“全等三角形”教学设计
全等三角形教案(教学设计)
全等三角形【教学目标】1.知识技能:(1)了解全等形及全等三角形的概念。
(2)理解掌握全等三角形的性质。
(3)能够准确辩认全等三角形的对应元素。
2.过程与方法:(1)在图形变换以用操作的过程中发展空间观念,培养几何直觉。
(2)在观察发现生活中的全等形和实际操作中获得全等三角形的体验。
3.情感态度与价值观:在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
【教学重难点】1.全等三角形的性质。
2.找全等三角形的对应边、对应角。
【教学过程】引入新课:师:同学们好。
十一单元的学习我们认识了三角形,掌握三角形的边,角的关系,角平分线等。
这节课我们开始学习全等三角形。
出示学习目标。
新知介绍。
一、提出问题,创设情境。
师:下列的图形有什么特点。
(1)(2)(3)生:这几个图形是两两完全重合的。
师:那同学们能举出现实生活中能够完全重合的图形的例子吗?生:同一张底片洗出的同大小照片是能够完全重合的。
移动或折叠后可以得到完全重合的图形。
板书:形状与大小都完全相同的两个图形就是全等形。
师:请观察下面两组图形,它们是不是全等图形有?为什么,与同伴进行交流。
(1)形状相同,但大小不同。
(2)大小相同,但形状不同。
生:全等图形的特征:全等图形的形状和大小都相同。
师:全等形包括规则图形和不规则图形全等。
二、获取概念。
学生自己动手(同桌两名同学配合):取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样。
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号。
能够完全重合的两个三角形,叫全等三角形。
(1)“全等”用符号“≌”来表示,读作“全等于”。
(2)记作:△ABC≌△DEF,读作:△ABC全等于△DEF。
(3)互相重合的顶点叫做对应顶点。
A D;B E;C F。
(4)互相重合的边叫做对应边。
AB与DE;BC与EF;AC与DF。
(5)互相重合的角叫做对应角。
三角形全等判定的教案
画法:1画线段bc=4
2分别以a、b为圆心,以2和3为半径作弧,交于点c。则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?
归纳:有三边对应相等的两个三角形全等.
可以简写成“边边边”或“ sss ”用数学语言表述:
在△abc和△ def中
∴ △≌△ def(sss)
(二)新课讲解:
问题1:如图:在△abc和△def中,ab=de,bc=ef,ac=df, ∠a=
∠d, ∠b=∠e, ∠c=∠f,则△abc和△def全等吗?
问题2: △abc和△def全等是不是一定要满足
ab=de,bc=ef,ac=df, ∠a=∠d, ∠b=∠e, ∠c=∠f这六个条
件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角
满足三个条件有几种情形呢?
3.给出三个条件
三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一
角相等
例:画△abc,使ab=2,ac=3,bc=4
画法:1画线段bc=42分别以a、b为圆心,以2和3为半径作弧,交于点c。
则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否
1、如图,d、f是线段bc上的两点,
ab=ec,af=ed,要使△abf≌△ecd,还需要条件
2、已知:b、e、c、f在同一直线上, ab=de,ac=df a
并且be=cf,
求证: △ abc≌ △ def
小结:1、本节所讲主要内容为利用“边边边”证明两个三角形全等。
2证明三角形全等的书写步骤。3证明三角形be全等应注意的问题。
我们知道如果两个三角形的对应边、对应角都相等,那么这两个三角形全等。判定两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?
人教版八年级上册数学教学设计《12.1 全等三角形》
人教版八年级上册数学教学设计《12.1 全等三角形》一. 教材分析《12.1 全等三角形》是人教版八年级上册数学的一个重要章节,主要内容包括全等三角形的概念、全等三角形的性质、全等三角形的判定方法等。
本章通过全等三角形的学习,培养学生对几何图形的认识和理解,提高学生的空间想象力,为后续几何学习打下基础。
二. 学情分析八年级的学生已经掌握了三角形的基本知识,对三角形的性质和判定方法有一定的了解。
但全等三角形作为三角形的一个重要分支,其概念和性质较为抽象,学生理解和掌握全等三角形的难度较大。
因此,在教学过程中,要注重引导学生从实际问题中抽象出全等三角形的概念,并通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。
三. 教学目标1.了解全等三角形的概念,掌握全等三角形的性质和判定方法。
2.培养学生对几何图形的认识和理解,提高学生的空间想象力。
3.培养学生运用全等三角形的知识解决实际问题的能力。
四. 教学重难点1.全等三角形的概念及其性质。
2.全等三角形的判定方法。
3.全等三角形在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出全等三角形的概念。
2.通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。
3.运用多媒体辅助教学,提高学生的空间想象力。
4.采用小组合作学习的方式,培养学生的团队合作精神。
六. 教学准备1.准备相关教学课件和教学素材。
2.设计具有代表性的例题和练习题。
3.准备全等三角形的模型或图片,用于直观展示。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如拼图、制作模型等,引导学生思考:如何判断两个三角形是否完全相同?从而引出全等三角形的概念。
2.呈现(10分钟)介绍全等三角形的定义、性质和判定方法。
通过PPT展示全等三角形的图形,让学生直观地感受全等三角形的特征。
同时,给出全等三角形的判定方法,如SSS、SAS、ASA、AAS等。
12.1 全等三角形 教学设计
12.1 全等三角形教学设计教学目标1.知道全等形和全等三角形的概念及性质,能够准确辨认全等三角形的对应元素。
2.在图形变换以及操作的过程中发展学生的空间观念,培养学生的几何直觉.3.经历观察、发现生活中的全等形和实际操作中获得全等三角形的体验,在探索和运用全等三角形性质的过程中感受到数学的乐趣.教学重点探究全等三角形的性质.教学难点掌握两个全等形的对应边,对应角.教学过程一、导入新课1.观察下面各组图形,说说他们有什么共同特点.二、推进新课归纳总结:全等形的定义:能够完全重合的两个图形叫做全等形.全等形的性质:如果两个图形全等,它们的形状和大小一定都相等.2.下面哪些图形是全等形?(1) (2) (3) (4) (5) (6)(7) (8) (9) (10) (11) (12)解:(2)和(7)、(3)和(9)、(5)和(12)、(6)和(10)3.全等三角形:能够完全重合的两个三角形叫_全等三角形__.全等三角形的对应元素:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.其中点A和_点D_,点B和_点E_,点C和_点F_是对应顶点.AB和_DE_,BC和_EF_,AC和__DF_是对应边.∠A和_∠D__,∠B和_∠E_,∠C和_∠F_是对应角.全等的表示方法:“全等”用符号“≌”表示,读作“全等于”.注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.4.找一找下列全等图形的对应元素.解:点A和点D,点B和点E,点C和点F是对应顶点.AB和DE,BC和EF,AC和DF是对应边.∠A和∠D,∠B和∠1,∠2和_∠F是对应角.5.思考:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?归纳总结:一个图形经过平移、翻折、旋转后,_位置_变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.全等三角形的性质:全等三角形的对应边相等,对应角相等.用几何语言表述:∵△ABC ≌△DEF,∴AB =DE,BC =EF,AC =DF(全等三角形的对应边相等),∠A =∠D,∠B =∠E,∠C =∠F(全等三角形的对应角相等).例已知:如图,△ABC ≌△DEF.(1)若DF =10 cm,则AC 的长为__10cm_;(2)若∠A =100°,则∠D 的度数为_100°_;(3)若∠A =100°,∠B =30°,求∠F 的度数.解:∵∠A =100°,∠B =30°,∴∠C =180°-∠A -∠B =50°.∵△DEF ≌△ABC ,∴∠F =∠C =50°(全等三角形的对应角相等).三、当堂练习1.判断题:(1)全等三角形的对应边相等,对应角相等.(√)(2)全等三角形的周长相等,面积也相等.(√)(3)面积相等的三角形是全等三角形.(×)(4)周长相等的三角形是全等三角形.(×)2.说出图中两个全等三角形的对应边、对应角。
《全等三角形》教学设计
《全等三角形》教学设计教学目标1.知识与水平理解全等三角形及相关概念,能够从图形中寻找全等三角形,探索并掌握全等三角形的性质,能够利用性质解决简单的问题.在探索全等三角形性质的过程中,体会研究问题的方法,感受图形变化途径.3.情感、态度与价值观培养学生的识图水平、归纳总结水平和应用意识.内容分析教材从实际生活中重合的图片入手,导入全等三角形的概念及表示方法,然后着重探讨如何找全等三角形中对应边、对应角、对应顶点,并得出其中的一些规律。
最后得出全等三角形的性质,并使用三角形性质解答问题。
学情分析八年级学生绝大局部学生的数学成绩良好,一小局部学习有障碍。
他们有初步的图形概念,尤其是三角形的初步知识,也有图形重合的概念。
他们有一定的自主、探究学习水平和初步的抽象思维、概括水平,喜欢小组合作学习,喜欢动手操作,操作的教学活动效果较好。
教学重点(1)全等三角形以及相关概念.(2)探索全等三角形的性质.教学难点不同情况下的三角形全等的图形归纳.课前准备(1)教师自制的多媒体课件;(2)教师准备能够重合的图片;(3)每位同学准备两块全等的三角板、一张纸;(4)上课环境为多媒体大屏幕环境;教学过程一、创设情境、激发兴趣教师出示几组图片,学生观察并寻找形状大小相同的图形(1)(2)(3)动手操作:把一张白纸对折,然后任意撕一个图形,观察这两个图形有什么关系?你怎么知道的?归纳全等形的概念:全等形:能够完全重合的两个图形叫做全等形.动手操作:制作一个和自己手里的三角形能够完全重合的三角形。
定义全等三角形:全等三角形:能够完全重合的两个三角形叫做全等三角形.二、主体探究、合作交流1.全等三角形的对应元素及表示(1)△ABC与△DEF重合(电脑演示重合过程)这时,点A与点D重合.点B与点E重合.我们把这样互相重合的一对点叫做对应顶点;AB边与DE边重合,这样互相重合的边就叫做对应边;∠A与∠D 重合,它们就是对应角.△ABC与△DEF全等,我们把它记作:“△ABC≌△DEF”.读作“△ABC全等于△DEF”.注意:记两个三角形全等时,通常把对应顶点的字母写在对应的位置上.问题你能找出其他的对应点、对应边和对应角吗?(点C与点F是对应点,BC边与EF边是对应边,CA边与FD边也是对应边.∠B与∠E是对应角,∠C与∠F也是对应角.)(2)用两块全等的三角板重合放在桌面上,让其中一块绕一个顶点旋转,你能画出几种不同的位置关系,画出图形并说出对应元素.学生活动:学生小组合作,动手操作,一块三角板绕一个顶点旋转,画出以下四种位置关系,加深对全等三角形概念的理解以及动手操作水平的培养.不管哪种图形,点A与点A是对应顶点,点B与点E是对应顶点,点C与点D是对应顶点;AB边与AE边是对应边,AC边与AD边、DE边与CB边也是对应边;∠BAC与∠EAD是对应角,∠B与∠E,∠C与∠D是对应角.2.全等三角形的性质拿一张纸对折后,剪成两个全等的三角形,△ABC和△ECD,把这两个三角形一起放在以下图中△ABC的位置上,试一试,假如其中一个三角形不动,怎样移动另一个三角形,能够得到以下图中的各图形,从中你能得到什么启发?学生活动:经过观察、操作能够发现,能够经过平移、翻折、旋转得到,变化前后对应角、对应边不变.教师活动:组织学生观察、归纳,引导学生归纳全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.三、拓展创新、应用提升问题1如图,△ABC≌△AEC,∠B=30°,∠ACB=85°.求出△AEC各内角的度数.(学生根据全等三角形的性质独立解决.)解:在△ABC中,已知∠ACB=85°,∠B=30°,根据三角形的内角和等于180°,可得:∠BAC=65°.因为△ABC≌△AEC,所以∠EAC=∠BAC=65°,∠E=∠B=30°,∠ACE=∠ACB=85.答:△AEC的内角的度数分别为65°、30°、85°.问题2如图是一个等边三角形,你能利用折纸的方法把它分成两个全等的三角形吗?你能把它分成三个,四个全等的三角形吗?学生活动:学生小组讨论,经过讨论交流自己的方法。
全等三角形》优秀教学设计
全等三角形》优秀教学设计本章的教学策略主要是探究式教学和合作研究。
通过引导学生自主探索,让学生从实践中掌握三角形全等的条件和判定方法,培养学生的推理能力和表达能力。
同时,采用合作研究的方式,让学生在小组内相互协作,共同解决问题,提高学生的合作意识和团队精神。
四、教学过程设计:1.导入新知识:通过引导学生观察、比较、归纳等方式,引出三角形全等的概念和判定条件。
2.探究三角形全等的条件:通过实例分析和操作演示,让学生自主发现三角形全等的条件,并掌握“边边边”判定方法。
3.练与巩固:通过练题和小组合作探究,巩固学生对三角形全等的理解和应用能力。
4.拓展与应用:通过引导学生运用三角形全等的知识,解决实际问题,拓展学生的思维和应用能力。
五、教学评价方法:本章的教学评价主要采用自我评价和小组评价相结合的方式。
学生在研究过程中,应不断反思自己的研究情况,及时纠正错误,形成自我评价的意识。
同时,小组评价也是重要的评价方式,通过小组内部的互相评价,让学生认识到合作研究的重要性,提高学生的合作意识和团队精神。
三角形全等的判定是几何学中重要的内容之一。
在教学中,我们可以通过分析“性质与判定”的关系,猜测将性质中的条件选取部分能否更简捷方便地判断两个三角形全等。
通过作图、剪图、放图、比较图、画图等活动,我们可以得到三角形全等的判定条件,即三个基本事实的归纳。
然后,我们可以运用基本事实证明相等的线段或相等的角的应用。
在教学中,我们要引导学生真正通过动手操作、相互比较、逐渐发现结论,概括结论,让学生在经历知识发生发展的过程中,发现内容的本质特征,书写严谨的证明格式,用精准的数学语言概括其特征,得到三角形全等的判定方法。
在课前准备阶段,我们可以通过提问学生平行线的性质与判定有什么关系,以及满足什么条件的两个三角形全等,来引导学生思考和准备新知识的研究。
同时,我们还可以通过情境创设,如庆祝国庆节制作三角形彩旗,来激发学生的兴趣和注意力,为新课的探究做最好的准备。
全等三角形数学教案
全等三角形数学教案标题:全等三角形数学教案一、教学目标:1. 知识与技能:学生能理解并掌握全等三角形的定义和性质,能够识别和判断两个三角形是否全等。
2. 过程与方法:通过观察、分析、讨论和实践,培养学生的逻辑思维能力和空间观念。
3. 情感态度价值观:培养学生严谨的科学态度和积极的学习热情。
二、教学重点难点:1. 教学重点:理解和掌握全等三角形的定义和性质。
2. 教学难点:准确判断两个三角形是否全等。
三、教学过程:(一)导入新课教师可以先展示一些生活中的实例,如门框、窗户等,引导学生思考这些形状为什么都是三角形。
然后提出问题:“如果有两个三角形,它们看起来完全一样,那它们就一定是一样的吗?”从而引入全等三角形的概念。
(二)讲解新课1. 全等三角形的定义:大小和形状都相同的两个三角形叫做全等三角形。
2. 全等三角形的性质:全等三角形的对应角相等,对应边相等。
(三)实践操作让学生用纸片或几何工具制作出一些三角形,然后尝试将它们拼接在一起,看哪些可以完全重合,哪些不能。
以此来帮助他们理解和掌握全等三角形的定义和性质。
(四)巩固练习设计一些习题,让学生判断给出的两个三角形是否全等,或者找出需要满足什么条件才能使两个三角形全等。
(五)总结提升让学生自己总结本节课所学的内容,并鼓励他们在日常生活中寻找全等三角形的例子,以提高他们的观察能力和应用能力。
四、教学反思:在教学过程中,教师应注重引导学生主动参与学习,激发他们的学习兴趣。
同时,也要注意对学生的反馈进行及时的调整和改进,确保每一个学生都能理解和掌握全等三角形的相关知识。
苏科版数学八年级上册1.2《全等三角形》教学设计
苏科版数学八年级上册1.2《全等三角形》教学设计一. 教材分析《全等三角形》是苏科版数学八年级上册的教学内容。
本节课主要让学生掌握全等三角形的概念、性质及判定方法。
教材通过引入生活中的实例,引导学生探索全等三角形的性质和判定方法,培养学生的观察能力、思考能力和动手操作能力。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的知识,并具备了一定的观察、操作和推理能力。
但部分学生可能对全等三角形的概念和判定方法理解不透彻,容易与相似三角形混淆。
因此,在教学过程中,教师需要关注学生的学习差异,针对性地进行讲解和辅导。
三. 教学目标1.理解全等三角形的概念,掌握全等三角形的性质。
2.学会用SSS、SAS、ASA、AAS四种方法判定两个三角形全等。
3.能够运用全等三角形的性质和判定方法解决实际问题。
4.培养学生的观察能力、操作能力和推理能力。
四. 教学重难点1.全等三角形的概念及判定方法。
2.不同判定方法之间的联系和运用。
五. 教学方法1.情境教学法:通过生活实例引入全等三角形的概念,激发学生的学习兴趣。
2.动手操作法:让学生动手剪拼三角形,加深对全等三角形性质的理解。
3.推理教学法:引导学生运用逻辑推理证明三角形全等。
4.小组合作法:鼓励学生分组讨论,共同探索全等三角形的判定方法。
六. 教学准备1.教学课件:制作全等三角形的相关课件,便于引导学生直观地认识和理解全等三角形。
2.教学素材:准备一些三角形图形,用于学生的动手操作和练习。
3.教学视频:收集一些与全等三角形相关的实例视频,用于导入和新课讲解。
七. 教学过程1.导入(5分钟)播放一段关于全等三角形的实例视频,引导学生关注全等三角形在现实生活中的应用。
提出问题:“为什么说这两个三角形是全等的?”激发学生的思考和兴趣。
2.呈现(10分钟)教师展示一组全等的三角形,引导学生观察并总结全等三角形的性质。
学生通过观察,发现全等三角形对应边和对应角相等。
《全等三角形的判定(SSS)》教学设计
《全等三角形的判定(SSS)》教学设计
一、教学目标
1.理解“边边边”(SSS)判定全等三角形的方法。
2.掌握运用SSS判定方法进行三角形全等的证明。
3.培养学生的逻辑推理能力和观察分析能力。
二、教学重难点
1.重点:SSS判定方法的理解和应用。
2.难点:三角形全等证明过程的书写规范。
三、教学方法
讲授法、演示法、讨论法。
四、教学过程
1.导入
展示两个形状相同但大小不同的三角形和两个形状大小完全相同的三角形,引导学生观察并思考如何判断两个三角形全等。
2.讲解SSS判定方法
(1)通过具体实例,让学生观察当两个三角形的三条边分别相等时,这两个三角形能够完全重合,从而引出SSS判定方法。
(2)用图形和符号语言表述SSS判定方法。
3.例题讲解
(1)已知三角形的三条边的长度,证明两个三角形全等。
(2)在实际问题中,运用SSS判定方法解决问题。
4.课堂练习
让学生进行三角形全等的证明练习,巩固SSS判定方法。
5.小组讨论
讨论在证明过程中遇到的问题和解决方法。
6.总结归纳
总结SSS判定方法的要点和证明过程的注意事项。
7.作业布置
布置课后作业,要求学生运用SSS判定方法证明三角形全等。
全等三角形教学设计优秀4篇
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
全等三角形单元整体教学设计
全等三角形单元整体教学设计一、教学目标:1. 理解全等三角形的概念,掌握全等三角形的性质和判定方法。
2. 能够运用全等三角形解决实际问题,提高数学应用能力。
3. 培养学生的逻辑思维能力、推理能力和空间观念。
二、教学内容:1. 全等三角形的定义、性质和判定方法。
2. 全等三角形的应用实例。
3. 三角形全等的证明方法。
三、教学重点与难点:重点:全等三角形的性质和判定方法。
难点:如何运用全等三角形解决实际问题。
四、教学方法:1. 讲授法:讲授全等三角形的概念、性质和判定方法等基础知识。
2. 讨论法:组织学生进行小组讨论,探讨全等三角形在实际问题中的应用。
3. 案例分析法:通过分析具体案例,引导学生掌握全等三角形的证明方法。
五、教学过程:1. 导入:通过回顾上节课的内容,引出全等三角形的概念,并引导学生理解全等三角形的性质和判定方法。
2. 新课讲授:讲授全等三角形的概念、性质和判定方法,并组织学生进行小组讨论,探讨全等三角形在实际问题中的应用。
3. 案例分析:通过具体案例的解析,引导学生掌握全等三角形的证明方法,培养学生的逻辑思维能力、推理能力和空间观念。
4. 课堂小结:对本节课所学的全等三角形的知识点进行总结,加深学生对全等三角形的理解。
5. 布置作业:布置相关练习题,让学生巩固所学知识,提高解题能力。
六、教学评价与反馈:1. 设计评价策略:通过课堂小测验、作业评价等方式,对学生的学习情况进行全面了解。
2. 为学生提供反馈:根据评价结果,为学生提供有针对性的反馈,帮助他们了解自己的学习状况,指导他们如何改进。
三角形全等的判定教案 三角形全等的判定教学设计
三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。
难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。
用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
人教版八年级上册12.1全等三角形教学设计
2.指出学生在课堂练习中的常见错误,提醒他们在以后的学习中注意避免。
3.鼓励学生提出对本节课知识的疑问,及时解答,确保他们对全等三角形知识的掌握。
一、教学目标
(一)知识与技能
1.理解全等三角形的定义,掌握全等三角形的判定条件(SSS、SAS、ASA),能够准确识别和绘制全等三角形。
人教版八年级上册12.1全等三角形教学设计
一、教学目标
(一)知识与技能
1.理解全等三角形的定义,掌握全等三角形的判定方法,能够准确地识别和绘制全等三角形。
-学生能够回忆起之前学过的等腰三角形、等边三角形等特殊三角形的性质,为新学习的全等三角形判定打下基础。
-通过直观演示和实际操作,让学生掌握SSS(边-边-边)、SAS(边-角-边)、ASA(角-边-角)全等三角形的判定定理,并能够运用这些定理解决具体问题。
1.采用生动的语言和形象的比喻,帮助学生理解抽象的几何概念。
2.使用教具、多媒体等教学资源,增强学生的直观感受。
3.通过与学生互动,及时解答学生的疑问,确保学生对新知识的掌握。
(三)学生小组讨论
在讲授新知后,我会组织学生进行小组讨论,让学生在合作中深入探讨全等三角形的性质和判定方法。我会给出几个具有代表性的问题,引导学生思考:
2.学会运用全等三角形的性质和判定方法解决实际问题,如计算三角形面积、证明线段或角相等。
3.掌握全等变换(平移、旋转、翻转)的基本操作,能够运用这些变换创造全等图形。
(二)过程与方法
1.通过观察、分析和归纳,培养学生逻辑思维能力。
2.设计探究活动,让学生在实践过程中掌握全等三角形的判定方法。
3.通过小组合作,培养学生的团队协作能力和沟通能力。
人教版八年级上数学教学设计《第12章全等三角形》
人教版八年级上数学教学设计《第12章全等三角形》一. 教材分析人教版八年级上数学第12章《全等三角形》是初中数学中的重要内容,主要介绍了全等三角形的概念、性质和判定方法。
通过本章的学习,使学生理解和掌握全等三角形的判定和性质,能运用全等三角形的知识解决一些实际问题。
教材中安排了丰富的例题和练习题,有利于学生巩固所学知识。
二. 学情分析学生在学习本章内容前,已经掌握了相似三角形的知识,并具备一定的逻辑思维能力和空间想象能力。
但全等三角形与相似三角形既有联系又有区别,学生需要通过对比、分析、归纳等方法,理解和掌握全等三角形的概念和性质。
同时,学生需要通过大量的练习,提高运用全等三角形知识解决实际问题的能力。
三. 教学目标1.知识与技能目标:使学生理解和掌握全等三角形的概念、性质和判定方法,能运用全等三角形的知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、对比、分析等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的勇气。
四. 教学重难点1.教学重点:全等三角形的概念、性质和判定方法。
2.教学难点:全等三角形的判定方法以及在实际问题中的运用。
五. 教学方法1.情境教学法:通过生活实例引入全等三角形的概念,激发学生的学习兴趣。
2.对比教学法:对比全等三角形与相似三角形的异同,帮助学生深入理解全等三角形的性质。
3.实践操作法:让学生动手操作,通过实际操作得出全等三角形的判定方法。
4.小组合作学习法:培养学生团队合作精神,共同解决实际问题。
六. 教学准备1.教学课件:制作全等三角形的相关课件,包括图片、动画、例题等。
2.教学素材:准备一些全等三角形的实际问题,用于巩固和拓展学生的知识。
3.练习题:挑选一些具有代表性的练习题,用于检验学生对全等三角形知识的掌握程度。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,引导学生思考:如何判断两个三角形是否全等?从而引出全等三角形的概念。
《全等三角形》教学设计
《全等三角形》教学设计教学设计:全等三角形一、教学目标1. 知识目标:学生能够了解全等三角形的定义、性质以及判定全等三角形的方法;2. 能力目标:培养学生的逻辑思维能力和问题解决能力;3. 情感目标:激发学生对几何知识的兴趣,培养学生的数学学习兴趣和学习动力。
二、教学重点难点1. 教学重点:全等三角形的定义、性质以及判定方法;2. 教学难点:全等三角形的判定方法及其应用。
四、教学过程1. 导入:通过一个具体的生活例子引入全等三角形的概念,引发学生对全等三角形的兴趣。
2. 提出问题:通过提出问题的方式,引导学生思考全等三角形的性质和判定方法。
3. 学习新知识:介绍全等三角形的定义和性质,让学生理解全等三角形的概念。
4. 深化理解:通过实例演示,让学生了解全等三角形的判定方法。
5. 拓展应用:通过实际问题,引导学生应用全等三角形的知识解决问题。
6. 练习巩固:布置一些练习题,巩固学生对全等三角形的理解和运用能力。
7. 总结提高:总结全等三角形的知识点,强调全等三角形在实际生活中的应用,并提出下节课的预习内容。
五、教学手段1. 教师讲解2. 多媒体教学3. 实例演示4. 学生讨论5. 课堂练习六、教学评价1. 课堂表现评价:观察学生在课堂上的积极参与情况和答题情况。
2. 作业评价:批改学生的作业,了解学生对全等三角形知识的掌握情况。
3. 能力评价:通过课堂练习和课后练习,评估学生运用全等三角形知识解决问题的能力。
七、教学反思通过本次教学设计,希望能够让学生对全等三角形的概念和性质有所了解,并能够掌握全等三角形的判定方法和应用。
在教学过程中,需要注重引导学生思考和讨论,培养学生的逻辑思维能力和问题解决能力。
也要关注学生的学习情况,及时调整教学策略,确保教学效果。
全等三角形教案六篇
全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。
同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。
二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。
因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。
《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。
为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。
2.方法与过程:争论、引导教学法。
3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。
三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。
第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。
全等三角形的定义:两个能够重合的三角形称为全等三角形。
全等三角形的性质:全等三角形的对应边、对应角相等。
活动目的:回忆前面学习过的学问,为探究新学问作预备。
初中数学人教八年级上册第十二章 全等三角形数学八上1三角形全等的证明教学设计
《全等三角形》教学设计一、教材分析全等三角形是人教版数学八年级上册第十二章第一节的教学内容。
本节课是“全等三角形”的开篇,是全等三角形全等的条件以及全等三角形的判定的基础,也是进一步学习其它图形的基础之一。
本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。
通过本章的学习,可以丰富和加深学生对已学图形的认识,为学习其它图形知识打好基础。
同时,三角形全等是两个三角形间最简单、最常见的关系,为下节课《三角形全等的判定》做好知识的铺垫。
二、教学目标1.知识与技能:(1)了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法。
(2)能准确确定全等三角形的对应元素。
(3)掌握全等三角形的性质2.过程与方法:初步学会从数学角度提出问题、理解问题,并能运用已学知识来认识全等三角形,通过动手实践,合作交流感受全等三角形。
3.情感、态度与价值观:通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。
通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。
三、考情分析以选择题、填空题的形式出现,主要考察三角形全等的基本条件和性质,分值大概是2-3分。
四、重点、难点突破重点:(1)能准确地在图形中识别出对应边、对应角;(2)全等三角形的性质以及利用其基本性质进行一些简单的推理和计算。
难点:能在全等变换中准确找到对应边、对应角。
五、教学策略根据教学内容以“概念、性质、应用”为侧重点,结合学生所具备的逻辑思维能力,本节课采用以启发式、实验法为主,讨论法、阅读法为辅的教学方法。
有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。
在教学过程中,我采用的是“情境导入—探索新知—合作交流—拓展提高—达标测试”的教学模式,并采用“变式练习”方法提高学习效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“全等三角形”教学设计一、内容和内容解析本节内容是人教版数学教材八年级上册第十一章第一节的教学内容,属于《义务教育数学课程标准》中第三学段“图形与几何”的领域.本节内容主要介绍全等三角形的概念和性质,全等三角形属于概念性知识,全等三角形的性质属于事实性知识.本节内容是学生在七年级学习了线(直线、射线、线段)和角以及相交线与平行线和三角形的有关知识之后来学习的.从知识的发展过程看,线和角是最基本的几何图形,学习了这些基本几何图形后,继而研究了两条线(相交线与平行线)及两角的问题。
那么,三角形也是最基本的几何图形,当然,在研究了三角形有关知识后,自然要研究两个三角形的问题;从知识的地位作用看,全等三角形概念及性质不仅是本章学习三角形全等的判定的预备知识,而且也是后续学习其他图形与几何知识的必备基础,同时,全等三角形的性质是今后证明角相等、线段相等的重要工具,许多几何问题,也大都转化为三角形问题并利用全等三角形加以解决,所以本节内容具有非常重要的地位和作用.本节要研究的是形状、大小相同的两个图形“全等形”.全等形概念的核心本质是“重合”,因为形状、大小相同的两个图形放在一起能够完全重合,能够完全重合的两个图形其形状、大小一定相同.另外,“重合”是一种现象,反映出的数学本质特征是图形的“形状、大小”相同,这既是由形象思维向抽象思维的过渡,同时,也揭示了“物体的形状、大小和位置关系是几何研究的内容”,这对学生的数学学习和加深理解学习数学都是有益的.再有,图形的平移、翻折、旋转是两个图形重合的过程和途径,反过来,一个图形经过平移、翻折、旋转前后的图形全等,在“重合”的意义下,其思维过程反映出正、反两个方面,体现着思维的深刻性,并且蕴含着运动变化与对应的思想,这对学生在某些情况下确定全等三角形的对应元素,对学生以后学习图形变换知识都有着重要的意义.全等形与全等三角形概念属于类属关系.全等形概念的外延包含有多种全等图形,全等三角形仅是其中的一种.特别给出全等三角形的概念,并把它作为主要的学习内容,是因为全等三角形是一种重要而基本的全等图形,是学习后续图形与几何以及其他数学知识的必备基础,并且有着广泛的应用.明确全等形与全等三角形概念间的关系,可以帮助学生弄清概念之间的联系和区别,可以使知识系统化,可以促进学生逻辑思维的发展,并能进行特殊与一般的辩证唯物主义教育.基于以上分析,可以确定本课的教学重点是:全等形、全等三角形的概念;全等三角形的性质.二、目标和目标解析1.教学目标(1)理解全等形、全等三角形的概念,能举全等形、全等三角形实例.(2)掌握全等三角形的性质,能运用全等三角形的性质解决简单的问题.(3)感悟“变化与对应”的思想,能准确地辨认全等三角形中的对应元素.2.目标解析(1)学生知道形状、大小相同的图形能够完全重合,能够完全重合的两个图形形状、大小相同.能从实例中识别全等形,能举出生活实际中全等形的例子。
(2)学生能结合图形用符号语言表述全等三角形性质的推理形式.在两个全等的三角形中,能利用性质由已知的边或角求出相应的对应边或角;能利用性质经过简单推理证明角或边的等量关系.(3)学生能感悟到平移、翻折、旋转是使两个全等图形重合的途径,知道一个图形经过平移、翻折、旋转前后的图形全等,并从图形的运动变换中理解“对应”的意义。
掌握找对应边、对应角常用的方法和规律,能在全等三角形中正确地找出对应边和对应角.三、学生情况分析学生已学过线(直线、射线、线段)、角和相交线与平行线以及三角形的有关知识,这些为学习全等三角形作好了准备。
同时,学生积累了一些对图形认识的活动经验,并初步具备了观察、实验、猜想的能力.所以,学生从自然景观、建筑物、艺术作品或日常生活用品中找出形状、大小相同的图形,并通过观察得出形状、大小相同的图形的特征:放在一起能够完全重合,由此得出全等形的概念不会有多大困难.但对“对应”意义的理解,正确区分“对应边”与“对边”、“对应角”与“对角”和在不同位置组合成的两个全等三角形图形中准确地找出对应边、对应角会存在一些困难.因为,学生对“对应”这个词的认识还需有一个过程,需要在后面多次运用中逐步加深理解.“对应边”与“对边”、“对应角”与“对角”容易混淆,学生一时难以区分对应边、对应角是对两个三角形说的,是两条边或两个角之间的关系,而对边、对角是对同一个三角形中边和角的关系说的,对边是对某个角说的,对角是对某个边说的.在现阶段学生的识图能力还处于初级阶段,在较复杂的图形中透视出两个全等三角形的对应元素关系会比较困难.教学中教师应突出图形的教学,通过动手实践感受图形的重合过程,利用多媒体动态演示图形变换(平移、翻折、旋转)过程,让学生充分感受图形重合、图形变换过程中全等三角形的对应元素关系.本课的教学难点:确定全等三角形的对应边、对应角.四、教学策略分析1.从实际例子引入全等形的概念.一是展示含有全等形的图形,包括章头图、本节教材中的图形、伦敦奥运会吉祥物和一些艺术作品等;二是学生自己举出形状、大小相同的图形的实际例子;三是动手实践,即按三角板在纸上画下图形并裁剪,感知裁得的纸片与三角板形状、大小完全相同.这样既可以加深学生对形状、大小相同的图形的认识,又可以引起学生的学习兴趣,还可以使学生感受到数学来源于实践又反过来作用于实践的观点.2. 结合章引言,从知识发生发展过程的角度认识学生已学过的几何知识,引入新课. 线、角、三角形都是最基本的几何图形,在学习了线、角的知识后,相继研究了“两条线(相交线与平行线)”的内容,当然也包含着两个角的内容.那么,继三角形后,要研究的应该是与“两个三角形”有关的内容.在此基础上引出本节要研究的主题——形状、大小相同的图形.这样既可使学生体会几何知识的发生发展过程,学习内容来的自然,学习任务更加明确,也有益于学生建立完善的认知结构.3.本节教学内容分为三部分:全等形、全等三角形的概念;全等三角形中的对应边、对应角;全等三角形的性质.全等形、全等三角形概念的教学采用启发式,在教师的启发引导下,通过观察、动手操作让学生亲自体验全等形的本质特征,得出全等形、全等三角形的概念.全等三角形的对应边、对应角则采用多媒体辅助教学,利用几何画板动态演示图形的平移、翻折、旋转过程,帮助学生加深认识对应元素关系.在通过练习总结找对应边、对应角常用的方法及规律时,采用小组合作学习的方法.全等三角形的性质属于事实性知识,采用自主探究的方式进行教学.4. 在全等形概念教学中设计了5个问题:问题1 暑假中,同学们都观看了伦敦奥运会,大家都特别喜欢吉祥物文洛克. 从几何研究(物体的形状、大小、位置关系)的角度来观察这两个文洛克,你能得出什么结论?问题2 请同学们观察下面的图案,你能指出这些图案中形状、大小相同的图形吗?问题3 你能再举一些这样的例子吗?问题4 请同学们把一块三角板按在纸上,画下图形,照图形裁下来的纸片和三角板形状、大小完全一样吗?把三角板和裁得的纸片放在一起能够完全重合吗?问题5把上下两行相应的图形放在一起,它们能够完全重合,说明它们的形状、大小分别具有什么关系呢?通过问题1引出本节课要研究的主题——形状、大小相同的图形,并激发学生的学习兴趣.问题2、问题3、问题4从观察实际例子、动手操作、举出实例三个方面感知全等形的特征,问题5进一步揭示“重合”与“形状、大小”的关系,由此引出全等形的概念。
全等三角形对应边、对应角很重要,以后常常用到,在这部分内容的教学中设置了3个问题:问题6 请同学们观察平移、翻折、旋转前后的图形,它们全等吗?问题7 如何用数学符号表示两个三角形全等?两个全等三角形中有哪些对应元素?问题8 完成下面的练习,你能从中总结出找对应边、对应角常用的方法和规律吗?通过问题6得出结论:平移、翻折、旋转前后的图形全等.这个结论是运用全等形的概念得出的,从而起到巩固新概念的作用,同时,也为问题7的解决打下基础.通过问题8总结找对应边、对应角常用的方法和规律,掌握这些方法和规律,对学生在某些情况下确定全等三角形的对应元素有帮助.全等三角形的性质是本节的重点内容,是以后进行推理论证的重要依据,掌握性质内容并不困难.教学中提出:问题9 两个三角形如果全等,它们的对应边、对应角有什么关系?目的在于通过问题9组织学生自主探究,使学生确信它的正确性.5.关注全体学生,为不同认知基础的学生提供学习机会和必要帮助.在学习第一部分知识时,请同学们举出生活中形状、大小相同的图形例子,并且对一些同学加以鼓励;学习第二部分知识时,采用小组合作的学习方式,为认知基础较好的学生提供了实践、展示的机会,也为认知基础稍差的学生提供观察、学习的机会.学习第三部分知识后,又为认知基础较好的学生提供了延伸思考的空间.6.本节课采用边学边练的方式,在学完每部分知识后,都安排了相应的练习,为反馈学生的学习情况提供机会,也为教学调节提供依据。
五、教学过程设计(一)创设情境引入新知在七年级我们学习了线(直线、射线、线段)和角以及相交线与平行线和三角形的有关知识,回忆知识的发展过程,在学习了线、角的知识后,相继研究了“两条线(相交线与平行线)”的内容,当然也包含着两个角的内容.按照这一发展过程,继学习了三角形知识后,我们应该研究与“两个三角形”间的有关内容,请看下面的问题.问题1 暑假中,同学们都观看了伦敦奥运会,大家都特别喜欢吉祥物文洛克. 从几何研究(物体的形状、大小、位置关系)的角度来观察这两个文洛克,你能得出什么结论?师生活动:学生观察出它们的形状相同,大小相同.教师指出我们生活中经常见到形状、大小完全相同的图形,这类图形在几何学中具有特殊的意义,也是我们学习的一个重点.两个形状、大小完全相同的图形有什么性质?怎样判定两个图形是否形状、大小完全相同呢?我们将以三角形为重点来研究这些问题.【设计意图】由学生感兴趣的奥运吉祥物引入,说明我们为什么要学习本章知识,以及要学习哪些内容,使学生产生学习的愿望.问题2 请同学们观察下面的图案,你能指出这些图案中形状、大小相同的图形吗?师生活动:教师演示课件,提出问题,引导学生从形状与大小的角度去观察图形;学生观察、指出自己发现的形状、大小相同的图形.教师从中挑选一些演示.【设计意图】运用学生熟悉的图案,让学生通过观察,从中找出形状、大小相同的图形,感知全等形的图形特征,激发学生的学习兴趣,体会全等形知识来源于生活实际.问题3 你能再举一些这样的例子吗?师生活动:学生举出生活中的实例,教师对有创意的例子给予表扬及鼓励.【设计意图】从学生的生活实际出发,鼓励学生平时要善于观察,加深认识全等形的图形特征.问题4请同学们把一块三角板按在纸上,画下图形,照图形裁下来的纸片和三角板形状、大小完全一样吗?把三角板和裁得的纸片放在一起能够完全重合吗?师生活动:教师提出要求,学生动手操作.学生观察发现:放在一起,能够完全重合.【设计意图】通过动手实践,获得基本的活动经验.使学生亲身体验到形状、大小完全相同的两个图形放在一起能够完全重合.问题5 把上下两行相应的图形放在一起,它们能够完全重合,说明它们的形状、大小分别具有什么关系呢?师生活动:教师演示两个图形重合的过程,学生观察思考得出:它们的形状、大小完全相同.教师给出全等形的定义:能够完全重合的两个图形叫做全等形.接着再特殊化出全等三角形的概念.【设计意图】教师指导学生观察得出:形状、大小相同的两个图形放在一起能够完全重合;引导学生思考得出:能够完全重合的两个图形它们的形状、大小相同.使学生在观察、思考的过程中理解全等形的本质特征.(二)概念辨析巩固新知1.判断对错:(1)大小相同的两个图形是全等形. ()(2)形状相同的两个图形是全等形. ()(3)边长相等的两个正方形是全等形. ()(4)一面国旗上的四个小五角星是全等形.()师生活动:学生判断对错,教师引导学生正确的要讲明理由,错误的要举出反例.【设计意图】对概念进行辨析,加深理解概念.2.你能找出下面正方形网格中的全等形吗?师生活动:教师演示课件,学生从网格中找出全等形.【设计意图】应用概念,并体会全等形与图形的位置无关.(三)观察思考探究新知问题6 请同学们观察平移、翻折、旋转前后的图形,它们全等吗?师生活动:教师为学生演示图形变换的过程,学生发现图形的位置发生了改变,但形状、大小都没有改变. 得出结论:平移、翻折、旋转前后的图形全等.【设计意图】加深对全等形概念的理解.渗透运动变化与对应的思想,为下面学习对应元素做准备.问题7 如何用数学符号表示两个三角形全等呢?两个全等三角形中又有哪些对应元素呢?请同学们阅读教材第3页中间两段和小粘贴内容,解决这些问题.师生活动:首先学生自学,然后教师演示课件,共同学习全等三角形的表示方法和对应元素的有关内容,以及注意事项.【设计意图】培养学生自学能力.在自学和交流的过程中使学生掌握全等三角形的表示方法,学会使用全等符号,在直观观察的过程中理解对应的意义.(四)应用练习总结规律问题8 完成下面的练习,你能从中总结出找对应边、对应角常用的方法和规律吗?1.在教师的启发引导下完成下面两个题目:(1)如图,△ABC ≌△DEF ,AB 和DE 是对应 (2)如图,△ABE ≌△DFC ,∠AEB 和∠DFC 是 边,AC 和DF 是对应边,指出所有的对应角. 对应角,∠B 和∠C 是对应角,指出所有的对应边.【设计意图】在教师的引导下师生共同分析第一个题目,得出寻找对应边的方法:全等三角形对 应角所对的边是对应边,两个对应角所夹的边是对应边。