值域经典题型
数学-值域的10种求法(学生版)
函数值域1基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.;当a<0时,值域为(2)y=ax2+bx+c(a≠0)的值域是:当a>0时,值域为y y≥4ac−b24a.y y≤4ac−b24a.(3)y=k x(k≠0)的值域是y y≠0(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.2函数值域的求解方法方法归纳观察法根据最基本函数值域(如x2≥0,a x>0及函数的图像、性质、简单的计算、推理,凭观察能直接得到些简单的复合函数的值域.方法归纳配方法对于形如y=ax2+bx+c a≠0的值域问题可充分利用二次函数可配方的特点,结合二次函数的定义城求出函数的值域.方法归纳图像法(数形结合)根据所给数学式子的特征,构造合适的几何模型.方法归纳基本不等式法注意使用基本不等式的条件,即一正、二定、三相等.方法归纳换元法(代数换元与三角换元)分为三角换元法与代数换元法,对于形y=ax+b+cx+d的值城,可通过换元将原函数转化为二次型函数.方法归纳分离常数法对某些齐次分式型的函数进行常数化处理,使函数解析式简化内便于分析.方法归纳判别式法把函数解析式化为关于x的-元二次方程,利用一元二次方程的判别式求值域,一般地,形如y=Ax+博观而约取 厚积而薄发B ,ax 2+bx +c 或y =ax 2+bx +cd x 2+ex +f的函数值域问题可运用判别式法(注意x 的取值范围必须为实数集R ).方法归纳单调性法先确定函数在定义域(或它的子集)内的单调性,再求出值域.对于形如y =ax +b +cx +d 或y =ax +b +cx +d 的函数,当ac >0时可利用单调性法.方法归纳有界性法充分利用三角函数或一些代数表达式的有界性,求出值域.因为常出现反解出y 的表达式的过程,故又常称此为反解有界性法.方法归纳导数法先利用导数求出函数的极大值和极小值,再确定最大(小)值,从而求出函数的值域.1.例题精讲题型一:观察法1函数y =1x +1-1的值域是( )A.-∞,-1B.+1,+∞C.-∞,-1 ∪-1,+∞D.-∞,+∞2下列函数中,值域为0,+∞ 的是( )A.y =x 2B.y =2xC.y =2xD.y =log 2x3下列函数中,函数值域为(0,+∞)的是( )A.y =(x +1)2,x ∈(0,+∞) B.y =log 2x ,x ∈(1,+∞)C.y =2x -1D.y =2x -1题型二:配方法1函数的y =-x 2-6x -5值域为()A.0,+∞B.0,2C.2,+∞D.2,+∞2函数y =f x 的图象是如图所示的折线段OAB ,其中A 1,2 ,B 3,0 ,函数g x =x ⋅f x ,那么函数g x 的值域为()Ox y 213ABA.0,2B.0,94C.0,32D.0,43已知正实数a ,b ,c 满足2a +b =1,abc +1=2c ,则c 的最大值为()A.12B.23C.815D.2题型三:图像法(数形结合)数形结合:即作出函数的图像,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域。
高中函数值域的经典例题12种求法
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(根据算术平方根的性质,先求出√(2-3x) 的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=( y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法函数y=(2x2-2x+3)/(x2-x+1)的值域。
点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)当y≠2时,由Δ=(y-2)2-4(<x≤10/3当y=2时,方程(*)无解。
值域的解法及例题
一、配方法适用类型:二次函数及能通过换元法等转化为二次函数的题型.【例1】求函数的值域.解:为便于计算不妨: 配方得: ,利用二次函数的相关知识得,从而得出: .【例2】已知函数y=(ex-a)2+(e-x-a)2(a∈R,a≠0),求函数y的最小值.解析:y=(ex-a)2+(e-x-a)2=(ex+e-x)2-2a(ex+e-x)+2a2-2.令t=ex+e-x,f(t)=t2-2at+2a2-2.∵t≥2,∴f(t)=t2-2at+2a2-2=(t-a)2+a2-2的定义域为[2,+∞).∵抛物线y=f(t)的对称轴为t=a,∴当a≤2且a≠0时,ymin=f(2)=2(a-1)2;当a>2时,ymin=f(a)=a2-2.练习○1 求y = sin2x - 6sinx + 2值域.○2 当1≤x≤1000时,求y=(lgx)2-2lgx+3值域.二、换元法【例3】求函数的值域.适用类型:无理函数、三角函数(用三角代换).解析:由于题中含有不便于计算,但如果令:注意从而得:变形得即:【例4】设a,b∈R,a2+2b2=6,则a+b的最小值是______.解:∵a,b∈R,a2+2b2=6,∴令a=6cosα,2b=6sinα,α∈R.∴a+b=6cosα+3sinα=3sin(α+φ).∴a+b的最小值是-3;故填-3.练习○3 已知是圆上的点,试求的值域.三、反函数法(变量分类法)【例5】求函数的值域.解:原式中x∈R,将原式化为由○1解出x,得;(也可由直接得到)因此函数值域是(-1,1)四、不等式法利用不等式法求解函数最值,主要是指运用均值不等式及其变形公式来解决函数最值问题的一种方法.常常使用的基本不等式有以下几种:a2+b2≥2ab(a,b为实数);a+b2≥ab(a≥0,b≥0);ab≤a+b22≤a2+b22(a,b为实数).【例6】设x,y,z为正实数,x-2y+3z=0,则的最小值为________.解析:因为x-2y+3z=0,所以y=x+3z2,因此y2xz=x2+9z2+6xz4xz.又x,z为正实数,所以由基本不等式,得y2xz≥6xz+6xz4xz=3,当且仅当x=3z时取“=”.故y2xz的最小值为3五、数形结合法【例7】适用类型:函数本身可和其几何意义相联系的函数类型.六、判别式法把函数转化为x的二次方程F(x,y)=0,通过方程有实根,判别式Δ≥0,从而求得函数的最值.判别式法多用于求形如y=ax2+bx+cdx2+ex+f(a,d不同时为0)的分式函数的最值.【例9】求函数y=x2-3x+4x2+3x+4的最大值和最小值.解析:∵x2+3x+4=0的判别式Δ1=32-4×1×4=-7<0,∴x2+3x+4>0对一切x∈R均成立.∴函数的定义域为R.∴函数表达式可化为(y-1)x2+(3y+3)x+4y-4=0.当y=1时,x=0;当y≠1时,由x∈R,上面的一元二次方程必须有实根,∴Δ=(3y+3)2-4(y-1)(4y-4)≥0,解得17≤y≤7(y≠1).综上得ymax=7,ymin=17.七、函数单调性法【例10】设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为12,则a=________. 解析:∵a>1,∴函数f(x)=logax在区间[a,2a]上是增函数,∴函数在区间[a,2a]上的最大值与最小值分别为loga2a,logaa=1.又∵它们的差为12,∴loga2=12,a=4.八、导数法【例11】函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值、最小值分别是________.解析:因为f′(x)=3x2-3,所以令f′(x)=0,得x=-1(舍正).又f(-3)=-17,f(-1)=3,f(0)=1,比较得,f(x)的最大值为3,最小值为-17.。
函数值域的常见求法8大题型(解析版)
函数值域的求法8大题型命题趋势函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。
在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。
满分技巧一、求函数值域的常见方法1.直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2.逐层法:求f 1(f 2⋯f n (x ))型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3.配方法:配方法是二次型函数值域的基本方法,即形如“y =ax x +bx +c (a ≠0)”或“y =a [f (x )]2+bf (x )+c (a ≠0)”的函数均可用配方法求值域;4.换元法:利用换元法将函数转化为易求值域的函数,常用的换元有(1)y =ax +b cx +d或y =cx +dax +b 的结构,可用“cx +d =t ”换元;(2)y =ax +b ±cx +d (a ,b ,c ,d 均为常数,a ≠0,c ≠0),可用“cx +d =t ”换元;(3)y =bx ±a 2-x 2型的函数,可用“x =a cos θ(θ∈[0,π])”或“x =a sin θθ∈-π2,π2”换元;5.分离常数法:形如y =ax +b cx +d (ac ≠0)的函数,应用分离常数法求值域,即y =ax +b cx +d=ac +bc -adc 2x +d c ,然后求值域;6.基本不等式法:形如y =ax +bx(ab >0)的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a +b ≥2ab 求函数的值域(或最值)时,应满足三个条件:①a >0,b >0;②a +b (或ab )为定值;③取等号的条件为a =b ,三个条件缺一不可;7.函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如y =ax +b -cx +d (ac <0)的函数可用函数单调性求值域;(2)形如y =ax +bx的函数,当ab >0时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解;公众号:高中数学最新试题当ab <0时,y =ax +bx在(-∞,0)和(0,+∞)上为单调函数,可直接利用单调性求解。
函数值域的题型和方法
函数值域的题型和方法函数值域是数学中一个重要的概念,涉及到函数的性质和应用场景。
函数值域的题型和方法主要包括以下几种:1. 求函数的值域这是函数值域最常见的题型之一,要求函数y=f(x)的值域。
这类题型常常需要根据函数的定义域和取值范围,确定函数的值域。
常见的求函数值域的方法包括:- 用定义法:根据函数的定义域和取值范围,确定函数的值域。
- 用导数法:通过求导数,确定函数在某一点处的取值,从而确定函数的值域。
- 用区间求导法:通过区间的两端点,求出函数在该区间内的导数,从而确定函数的值域。
2. 判断函数的单调性判断函数的单调性是函数值域中另一个重要的题型。
要求判断函数y=f(x)在区间[a,b]上的单调性。
常见的判断函数单调性的方法包括:- 用定义法:根据函数的定义域和取值范围,确定函数的单调性。
- 用导数法:通过求导数,确定函数在某一点处的取值,从而确定函数的单调性。
- 用区间求导法:通过区间的两端点,求出函数在该区间内的导数,从而确定函数的单调性。
3. 求解函数的极值求解函数的极值是函数值域中常见的最后一种题型。
要求求解函数y=f(x)的极值。
常见的求解函数极值的方法包括:- 用定义法:根据函数的定义域和取值范围,确定函数的极值。
- 用导数法:通过求导数,确定函数在某一点处的取值,从而确定函数的极值。
- 用区间求导法:通过区间的两端点,求出函数在该区间内的导数,从而确定函数的极值。
此外,函数值域还包括其他一些常见的题型和方法,如求函数的最大值、最小值、奇偶性、周期性等。
在实际求解函数值域问题时,需要根据具体的函数情况和问题,选择适合的方法和题型,从而提高求解效率和正确性。
高中函数值域的12种解法(含练习题)
高中函数值域的12 种求法一、观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1 求函数y=3+√ (2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥ 0,故3+√(2-3x)≥ 3。
∴函数的知域为[3 ,+∞]。
点评:算术平方根具有双重非负性,即:( 1 )被开方数的非负性,(2 )值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0 ≤ x≤ 5)的值域。
(答案:值域为:{0,1,2,3,4,5})二、反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2 求函数y=(x+1)/(x +2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x +2)的反函数为:x=(1 -2y)/ (y-1 ),其定义域为y≠ 1 的实数,故函数y 的值域为{y∣ y≠ 1,y∈ R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10 x+10 -x)/(10 x-10-x)的值域。
(答案:函数的值域为{y∣ y<- 1 或y> 1 })三、配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。
例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥ 0,可知函数的定义域为x∈[-1 ,2]。
此时-x2+x+2=-(x-1/2)2+9/4 ∈ [0,9/4] ,∴ 0≤√ (-x2+x+2)≤ 3/2, 函数的值域是[0,3/2] 。
点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
函数值域的求法常考题型含详解
(2) y | x 1 | | x 3 |
【解析】(1)函数的定义域为 R ,当 x ≤ 2 时, y 1 2x 5 ;
当 2 x 3 时, y 2 x 3 x 5 ,当 x 3 时, y 2x 1 5 ,综上,函数的值域为
5, .
(2) y | x 1 | | x 3 | ,当 x 1时, y 2x 2 4 ,
(3) f (x) 2x 4 1 x
【解析】(1)令 t x 1 0 ,则 x t2 1,
所以 y 2x
x 1 2
t2 1
t
2 t
1 4
2
15, t 0 ,
8
所以当 t 1 时,函数取最小值 15 ,
4
8
所以函数 y 2x
x
1
的值域为
15 8
,
;
(2)设 t= 2x 1 ,则 t 0 且 x= t 2 1 , 2
∴y= t2 1 +t= 1 t 12 1 ,在 0, 上为单调递增函数,
2
2
所以
y
1 2
,所以函数的值域为
1 2
,
.
(3)令 t= 1 x ( t 0 ),则 x 1 t 2 ;则 y 2 2t2 4t 2 t 12 4
,因为 t 0 ,所以 y 4 ,则值域为 , 4 .
的定义域和值域.
题型九:已知值域求参数
1、若一次函数 f (x) 的定义域为[3, 2] ,值域为[2, 7] ,则 f (x) ________.
2、若函数
y
x2
3x
4
的定义域为
0,
m
,值域为
25 4
,
4
,则
函数的值域典型例题及答案
函数的值域题型一:求函数值,特别是分段函数求值例题1.已知f (x )=11+x(x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R).(1)求f (2),g (2)的值;(2)求f [g (3)]的值.【答案:f (2)=13,g (2)=6;∴f [g (3)]=112】 练习1.1.已知函数f (x )=x +1x +2.(1)求f (2);(2)求f [f (1)].【答案:f (2)=34;f [f (1)]=58】 练习1.2.已知函数f (x )=x 2+x -1.(1)求f (2),f (1x );(2)若f (x )=5,求x 的值.【答案:f (2)=5,f (1x )=1+x -x 2x 2;x =2,或x =-3.】 练习1.3.函数f (x )对任意自然数x 满足f (x +1)=f (x )+1,f (0)=1,则f (5)=________.【答案:6】 题型二:值域是函数y=f(x)中y 的取值范围例题2.1.(图像法)求下列函数的值域①y=3x+2(-1≤x ≤1) 【答案:[-1,5]】 ②)(3x 1x32)(≤≤-=x f 【答案:]92,32[--】 ③ xx y 1+=(记住图像) 【答案: ]2,(--∞[2,+∞)】 练习2.1.求下列函数的值域:①142+-=x x y ; 【答案:{y|y ≥-3 }.】②;]4,3[,142∈+-=x x x y 【答案:[-2,1].】③]1,0[,142∈+-=x x x y ; 【答案:[-2,1].】④]5,0[,142∈+-=x x x y ; 【答案:[-3,6].】例题2.2.(代数换元法)求函数x x y -+=12 的值域 。
【答案:]2,(∞-】 练习2.2.求函数y=x x --1的值域。
【答案:{y|y ≤-3/4}】例题2.3.(三角换元法)求函数21x x y -+=的值域【答案:[-1,2]】练习2.3.例题2.4.(反函数法)求函数21+-=x x y 的值域【答案:{}1≠y y 】(此类题目也可用分离常数法) 练习2.4.1.求函数6412+-=x x y 的值域【答案:{y|y ≠21}】 练习2.4.2.求函数133+=x xy 的值域【答案:y ∈(0,1)】 练习2.4.3.求函数 y =1212+-x x 的值域;【答案:y ∈(-1,1)】例题2.5.(判别式法)函数1122+-=x x y 的值域(也可用分离常数法,反函数法) 练习2.5.1.求函数34252+-=x x y 的值域 【答案:}50|{≤<y y 】 练习2.5.2.求函数)1(1222->+++=x x x x y 的值域 【答案:[)∞+,2】(也可用分离常数法) 例题2.6.(分离常数法)详细过程见其他例题例题2.7.(单调性法)求函数y=4x -x 31-的值域。
高中求值域练习题及讲解
高中求值域练习题及讲解高中数学:求值域练习题及讲解在高中数学中,函数的值域是一个重要的概念,它描述了函数输出的所有可能值的集合。
掌握求值域的方法对于理解函数的性质至关重要。
以下是一些常见的求值域练习题,以及解题思路的详细讲解。
练习题1:已知函数 \( f(x) = \sqrt{x + 2} \),求其值域。
解题思路:- 首先确定函数的定义域,即 \( x \) 的取值范围使得 \( \sqrt{x+ 2} \) 有意义。
- 由于根号内的值必须非负,因此 \( x + 2 \geq 0 \),解得 \( x\geq -2 \)。
- 接下来,考虑 \( f(x) \) 的最小值。
当 \( x = -2 \) 时,\( f(x) = \sqrt{0} = 0 \)。
- 随着 \( x \) 的增加,\( f(x) \) 会无限增大,因此值域为\( [0, +\infty) \)。
练习题2:若函数 \( g(x) = \frac{1}{x} \),求其值域。
解题思路:- 确定函数的定义域,由于分母不能为零,所以 \( x \neq 0 \)。
- 分析函数的单调性,当 \( x > 0 \) 时,\( g(x) \) 随着 \( x \)的增大而减小;当 \( x < 0 \) 时,\( g(x) \) 随着 \( x \) 的减小而减小。
- 因此,\( g(x) \) 没有最大值,但有最小值,当 \( x \) 趋向于正无穷或负无穷时,\( g(x) \) 趋向于 0。
- 值域为 \( (-\infty, 0) \cup (0, +\infty) \)。
练习题3:给定函数 \( h(x) = x^3 - 3x \),求其值域。
解题思路:- 首先求导数 \( h'(x) = 3x^2 - 3 \),以确定函数的增减性。
- 解 \( h'(x) = 0 \) 得到 \( x = \pm 1 \),这两个点可能是极值点。
函数专题:函数值域的6种常用求法-【题型分类归纳】
函数专题:函数值域的6种常用求法一、函数的最大(小)值1、最大值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≤M,那么,我们称M是函数y=f(x)的最大值,即当x=x0时,f(x0)是函数y=f(x)的最大值,记作y max=f(x0).2、最小值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≥M,那么,我们称M是函数y=f(x)的最小值,即当x=x0时,f(x0)是函数y=f(x)的最小值,记作y min=f(x0).3、几何意义:函数最大值对应图象中的最高点,最小值对应图象中的最低点,它们不一定只有一个.二、求函数值域的6种常用求法1、单调性法:如果一个函数为单调函数,则由定义域结合单调性可快速求出函数的最值(值域).(1)若函数y=f(x)在区间[a,b]上单调递增,则y max=f(b),y min=f(a).(2)若函数y=f(x)在区间[a,b]上单调递减,则y max=f(a),y min=f(b).(3)若函数y=f(x)有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.2、图象法:作出函数的图象,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域.(2)()f x的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该()f x函数的图象,从而利用图象求得函数的值域.3、配方法:主要用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围.4、换元法:换元法是将函数解析式中关于x 的部分表达式视为一个整体,并用新元t 代替,将解析式化归为熟悉的函数,进而解出最值(值域).(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围. (2)换元的作用有两个:①通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的.②可将不熟悉的函数转化为会求值域的函数进行处理 5、分离常数法:主要用于含有一次的分式函数,形如+=+ax b y cx d或2++=+ax bx e y cx d (a ,c 至少有一个不为零)的函数,求其值域可用此法以+=+ax by cx d为例,解题步骤如下: 第一步,用分子配凑出分母的形式,将函数变形成=++a ey c cx d的形式, 第二步,求出函数=+e y cx d 在定义域范围内的值域,进而求出+=+ax by cx d的值域。
求三角函数的值域(最值)题型例析
2
2
1
3
3
s
i
n2
x c
o
s2
x +
=
3 =
2
2
2
s
i
n2
x-
(
3
7π
π
。 由 0≤x ≤
,可 得
+
2
1
2
3
)
π
π
5π
3
,所 以 - ≤ 2
x ≤
≤
3
3
6
2
s
i
n2
x-
(
π
π
≤1,所 以 0 ≤ s
i
n2
+
x3
3
)
(
)
[
;
当定义域为某个给定
-|A|+k,
|A|+k]
函数的单调性求值域。
题 型 2:
(
或 y=Ac
Aω≠0)
o
s(
ωx+φ)
+k(
Aω≠0)
例1
(32π-x) - 3 cosx + 3。 当 x ∈
[0,712π] 时,函 数 f(x)的 最 小 值 和 最 大 值 分
s
i
n
2
。
别为
解:
函数 f(
x)= (-s
i
nx)(-c
o
sx)-
1
3
(
o
s2x+ 3= s
i
n2
xc
o
s2
x+1)+
i
n(
ωx+φ)
+k 或y=Ac
高中函数值域的7类题型和16种方法
高中函数值域的7类题型和16种方法函数值域是指函数输出值的集合。
在高中数学中,我们常常遇到一些关于函数值域的问题。
下面将介绍高中函数值域的7类题型以及解决这些问题的16种方法。
1. 函数值域的确定式题:给出一个函数的解析式,要求确定函数的值域。
解决方法:- 通过分析函数的定义域和性质推导函数的值域。
- 使用函数的图像来确定函数的值域。
- 借助导数和极值的概念来确定函数的值域。
2. 函数值域的确定性问题:给出一个函数的图像,要求确定函数的值域。
解决方法:- 通过观察图像的特点,确定函数的最大值和最小值。
- 借助极值和区间的概念,确定函数的值域。
3. 函数值域的不等式问题:给出一个函数的不等式解析式,要求确定函数的值域。
解决方法:- 分析给定不等式的解集,确定函数的值域。
- 将不等式转化为等式,解出方程,确定函数的值域。
4. 函数值域的集合表示问题:给出一个函数的值域,要求将其表示为集合。
解决方法:- 分析函数的定义域和性质,将函数的值域表示为集合。
- 借助函数的图像来表示函数的值域。
5. 函数值域的推导题:给出一个函数的值域,要求推导出函数的解析式。
解决方法:- 分析给定的值域,推导出函数的定义域和性质,再根据推导出的定义域和性质写出函数的解析式。
6. 函数值域的综合题:综合运用多种方法,确定函数的值域。
解决方法:- 根据题目要求,运用不同的方法来确定函数的值域。
- 分析题目中给出的条件,结合函数的性质来确定函数的值域。
7. 函数值域的实际问题:将函数值域与实际问题联系起来,解决实际问题。
解决方法:- 将实际问题转化为函数模型,通过确定函数的值域来解决实际问题。
- 根据实际问题给出的条件和约束,运用适当的方法来确定函数的值域,作为问题的解答。
以上是高中函数值域的7类题型和16种方法。
对于不同类型的问题,我们可以根据题目要求和给定条件,选择合适的方法来求解函数的值域。
通过练习这些题型,我们可以提高对函数值域的理解和分析能力。
值域12种归纳(解析版)
专业专心专注值域12类归纳1.一、热点题型归纳题型一:值域基础1:幂函数求值域1若函数f (x )=ax 2+bx +c (a ,b ,c ∈R )的定义域和值域分别为集合A ,B ,且集合{(x ,y )|x ∈A ,y ∈B }表示的平面区域是边长为1的正方形,则b +c 的最大值为_________.【答案】5【详解】由题可知,a 0,b 2-4ac 0,则A =-b +b 2-4ac 2a ,-b -b 2-4ac 2a,B =0,4ac -b 24a,因为{x ,y |x ∈A ,y ∈B }表示的平面区域是边长为1的正方形,所以b 2-4ac -a =4ac -b 24a=1,可得a =-4,b 2+16c =16,c =1-b 216,所以b +c =-b 216+b +1=-116b -8 2+5,当b =8时有最大值5.方法归纳基本规律1.幂函数主要考察一元二次函数2.二次函数在进行讨论的时候要首先考虑二次项系数为0的情况,然后根据题意,去讨论开口或者讨论Δ.1设二次函数f x =mx 2-2x +n m ,n ∈R ,若函数f x 的值域为0,+∞ ,且f 1 ≤2,则m 2n 2+1+n 2m 2+1的取值范围为___________.【答案】[1,13]【详解】二次函数f (x )对称轴为x =1m,∵f (x )值域为0,+∞ ,∴m >0且f 1m =0⇒m ⋅1m 2-2m +n =0⇒n =1m⇒mn =1,n >0.f 1 ≤2⇒m -2+n ≤2⇒m +n ≤4,∵m 2n 2+1+n 2m 2+1=m 2m 2+1 +n 2n 2+1 m 2+1 n 2+1 =m 4+n 4+m 2+n 2m 2n 2+m 2+n 2+1=m 2+n 2 2-2m 2n 2+m 2+n 2m 2+n 2+2=m 2+n 2 2+m 2+n 2 -2m 2+n 2+2=m 2+n 2+2 m 2+n 2-1 m 2+n 2+2=m 2+n 2-1∴m 2+n 2-1≥2mn -1=1,m 2+n 2-1=(m +n )2-3≤42-3=13,∴m 2n 2+1+n 2m 2+1∈[1,13].故答案为:[1,13].2已知函数f (x )=x 3-3x 在x ∈5-m 2,m -1 的值域为a ,b b >a ,则实数m 的取值范围为________.【答案】6,7【详解】由解析式知:f (x )=3(x 2-1),∴(-∞,-1)、(1,+∞)上f (x )>0,即f (x )单调递增;(-1,1)上f (x )<0,即f (x )单调递减;∴f (x )有极大值f (-1)=2,极小值f (1)=-2,第1页共28页自律自信自强博观而约取 厚积而薄发由题意知:a =-2,b =2,即有:m -1>5-m 25-m 2<-1m -1>1f (5-m 2)≥-2f (m -1)≤2,解得6<m ≤7,故答案为:6,7 3已知函数y =x 2+2x 在闭区间[a ,b ]上的值域为[-1,3],则a ⋅b 的最大值为________.【答案】3【详解】432132111Oxy画出函数f x =x 2+2x 的图像可知,要使其在闭区间[a ,b ]上的值域为[-1,3],由于有且仅有f -1 =-1,所以-1∈[a ,b ]⇒a ≤-1≤b ,而f -3 =f 1 =3,所以有[a ,b ]⊆-3,1 ,a =-3或b =1,又∵a <0,a ⋅b 的最大值为正值时,b <0,∴b ≠1,a =-3,所以a ⋅b =-3b ,当b 取最小值时,,a ⋅b 有最大值.又∵b ≥-1,∴a ⋅b 的最大值为-3 ×-1 =3;故答案为:3.题型二:值域基础2:指数函数求值域1函数f (x )=a +b e x+1(a ,b ∈R )是奇函数,且图象经过点ln3,12 ,则函数f (x )的值域为____【答案】(-1,1)【详解】函数是奇函数,则:f (0)=a +b e 0+1=a +b2=0①,结合函数所过的点可得:f ln3 =a +b e ln3+1=a +b 4=12②,①②联立可得:a =1b =-2 ,则函数的解析式为:f (x )=1+-2e x +1,结合指数函数的性质可得:e x +1>1,-2e x +1∈(-2,0),f (x )=1+-2e x +1∈(-1,1).故答案为:(-1,1).方法归纳基本规律1、底数讨论单增单减讨论。
函数的值域的7种题型
函数的值域的7种题型函数的值域是函数输出值的集合。
理解函数的值域对于理解函数的性质和行为非常重要。
以下是函数的值域的7种题型:1. 基础题型:给定一个简单的函数,例如 $f(x) = x^2$,求其值域。
这种题型主要考察对基本函数性质的理解。
2. 复合函数:给定一个复合函数,例如 $f(g(x))$,其中 $g(x) = x^2$,求其值域。
这种题型要求理解复合函数的性质,特别是内外函数的值域和定义域关系。
3. 分段函数:给定一个分段函数,例如 $f(x) = \begin{cases} x^2, & x \geq 0 \\ -x^2, & x < 0 \end{cases}$,求其值域。
这种题型要求理解分段函数的性质,特别是不同分段的值域。
4. 三角函数:给定一个三角函数,例如 $f(x) = \sin x$,求其值域。
这种题型要求理解三角函数的性质,特别是其周期性和振幅。
5. 指数和对数函数:给定一个指数或对数函数,例如 $f(x) = 2^x$ 或 $f(x) = \log_2 x$,求其值域。
这种题型要求理解指数和对数函数的性质,特别是其单调性和定义域。
6. 抽象函数:给定一个抽象函数,例如 $f(x) = x^2 + 1$,求其值域。
这种题型要求对函数性质有更深入的理解,特别是如何通过函数的性质判断其值域。
7. 实际应用题:给定一个实际问题,例如求一个物理过程的输出范围,或者求解一个经济模型的参数范围。
这种题型要求将实际问题转化为数学模型,并利用数学工具求解值域。
通过解决这些题型,可以加深对函数值域的理解,提高解决实际问题的能力。
函数值域的求法大全
函数值域的求法大全题型一 求函数值:特别是分段函数求值例1 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112.反思与感悟 求函数值时,首先要确定出函数的对应关系f 的具体含义,然后将变量代入解析式计算,对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别. 跟踪训练4 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f [f (1)].解 (1)∵f (x )=x +1x +2,∴f (2)=2+12+2=34.(2)f (1)=1+11+2=23,f [f (1)]=f (23)=23+123+2=58.5.已知函数f (x )=x 2+x -1. (1)求f (2),f (1x );(2)若f (x )=5,求x 的值. 解 (1)f (2)=22+2-1=5, f (1x )=1x 2+1x -1=1+x -x 2x 2. (2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, ∴x =2,或x =-3. (3)4.函数f (x )对任意自然数x 满足f (x +1)=f (x )+1,f (0)=1,则f (5)=________. 答案 6解析 f (1)=f (0)+1=1+1=2,f (2)=f (1)+1=3,f (3)=f (2)+1=4,f (4)=f (3)+1=5,f (5)=f (4)+1=6.二、值域是函数y=f(x)中y 的取值范围。
专题2-1 函数性质1:值域12类归纳-(解析版)
专题2-1 函数性质1:值域12类归纳目录一、热点题型归纳 ...................................................................................................................................... 1 【题型一】值域基础1:幂函数求值域.................................................................................................... 1 【题型二】值域基础2:指数函数求值域................................................................................................ 3 【题型三】值域基础3:对数函数求值域................................................................................................ 3 【题型四】值域基础4:分式(类反比例)型函数求值域 .................................................................... 6 【题型五】值域基础5:“对钩”与“双曲”函数求值域 ...................................................................... 8 【题型六】值域基础6:分段函数与值域.............................................................................................. 10 【题型七】值域基础7:绝对值函数求值域 .......................................................................................... 12 【题型八】值域基础8:“无理函数”求值域 ........................................................................................ 14 【题型九】“高斯函数”与值域 .............................................................................................................. 16 【题型十】“保值函数”与值域 .............................................................................................................. 18 【题型十一】“放大镜”函数与值域....................................................................................................... 20 【题型十二】抽象函数、复合函数与值域............................................................................................. 22 【题型十三】值域综合 ............................................................................................................................ 24 二、真题再现 ............................................................................................................................................ 26 三、模拟检测 .. (28)【题型一】值域基础1:幂函数求值域【典例分析】若函数()f x =(,,a b c ∈R )的定义域和值域分别为集合,A B ,且集合{(,)|,}x y x A y B ∈∈表示的平面区域是边长为1的正方形,则b c +的最大值为__________. 【答案】5【详解】由题可知,2040a b ac -,,则A =⎢⎥⎣⎦ ,0B ⎡=⎢⎢⎣, 因为(){|}x y x A y B ∈∈,, 表示的平面区域是边长为1的正方形,1=,可得4a =-,21616b c += ,2116b c =-,所以()2211851616b bc b b +=-++=--+,当8b =时有最大值5.1.设二次函数()()22,f x mx x n m n =-+∈R ,若函数()f x 的值域为[)0,∞+,且()12f ≤,则222211m n n m +++的取值范围为___________. 【答案】[1,13]【分析】根据二次函数的性质和已知条件得到m 与n 的关系,化简222211m n n m +++后利用不等式即可求出其范围.【详解】二次函数f (x )对称轴为1x m=,∵f (x )值域为[]0,∞+,∵0m >且21121001f m n n mn m m mm ⎛⎫⎛⎫=⇒⋅-+=⇒=⇒= ⎪ ⎪⎝⎭⎝⎭,n >0.()12224f m n m n ≤⇒-+≤⇒+≤,∵()()()()2222224422222222*********m m n n m n m n m n n m m n m n m n +++++++==+++++++ =()22222222222m n m n m n m n +-++++=()()222222222m n mn m n +++-++=()()222222212m n m n m n +++-++=221mn +-∵221211m n mn +-≥-=,22221()34313m n m n +-=+-≤-=,∵222211m n n m +++∵[1,13].故答案为:[1,13]. 2.已知函数3()3f x x x =-在()25,1x m m ∈--的值域为[](),a b b a >,则实数m 的取值范围为________.【答案】由函数知()f x 存在极大、小值,而()25,1x m m ∈--的值域为[](),a b b a >,则()25,1m m --必包含极值点,列不等式组求m 的取值范围.【详解】由解析式知:2()3(1)f x x '=-,∵(,1)-∞-、(1,)+∞上()0f x '>,即()f x 单调递增;(1,1)-上()0f x '<,即()f x 单调递减; ∵()f x 有极大值(1)2f -=,极小值(1)2f =-,由题意知:2,2a b =-=,即有:222155111(5)2(1)2m m m m f m f m ⎧->-⎪-<-⎪⎪->⎨⎪-≥-⎪⎪-≤⎩m ≤,故答案为:3.已知函数22y x x =+在闭区间[,]a b 上的值域为[1,3]-,则⋅a b 的最大值为________.【答案】3【分析】画出函数图像,分析要使函数在闭区间[,]a b 上的值域为[1,3]-,必有1a b ≤-≤,[][,]3,1a b ⊆-,3a =-或1b =,再根据求⋅a b 的最大值最好是正值,可得0a <, 0b <,即⋅a b 的最大值为()()313-⨯-=.【详解】画出函数()22f x x x =+的图像可知,要使其在闭区间[,]a b 上的值域为[1,3]-,由于有且仅有()11f -=-,所以1[,]1a b a b -∈⇒≤-≤, 而()()313f f -==,所以有[][,]3,1a b ⊆-,3a =-或1b =, 又∵0a <,⋅a b 的最大值为正值时,0b <, ∵1,3b a ≠=-,所以3a b b ⋅=-,当b 取最小值时,,⋅a b 有最大值. 又∵1b ≥-,∵⋅a b 的最大值为()()313-⨯-=; 故答案为:3.【题型二】值域基础2:指数函数求值域【典例分析】函数()(,)1xb f x a a b R e =+∈+是奇函数,且图象经过点1ln 3,2⎛⎫ ⎪⎝⎭,则函数()f x 的值域为______ 【答案】(1,1)-【分析】由题意首先求得函数的解析式,然后结合函数的解析式求解函数的值域即可.【详解】函数是奇函数,则:0(0)012b bf a a e =+=+=+∵, 结合函数所过的点可得:ln31ln 3142b b f a a e ∵,∵∵联立可得:12a b =⎧⎨=-⎩, 则函数的解析式为:2(x)11x f e -=++,结合指数函数的性质可得:11x e +>,2(2,0)1xe -∈-+,2()1(1,1)1x f x e -=+∈-+. 故答案为:(1,1)-.【变式演练】 1.函数的值域为_________.【答案】.【详解】试题分析:设,因为所以又函数为增函数,有所以函数的值域为. 2.关于函数1()42xf x =+的性质,有如下四个命题: ∵函数()f x 的定义域为R ; ∵函数()f x 的值域为(0,)+∞;∵方程()f x x =有且只有一个实根; ∵函数()f x 的图象是中心对称图形. 其中正确命题的序号是_____. 【答案】∵∵∵【分析】∵可以利用指数函数的值域得到40x >,从而求出定义域;∵利用40x >得到值域;∵构造函数,求导,求出单调性,结合零点存在性定理求出答案;∵求出1(1)()2f x f x ++-=,从而得到函数()f x 关于点11,24⎛⎫⎪⎝⎭对称,故()f x 的图象是中心对称图形. 【详解】∵因为40x >,所以函数1()42x f x =+的定义域为R ,∵正确;∵因为40x >,所以函数1()42x f x =+的值域为10,2⎛⎫⎪⎝⎭,∵错误;∵令()142xg x x =-+,则()()24ln 41042x x g x '=--<+恒成立,故()142x g x x =-+单调递减,又()1003g =>,()11106g =-<,故由零点存在性定理及函数单调性可知:方程()f x x =只有一个实根,∵正确; ∵1111(1)()42422x x f x f x +-++-=+=++,所以函数()f x 关于点11,24⎛⎫⎪⎝⎭对称,∵正确. 故答案为:∵∵∵ 3.已知函数()1424x x f x +=-+,[]1,1x ∈-,则函数()y f x =的值域为( ).A .[)3,+∞B .[]3,4C .133,4⎡⎤⎢⎥⎣⎦D .13,44⎡⎤⎢⎥⎣⎦【答案】B【分析】根据给定条件换元,借助二次函数在闭区间上的最值即可作答.依题意,函数()2)(2224x xf x =-⨯+,[]1,1x ∈-,令2x t =,则2x t =在[]1,1x ∈-上单调递增,即122t ≤≤,于是有2224(1)3y t t t =-+=-+,当1t =时,min 3y =,此时0x =,min ()3f x =, 当2t =时,max 4y =,此时1x =,max ()4f x =, 所以函数()y f x =的值域为[]3,4. 故选:B【题型三】值域基础3:对数函数求值域【典例分析】设函数()=log (01)a f x x a a >≠且的定义域为[,])m nm n <(,值域为[0,1],若n m -的最小值为13,则实数a 的值是_____________.【答案】32或23【分析】根据题意()=log a f x x ,利用函数图像的变换,作出()=log a f x x 的图像,根据图像特点,结合题意,分01a <<和1a >进行讨论,列出关于a 的等式关系,即可求解出结果.【详解】如图所示,做出()=log a f x x 的图像,若01a <<,当1n =时,log 1a m =时,1233n m a -=⇒=. 若1a >时, 当1n =时,log 1a m =-,1332n m a -=⇒=.综上所述,32a =或23【变式演练】1.若函数()()221log 214f x kx k x ⎡⎤=+-+⎢⎥⎣⎦的值域为R ,则实数k 的取值范围为_____.【答案】1[0,][1,)4+∞【分析】将问题转化为()21214kx k x +-+能取尽所有的正数,然后再分0k =和0k ≠两种情况,并结合函数的性质求解即可.【详解】∵函数()()221log 214f x kx k x ⎡⎤=+-+⎢⎥⎣⎦的值域为R ,∵()()21214g x kx k x =+-+能取尽所有的正数.∵当0k =时,()14g x x =-+,能取尽所有的正数,符合题意;∵当0k ≠时,要使()()21214g x kx k x =+-+能取尽所有的正数,则需满足()220214510k k k k k >⎧⎪⎨=--=-+≥⎪⎩,解得104k <≤或1k ≥, 综上可得104k ≤≤或1k ≥,∵实数k 的取值范围为][10,1,4⎡⎫⋃+∞⎪⎢⎣⎭.2.已知函数2322()log 1x bx cf x x ++=+的值域为[]0,1,则b 与c 的和为_______. 【答案】4或0【详解】试题分析:本题是已知函数值域,求参数值问题,可根据题意知函数定义域为R ,由值域反过来求,即由已知得2221x bx cx +++的值域是[1,3],从而有222221,1{231x bx cx x bx c x ++≥+++≤+即2210,{30,x bx c x bx c ++-≥-+-≥,注意两个不等式中等号一定成立,因此两式的判别式为0,由此可求得,b c 值. 试题解析:因为()f x 的值域为0,1,即23220log 11x bx cx ++≤≤+,所以222221,1{231x bx cx x bx c x ++≥+++≤+即2210,{30,x bx c x bx c ++-≥-+-≥ 21224(1)0,{4(3)0,b c b c ∆=--≥∆=--≥当且仅当120,{0∆=∆=时,222011x bx cx ++≤≤+取等号. 解方程组可得2,{2b c ==或2,{2.b c =-= 3.已知函数()()2lg 1f x ax x =++.设命题():p f x 的定义域为R ,命题():q f x 的值域为R .若p q ∨为真,p q∧为假,则实数a 的取值范围是( )A .1,4⎛⎫+∞ ⎪⎝⎭ B .10,4⎡⎤⎢⎥⎣⎦ C .[)0,∞+ D .()0,∞+【答案】C【分析】根据一元二次不等式恒成立和二次函数值域可求得,p q 为真命题时a 的取值范围,根据p q ∨和p q ∧的真假性可知,p q 一真一假,分类讨论可得结果.若命题p 为真,则210ax x ++>在R 上恒成立,0140a a >⎧∴⎨-<⎩,1,4a ⎛⎫∴∈+∞ ⎪⎝⎭;若命题q 为真,则21y ax x =++的值域包含()0,∞+,则0a =或0140a a >⎧⎨-≥⎩, 10,4a ⎡⎤∴∈⎢⎥⎣⎦;p q ∨为真,p q ∧为假,,p q ∴一真一假,若p 真q 假,则1,4a ⎛⎫∈+∞ ⎪⎝⎭;若p 假q 真,则10,4a ⎡⎤∈⎢⎥⎣⎦;综上所述:实数a 的取值范围为[)0,∞+. 故选:C.【题型四】值域基础4:分式(类反比例)型函数求值域【典例分析】已知,,a b c 为非零实数,(),ax b f x x R cx d +=∈+,且(2)2,(3)3f f ==.若当dx c≠-时,对于任意实数x ,均有(())f f x x =,则()f x 值域中取不到的唯一的实数是_________.【答案】52【详解】试题分析:因为当d x c ≠-时,对于任意实数x ,均有()f f x x =⎡⎤⎣⎦,所以ax ba bcx d x ax b c dcx d +⨯++=+⨯++,即()()()2220a d cx d a x b a d ++--+=,因为()()()2220a d cx d a x b a d ++--+=对dx c ≠-恒成立,所以0a d +=且220d a -=,所以d a =-,因为()22f =,()33f =,所以2和3是方程ax bx cx d+=+的两个根,即2和3是方程()20cx d a x b +--=的两个根,所以5a d c -=,6b c-=,由{56d a a dc b c =--=-=得:52{652a cb c d c ==-=-,所以()5165125225252252cx cx f x x x cx c --===+---,即()f x 取不到52这个数,所以()f x 值域中取不到的唯一的实数是52,所以答案应填:52.【变式演练】1.设x ∈R ,函数INT()x 表示不超过x 的最大整数,例如INT(0.1)1-=-,INT(2.8)2=,若函数222()1x f x x -=+,则函数INT(())y f x =的值域是( ) A .{2} B .{0,1,2} C .{1,0,1,2}- D .{0,1} 【答案】C【分析】23()11=-++f x x 可得1()2f x -<≤,分1()0f x -<<、0()1f x ≤<、1()2f x ≤<、()2f x =根据定义可得答案.2222223(1)3()1111x x f x x x x --+===-++++,因为211x +≥,所以23031x <≤+, 所以1()2f x -<≤,当1()0f x -<<时,()()1y INT f x ==-;当0()1f x ≤<时,()()0y INT f x ==; 当1()2f x ≤<时,()()1y INT f x ==;当()2f x =时,()()2y INT f x ==,所以函数()()y INT f x =的值域为{1,0,1,2}-, 故选:C.2.定义区间[]12,x x 长度()2121x x x x ->为,已知函数()()221(,)0a a x f x a xa R a ∈=≠+- 的定义域与值域都是[],m n ,则区间[],m n 取最大长度时a 的值为__________.【答案】3【分析】先分析函数单调性,根据单调性结合值域列方程,转化为对应一元二次方程根的情况,再根据求根公式求[],m n 长度,根据二次函数性质求其最大值,即得a 的值. 【详解】因为()()222111a a x a a xa a f xx +-+==-,所以()f x 在(,0)-∞和(0,)+∞上都是单调递增函数,所以0m n <<或0m n <<因为值域是[],m n ,所以221111,,a a m n a a m a a n++=-=- 即m n ,为方程222211,()10a x a x a a x a a x+=--++=两个不同的实根, 所以222()401a a a a ∆=+->∴>或3a <-[],m n长度为2a ∆所以当11,33a a ==时,[],m n 长度取最大值,故答案为:33.关于函数2()1xf x x=+(x ∈R )的如下结论:∵()f x 是奇函数; ∵函数()f x 的值域为(-2,2);∵若12x x ≠,则一定有12()()f x f x ≠; ∵函数()()3g x f x x =-在R 上有三个零点. 其中正确结论的序号有 .(请将你认为正确的结论的序号都填上) 【答案】∵∵∵【分析】根据函数的解析式,逐一判断以下结论是否正确.【详解】函数()f x 的定义域为R ,定义域关于原点对称,2()1x f x x =+,2()1xf x x--=+,所以()()f x f x -=-,()f x 是奇函数,∵正确;当0x >时,22()(0,2)111x f x x x==∈++, 因为()f x 是奇函数,当0x <时,()(2,0)f x ∈-,又(0)0f =,所以函数()f x 的值域为(-2,2),∵正确;当0x >时,22()111x f x x x==++,函数在(0,)+∞上递增,因为()f x 是奇函数,所以函数()f x 在(),-∞+∞上单调递增,故若12x x ≠,则一定有12()()f x f x ≠,∵正确;由方程()()30g x f x x =-=,得0x =或231x =+,显然方程231x=+无实解,故函数()()3g x f x x =-在R 上有一个零点,∵不正确;综上,正确结论的序号有∵∵∵.【题型五】值域基础5:“对钩”与“双曲”函数求值域【典例分析】已知定义在(0,3]上的函数()111a bf x x a x -+=++-+的值域为[4,5],若()1,5b a -∈-,则a +b 的值为_________ .【答案】7将函数变形为()1 12 1?a b f x x a x -+=+++-+,令1(1,4]t x =+∈,()1?2a b g t t a t -+=++-,由()10,6a b -+∈,利用对勾函数的性质求解.【详解】因为()1 1?112 1? 1?a b a b f x x a x a x x -+-+=++-=+++-++,令1(1,4]t x =+∈, 所以()1?2a b g t t a t -+=++-,因为()1,5b a -∈-,所以()10,6a b -+∈, 所以()g t在⎡⎣上递减,在⎤⎦递增,所以()min 24g t g a ==-=∵, 又()()931,4,(1,4]4a b g g b g t ++===∈,所以()()max 9344a bg t g ++==∵, 所以934a bb ++≤,由∵∵得6,29a b =-=或2,5a b ==,因为()1,5b a -∈-,所以2,5a b == 所以a +b=7。
值域经典题型
值域简单练习题1.求6)(2+-=x x x f 在[]11,-上的值域2.求函数132)(++=x x x f 的值域 3. 求函数133)(2+++=x x x x f 的值域 4.求函数x x x f -+=1)(的值域 5.13213)(x x +⋅-=x f 6.1)(22+--=x x x x x f 7.x-1x3131)(-+=x f 8.x x x f +-+=243)( 9.2x 2x -)(2++=x f10.y =11.2256y x x =-++ 12.2cos 13cos 2x y x +=-13.求函数()1y x =≥的值域。
值域的求法加强练习题解答题(共10小题)1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B).2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4).(1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合;(2)求函数y=f(x)在区间(0,3]上的值域.3.求函数的值域:.4.求下列函数的值域:(1)y=3x2﹣x+2;(2);(3);(4);(5)(6);5.求下列函数的值域(1);(2);(3)x∈[0,3]且x≠1;(4).6.求函数的值域:y=|x﹣1|+|x+4|.7.求下列函数的值域.(1)y=﹣x2+x+2;(2)y=3﹣2x,x∈[﹣2,9];(3)y=x2﹣2x﹣3,x∈(﹣1,2];(4)y=.8.已知函数f(x)=22x+2x+1+3,求f(x)的值域.9.已知f(x)的值域为,求y=的值域.10.设的值域为[﹣1,4],求a、b的值.参考答案与试题解析一.解答题(共10小题)1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B).考点:函数的值域;交、并、补集的混合运算;函数的定义域及其求法。
1457182专题:计算题。
分析:由可求A,由可求B可求解答:解:由题意可得∴A=[2,+∞),∵∴B=(1,+∞),C R A=(﹣∞,2),C R B=(﹣∞,1]﹣﹣﹣(4分)∴A∩B=[2,+∞)∴(C R A)∩(C R B)=(﹣∞,1]﹣﹣﹣﹣﹣(6分)点评:本题主要考查了函数的定义域及指数函数的值域的求解,集合的交集、补集的基本运算,属于基础试题2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4).(1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合;(2)求函数y=f(x)在区间(0,3]上的值域.考点:函数的值域;二次函数的性质;一元二次不等式的解法。
函数求值域题目集锦
函数求值域题目集锦-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN选择题 1.函数y =?x +1?|x |-x的定义域是( ) A .{x |x <0} B .{x |x >0}C .{x |x <0且x ≠-1}D .{x |x ≠0,且x ≠-1,x ∈R }2.下表表示y 是x 的函数,则函数的值域是( )A.[2,5] C .(0,20]D .{2,3,4,5}3.若函数y =f (x )的定义域为[0,2],则函数g (x )=f ?2x ?x -1的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4]D .(0,1)4.函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 B .(-∞,2]C.⎝⎛⎭⎪⎫-∞,12∪[2,+∞) D .(0,+∞)5.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是( )A .f (x )=x 2+a B .f (x )=ax 2+1 C .f (x )=ax 2+x +1D .f (x )=x 2+ax +16.设f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1,g (x )是二次函数,若f [g (x )]的值域是[0,+∞),则g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)7.函数)13lg(13)(2++-=x xx x f 的定义域是( )A ),31(+∞-B )1,31(- C )31,31(- D )31,(--∞8.下列函数中,值域是(0,+∞)的是( )A 13+-=x x y B )0(12>+=x x y C 12++=x x y D 21-=xy9.已知)(,11)11(22x f x x x x f 则+-=+-的解析式可取为( ) A .21x x+ B .212x x+-C .212x x+ D .21x x+-10.函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为( )A .41B .21C .2D .411.函数y =( ) A .[1,)+∞B .23(,)+∞C .23[,1]D .23(,1]12.设函数,2)2(),0()4(.0,2,0,0,)(2-=-=-⎩⎨⎧>≤≤++=f f f x x x c bx x x f 若则关于x 的方程x x f =)(解的个数为( ) A .1B .2C .3D .413、函数)1(log 21-=x y 的定义域为( )A 、[)(]2,11,2 -- B 、)2,1()1,2( -- C 、[)(]2,11,2 -- D 、)2,1()1,2( --14、设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( )A 、(][]10,02, -∞-B 、(][]1,02, -∞-C 、(][]10,12, -∞-D 、[)[]10,10,2 -15、(浙江理10)设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞, 则()g x 的值域是( ) A .(][)11--+∞,,∞B .(][)10--+∞,,∞C .[)0+,∞D .[)1+,∞16、(陕西文2)函数21lg )(x x f -=的定义域为( ) (A )[0,1](B )(-1,1)(C )[-1,1](D )(-∞,-1)∪(1,+∞)17、(江西文3)函数1()lg 4xf x x -=-的定义域为( ) A.(14),B.[14),C.(1)(4)-∞+∞,,解答题:y =|x |-1 x ∈{-2,-1,0,1,2}y =x 2+2x+3 (-3≤x <1) y =3-2x -x 2 (-2≤x <1)x x y 22-= 22++-=x x yy =112+x212++-=x x y y =|x +1|-|x -2|y =12++x x y =1221-+x x y =122+-x x y =xx -+12(0<x<1或1<x<4)y =21322+-x x 3212+-=x x yy =2x -3+134-xy =x+1 +x 21-y =x -x 21-()]8,1[4log 2log 22∈•=x xx y()x x y 2log 22+-= )2(21log 21≥⎪⎭⎫⎝⎛+=x x y xxx y 1-= y =x -x 21-222y x =+ 31(1)2x y x x +=≤-2y x =+ 4y x =+21()(2)x f x x x +=≥x x y 21-+-=; xx y 12-=322++=x x y 322)21(++=x x y )32(log 22++=x x y 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
值域简单练习题1.求6)(2+-=x x x f 在[]11,-上的值域2.求函数132)(++=x x x f 的值域 3. 求函数133)(2+++=x x x x f 的值域 4.求函数x x x f -+=1)(的值域5.13213)(x x +⋅-=x f 6.1)(22+--=x x xx x f 7.x -1x3131)(-+=x f 8.x x x f +-+=243)( 9.2x 2x -)(2++=x f10.y =11.2256y x x =-++ 12.2cos 13cos 2x y x +=-13.求函数()1y x =≥的值域。
值域的求法加强练习题解答题(共10小题)1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B).2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4).(1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合;(2)求函数y=f(x)在区间(0,3]上的值域.3.求函数的值域:.4.求下列函数的值域:(1)y=3x2﹣x+2;(2);(3);(4);(5)(6);5.求下列函数的值域(1);(2);(3)x∈[0,3]且x≠1;(4).6.求函数的值域:y=|x﹣1|+|x+4|.7.求下列函数的值域.(1)y=﹣x2+x+2;(2)y=3﹣2x,x∈[﹣2,9];(3)y=x2﹣2x﹣3,x∈(﹣1,2];(4)y=.8.已知函数f(x)=22x+2x+1+3,求f(x)的值域.9.已知f(x)的值域为,求y=的值域.10.设的值域为[﹣1,4],求a、b的值.参考答案与试题解析一.解答题(共10小题)1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B).考点:函数的值域;交、并、补集的混合运算;函数的定义域及其求法。
1457182专题:计算题。
分析:由可求A,由可求B可求解答:解:由题意可得∴A=[2,+∞),∵∴B=(1,+∞),C R A=(﹣∞,2),C R B=(﹣∞,1]﹣﹣﹣(4分)∴A∩B=[2,+∞)∴(C R A)∩(C R B)=(﹣∞,1]﹣﹣﹣﹣﹣(6分)点评:本题主要考查了函数的定义域及指数函数的值域的求解,集合的交集、补集的基本运算,属于基础试题2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4).(1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合;(2)求函数y=f(x)在区间(0,3]上的值域.考点:函数的值域;二次函数的性质;一元二次不等式的解法。
1457182专题:计算题。
分析:(1)从f(0)=f(4)可得函数图象关于直线x=2对称,用公式可以求出b=4,代入函数表达式,解一元二次不等式即可求出满足条件f(x)<0的x的集合;(2)在(1)的基础上,利用函数的单调性可以得出函数在区间(0,3]上的最值,从而可得函数在(0,3]上的值域.解答:解:(1)因为f(0)=f(4),所以图象的对称轴为x==2,∴b=﹣4,函数表达式为f(x)=x2﹣4x+3,解f(x)=0,得x1=1,x2=3,因此函数的零点为:1和3满足条件f(x)<0的x的集合为(1,3)(2)f(x)=(x﹣2)2﹣1,在区间(0,2)上为增函数,在区间(2,3)上为减函数所以函数在x=2时,有最小值为﹣1,最大值小于f(0)=3因而函数在区间(0,3]上的值域的为[﹣1,3).点评:本题主要考查二次函数解析式中系数与对称轴的关系、二次函数的单调性与值域问题,属于中档题.只要掌握了对称轴公式,利用函数的图象即可得出正确答案.3.求函数的值域:.考点:函数的值域。
1457182专题:计算题;转化思想;判别式法。
分析:由于对任意一个实数y,它在函数f(x)的值域内的充要条件是关于x的方程(y﹣2)x2+(y+1)x+y﹣2=0有实数解,因此“求f(x)的值域.”这一问题可转化为“已知关于x的方程(y﹣2)x2+(y+1)x+y﹣2=0有实数解,求y的取值范围”.解答:解:判别式法:∵x2+x+1>0恒成立,∴函数的定义域为R.由得:(y﹣2)x2+(y+1)x+y﹣2=0①①当y﹣2=0即y=2时,①即3x+0=0,∴x=0∈R②当y﹣2≠0即y≠2时,∵x∈R时方程(y﹣2)x2+(y+1)x+y﹣2=0恒有实根,∴△=(y+1)2﹣4×(y﹣2)2≥0,∴1≤y≤5且y≠2,∴原函数的值域为[1,5].点评:判别式法:把x作为未知量,y看作常量,将原式化成关于x的一元二次方程形式,令这个方程有实数解,然后对二次项系数是否为零加以讨论:(1)当二次项系数为0时,将对应的y值代入方程中进行检验以判断y的这个取值是否符合x有实数解的要求.(2)当二次项系数不为0时,利用“∵x∈R,∴△≥0”求解,此时直接用判别式法是否有可能产生增根,关键在于对这个方程去分母这一步是不是同解变形.4.求下列函数的值域:(1)y=3x2﹣x+2;(2);(3);(4);(5)(6)考点:函数的值域。
1457182专题:常规题型。
分析:(1)(配方法)∵y=3x2﹣x+2=3(x﹣)2+(2)看作是复合函数先设μ=﹣x2﹣6x﹣5(μ≥0),则原函数可化为y=,再配方法求得μ的范围,可得的范围.(3)可用分离变量法:将函数变形,y===3+,再利用反比例函数求解.(4)用换元法设t=≥0,则x=1﹣t2,原函数可化为y=1﹣t2+4t,再用配方法求解(5)由1﹣x2≥0⇒﹣1≤x≤1,可用三角换元法:设x=cosα,α∈[0,π],将函数转化为y=cosα+sinα=sin(α+)用三角函数求解(6)由x2+x+1>0恒成立,即函数的定义域为R,用判别式法,将函数转化为二次方程(y﹣2)x2+(y+1)x+y﹣2=0有根求解.解答:解:(1)(配方法)∵y=3x2﹣x+2=3(x﹣)2+≥,∴y=3x2﹣x+2的值域为[,+∞)(2)求复合函数的值域:设μ=﹣x2﹣6x﹣5(μ≥0),则原函数可化为y=又∵μ=﹣x2﹣6x﹣5=﹣(x+3)2+4≤4,∴0≤μ≤4,故∈[0,2],∴y=的值域为[0,2](3)分离变量法:y===3+,∵≠0,∴3+≠3,∴函数y=的值域为{y∈R|y≠3}(4)换元法(代数换元法):设t=≥0,则x=1﹣t2,∴原函数可化为y=1﹣t2+4t=﹣(t﹣2)2+5(t≥0),∴y≤5,∴原函数值域为(﹣∞,5]注:总结y=ax+b+型值域,变形:y=ax2+b+或y=ax2+b+(5)三角换元法:∵1﹣x2≥0⇒﹣1≤x≤1,∴设x=cosα,α∈[0,π],则y=cosα+sinα=sin(α+)∵α∈[0,π],∴α+∈[,],∴sin(α+)∈[﹣,1],∴sin(α+)∈[﹣1,],∴原函数的值域为[﹣1,](6)判别式法:∵x2+x+1>0恒成立,∴函数的定义域为R由y=得:(y﹣2)x2+(y+1)x+y﹣2=0①①当y﹣2=0即y=2时,①即3x+0=0,∴x=0∈R②当y﹣2≠0即y≠2时,∵x∈R时方程(y﹣2)x2+(y+1)x+y﹣2=0恒有实根,∴△=(y+1)2﹣4×(y﹣2)2≥0,∴1≤y≤5且y≠2,∴原函数的值域为[1,5]点评:本题主要考查求函数值域的一些常用的方法.配方法,分离变量法,三角换元法,代数换元法,判别式法…5.求下列函数的值域(1);(2);(3)x∈[0,3]且x≠1;(4).考点:函数的值域。
1457182分析:(1)把函数转化成关于tanx的函数,进而求值域.(2)令因为1﹣x2≥0,即﹣1≤x≤1,故可x=sinx,把函数转化成三角函数,利用三角函数的性质求函数的最值.(3)把原式变成2+,设t=,通过幂函数t的图象即可求出t的值域,进而求出函数y=的值域.(4)令t=x﹣4,即x=t+4代入原函数.得出y关于t的函数,进而求出答案.解答:解:(1)∵==1++4tanx+4=5++4tan2x≥2+5≥9∴函数的值域为[9,+∞)(2)令x=sinα,α∈[﹣,]∴=sinα﹣cosα=sin(α﹣)∵α∈[﹣,]∴α﹣∈[﹣,]∴sin(α﹣)∈[﹣1,]∴的值域为[﹣,1](3)y==2+令t=,则其函数图象如下如图可知函数在区间[0,1)单调减,在区间(1,3]单调增∴t∈(﹣∝,﹣6]∪[3,+∝)∴y∈(﹣∝,﹣4]∪[5,+∝)即函数y=的值域为(﹣∝,﹣4]∪[5,+∝)(4)设t=x﹣4,x=4+t则==﹣=|+2|﹣|﹣2|∵t=x﹣4≥0∴≥0∴y=∴y∈[0,4]即函数的值域为[0,4]点评:本题主要考查求函数的值域问题.此类题常用换元、配方、数形结合等方法.6.求函数的值域:y=|x﹣1|+|x+4|.考点:函数的值域。
1457182专题:计算题;分类讨论。
分析:由函数表达式知,y>0,无最大值,去掉绝对值,把函数写成分段函数的形式,在每一段上依据单调性求出函数的值域,取并集得函数的值域.解答:解:数形结合法:y=|x﹣1|+|x+4|=∴y≥5,∴函数值域为[5,+∞).点评:本题体现数形结合和分类讨论的数学思想方法.7.求下列函数的值域.(1)y=﹣x2+x+2;(2)y=3﹣2x,x∈[﹣2,9];(3)y=x2﹣2x﹣3,x∈(﹣1,2];(4)y=.考点:函数的值域。
1457182专题:计算题。
分析:(1)求二次函数y=﹣x2+x+2的值域可先求最值,由最值结合图象,写出值域.(2)求一次函数y=3﹣2x在闭区间上的值域,要先求最值,由最值写出值域.(3)求二次函数y=x2﹣2x﹣3在某一区间上的值域,要结合图象,求出最值,再写出值域.(4)求分段函数y的值域,要在每一段上求出值域,再取其并集,得出分段函数的值域.解答:解:(1)二次函数y=﹣x2+x+2;其图象开口向下,对称轴x=,当x=时y有最大值;故函数y的值域为:(﹣∞,);(2)一次函数y=3﹣2x,x∈[﹣2,9];单调递减,在x=﹣2时,y有最大值7;在x=9时,y有最小值﹣15;故函数y的值域为:[﹣15,7];(3)二次函数y=x2﹣2x﹣3,x∈(﹣1,2];图象开口向上,对称轴x=1,当x=1时,函数y有最小值﹣4;当x=﹣1时,y有最大值0;所以函数y的值域为:[﹣4,0);(4)分段函数y=;当x≥6时,y=x﹣10≥﹣4;当﹣2≤x<6时,y=8﹣2x,∴﹣4<y≤12;所以函数y的值域为:[﹣4,+∞)∪(﹣4,12]=[﹣4,+∞).点评:本组4个题目求函数的值域,都是在其定义域上先求其最值,根据最值,直接写出其值域;它们都是基础题.8.已知函数f(x)=22x+2x+1+3,求f(x)的值域.考点:函数的值域。