系统辨识与自适应控制
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统辨识与自适应控制
System Identification and Adaptive Control
李爱莲
课程目的
掌握“系统辨识与自适应控制”的概念; 了解“系统辨识与自适应控制”应用场合、
最新技术发展与实例; 进行系统仿真与设计;
➢ 课程讲述分为“绪论篇”、“系统辨识篇” 和“自适应控制篇”
SI的基本方法
机理建模
利用各个专业学科提出的物质和能量守恒定律 或连续性原理等,建立描述系统的数学关系,这种 建模方法称为“白箱问题(White-box)”。
系统辨识(实验建模)
这是一种在没有任何可利用的验前信息(即相 关学科专业知识与相关数据)的情况下,应用所采 集系统的输入和输出数据提取信息进行建模的方法。 这是一种实验建模(Experiment Testing Method)的方法,称为“黑箱问题(Black-
常用的数学模型有代数方程、微分方程、差 分方程、偏微分方程和状态方程等。在系统辨识 中,常用的有:
a. 微分方程;b. 差分方程;c. 状态方程
什么是数学模型
根据模型不同的基本特征,数学模型划分为: (1)静态模型与动态模型; (2)线性模型与非线性模型; (3)参数模型与非参数模型; (4)确定性模型与随机性模型; (5)连续时间模型与离散时间模型; (6)时不变模型与时变模型; (7)时间域模型与频域模型; (8)集中参数模型与分布参数模型;
关于系统辨识
有的系统的数学模型可用理论分析方法(解析法)推导出 来,例如飞行器运动的数学模型,一般可根据力学原理较准确 地推导出来。但是,当考虑飞行器运动模型的参数随飞行高度 和飞行速度变化时,为了实现对飞行器运动的自适应控制,就 要不断估计飞行器在飞行过程中的模型参数。
关于系统辨识
有些控制对象,如化学生产过程,由于其复杂性,很难用 理论分析方法推导数学模型。只能知道数学模型的一般形式及 其部分参数,有时甚至连数学模型的形式也不知道。因此提出 怎样确定系统的数学模型及其参数的问题,即所谓的系统辨识 问题。既然有的系统很难用理论分析方法推导出数学模型,只 有求助于试验方法。
求得k 2
开环对数幅频特性
关于系统辨识
实际上,这个频率响应实验原理为:
首先,选择信号源输出的正弦信号的幅值,以使系统处于
非饱和状态。在一定频率范围内,改变输入正弦信号的频率,
记录各频率点处系统输出信号的波形。由稳态段的输入输出的
幅值比和相位差绘制对数频率特性曲线。
Asin t
信号源
•
对象
记录仪表பைடு நூலகம்
SI的基本方法
机理分析与系统辨识相结合
这种方法适用于系统的运动机理不是完全未知 的情况。首先,利用系统的运动机理和运行经验确 定出模型的结构(如状态方程的维数或差分方程的 阶次),或分析出部分参数的大小或可能的取值范 围,再根据采集到的系统In-Out数据,由辨识的 方法估计或修正模型中的参数,使其精确化。称之 为“灰箱问题(Grey-box)”。
关于系统辨识
写出最小相位系统开环传递函数的过程就是一个辨
识过程(是对数幅频渐近特性曲线绘制的逆问题)。
L/ dB
20dB/ dec 6
40dB / dec
G j
k
j1 j 1 j
1 5
0
1
5
20lg G j1 6dB
c
20 lg k 20 lg1 20lg 1 6dB
60dB / dec
1 绪论
关于“系统辨识”; 系统辨识的应用与发展; 关于“自适应控制”; 自适应控制系统的应用与发展;
关于系统辨识
什么是SI( System Identification)?人们在生产 实践和科学实验中,对所研究的复杂对象通常要求通过 观测和计算来定量地判断其内在规律,那么就必须建立 所研究对象的数学模型(Mathematical Model),从 而进行分析、设计、预测、控制的决策。
系统描述的数学模型
引入自动控制原理中,大家熟悉的内容:
L( )
40
20
1 20
① ④
10 ②
100
③
( )
0
①
③
45
② 90
④
180
G j
10
j0.1 j 1
二阶I型系统的波特图
关于系统辨识
什么是数学模型; 系统辨识的基本方法; 系统辨识的基本内容;
什么是数学模型
数学模型是对这个对象的特征和变化规律的 一种表示或抽象,它不是对象本身,而是把对象 本质的部分信息表达成有用的描述形式。
关于系统辨识
在经典的控制理论中,为了确定闭环系统是否稳定,我们 就需要数学模型。可以①在已知系统微分方程的情况下,求取 闭环传递函数,求解闭环特征方程,判断根是否都具有负实部, 或利用劳斯判据(霍尔维茨判据),确定是否所有极点位于S平 面的左半平面;②获得开环系统传递函数,绘制根轨迹,确定 系统特征方程的根在S平面的分布情况;③在没有获得系统数学 模型的情况下,实验室的方法变得切实可行,利用开环系统的 对数幅频特性曲线(Bode图)或者奈奎斯特曲线(奈氏图), 判断闭环系统的稳定性。
幅频响应实验原理
系统描述的数学模型
引入自动控制原理中,大家熟悉的内容:
c(t ) 误差带 :0.05 或 0.02
Mp 1
0.5
0 td
t
tr
tp
ts
二阶系统欠阻尼时的单位阶跃响应
系统描述的数学模型
引入自动控制原理中,大家熟悉的内容:
1 j( jT1 1)( jT2 1)
Im
Re
三阶I型系统的奈氏图
建立数学模型的方法有分析法和实验法。实验法是 人为地给系统施加某种测试信号,记录其输出响应,并 用适当的数学模型去逼近,称为SI。
不论是现代控制理论还是最优控制,都假设系统数 学模型已知,显然,对于自动控制系统的设计研究者来 说,建立对象的数学模型是不可少的。
关于系统辨识
例如:我们需要利用民航旅客数年份月的统计数据 建立的数学模型,来预测未来行为;利用股市行情近期 走势预测未来走势;在故障诊断方面,在生产过程中, 例如反应堆、大型化工和动力装置等,希望经常监视和 检测可能出现的故障,以便及时排除故障,这就意味着 必须不断地从过程中搜集信息,推断过程动态特性的变 化情况,进而根据特性的变化情况判断故障是否发生、 何时发生、故障大小、故障位置等。
教材 teaching materials
系统辨识与自适应控制 杨承志 重庆大 学出版社
系统辨识与建模 潘立登 化学工业出 版社
自适应控制 吴士昌 机械工业出版社 自动控制原理 邹伯敏 机械工业出版社 线性系统理论 郑大钟 清华大学出版社 智能控制 刘金琨 电子工业出版社
绪论篇
Introduction
System Identification and Adaptive Control
李爱莲
课程目的
掌握“系统辨识与自适应控制”的概念; 了解“系统辨识与自适应控制”应用场合、
最新技术发展与实例; 进行系统仿真与设计;
➢ 课程讲述分为“绪论篇”、“系统辨识篇” 和“自适应控制篇”
SI的基本方法
机理建模
利用各个专业学科提出的物质和能量守恒定律 或连续性原理等,建立描述系统的数学关系,这种 建模方法称为“白箱问题(White-box)”。
系统辨识(实验建模)
这是一种在没有任何可利用的验前信息(即相 关学科专业知识与相关数据)的情况下,应用所采 集系统的输入和输出数据提取信息进行建模的方法。 这是一种实验建模(Experiment Testing Method)的方法,称为“黑箱问题(Black-
常用的数学模型有代数方程、微分方程、差 分方程、偏微分方程和状态方程等。在系统辨识 中,常用的有:
a. 微分方程;b. 差分方程;c. 状态方程
什么是数学模型
根据模型不同的基本特征,数学模型划分为: (1)静态模型与动态模型; (2)线性模型与非线性模型; (3)参数模型与非参数模型; (4)确定性模型与随机性模型; (5)连续时间模型与离散时间模型; (6)时不变模型与时变模型; (7)时间域模型与频域模型; (8)集中参数模型与分布参数模型;
关于系统辨识
有的系统的数学模型可用理论分析方法(解析法)推导出 来,例如飞行器运动的数学模型,一般可根据力学原理较准确 地推导出来。但是,当考虑飞行器运动模型的参数随飞行高度 和飞行速度变化时,为了实现对飞行器运动的自适应控制,就 要不断估计飞行器在飞行过程中的模型参数。
关于系统辨识
有些控制对象,如化学生产过程,由于其复杂性,很难用 理论分析方法推导数学模型。只能知道数学模型的一般形式及 其部分参数,有时甚至连数学模型的形式也不知道。因此提出 怎样确定系统的数学模型及其参数的问题,即所谓的系统辨识 问题。既然有的系统很难用理论分析方法推导出数学模型,只 有求助于试验方法。
求得k 2
开环对数幅频特性
关于系统辨识
实际上,这个频率响应实验原理为:
首先,选择信号源输出的正弦信号的幅值,以使系统处于
非饱和状态。在一定频率范围内,改变输入正弦信号的频率,
记录各频率点处系统输出信号的波形。由稳态段的输入输出的
幅值比和相位差绘制对数频率特性曲线。
Asin t
信号源
•
对象
记录仪表பைடு நூலகம்
SI的基本方法
机理分析与系统辨识相结合
这种方法适用于系统的运动机理不是完全未知 的情况。首先,利用系统的运动机理和运行经验确 定出模型的结构(如状态方程的维数或差分方程的 阶次),或分析出部分参数的大小或可能的取值范 围,再根据采集到的系统In-Out数据,由辨识的 方法估计或修正模型中的参数,使其精确化。称之 为“灰箱问题(Grey-box)”。
关于系统辨识
写出最小相位系统开环传递函数的过程就是一个辨
识过程(是对数幅频渐近特性曲线绘制的逆问题)。
L/ dB
20dB/ dec 6
40dB / dec
G j
k
j1 j 1 j
1 5
0
1
5
20lg G j1 6dB
c
20 lg k 20 lg1 20lg 1 6dB
60dB / dec
1 绪论
关于“系统辨识”; 系统辨识的应用与发展; 关于“自适应控制”; 自适应控制系统的应用与发展;
关于系统辨识
什么是SI( System Identification)?人们在生产 实践和科学实验中,对所研究的复杂对象通常要求通过 观测和计算来定量地判断其内在规律,那么就必须建立 所研究对象的数学模型(Mathematical Model),从 而进行分析、设计、预测、控制的决策。
系统描述的数学模型
引入自动控制原理中,大家熟悉的内容:
L( )
40
20
1 20
① ④
10 ②
100
③
( )
0
①
③
45
② 90
④
180
G j
10
j0.1 j 1
二阶I型系统的波特图
关于系统辨识
什么是数学模型; 系统辨识的基本方法; 系统辨识的基本内容;
什么是数学模型
数学模型是对这个对象的特征和变化规律的 一种表示或抽象,它不是对象本身,而是把对象 本质的部分信息表达成有用的描述形式。
关于系统辨识
在经典的控制理论中,为了确定闭环系统是否稳定,我们 就需要数学模型。可以①在已知系统微分方程的情况下,求取 闭环传递函数,求解闭环特征方程,判断根是否都具有负实部, 或利用劳斯判据(霍尔维茨判据),确定是否所有极点位于S平 面的左半平面;②获得开环系统传递函数,绘制根轨迹,确定 系统特征方程的根在S平面的分布情况;③在没有获得系统数学 模型的情况下,实验室的方法变得切实可行,利用开环系统的 对数幅频特性曲线(Bode图)或者奈奎斯特曲线(奈氏图), 判断闭环系统的稳定性。
幅频响应实验原理
系统描述的数学模型
引入自动控制原理中,大家熟悉的内容:
c(t ) 误差带 :0.05 或 0.02
Mp 1
0.5
0 td
t
tr
tp
ts
二阶系统欠阻尼时的单位阶跃响应
系统描述的数学模型
引入自动控制原理中,大家熟悉的内容:
1 j( jT1 1)( jT2 1)
Im
Re
三阶I型系统的奈氏图
建立数学模型的方法有分析法和实验法。实验法是 人为地给系统施加某种测试信号,记录其输出响应,并 用适当的数学模型去逼近,称为SI。
不论是现代控制理论还是最优控制,都假设系统数 学模型已知,显然,对于自动控制系统的设计研究者来 说,建立对象的数学模型是不可少的。
关于系统辨识
例如:我们需要利用民航旅客数年份月的统计数据 建立的数学模型,来预测未来行为;利用股市行情近期 走势预测未来走势;在故障诊断方面,在生产过程中, 例如反应堆、大型化工和动力装置等,希望经常监视和 检测可能出现的故障,以便及时排除故障,这就意味着 必须不断地从过程中搜集信息,推断过程动态特性的变 化情况,进而根据特性的变化情况判断故障是否发生、 何时发生、故障大小、故障位置等。
教材 teaching materials
系统辨识与自适应控制 杨承志 重庆大 学出版社
系统辨识与建模 潘立登 化学工业出 版社
自适应控制 吴士昌 机械工业出版社 自动控制原理 邹伯敏 机械工业出版社 线性系统理论 郑大钟 清华大学出版社 智能控制 刘金琨 电子工业出版社
绪论篇
Introduction