起重机的稳定性系数计算
门式起重机总体计算书
![门式起重机总体计算书](https://img.taocdn.com/s3/m/06b40f2fe2bd960590c6775f.png)
MQ100 门式起重机总体设计计算书一. 总体计算计算原则:MQ100门式起重机设计计算完全按《起重机设计规范》GB3811执行,并参照下列标准进行设计计算:《塔式起重机设计规范》GB/T13752-92 《法国塔式起重机设计规范》NFE52081 工作级别 A 5 利用等级 U 5 起升机构 M 5 变幅机构 M 4 回转机构 M 4 行走机构 M 4 最大幅度 13m最大起重量 8000Kg(一) 基本参数:回转速度 0.7r/min回转制动时间 5s行走速度 12.5/25m/min行走制动时间 6s 回转惯性力()Kg RM M g t Rn F 002242.0.60..25.1=⨯⨯=π回其中 g=9.81 n=0.7r/min t=5s行走惯性力: ()Kg M M g t vF 0106184.0.605.1=⨯⨯=行其中 g=9.81 V=25m/min t=6s(二) 载荷组合:自重力矩、惯性力及扭矩上表中的回转惯性力到轨顶面的力矩总计为:-1971kg.m 上表中的行走惯性力到轨顶面的力矩总计为:5378kg.m(三)起重小车、吊钩和吊重载荷起重小车265kg绳60kg吊钩230kg起升动载系数(起升机构用40RD20):=1.136, q=8tV=16m/min时,2吊重q=8000kg, 幅度R=13m(1) 吊载Q=(8000+230+60/2)×1.136+(265+60/2)×1.1=9708kgM=9708×13=126204kg.m(2) 风载(包括起重小车、吊钩和吊重)迎风面积A=5.52+1.6×82/3=11.92m2风力:F=11.92×25=298kg=298×13=3874kg.m风扭矩:Tn风力到轨道上平面的力矩:M=298×12=3576kg.m(3) 回转惯性力F=0.002242×(8000+230+265+60)×13=249kg 回转惯性扭矩: T=249×13=3237kg.mn回转惯性力到轨道上平面的力矩:M=249×12=2988kg.m (4)行走惯性力F=0.0106184×(8000+230+265+60)=91kg=91×13=1183kg.m行走惯性扭矩:Tn行走惯性力到轨道上平面的力矩:M=91×12=1092kg.m (四) 风载荷A、工作,垂直风(风向与臂架垂直)臂长jib=13m,垂直风(注:标高均指风力作用点到轨顶面的高度)上表中的风力到轨顶面的力矩总计为:14799kg.m B、工作,平行后吹风(风向与臂架平行,与底架平行)臂长jib=13m,后吹风(注:标高均指风力作用点到轨顶面的高度)上表中的风力到轨顶面的力矩总计为:11168kg.m C、工作,45︒后吹风(风向与臂架平行,与底架成45︒)臂长jib=13m,45︒后吹风(注:标高均指风力作用点到轨顶面的高度)上表中的风力到轨顶面的力矩总计为:12290kg.m D、非工作,平行后吹风(风向与臂架平行)臂长jib=13m,后吹风(注:标高均指风力作用点到轨顶面的高度)上表中的风力到轨顶面的力矩总计为:35732kg.mE、非工作,45︒后吹风(风向与臂架平行,与底架成45︒)臂长jib=13m,45︒后吹风(注:标高均指风力作用点到轨顶面的高度)上表中的风力到轨顶面的力矩总计为:-39322kg.m 二、载荷汇总MQ100门式起重机各力到轨顶面的载荷汇总如下:非工作,含小车,无系数重力:67930+495=68425kg工作,含小车,无系数重力:67930+495+60+8000=76485kg工作,含小车,有系数重力:1.1⨯67930+9708=84431kg非工作,含小车,无系数重力矩:-63443+2.9⨯495=-62008kg.m工作,含小车,无系数重力矩:-63443+8555⨯13=47772kg.m工作,含小车, 有系数重力矩:-1.1⨯63443+9708⨯13=56417kg.m工作,垂直风力:1650+298=1948kg工作,后吹风力:1422+298=1720kg工作, 45︒后吹风力:1628+298=1926kg非工作, 平行前吹风力:4550+5.52⨯80=4992kg非工作, 45︒前吹风力:5209.6+5.52⨯80=5651kg工作,垂直风力矩:14799+298⨯12=18375kg.m工作, 后吹风力矩:11168+298⨯12=14744kg.m工作, 45︒后吹风力矩:12290+298⨯12=15866kg非工作, 平行前吹风力矩:-(35732+5.52⨯80⨯12)=-41031kg.m 非工作, 45︒前吹风力矩:-(39322+5.52⨯80⨯12)=-44621kg.m 工作,回转惯性力:-142.5+249=106.5kg工作,行走惯性力:721+91=812kg工作,回转惯性力矩:-1971+249⨯12=1017kg.m工作,行走惯性力矩:5378+91⨯12=6470kg.m工作,垂直风力扭矩:146+298⨯12=3722kg工作,回转惯性力扭矩:1457+249⨯12=4445kg.m工作, 行走惯性力扭矩:-679+91⨯12=413kg.m回转离心惯性力忽略不计三、MQ100行走式门式起重机的稳定性计算(一)工作状态下的稳定性稳定力矩(kg.m)3.5m后倾翻边前倾翻边1. 工况:工作、静态、无风(R=13m,Q=8t)回转、行走M前倾=M负荷+M行走=1.5×8000×(13-1.75)+6470 =141470kg.mM前稳/M前倾=181752/141470=1.28>12. 工况:工作、动态、有风(R=13m,Q=8t)回转、后吹风M前倾=M负荷+M行走+M风=1.3×8000×(13-1.75)+6470+14744 =138214kg.mM前稳/M前倾=181752/138214=1.31>13. 工况:工作、动态、突然卸载(R=13m,Q=8t 0)无回转、无行走、风M后倾=M负荷+M风=0.3×8000×(13+1.75)+14744 =50144kg.mM后稳/M后倾=57736/50144=1.15>14. 工况:工作、动态、有风(R=13m,Q=8t)回转、行走、风M前倾=M回转+M行走+M风=1017+6470+18375=25862kg.mM稳=(67930+495+60+8000)×1.75=133849kg.mM稳/M前倾=133849/25862=5.17>15. 工况:工作、动态、无风(R=13m,Q=8t)无回转、无行走、无风 M前倾=1.6×8000×(13-1.75)=144000kg.mM前稳/M前倾=181752/144000=1.26>1(二)非工作状态下的稳定性倾翻边风M倾=1.1M风=1.2×41031=49237kg.mM稳/M倾=57736/49237=1.17>1综上所述:M100行走式门式起重机在工作状态和非工作状态下的稳定性均安全.(三)安装状态下的稳定性(1).后倾翻边M后倾=6458+481+13630-447-57-556-534=18975kg.mM后稳=(67930-1728-320-108-429-10500)×1.75=95979kg.mM后稳/M后倾=95979/18975=5.06>1(2) 装上起重臂(13m臂长时,无配重)M前倾=(63433+230×10) -64155=1578kg.mM前稳=(67930-10500)×1.75=100503kg.mM前稳/M前倾=100503/1578=63.7>1四、M100行走式门式起重机的台车支反力计算1. 工况:工作、45 后吹风(R=13m,Q=8t)、行走、风重力: 84431kg 重力力矩: 56417kg.m回转力矩: 1017kg.m 行走力矩: 6470kg.m风力矩: 15866kg.mRA=(-84431/4)+(56417+15866)/(3.5×2)+6470/(2×3.5)=-5580kgRB=(-84431/4)-1017/(3.5×2)-6470/(2×3.5)=-22238kgRC=(-84431/4)-(56417+15866)/(3.5×2)-6470/(2×3.5)=-36635kgRD=(-84431/4)+1017/(3.5×2)+6470/(2×3.5)=-19978kg2. 工况:非工作、45 前吹风(R=2.9m,Q=0)风重力: 68425kg 重力力矩: -62008kg.m风力矩: 44621kg.mRC=-68425/4+62008/(3.5×2)+44621/(3.5×2)=+4436kgRC为正,故按三点支承计算RA=-62008/(1.75×2)-44621/(1.75×2)=-43085kgRB =RD=-68425/2-62008/(2×1.75×2)-44621/(2×1.75×2)=-55755kgRC=0。
吊车稳定性计算(word文档良心出品)
![吊车稳定性计算(word文档良心出品)](https://img.taocdn.com/s3/m/4c49a215bd64783e08122b22.png)
移动式起重机作业稳定性计算时间:2008-06-18 09:30:54 | 文章来源:中国工程机械银网移动式起重机的起重性能是由其机构的承载能力和稳定性决定的,而其作业稳定性是由其自身和重量重心和配重的重量重心决定的,由于要照顾其移动性能,自身重量受到很大的限制。
准确的计算移动式起重机的作业稳定性,确定临界载荷,对于合理确定整机重量、总体布局、有效提高其作业性能,起着至关重要的作用。
一、计算模型的建立移动式起重机作业时可以用支腿支承或用轮胎支承。
当用轮胎支承时,悬挂系统应处于刚性状态,但由于轮胎的变形,车架会发生一定程度的倾斜,工作幅度会增大,在计算稳定性时,应考虑这一因素,除此之外,两者并无不同,因此,下面仅以支腿支承为例建立模型,见图其中:R――工作幅度,在计算过程中作为自变量G――上车重心不变部分的重量G――底盘的重量BB――支腿跨距之半G――吊臂自重L――吊臂自重重心到回转中心距离,对于伸缩型吊臂,该值随吊臂长度变化而变化α――吊臂仰角G――变幅油缸重量L――变幅油缸重心到回转中心距离β――变幅缸仰角A――吊臂后铰点到回转中心距离B――变幅缸下铰点到回转中心距离C――吊臂后铰点与变幅缸下铰点的高度差二、边界条件:叮停M≥0其中:叮臀整机自重对倾翻边的稳定力矩M为起重载荷对倾翻边的倾翻力矩当叮停M=0时,起重机处于稳定的临界状态,此时的起重量Q为临界起重量。
在进行起重机稳定性计算时,起重量Q的载荷系数为:K=1.25+0.1N/Q其中:N为臂架自重对臂端和臂架铰点按静力等效原则折算到臂端的重量。
N=(L+A)G/(R+A)Q为起重量三、起重性能的确定由稳定性决定的起重量:K×Q=其中:L为起重量对倾翻边的倾翻力臂。
可解得:Q=-因此由稳定性决定的起重量可确定为:Q=-由于液压油的流动性、结构件的变形、不确定的冲击载荷等因素,实际确定起重性能时,还应对上式计算的结果进行修正。
大型移动式起重机吊臂长度很大,起重作业时,吊臂端部在铅垂面内的挠度值很大,常常超过2米,对作业幅度值有着明显的影响,此时应对幅度值进行修正。
汽车式起重机稳定性验算计算书
![汽车式起重机稳定性验算计算书](https://img.taocdn.com/s3/m/dadd92c1284ac850ad02427f.png)
30
G3重心至回转中心的距离l3(m)
3
吊装荷载自重标准值Q1(包括构件自重
和索具自重)(kN)
40
吊钩自重标准值Q2(kN)
5
起重臂臂自重标准值Q3(kN)
10
旋转中心至支腿倾翻支点的距离a1(m)
2.5
旋转中心至起重臂下铰点的距离a2(m)
1.4
旋转中心至起重臂重心的距离a3(m)
汽车式起重机稳定性验算计算书
计算依据: 1、《建筑施工起重吊装安全技术规范》JGJ276-2012 2、《起重吊装计算及安全技术》主编卜一德
一、计算参数
起重机是否安装支腿作业
起重机机身可转动部分的自重标准值
是
G1(不包括起重臂、吊钩、配重)(kN)
25
G1重心至旋转中心的距离l1(m)
1
起重机底盘部分的自重标准值G2(kN)
2.9
支腿倾翻支点至起重臂重心的距离
x(m)
0.4
额定起重量时幅度R(m)
7
起重机稳定性安全系数允许值[K]
二、计算示意图
1.333
示意图
三、汽车式起重机稳定性验算
稳定性安全系数: K=Mr/Mov=[G1(l1+a1)+G2a1+G3(l3+a1)]/[(Q1+Q2)(R-a1)+Q3x]=[25×(1+2.5)+15×2.5+30×( 3+2.5)]/[(40+5)(7-2.5)+10×0.4]=1.404
K=1.404≥[K]=1.333 满足要求!
随车起重运输车的抗倾覆稳定性分析计算
![随车起重运输车的抗倾覆稳定性分析计算](https://img.taocdn.com/s3/m/ba8117d52cc58bd63186bdfd.png)
பைடு நூலகம்
这 是我 国 ( ( G B 3 8 1 1 - 2 0 0 8起 重机设 计规范 ) )所采用
( 2 )环境 温度为 . 2 5  ̄ C ~+ 4 0  ̄ C; ( 3 )风速 不超 过 1 3 . 8 m/ s 。
一
起 重 机 或物 品 垂 直于 风 向的迎 风面 积 ,单
豳国家 工程机械 质 量监督检验 中心 高 晶/ G A O J i n g
摘
要: 通过对 随车起重运输车 的抗倾覆 稳定性分析 计算 ,做 出各种稳定性校核方 法,稳定性计 算内容及其计
算 方法, 并通 过实例说 明做 出倾翻 线的确定及静 稳定性 的校核, 最后得 出结论 实际稳定性必 须通过实际试验 来验 证 。 关键词 : 稳定性 载荷 校核
绳 通 过 滑 轮组带 动 吊钩 起 吊,具 有 一级 变 幅机 构 ,货 稳定 系数 为 1 . 4;白稳定系数为 1 . 1 5 。
物 可在 操 纵下 实现 垂直 升 降功 能 ; 折叠 式 随车 起 重机 1 . 3 按临界倾覆载荷标定额定起重量 这是西方 国家许 多起 重机制造公司常用 的方法 。这 主 要结 构特点 : 无钢丝绳 ,直接用 吊钩吊重 ,具 有两级 变 幅机构 ,货物 曲线升 降,一般在 此类 吊机 上可加装 多 种 方 法 是通 过试 验 或计 算 ,得 出起 重机 在不 同幅度 下 种辅 具 ,以实现其他 的特殊作业 工况 。
位 m 。
在 计 算起 重 机 风载 荷 时,应 考虑 风对 起 重机 是沿
3 随车起 重运输车抗倾覆稳 定性计算
我 国随车 起 重运 输车 抗倾 覆 稳定 性计 算一 般 按照 随车起 重运输车行业标 准 QC / T 4 5 9 — 2 0 0 4进行 计算 的。
起重机数据及公式
![起重机数据及公式](https://img.taocdn.com/s3/m/ebb376a0846a561252d380eb6294dd88d0d23d8f.png)
起重机数据及公式起重机是一种用于吊装和搬运重物的机械设备,广泛应用于工业、建筑和物流等领域。
起重机的设计和操作需要依据一定的数据和公式进行计算和规划,以确保工作的安全和高效。
本文将介绍起重机数据及公式的相关内容,以帮助读者更好地了解和应用起重机。
一、起重机基本数据1.1 起重机额定起重量:指起重机在设计和制造过程中确定的最大起重量,也是起重机的最大工作负荷。
1.2 起重机工作半径:指起重机吊臂中心轴线到吊钩中心轴线的水平距离,也是起重机工作范围的一个重要参数。
1.3 起重机起升高度:指起重机能够垂直起升的最大高度,通常由起重机的主起升机构决定。
二、起重机稳定性计算2.1 起重机重心计算:起重机的重心位置对于保证其稳定性至关重要,需要考虑各部件的重量和位置,并进行合理的计算和调整。
2.2 起重机支撑面积计算:起重机的支撑面积也是保证其稳定性的关键因素,需要根据起重机的结构和工作条件进行计算和评估。
2.3 起重机倾覆力矩计算:起重机在工作中可能受到倾覆力矩的作用,需要通过计算和分析,确定起重机的抗倾覆能力是否满足要求。
三、起重机起重力矩计算3.1 起重机起重力矩定义:起重力矩是指起重机在吊装过程中产生的力矩,需要考虑起重物体的重量、距离和角度等因素。
3.2 起重机起重力矩计算公式:根据起重机的结构和工作条件,可以通过一定的公式计算起重力矩,进而确定起重机的吊装能力。
3.3 起重机起重力矩计算实例:通过实际案例,展示起重机起重力矩的计算过程和方法,帮助读者更好地理解和应用。
四、起重机工作循环计算4.1 起重机工作循环定义:起重机的工作循环是指起重机在一定时间内的工作状态和工作时间比例,需要根据实际情况进行合理的计算和评估。
4.2 起重机工作循环分类:起重机的工作循环可以根据工作时间和载荷大小等因素进行分类,不同的工作循环对起重机的使用寿命和安全性有着重要影响。
4.3 起重机工作循环计算方法:通过对起重机的使用情况和工作时间进行统计和分析,可以采用一定的方法计算起重机的工作循环,为起重机的维护和管理提供依据。
超高门式起重机有限元分析及抗倾覆稳定性计算
![超高门式起重机有限元分析及抗倾覆稳定性计算](https://img.taocdn.com/s3/m/f52744c7050876323112129c.png)
要保 证 门机在 满载 工作 状态 和空 载非 工作 状态
下 结构 安全 可靠 , 须对 其 在 各 状 态 下 的结 构 强 度 必
及 稳定 性 进 行 分 析 校 核 。 由 于 起 重 机 结 构 的 复 杂
性 , 用传 统手 工计 算 很 难 得 到 准 确 的强 度分 析计 应
Ab ta t The lfi i fg nt yc a e i 0 m , hih i ow i g e e t don t el w ie rd e ho — — src : itng heghto a r r n s 5 w c sn ben r c e he y lo rv r b igeofD z u Da
S M ie , ss M u tp e s c o p i t l l e t n o n s i i
贴合 , 故支 腿 底 部 在 X 方 向的平 动 被 约束 ; )由于 2 车 轮 与轨道 之 间不 允 许 有 相 互 脱 离 , 支 腿 底部 端 故 面 在 y 方 向的平 动被 约束 ; )由于支 腿在 承受 压力 3
新技 术新 工艺
21 0 2年
第 8期
超 高门 式起 重机 有 限元 分析 及抗 倾 覆稳 定性计算
张 莹洁 , 永 前 , 翠 兰 , 齐 代 高艳 东
( 中铁 一 局 集 团 建 . 机 械 有 限公 司 , 西 西 安 7 0 5 ) T - - 陕 1 0 4
摘
要 : 大铁路 黄 河 大桥 架设 用 门式起 重机 吊装要 求起 升 高度 为 5 l如 此 高的起 升 高度 提 高 了 德 0 r, f
塔吊稳定性验算稳定安全系数计算公式
![塔吊稳定性验算稳定安全系数计算公式](https://img.taocdn.com/s3/m/816cd45b6c85ec3a87c2c5b1.png)
塔吊稳定性验算稳定安全系数计算公式塔吊稳定性验算可分为有荷载时和无荷载时两种状态。
下面分别做详细介绍。
一、塔吊有荷载时稳定性验算塔吊有荷载时,计算简图:塔吊有荷载时,稳定安全系数可按下式验算:式中K1——塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15;G——起重机自重力(包括配重,压重),G=440.02(kN);c——起重机重心至旋转中心的距离,c=0.5(m);h0——起重机重心至支承平面距离, h0=6(m);b——起重机旋转中心至倾覆边缘的距离,b=2.5(m);Q——最大工作荷载,Q=50(kN);g——重力加速度(m/s2),取9.81;v——起升速度,v=0.5(m/s);t——制动时间,t=20(s);a——起重机旋转中心至悬挂物重心的水平距离,a=15(m);W1——作用在起重机上的风力,W1=5(kN);W2——作用在荷载上的风力,W2=1(kN);P1——自W1作用线至倾覆点的垂直距离,P1=8(m);P2——自W2作用线至倾覆点的垂直距离,P2=2.5(m);h——吊杆端部至支承平面的垂直距离,h=28(m);n——起重机的旋转速度,n=1(r/min);H——吊杆端部到重物最低位置时的重心距离,H=30(m);α——起重机的倾斜角(轨道或道路的坡度),α=2(度)。
经过计算得到K1 =1.856,塔吊有荷载时,1.856大于1.15,稳定安全系数满足要求。
二、塔吊无荷载时稳定性验算塔吊无荷载时,计算简图:塔吊无荷载时,稳定安全系数可按下式验算:式中K2——塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15;G1——后倾覆点前面塔吊各部分的重力,G1=80(kN);c1——G1至旋转中心的距离,c1=0.5(m);b——起重机旋转中心至倾覆边缘的距离,b=3(m);h1——G1至支承平面的距离,h1=6(m);G2——使起重机倾覆部分的重力,G2=20(kN);c2——G2至旋转中心的距离,c2=3.5(m);h2——G2至支承平面的距离,h2=30(m);W3——作用有起重机上的风力,W3=5(kN);P3——W3至倾覆点的距离,P3=15(m);α——起重机的倾斜角(轨道或道路的坡度),α=2(度)。
吊车计算书
![吊车计算书](https://img.taocdn.com/s3/m/db3bfefc3b3567ec112d8a14.png)
吊车计算书吊装计算书3:回转半径R=b+Lcomαb—起重臂杆支点中心至起重机回转轴中心的距离.L ;α分别为所选择起重机的臂杆长度和起重机的仰角R=16.32米,主臂长选用54.8米根据求出的Q;H;R查吊机性能表,采用150吨履带吊,其性能能满足吊装上下柱的要求,在回转半径16米,主臂长54.8米时可吊装35吨二:履带式起重机稳定性计算1:起重机不接长稳定性计算履带式起重机采用不原起重臂杆稳定性的最不利情况为车身与履带成90度,要使履带中心点的稳定力矩Mr大于倾覆力矩Mou,并按下列条件核算.当考虑吊装荷载以及所有附加荷载时:K1=Mr/Mou=〔G1L1+G2L2+G0L O-(G1h1+G2h2+G0h0+G3h3)sinβ-G3L3+M F+Mg+Ml〕/(Q+q)(R-L2)≥1.15只考虑吊装荷载,不考虑附加荷载时:K2=Mr/Mou=(G1L1+G2L2+G0L0-G3L3)/(Q+q)(R-L2)≥1.4式中:G1–起重机机身可转动部分的重力,取451KNG2---起重机机身不转动部分的重力,取357KNG0—平衡重的重力, 取280KNG3---起重臂重力, 取85.1KNQ----吊装荷载(包括构件重力和索具重力)q----起重滑车组的重力L1—G1重心至履带中心点的距离L2—G2重心心至履带中心点的距离L3—G3重心到履带中心点的距离L0—G0重心到履带中心点的距离H1—G1重心到地面的距离 2.33米H2—G2重心到地面的距离 0.89米H3---G3重心到地面的距离 19.2米H0---G0重心到地面的距离 1.92米β地面仰斜角度,应限制在30以内R---起重半径M F---风载引起的倾覆力矩,M G---重物下降时突然刹车的惯性力矩引起的倾覆力矩M G=P G(R-L2)=(Q+q)(R-L2)V/gt其中P G是惯性力V—吊钩的下降速度(m/s),取为吊钩速度的1.5倍; 取0.375米/秒g---重力加速度t---从吊钩下降速度变到0所需的制动时间,取1秒.M L---起重机回转时的离心力所引起的倾覆力矩,为:M L=P L H=(Q+q)Rn2H/(900-n2h)其中:P L--离心力n---起重机回转速度(r/min)h---所吊构件处于最低位置时,其重心至起重杆的距离H起重机顶端至地面的距离.e0=6.48米e1=2.82米β=30以以上数据核算起重臂最大倾角770时的最大安全起重力.计算有关数据:L2=(M-N)/2=(6.738-1.118)/2=2.81米L1= e1+L2=2.82+2.81=5.63米L0= e0+ L2=6.48+2.81=9.29米R=2.02+54.8com77=14.34米L3=2.02+54.8com77/2-L2=5.37米将以上参数代入只考虑吊装荷载的式中.K2=Mr/Mou=(G1L1+G2L2+G0L0-G3L3)/(Q+q)(R-L2)=(451×5.63+357×2.81+280×9.29-85.1×5.37)/(320+10)(14.34-2.81)=1.49≥1.4吊车在最不利条件下能满足抗倾覆安全性能要求.三:钢丝绳的计算1、钢丝绳计算钢丝绳的安全荷载(允许拉力)S由下式计算S=S b/k其中S b:钢丝绳的破断拉力,S b=α.PgPg:钢丝绳的钢丝破断拉力总和(KN),可从钢丝绳规格和荷载性能表中查得,如无,可近似地按Pg=0.5d2(d-钢丝绳直径);α—考虑钢丝绳受力不均匀的钢丝绳破断拉力换算系数,K钢丝绳使用时安全系数起吊构件采用9×61,直径30.5mm,钢丝绳极限强度为2000N/mm2,作吊装用钢丝绳,由表查得9×61,直径30.5mm,钢丝绳的钢丝破断拉力总和为:827 KN,换算系数α=0.85,查表的安全系数K=6,则钢丝绳的允许拉力为:S=(0.85×827)/6=117.2KN故吊装时,采用4根9×61,直径为 30.5mm的钢丝绳帮扎构件117.2×4=468.8KN=46.88吨,能满足吊装要求.。
汽车式起重机稳定性验算计算书
![汽车式起重机稳定性验算计算书](https://img.taocdn.com/s3/m/f925cf0d0740be1e650e9a31.png)
G3重心至回转中心的距离l3(m)
3
吊钩自重标准值Q2(kN)
5
旋转中心至支腿倾翻支点的距离a1(m) 2.5
旋转中心至起重臂重心的距离a3(m) 2.9
额定起重量时幅度R(m)
7
示意图
三、汽车式起重机稳定性验算
稳定性安全系数: K=Mr/Mov=[G1(l1+a1)+G2a1+G3(l3+a1)]/[(Q1+Q2)(R-a1)+Q3x]=[25×(1+2.5)+15×2.5+30×( 3+2.5)]/[(40+5)(7-2.5)+10×0.4]=1.404
汽车式起重机稳定性验算计算书 Nhomakorabea计算依据: 1、《建筑施工起重吊装安全技术规范》JGJ276-2012 2、《起重吊装计算及安全技术》主编卜一德
一、计算参数
起重机是否安装支腿作业
是
G1重心至旋转中心的距离l1(m)
1
平衡重自重标准值G3(kN)
30
吊装荷载自重标准值Q1(包括构件自重 40 和索具自重)(kN)
K=1.404≥[K]=1.333 满足要求!
起重臂臂自重标准值Q3(kN)
10
旋转中心至起重臂下铰点的距离a2(m) 1.4
支腿倾翻支点至起重臂重心的距离 x(m) 起重机稳定性安全系数允许值[K]
二、计算示意图
0.4 1.333
起重机机身可转动部分的自重标准值 25 G1(不包括起重臂、吊钩、配重)(kN)
起重机底盘部分的自重标准值G2(kN) 15
TC5013塔式起重机(固定)底架、基础设计,整机稳定性计算
![TC5013塔式起重机(固定)底架、基础设计,整机稳定性计算](https://img.taocdn.com/s3/m/0f89da866529647d2728528b.png)
目录1、TC5013塔机稳定性计算 (3)1.1抗倾翻稳定性 (3)1.1.1验算工况 (3)1.1.2抗倾翻稳定性校核 (4)1.2基本稳定性 (4)1.3动态稳定性 (6)1.4暴风侵袭稳定性 (7)1.5突然卸载稳定性 (8)1.6安装拆卸稳定性 (8)1.7地面压应力验算: (10)2、TC5013塔式起重机(固定)底架、基础设计 (10)2.1计算依据: (10)2.2参数信息 (11)2.3塔吊荷载取值与基础承台顶面的竖向力与力距 (11)2.4结构设计: (12)2.4.1桩基选型: (12)2.4.2地基基础 (12)2.4.3矩形承台弯距的计算 (13)2.4.4矩形承台弯矩的计算 (13)2.4.5矩形承台截面主筋的计算 (14)2.4.6矩形承台截面抗剪切计算 (14)2.4.7桩承载力验算 (15)2.4.8桩竖向极限承载力验算及桩长计算 (15)1、TC5013塔机稳定性计算1.1抗倾翻稳定性1.1.1验算工况本塔式起重机为固定基础的自升式塔式起重机,其抗倾翻稳定性的计算包括:安装架设、拆卸和使用过程(工作状态、非工作状态)。
列表4-1如下:表4-1固定基础塔式起重机验算工况1.1.2抗倾翻稳定性校核图4.1 抗倾翻稳定性计算简图由于固定基础式的倾覆边沿不明确,GB/T13752-92提出,固定式砼基塔机整机抗倾翻稳定性验算公式:3bF F h F M e g v h ≤+⋅+=式中:e —偏心距。
M —作用于基础上的弯矩。
h —基础深度。
b —基础宽度。
Fv —作用于基础上的垂直载荷。
Fh —作用于基础上的水平载荷。
Fg —混凝土基础的重力。
作用于基础上的弯矩包括自重载荷、起升载荷、离心力、惯性力及风载荷产生的力矩,根据上述工况计算如下:1.2基本稳定性工作状态:无风静载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:自重载荷系数取1.0,离心力系数取1.0,起升载荷系数取1.5,(1) 自重载荷计算名称质量(Kg) 重心至回转中心距离mm力距Kg.mm起重臂第一节480 2250 1080000 起重臂第二节865 10500 9082500 起重臂第三节788 20500 16154000 起重臂第四节713 30500 21746500 起重臂第五节636 40500 25758000 起重臂第六节512 50500 25856000 起重臂第七节465 57500 26737500 起重臂第八节330 62500 20625000 起重臂第九节312 67500 21060000 起重臂第十节83 70740 5871420 起重臂其他176 35630 4532000 变幅机构220 7860 1729200 平衡臂1856 -7523 13963533 起升机构1600 -8280 -1324800 平衡重14700 -16270 -189879000 司机室244 1310 319640 电气系统150 -3810 -571500 平衡臂拉杆541 -6142 -3322822 回转塔身880 0 0上转台1230 0 0回转机构500 0 0回转支承420 0 0下转台1351 0 0套架3667 0 0引进平台255 2190 493407液压顶升机构230 -1700 -391000塔身15750 0斜撑1720 0底架3150基础70000 0合计120824 -49770422表4-2 基本稳定性自重载荷(2)离心力计算:F=mw2=m(0.7×2×3.14/60)2=(8000+246+279)*0.0055*15500/10000=72.675离心力矩Fr=72.675×(42000+1000)=3125025N.mm(3)起升载荷力矩计算:F.r=(8000+246+279)×15500= 132137500 N.mm(4)偏心e计算:M=(132137500×1.5+3125025×1.0-49770422×1.0)×10=1453108030N.mmF h=0NFg+Fv=[(8000+246+279)+120824]×10=1293490Ne=1123.4mm1.3动态稳定性工作状态:有风载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:起升载荷系数取1.30,离心力系数取1.0,自重载荷取1.0,风载荷系数取1.0(1)风载荷计算:部件风力风压迎风面积总面积充实率挡风风载荷到基础对基础底面系数N/m2mm2mm2ω折减系数N 距离mm力矩N.mm塔身 1.6 250 1476273 4110752 0.3591 0.47 13884 23530 32669052 下转台 1.6 250 657743 1027196 0.6403 0.15 302.56 46500 1406904 支撑 1.2 250 2349500 2349500 1.0 704.85 46855 33025746 回转塔身 1.3 250 1222557 3007303 0.4065 0.39 552.37 48333 2669776司机室 1.2 250 2992000 2992000 897.60 43450 3900072起重臂 1.3 250 181526 806482 0.2251 0.66 6885.9 50050 887737 平衡臂 1.6 250 163720 375760 0.4357 0.34 100.20 49500 495000 平衡重 1.2 250 3604400 3604400 1.0 1081.3 49500 5352534 三机构 1.2 250 828000 828000 1.0 248.4 49500 1229580 电气 1.2 250 720000 720000 1.0 216 49500 1069200 载荷1800 48333 8699940 合计63472266 表 4-3 动态稳定性风载荷(2)偏心e计算:M=(132137500×1.3+3125025×1.0-49770422×1.0)×10+ 63472266×1.0×10=1886056190N.mmFg+Fv=[(8000+246+279)+120824]×10=1293490Ne = 1458mm1.4暴风侵袭稳定性非工作状态,载荷放大系数:自重载荷取1.0,风载荷系数取1.2。
吊机常用稳定性验算
![吊机常用稳定性验算](https://img.taocdn.com/s3/m/b23c4dcf172ded630a1cb625.png)
吊机常用稳定性验算静态稳定性常用稳定性安全系数K 1表示(见图15-15);K 1=223324421122M G ()()() 1.4M ()(R )l G l l G l l G l l Q G l ++++--=≥+-稳倾吊式中 G 1 —— 起重臂重量;G 2 —— 下车重量;G 3 —— 上车重量;G 4 —— 平衡重;(Q +G 吊)—— 起重量加吊具重量;b.动态稳定动态稳定性就是除起重机自重和吊载之外,还要考虑风力、惯性力、离心力和坡度的影响。
风力是考虑不利于稳定性的工作风力,与起重机臂长度有直接关系,例如以10m/s 的风速为例,起重臂长为10m ,产生的倾翻力矩为1800N •m ;臂长为20m ,产生倾翻力矩为8000N •m ;臂长为30m 时,倾翻力矩为20000N •m 。
坡度的影响也是不可忽视的,经计算,当起重机倾斜1º时,起重能力要下降7.4%;倾斜2º时,降低14.3%;倾斜3º时,降低19.8%。
惯性力主要是指物品突然起吊和下放突然刹车时,产生的不利稳定的惯性力。
实际是增加了起吊重力。
离心力是指起重机回转时,起重臂、吊物所产生的离心力。
特别是吊物的离心力,通过钢丝绳直接作用在起重臂端部,增加起重机的倾翻力矩。
图15-16 起重机动态稳定计算图动态稳定性安全系数为: 212112222221202(0.5)(0.5)()sin 900(0.5)b Q G Qv Qn Rh G lc R l Ph P h v h Qh Gh gt gt n h K Q R l α++---+++++-=-⎡⎤⎢⎥⎣⎦ 式中 Q —— 起吊载荷;G —— 起重机自重;G b —— 折算到臂头的起重臂自重;R —— 幅度;P 1 —— 作用在起重机上的工作状态最大风力;P 2 —— 作用在起吊物品上的工作状态最大风力;h 1、h 2 —— 与P 1、P 2对应的高度;h 0 —— 起吊物品至臂端的高度;t 1 —— 起升机构启、制动时间;t 2 —— 变幅机构启、制动时间;v 1 —— 起升速度;v2 ——变幅速度;n ——起重机回转速度;α——起重机支承面倾角;l、c ——尺寸见图15-16。
起重机的稳定性系数计算
![起重机的稳定性系数计算](https://img.taocdn.com/s3/m/b649a7247275a417866fb84ae45c3b3567ecddd9.png)
起重机的稳定性系数计算4起重机的稳定性系数计算4.1移动式起重机的稳定性和安全性流动式流动式起重机最严重的事故是“翻车”事故,其根本原因是丧失稳定,所以起重机的稳定与全关系十分密切。
流动式起重机的稳定性可分为行驶状态稳定性和工作状态稳定。
(1-d)1.影响稳定性的因素轮式起重机作业时的稳定性,完全由机械的自重来维持,所以有一定的限度,往往在起重机的结构件(如吊臂、支腿等)强度还足够的情况下,整机却由于操作失误和作业条件不好等原因,突然丧失稳定而造成整机倾翻事故。
因而轮式起重机的技术条件规定,起重机的稳定系数k不应小于1.15。
在使用轮式起重机时,应注意以下不利因素。
(2-B)(5-h)(1)动臂长度的影响起重机的伸臂越长或幅度越大,对稳定性越不利,特别是液压伸缩臂起重机,当吊臂全伸时,在某一定倾角(使用说明书中有规定)以下,即使不吊载荷,也有倾翻危险;当伸臂较长,并吊有相应的额定载荷时,吊臂会产生一定的挠曲变形,使实际的工作幅度增大,倾翻力矩也随之增大。
(2)离心力的影响轮式起重机吊重回转时会产生离心力,使重物向外抛移。
重物向外抛移(相当于斜拉)时,通过起升钢丝绳使吊臂端部承受水平力的作用,从而增大倾翻力矩。
特别是使用长吊臂时,臂端部的速度和离心力都很大,倾翻的危险性也越大。
所以,起重机司机操纵回转时要特别慎重,回转速度不能过快。
(3)提升方向的影响汽车式起重机的稳定性,随起吊方向不同而不同,不同的起吊方向有不同的额定起重量。
在稳定性较好的方向起吊的额定载荷,当转到稳定性较差的方向上就会超载,因而有倾翻的可能性。
一般情况下,后方的稳定性大于侧方的稳定性,而侧方的稳定性,大于前方的稳定性;即后方稳定性>侧方稳定性>前方的稳定性。
所以,应尽量使吊臂在起重机的后方作业,避免在前方作业。
(4)风的影响工作状态最大风力,一般规定为6级风,对于长大吊臂,风力的作用很大,从表28可看出风力的影响。
汽车式起重机稳定性验算计算书
![汽车式起重机稳定性验算计算书](https://img.taocdn.com/s3/m/be0b6b9a85868762caaedd3383c4bb4cf7ecb7d4.png)
汽车式起重机稳定性验算计算书
汽车式起重机稳定性验算计算书计算依据:
1、《建筑施⼯起重吊装安全技术规范》JGJ276-2012
2、《起重吊装计算及安全技术》主编⼘⼀德
⼀、计算参数
起重机是否安装⽀腿作业是起重机机⾝可转动部分的⾃重标准值
G1(不包括起重臂、吊钩、配重)(kN)
25 G1重⼼⾄旋转中⼼的距离l1(m) 1 起重机底盘部分的⾃重标准值G2(kN) 15 平衡重⾃重标准值G3(kN) 30 G3重⼼⾄回转中⼼的距离l3(m) 3
吊装荷载⾃重标准值Q1(包括构件⾃重和索具⾃重)(kN) 40 吊钩⾃重标准值Q
2(kN)
5
起重臂臂⾃重标准值Q3(kN) 10 旋转中⼼⾄⽀腿倾翻⽀点的距离a1(m) 2.5 旋转中⼼⾄起重臂下铰点的距离a2(m) 1.4 旋转中⼼⾄起重臂重⼼的距离a3(m) 2.9 ⽀腿倾翻⽀点⾄起重臂重⼼的距离
x(m)
0.4 额定起重量时幅度R(m) 7 起重机稳定性安全系数允许值[K] 1.333
⼆、计算⽰意图
⽰意图
三、汽车式起重机稳定性验算
稳定性安全系数:
K=M r/M ov=[G1(l1+a1)+G2a1+G3(l3+a1)]/[(Q1+Q2)(R-a1)+Q3x]=[25×(1+2.5)+15×2.5+30×( 3+2.5)]/[(40+5)(7-
2.5)+10×0.4]=1.404
K=1.404≥[K]=1.333满⾜要求!。
TC5013塔式起重机(固定)底架、基础设计,整机稳定性计算
![TC5013塔式起重机(固定)底架、基础设计,整机稳定性计算](https://img.taocdn.com/s3/m/0f89da866529647d2728528b.png)
目录1、TC5013塔机稳定性计算 (3)1.1抗倾翻稳定性 (3)1.1.1验算工况 (3)1.1.2抗倾翻稳定性校核 (4)1.2基本稳定性 (4)1.3动态稳定性 (6)1.4暴风侵袭稳定性 (7)1.5突然卸载稳定性 (8)1.6安装拆卸稳定性 (8)1.7地面压应力验算: (10)2、TC5013塔式起重机(固定)底架、基础设计 (10)2.1计算依据: (10)2.2参数信息 (11)2.3塔吊荷载取值与基础承台顶面的竖向力与力距 (11)2.4结构设计: (12)2.4.1桩基选型: (12)2.4.2地基基础 (12)2.4.3矩形承台弯距的计算 (13)2.4.4矩形承台弯矩的计算 (13)2.4.5矩形承台截面主筋的计算 (14)2.4.6矩形承台截面抗剪切计算 (14)2.4.7桩承载力验算 (15)2.4.8桩竖向极限承载力验算及桩长计算 (15)1、TC5013塔机稳定性计算1.1抗倾翻稳定性1.1.1验算工况本塔式起重机为固定基础的自升式塔式起重机,其抗倾翻稳定性的计算包括:安装架设、拆卸和使用过程(工作状态、非工作状态)。
列表4-1如下:表4-1固定基础塔式起重机验算工况1.1.2抗倾翻稳定性校核图4.1 抗倾翻稳定性计算简图由于固定基础式的倾覆边沿不明确,GB/T13752-92提出,固定式砼基塔机整机抗倾翻稳定性验算公式:3bF F h F M e g v h ≤+⋅+=式中:e —偏心距。
M —作用于基础上的弯矩。
h —基础深度。
b —基础宽度。
Fv —作用于基础上的垂直载荷。
Fh —作用于基础上的水平载荷。
Fg —混凝土基础的重力。
作用于基础上的弯矩包括自重载荷、起升载荷、离心力、惯性力及风载荷产生的力矩,根据上述工况计算如下:1.2基本稳定性工作状态:无风静载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:自重载荷系数取1.0,离心力系数取1.0,起升载荷系数取1.5,(1) 自重载荷计算名称质量(Kg) 重心至回转中心距离mm力距Kg.mm起重臂第一节480 2250 1080000 起重臂第二节865 10500 9082500 起重臂第三节788 20500 16154000 起重臂第四节713 30500 21746500 起重臂第五节636 40500 25758000 起重臂第六节512 50500 25856000 起重臂第七节465 57500 26737500 起重臂第八节330 62500 20625000 起重臂第九节312 67500 21060000 起重臂第十节83 70740 5871420 起重臂其他176 35630 4532000 变幅机构220 7860 1729200 平衡臂1856 -7523 13963533 起升机构1600 -8280 -1324800 平衡重14700 -16270 -189879000 司机室244 1310 319640 电气系统150 -3810 -571500 平衡臂拉杆541 -6142 -3322822 回转塔身880 0 0上转台1230 0 0回转机构500 0 0回转支承420 0 0下转台1351 0 0套架3667 0 0引进平台255 2190 493407液压顶升机构230 -1700 -391000塔身15750 0斜撑1720 0底架3150基础70000 0合计120824 -49770422表4-2 基本稳定性自重载荷(2)离心力计算:F=mw2=m(0.7×2×3.14/60)2=(8000+246+279)*0.0055*15500/10000=72.675离心力矩Fr=72.675×(42000+1000)=3125025N.mm(3)起升载荷力矩计算:F.r=(8000+246+279)×15500= 132137500 N.mm(4)偏心e计算:M=(132137500×1.5+3125025×1.0-49770422×1.0)×10=1453108030N.mmF h=0NFg+Fv=[(8000+246+279)+120824]×10=1293490Ne=1123.4mm1.3动态稳定性工作状态:有风载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:起升载荷系数取1.30,离心力系数取1.0,自重载荷取1.0,风载荷系数取1.0(1)风载荷计算:部件风力风压迎风面积总面积充实率挡风风载荷到基础对基础底面系数N/m2mm2mm2ω折减系数N 距离mm力矩N.mm塔身 1.6 250 1476273 4110752 0.3591 0.47 13884 23530 32669052 下转台 1.6 250 657743 1027196 0.6403 0.15 302.56 46500 1406904 支撑 1.2 250 2349500 2349500 1.0 704.85 46855 33025746 回转塔身 1.3 250 1222557 3007303 0.4065 0.39 552.37 48333 2669776司机室 1.2 250 2992000 2992000 897.60 43450 3900072起重臂 1.3 250 181526 806482 0.2251 0.66 6885.9 50050 887737 平衡臂 1.6 250 163720 375760 0.4357 0.34 100.20 49500 495000 平衡重 1.2 250 3604400 3604400 1.0 1081.3 49500 5352534 三机构 1.2 250 828000 828000 1.0 248.4 49500 1229580 电气 1.2 250 720000 720000 1.0 216 49500 1069200 载荷1800 48333 8699940 合计63472266 表 4-3 动态稳定性风载荷(2)偏心e计算:M=(132137500×1.3+3125025×1.0-49770422×1.0)×10+ 63472266×1.0×10=1886056190N.mmFg+Fv=[(8000+246+279)+120824]×10=1293490Ne = 1458mm1.4暴风侵袭稳定性非工作状态,载荷放大系数:自重载荷取1.0,风载荷系数取1.2。
20t起重机主梁的稳定性设计计算
![20t起重机主梁的稳定性设计计算](https://img.taocdn.com/s3/m/2ebb1248a8956bec0975e349.png)
《宁夏机械》2006年第2期20t起重机主梁的稳定性设计计算李生银(银川起重机器总厂,宁夏银川750011)摘要起重机主梁是起重机最重要的受力部件,在起重机设计中,对于大跨度或有特殊要求的起重机进行稳定性设计是非常重要的,它是保证起重机安全使用的前提。
本文对一台起重量为20t,跨度L=40.8m的大跨度桥式起重机主梁上盖板出现局部失稳(翘曲)进行了分析并提出了解决方案,同时进行了稳定性设计计算。
关键词起重机主梁稳定性翘曲在起重机设计工作中,对于标准系列起重机其主梁一般只进行强度校核,而对于特殊要求的起重机,比如大跨度、大起重量应对其主梁进行稳定性分析计算。
九十年代我们为某德国外资企业配套生产双梁桥式起重机。
起重机主梁图纸由该企业提供,主参数起重量为20t,跨度L=40.8m。
该起重机属于大跨度形式,其主梁截面形式见(图1),但在生产试验过程中,上盖板局部出现了翘曲现象,针对该问题,我们综合分析后认为,可以采用上盖板加厚或在上盖板加纵筋的方式,解决上盖板局部翘曲问题,但上盖板加纵筋会增加主梁的自重,增加焊接工作量,耗费钢材,因此采用增加上盖板厚度的方案,初步考虑增加2mm同时减少下盖板厚度2mm,使主梁自重不变,节省了钢材,简化了工艺,改进后的截面形式如(图2)所示,针对该截面依据德国钢板翘曲安全设计规范DAST012进行了稳定性计算。
1主梁断面的参数计算根据主梁截面,计算形心坐标e、惯性矩I、抗弯截面系数W,同时建立如(图2)所示的Z,Y坐标系,其中:纵筋使用热扎普通槽钢14a,面积A=18.51cm2,Iy=564cm4,Iz=53.2cm4,c=4.09cm。
主梁截面特性值计作者简介:李生银(1963-),男,工程师,从事起重机设计与制造。
图1设计与计算-25-《宁夏机械》2006年第2期算见(表1)1.1主梁截面形心坐标eez=SyA=80179655=122.4cmey=SzA=27057655=41.3cm建立通过主梁断面形心的坐标系z0,y01.2主梁截面惯性矩I(1)相对于Y0轴的惯性矩Iy=90×1.2312+108×104!"2+1×225312+225×9.1!"2+0.8×225312+180×9.1!"2+85×0.8312+68×122!"2+4×564+37.02×36.1+37.02×56.42=4090647cm4(2)相对于Z0轴的惯性矩Iz=1.20×90312+108×0.5!"2+225×1312+225×34.5!"2+225×0.8312+180×40.9!"2+0.8×85312+68×3.2!"2+4×53.2+37.02×45.42+37.02×39.62=761917cm41.3主梁抗弯截面系数Wy1=4090647104.6=39108cm3Wy2=4090647122.4=33420cm3Wz1=76191735=21769cm3WZ2=76191740.3=18448cm32主梁的应力σ计算小车自重77.21kN,小车轮距A=260cm跨距L=4080cm起升载荷204kN,起升速度V=8m/s主梁的均布载荷0.0575kN/cm,附加在主梁上的载荷0.0222kN/cm主梁总均布载荷q=0.0575+0.0222=0.0797kN/cm每根主梁上小车自重产生的轮压:Pk=77.212=38.6kN每根主梁上起升载荷产生的轮压:PL=2042=102kN总轮压:P=K1PK+K2P1=1.1×38.6+1.235×102=168.3kN式中:K1———自重载荷系数取1.1;K2———起升载荷系数取1.235。
履带式起重机稳定性验算
![履带式起重机稳定性验算](https://img.taocdn.com/s3/m/a95d403c680203d8cf2f2475.png)
履带式起重机稳定性验算Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT图5-13履带式起重机稳定性验算①当考虑吊装荷载及附加荷载时稳定安全系数②当考虑吊装荷载,不考虑附加荷载时稳定安全系数即:式中G0-平衡重的重量;G1-起重机机身可转动部分重量;G2-起重机机身不转动部分重量;G3-起重臂重量;Q-起重荷载(包括构件及索具重量);q-起重滑轮组重量;l1-G1重心至A点距离(地面倾斜影响忽略不计,下同);l2-G2重心至A点距离;l3-G3重心至A点距离;l0-G0重心至A点距离;h1-G1重心至地面距离;h2-G2重心至地面距离;h3-G3重心至地面距离;h0-G0重心至地面距离;cos-地面倾斜角(≤3°);R-起重半径;MF-风载引起的倾覆力矩。
考虑6级以上风时,不能进行高空安装作业,而6级以下风对起重机影响较小。
因此,当起重机的臂长小于25m时,不计风载力矩的影响。
MG-重物下降时突然刹车惯性力引起的倾覆力矩;-吊钩下降速度(m/s),取吊钩起重速度的倍;g-重力加速度(9.8m/s2);t-制动时间(由-0),取1s;ML-起重机回转时离心力引起的倾覆力矩;n-起重机回转速度(r/min);h-所吊构件于最低位置时,其重心至起重杆顶端距离;H-起重杆顶端至地面距离。
③起重臂接长验算当起重机的起重高度或起重半径不能满足需要时,则可采用接长臂杆的方法予以解决。
此时起重量求得(图5-14):整理得:当计算Q′值大于所吊构件重量时,即满足稳定安全条件;反之,则应采取相应措施,如增加平衡重,或在起重臂顶端拉设两根临时性风缆,以加强起重机的稳定。
必要时,尚应考虑对起重机其他部件的验算和加固。
起重机械计算的基本原则及安全系数
![起重机械计算的基本原则及安全系数](https://img.taocdn.com/s3/m/5c0e4d8177232f60dccca13d.png)
起重机械计算的基本原则及安全系数(图文)1.计算的基本原则为保证起重机安全、正常地工作,其金属结构和机构的零部件应满足强度、稳定性和刚度的要求。
强度和稳定性要求是指结构构件在载荷作用下产生的内力不应超过许用的承载能力(指强度、疲劳强度和稳定性方面的许用承载能力);刚度要求是指结构在载荷作用下产生的变形量不应超过许用的变形值,以及结构的自振周期不应超过许用的振动周期。
(最专业的安全生产管理-风险世界网) 起重机的零部件和金属结构应进行以下计算:①疲劳、磨损或发热的计算;②强度计算;③强度验算。
与这三类计算相适应,起重机的计算载荷有下列三种组合:(1)寿命(耐久性)计算载荷--第Ⅰ类载荷。
该载荷是用来计算零部件或金属结构的耐久性、磨损或发热的。
按正常工作时的等效载荷进行计算,不仅计算载荷大小,还要考虑它们的作用时间。
对于受变载荷作用的机构零件和金属结构,当应力变化循环次数足够多时,应进行疲劳计算;当应力变化循环次数较少或很少时,就不必进行疲劳计算。
工作级别是A6,A7,A8级起重机的金属结构构件和机构零件应验算疲劳。
(2)强度计算载荷--第Ⅱ类载荷。
该类载荷是用来计算零部件或金属结构的强度、受压和平面弯曲构件的稳定性、结构件的刚度、起重机的整体稳定性与轮压的,按工作状态最大载荷进行强度计算。
确定强度计算载荷时,应选取可能出现的最不利的载荷组合。
(3)验算载荷--第Ⅲ类载荷。
该类载荷是用来验算起重机的某些装置(如夹轨器)、变幅机构、支承旋转装置的某些零件和金属结构的强度和构件的稳定性,以及起重机的整体稳定性的,按非工作状态最大载荷及特殊载荷(安装载荷、运输载荷及冲击载荷等)进行强度验算。
在起重机事故处理时,由金属结构和机构的零部件破坏导致的事故,应进行必要的验算。
验算时,按实际工况的实际载荷进行。
2.计算方法目前起重机的计算采用许用应力法,即在强度计算中以材料的屈服极限,在稳定性计算中以稳定临界应力,在疲劳强度计算中以疲劳强度极限除以一定的安全系数,分另得到强度、稳定性和疲劳强度的许用应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 起重机的稳定性系数计算
4.1 流动式起重机的稳定性与安全
流动式流动式起重机最严重的事故是“翻车”事故,其根本原因是丧失稳定,所以起重机的稳定与全关系十分密切。
流动式起重机的稳定性可分为行驶状态稳定性和工作状态稳定。
(1-D)
1.影响稳定性的因素
轮式起重机作业时的稳定性,完全由机械的自重来维持,所以有一定的限度,往往在起重机的结构件(如吊臂、支腿等)强度还足够的情况下,整机却由于操作失误和作业条件不好等原因,突然丧失稳定而造成整机倾翻事故。
因而轮式起重机的技术条件规定,起重机的稳定系数K不应小于1.15。
轮式起重机在使用中,应主要注意以下诸因素对起重机稳定性的不利影响。
(2-B)(5-H)
(1)吊臂长度的影响
起重机的伸臂越长或幅度越大,对稳定性越不利,特别是液压伸缩臂起重机,当吊臂全伸时,在某一定倾角(使用说明书中有规定)以下,即使不吊载荷,也有倾翻危险;当伸臂较长,并吊有相应的额定载荷时,吊臂会产生一定的挠曲变形,使实际的工作幅度增大,倾翻力矩也随之增大。
(2)离心力的影响
轮式起重机吊重回转时会产生离心力,使重物向外抛移。
重物向外抛移(相当于斜拉)时,通过起升钢丝绳使吊臂端部承受水平力的作用,从而增大倾翻力矩。
特别是使用长吊臂时,臂端部的速度和离心力都很大,倾翻的危险性也越大。
所以,起重机司机操纵回转时要特别慎重,回转速度不能过快。
(3)起吊方向的影响
汽车式起重机的稳定性,随起吊方向不同而不同,不同的起吊方向有不同的额定起重量。
在稳定性较好的方向起吊的额定载荷,当转到稳定性较差的方向上就会超载,因而有倾翻的可能性。
一般情况下,后方的稳定性大于侧方的稳定性,而侧方的稳定性,大于前方的稳定性;即后方稳定性>侧方稳定性>前方的稳定性。
所以,应尽量使吊臂在起重机的后方作业,避免在前方作业。
(4)风力的影响
工作状态最大风力,一般规定为6级风,对于长大吊臂,风力的作用很大,从表28 可看出风力的影响。
表28 臂长、风速、风载力矩关系表
从表中可知,随着臂长和风速的增加风载力矩增加的很快。
(3-C)
从正常作业中,最大风力为6级,此风力并不很大,翻车事故主要发生在回转时,没有注意转向顺风(风从起重臂后方吹来)。
(5)坡度的影响
当有坡度时,相当于幅度增大,从而使倾覆力矩增大,“翻车”的危险性也随之增大。
(6)惯性力的影响
起升机构在突然提升时,会产生惯性力P,P=m(g+a),其中a为加速度。
在物品下降突然制动时,也会产生不利于稳定的惯性力。
在操纵时,要避免突然起动。
物品下降时,避免突然刹车。
以防止由于惯性力造成起重机倾翻。
(4-D)
(7)其它因素
还有许多因素。
会影响起重机的稳定性,如工作过程中支腿回缩或者地面下沉都会造成翻车事故。
吊重时,变幅或伸缩臂操作程序错误,也会造成翻车事故。
如在某一工况下,起吊的物品是该工况的允许最大载荷,则不允许伸臂放低(增大幅度)。
这样会增大倾翻力矩,使本来处于临界状态的起重机翻到。
超载和斜吊是使起重机发生倾倒的原因。
由于机构本身出现故障造成翻车的事故也时有发生。
2.行驶状态的稳定性
行驶状态又可分为纵向行驶稳定和横向行驶稳定(6-D)
(1)纵向行驶稳定
起重机在设计时,规定了起重机所允许爬坡的最大坡角。
当坡角超过规定值时,前轮轮压可能为零、起重机就会无法控制转向,这就叫起重机失去行驶稳定。
当起重机在坡道上下滑力接近驱动轮上的附着力时,车轮则不能上坡而产生打滑现象,这也是一种失去稳定的现象。
(2)横向行驶稳定
起重机在转弯时,车体会产生离心力的作用、速度愈大,离心力愈大。
离心力P离=
2 GV gR
也就是离心力与车体行驶速度平方成比例。
当车速比较高、转弯半径又小、加之起重机重心比较高的情况下,很容易造成向外翻车,或者侧向滑动。
因此在行驶中要控制速度不要过快、防止翻车。
(3)工作状态的稳定性
a.静态稳定
静态稳定就是起重机在自身重力和起吊载荷的作用下的稳定性。
(7-A)静态稳定性就是在没有考虑附加载荷的情况下分析工作状态稳定性。
但是在实际的作业中,还有很多附加载荷存在,如风力、坡度、惯性力、回转离心力等。
若是把这些附加载荷考虑进去,则稳定安全系数应小些。
图15-15 稳定性计算图
静态稳定性常用稳定性安全系数K 1表示(见图15-15); K 1=
223324421122M G ()()()
1.4M ()(R )
l G l l G l l G l l Q G l ++++--=
≥+-稳倾
吊
式中: G 1 —— 起重臂重量;
G 2 —— 下车重量; G 3 —— 上车重量; G 4 —— 平衡重;
(Q +G 吊)—— 起重量加吊具重量; b.动态稳定
动态稳定性就是除起重机自重和吊载之外,还要考虑风力、惯性力、离心力和坡度的影响。
(8-B)
风力是考虑不利于稳定性的工作风力,与起重机臂长度有直接关系,例如以10m/s 的风速为例,起重臂长为10m ,产生的倾翻力矩为1800N •m ;臂长为20m ,产生倾翻力矩为8000N •m ;臂长为30m 时,倾翻力矩为20000N •m 。
坡度的影响也是不可忽视的,经计算,当起重机倾斜1º时,起重能力要下降7.4%;倾斜2º时,降低14.3%;倾斜3º时,降低19.8%。
惯性力主要是指物品突然起吊和下放突然刹车时,产生的不利稳定的惯性力。
实际是增加了起吊重力。
离心力是指起重机回转时,起重臂、吊物所产生的离心力。
特别是吊物的离心力,通过钢丝绳直接作用在起重臂端部,增加起重机的倾翻力矩。
图15-16 起重机动态稳定计算图
动态稳定性安全系数为:
2
1
2112222221202(0.5)(0.5)()sin 900(0.5)
b Q G Qv Qn Rh G l
c R l Ph P h v h Qh Gh gt gt n h K Q R l α++---+++++-=
-⎡⎤
⎢⎥⎣⎦
式中 Q —— 起吊载荷; G —— 起重机自重;
G b —— 折算到臂头的起重臂自重; R —— 幅度;
P 1 —— 作用在起重机上的工作状态最大风力; P 2 —— 作用在起吊物品上的工作状态最大风力; h 1、h 2 —— 与P 1、P 2对应的高度; h 0 —— 起吊物品至臂端的高度; t 1 —— 起升机构启、制动时间; t 2 —— 变幅机构启、制动时间; v 1 —— 起升速度; v 2 —— 变幅速度;
n —— 起重机回转速度; α—— 起重机支承面倾角; l 、c ——尺寸见图15-16。
c. 自身稳定性
如图15-17所示自身稳定性是考虑在自重、倾斜坡度、非工作状态、风载的影响下,起重机的稳定性。
(9-B)
起重机自身稳定性安全系数为:
()12
cos sin 1.150.1n G a l Gh K Wh αα
--=
≥
式中 G ——起重机自重,kg;
W ——作用在起重机上的风力,N;
h1 、h2——起重机重心及风力作用点至地面距离,m;l ——起重机重心至回转中心的距离,m;
a ——车轮支承点至回转中心的距离,m。
图15-17 自身稳定性计算图。