书:Phillip E. Allen, Douglas R. Holberg, CMOS Analog Circuit Design, Second Edition, 电子工业出版社,2007年8月。
2012.09.10。
COMS模拟集成电路复习题
1,MOS管的工作原理MOS管有N沟和P沟之分,每一类分为增强型和耗尽型,增强型MOS管在栅-源电压vGS=0时,漏-源极之间没有导电沟道存在,即使加上电压 vDS,也没有漏极电流产生。
而耗尽型MOS 管在vGS=0 时,漏-源极间就有导电沟道存在。
MOS 管的源极和衬底通常是接在一起的。
增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。
当栅-源电压vGS=0时,即使加上漏-源电压 vDS,总有一个 PN 结处于反偏状态,漏-源极间没有导电沟道,这时漏极电流 iD≈0。
若在栅-源极间加上正电压,即 vGS>0,则栅极和衬底之间的 SiO2 绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个电场能排斥空穴而吸引电子,形成耗尽层,同时 P 衬底中的电子被吸引到衬底表面。
当 vGS 数值较小,吸引电子的能力不强时,漏-源极之间仍无导电沟道出现.vGS 增加时,吸引到 P衬底表面层的电子就增多,当 vGS 达到某一数值时,这些电子在栅极附近的 P 衬底表面便形成一个 N 型薄层,在漏-源极间形成 N 型导电沟道,称为反型层。
vGS 越大,吸引到 P 衬底表面的电子就越多,导电沟道越厚,沟道电阻越小。
开始形成沟道时的栅-源极电压称为开启电压VT。
N 沟增强型 MOS 管在 vGS<VT 时,不能形成导电沟道,管子处于截止状态。
当 vGS≥VT 时,才有沟道形成,此时在漏-源极间加正电压 vDS,才有漏极电流产生。
而且vGS增大时,沟道变厚,沟道电阻减小,iD 增大。
2、影响MOS管阈值电压的主要因素一是作为介质的栅氧化层中的电荷Qss及其性质。
这种电荷通常由多种原因产生,其中一部分带正电,一部分带负电,其净电荷的极性会对衬底表面产生电荷感应,从而影响反型层的形成,或使器件耗尽,或阻碍反型层的形成。
二是衬底的掺杂浓度。
要在衬底上表面产生反型层,必须施加能够将表面耗尽并且形成衬底少数载流子的积累的栅源电压,这电压的大小与衬底的掺杂浓度有直接关系。
模拟CMOS集成电路分析与设计总复习
描述电路响应速度和稳定性的参数。
03
CMOS集成电路设计
电路设计流程
确定设计目标
明确电路的功能、性能指标和限制条件,如 功耗、面积、速度等。
电路设计
根据设计目标,选择合适的电路结构和元件 参数,进行电路设计和仿真验证。
版图绘制
将电路设计转换为版图,确保电路元件和互 连符合工艺要求。
物理验证
对版图进行物理验证,检查版图的正确性和 工艺兼容性。
01
新材料和新器件结构
探索新型半导体材料(如硅基氮化镓 、碳化硅等)和新型器件结构(如 FinFET、GAAFET等),以提高性能 、降低功耗和解决制程技术瓶颈。
02
异构集成和系统级封 装
发展异构集成技术,将不同工艺的芯 片高效集成在同一封装内,实现更强 大的系统功能。同时,研究系统级封 装技术,以提高集成度和降低成本。
形成。
优点
低功耗、高集成度、低成本、低噪 声等。
应用领域
计算机、通信、消费电子等领域。
CMOS集成电路的工作原理
工作原理
开关状态转换
CMOS集成电路利用N型和P型半导体 的特性,通过正负电压的交替作用, 实现逻辑门的开关状态转换。
当输入端接收到信号时,反相器中的 N型和P型半导体材料会交替导通和截 止,从而实现开关状态转换。
电源管理应用
电源管理芯片
CMOS集成电路在电源管理领域中扮演着重要角色,如电源管理芯片等。这些芯片能够实现电压调节、电流控制等功 能,从而保证电子设备正常工作和延长电池寿命。
电源转换
CMOS集成电路还可以用于实现各种电源转换,如DC-DC转换、AC-DC转换等。这些转换电路能够将电源转换为电 子设备所需的电压和电流等级,以满足不同设备的电源需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g m1 g m2
Summary # 14
带源极负反馈的共源级
Rup Rdown
Gm
gm 1 gmRS
Rup RD
Rdown gm1ro1RS
Rout Rup || Rdown RD (Rdown Rup)
Av0
GmRo
u
t
gm 1 gmRS
RD
RD RS
(gmRS 1)
Summary # 15
MOSFET小信号模型(2)
• 考虑衬偏效应时的低频小信号模型 • 用于计算输出电阻、低频小信号增益
Summary #6
完整的MOSFET小信号模型
• 用于计算各节点的时间常数 • 找出极点
Summary #7
第三章 单级放大器
• 共源级 • 共漏级 • 共栅级 • 共源共栅级
Summary #8
g m Rout
gm (RD
|| ro )
g m R D (R D ro )
Summary # 12
电流源负载的共源级
R up ro 2
R down ro1
Rup Rdown
R out R up || R down ro 2 || ro1 Av0 g m1Rout
g m1 ro 2 || ro1
Summary # 41
西电微电子:模拟集成电路设计
电流-电压反馈的特性
• 输入端串联,
– 输入电阻增大
• 输出端串联,
– 输出电阻增大
Rin,cl (1 Gm RF ) Rin Rout ,cl (1 Gm RF ) Rout Iout Gm Vin 1 Gm RF
Summary # 42
共栅管用做电流放大器 没必要计算其电压放大倍数
Summary # 17
共栅管的输出电阻
参考源极负反馈电阻的
共源级
Rup Rdown
R out
VX IX
R up
|| R down
R up R D
R down R S ro ( g m g mb ) ro R S
( g m g mb ) ro R S
Summary # 46
西电微电子:模拟集成电路设计
电流-电流反馈的特性
• 输入端并联,
– “串联-并联反馈”,反馈信号与输入信号串联,检测信号与输出信号并 联
– “电压-电压反馈”,描述了反馈网络的特性 – 两种说法角度不同,信号的顺序也不同
Summary # 39
西电微电子:模拟集成电路设计
电压-电压反馈的特性
• 输入端串联,
– 输入电阻增大
• 输出端并联,
– 输出电阻减小
R in ,cl (1 A 0 ) R in
Summary # 43
西电微电子:模拟集成电路设计
电压-电流反馈的应用:光纤接收器
• 左图,输入阻抗R1
– 时间常数大,带宽小
• 右图,输入阻抗为R1/(1+A)
– 时间常数小,带宽大
Summary # 44
西电微电子:模拟集成电路设计
电压-电流反馈的特性
• 输入端并联,
– 输入电阻减小
• 输出端并联,
0
A0
1 s
A0
ACL
A
1 ALeabharlann 10 A0 1 s
1 A0
1
0
1
s
A0
0
Summary # 38
西电微电子:模拟集成电路设计
电压-电压反馈
Vout A0
Vin 1 A0
• 前馈网络A0:V-V;反馈网络:V-V • 信号检测:前馈网络的输出,电压信号,并联 • 信号返回:前馈网络的输入,电压信号,串联 • 也称串联-并联反馈:
西电微电子:模拟集成电路设计
电压-电流反馈
Vout
R0
Iin 1R0 GmF
• 前馈网络R0:I-V;反馈网络gmF:V-I • 信号检测:前馈网络的输出,电压信号,并联 • 信号返回:前馈网络的输入,电流信号,并联 • 也称并联-并联反馈 • R0:前馈网络增益,电阻的量纲 • GmF:反馈网络增益,导纳的量纲 • R0×GmF :无量纲
– 输出电阻减小
R in , cl
1
R in R 0 G mF
R out , cl
R out 1 R 0 G mF
V out
R0
I in 1 R 0 G mF
Summary # 45
西电微电子:模拟集成电路设计
电流-电流反馈
Iout AI
Iin 1 AI
• 前馈网络AI:I-I;反馈网络:I-I • 信号检测:前馈网络的输出,电流信号,串联 • 信号返回:前馈网络的输入,电流信号,并联 • 也称并联-串联反馈
折叠点看ro 进 1||rI2 去的电阻为
A v0gm 1R out
Summary # 22
第四章 差分放大器 • 差分放大器的输出电阻 • 差分放大器的增益 • 输入共模电平Vin,CM的范围
Summary # 23
差分放大器的输出阻抗与增益(1)
Rout=RD || ro1
Av 0
g m1Rout
电流源负载的共源电路的热噪声
为了降低这 声种 ,电 应 Vds2a 路 提 t w的 高 h ?y g噪 m2V 2IdD at
Summary # 30
西电微电子:模拟集成电路设计
共源共栅电路的热噪声
低频情况下,共栅乎管不几贡献噪声!!!
Summary # 31
西电微电子:模拟集成电路设计
折叠共源共栅电路的热噪声
共源共栅差分对
Rout gm3ro3ro1 ||gm5ro5ro7
Av0gm 1Ro u t
Summary # 26
第六章 频率特性 • Miller效应 • 极点与结点的关联
Summary # 27
第七章 噪声
• 噪声类型:热噪声、闪烁噪声 • 总输出噪声 • 输入参考噪声 • 单级放大器的噪声
Rt ro1 ro2 ( g m2 g mb2 )ro2ro1
Rt
( g m2 g mb2 )ro2ro1
gm2ro2ro1 (忽略衬偏效应)
Rout g m3ro3 Rt
g m3ro3 g m2ro2ro1
Summary # 20
共源共栅级的输出阻抗(3)
Rup g m 3ro3ro 4
Summary # 18
共源共栅级的输出阻抗(1)
参考源极电阻负反共 馈源 的级电路 Rout ro1 ro2 (gm2 gmb2)ro2ro1 (gm2 gmb2)ro2ro1 gm2ro2ro1 (忽略衬偏效应)
Summary # 19
共源共栅级的输出阻抗(2)
参考源极电阻负反馈的 共源级电路
共漏MOSFET(源跟随器)
RS||ro
Rout
gm
1 g mb
Av0
1 R S || ro
gm g m g mb
Summary # 16
共栅管的输入电阻
V1 0 VX
Vbs 0 VX
RDIX ro IX (gm gmb)VX VX
VX
RD ro
IX 1 (gm gmb)ro
ro
1 ID
2 I D C ox
W L
g m ro
2 V dsat
1
2
C
ox
W L
ID
1 L
Summary #4
华大微电子:模拟集成电路设计
MOSFET小信号模型(1)
• VBS=0时的低频小信号模型 • 用于计算输出电阻、低频小信号增益
Summary #5
华大微电子:模拟集成电路设计
g m ro
Summary # 10
二极管接法的MOSFET
R out
1 gm
1 ro
1 gm
(g m ro 1 )
Summary # 11
带电阻负载的共源级
Rup Rdown
Rup R D
R down ro
R out R up || R down ( R D || ro )
V out V in
Summary # 34
西电微电子:模拟集成电路设计
第八章 反馈
• 反馈概述
– 降低增益灵敏度 – 扩展带宽 – 环路增益、开环增益、闭环增益等概念
• 四种反馈结构 • 负载的影响
– 四种二端口网络模型
Summary # 35
西电微电子:模拟集成电路设计
反馈
X(s):输入信号 Y(s):输出信号 Y(s)/ X(s):闭环传输函数,闭环增益 H(s):前馈网络;开环传输函数,开环增益 G(s):反馈网络;若与频率无关,可用代替 H(s)× G(s):环路增益 :反馈系数
共源级
• 电阻负载 • 电流源负载 • 二极管接法的MOSFET负载 • 源级负反馈
Summary #9
共源MOSFET
V gs V 1 V in
R out
V out I out
| V in 0
V in 0 时,
I out
V out ro
R out r o 单管增益
V out V in
华大微电子:模拟集成电路设计
复习提纲
Summary #1
华大微电子:模拟集成电路设计
第二章 器件模型
• MOSFET的I-V特性
– 饱和区电流公式 – 线性区电流公式 – 沟道长度调制效应
• MOSFET的小信号模型
– 低频小信号模型:图2.36
• gm、ro的表达式