协整检验及误差修正模型实验指导
协整方程(CE)与误差修正模型(VECM)
人民币实际有效汇率对我国经济影响的实证研究巴曙松,王群2009-09-29摘要:本文试从理论上给出实际汇率变动对产业结构调整的三种传导途径,并从有效汇率的角度出发,通过协整模型、Granger因果检验和脉冲响应方法对实际有效汇率对我国产业、就业结构的影响进行实证分析。
结果表明,人民币实际有效汇率的升值提升了我国第三产业的比重并增加了该产业就业人数,在一定程度上促进了农村劳动力的转移,同时相应地对第二产业的就业造成了负面影响。
总体上来看,人民币有效汇率的上升将有助于长期改善我国的产业结构,但短期会造成一定的就业压力。
关键词:实际汇率,产业结构,就业结构,传导途径2008年以来,伴随着次级抵押贷款危机下全球金融市场的动荡,我国经济不仅面临着恶劣的国际环境、国内经济增长的周期性回落,同时还面临着以产业重组、产业升级和放松管制为重点的产业结构调整。
随着近年来我国对外贸易依存度的不断上升,产业结构调整的动力则不可忽略地受到对外贸易部门发展的影响。
实际汇率作为一种非贸易品和贸易品相对价格,则是影响外贸企业的重要因素之一,从而影响了不同产业之间的资源配置,进而对产业结构的调整产生影响。
因此,在开放型经济条件下,实际汇率成为考察国内产业结构和就业结构调整的重要影响因素之一。
而对该影响作用的分析和研究,不仅有助于加深对产业结构调整的宏观把握,而且将对汇率政策的制定起到一定的指导作用。
另外,在2005年7月21日我国实行了汇率制度改革以后,如何通过人民币有效汇率这一衡量人民币整体水平的汇率指标来把握汇率政策,也引起了学者的普遍关注和研究,本文正是依据人民币实际有效汇率的数据,分析人民币的升值对我国产业结构和就业结构带来的影响。
一、研究背景不论是关于汇率对一国就业影响的研究,还是其对产业结构影响的研究,都是近几年才被国内外学者广泛关注的。
其中对就业影响的研究较多,但得到的结果却不尽相同:Frenkel(2004)运用线性回归模型研究了实际汇率对阿根廷、巴西、智利和墨西哥4国的影响,得出实际汇率的变动对就业有显著影响,且实际汇率变动对失业率变动影响有滞后效应等结论。
协整与误差修正模型的研究
协整与误差修正模型的研究第一部分协整理论概述 (2)第二部分误差修正模型介绍 (4)第三部分协整与误差修正关系 (7)第四部分模型构建与检验方法 (9)第五部分实证分析应用案例 (13)第六部分结果解释与经济含义 (16)第七部分模型局限性与改进方向 (18)第八部分研究展望与未来趋势 (22)第一部分协整理论概述协整理论概述在经济学和金融学中,我们常常遇到时间序列数据之间的长期均衡关系。
然而,在实际经济活动中,这种均衡关系并不总是能够得到严格的保持,而是存在着一定程度的波动和偏差。
为了解决这一问题,经济学家们提出了协整理论。
协整理论是指两个或多个非平稳的时间序列之间存在一种长期稳定的关系。
换言之,即使各时间序列本身是随机游走的过程,它们之间也可能存在一个稳定的线性组合,使得这个组合呈现出平稳性质。
协整理论的发展为研究经济变量之间的长期动态关系提供了一个强有力的工具。
协整理论的核心思想是由 Engle 和Granger 于1987 年提出的。
他们认为,如果两个非平稳的时间序列之间存在协整关系,则这两个时间序列可以通过一个线性组合达到长期均衡状态,且这个线性组合具有零均值、有限方差和恒定自相关等特性。
在这个意义上,我们可以将协整关系看作是一种长期均衡关系的表现形式。
为了检验两个时间序列之间是否存在协整关系,Engle 和 Granger 提出了一种两步法:首先检验每个时间序列是否为非平稳过程;然后,如果这两个时间序列都是非平稳过程,再通过回归分析来检验它们之间是否存在协整关系。
这种方法被称为 Engle-Granger 两步协整检验。
除了 Engle-Granger 两步协整检验之外,还有许多其他的方法可以用来检验协整关系,例如 Johansen 检验和 Pedroni 检验等。
这些方法都可以有效地帮助我们确定不同时间序列之间的协整关系。
协整理论不仅用于检验不同时间序列之间的长期均衡关系,还可以用于构建误差修正模型。
协整检验及误差修正模型实验指导
3、误差纠正模型ECM的建立 (error correction mechanism)
• 两种方法建立的误差修正模型是等价的, 预测时,第二种方法更方便。方程检验结 果均显示方程显著线相关,参数检验结果 显示人均纯收入当期波动对生活费支出的 当期波动有显著性影响,上期误差对当期 波动的影响不显著;每增加1元的可支配收 入便会增加0.9551元的人均生活费支出, 上期误差对当期人均生活费支出的当期波 动调整幅度很小,单位调整比例为-0.1715。
2、协整检验:
• 首先用变量对进行普通最小二乘回归,在 命令栏里输入ls lnyt c lnxt,得到回归方程 的估计结果: • 在此基础上我们得到回归残差,现在的任 务是检验残差是否平稳,对残差进行ADF 检验见图8-8,在0.05显著性水平下拒绝存 在单位根的原假设,说明残差平稳,又因 为和都是1阶单整序列,所以二者具有协整 关系。
协整检验及误差修正模型实验
• (1)对两个对数序列分别进行ADF平稳性 检验; • (2)进行二者之间的协整关系检验; • (3)若存在协整关系,建立误差纠正模型 ECM。
Байду номын сангаас
1、对两个数据序列分别进行平稳性 检验
• (1)做时序图看二者的平稳性 • (2)用ADF检验分别对序列和进行单整检 验:两个一阶差分序列在下都拒绝存在单位 根的原假设的结论,说明和序列在下平稳, 即,,也就是,,这样我们就可以对二者 进行协整关系的检验。
协整检验和误差修正模型
财政支出与财政收入的协整关系研究一 实验内容根据我国1990-2007年间财政支出和财政收入的月度数据,研究财政支出和财政支出之间是否存在协整关系,进而做出二者的误差修正模型。
二 模型设定为了定量分析财政支出和财政收入的关系,弄清二者是否存在长期均衡关系,建立了财政支出和财政收入的回归模型。
μββ++=)_ln()_ln(21in f ex f其中ex f _表示财政支出;in f _表示财政收入。
数据如下:数据来源:统计年鉴三、实证分析 1、数据处理由数据结构可以看出,数据存在季节波动。
首先利用X-12季节调整方法对这两个指标进行季节调整,消除季节因素,然后去对数。
2、单位根检验经济时间序列数据往往出现非平稳的情况,如果直接对数据建立回归模型,可能会出现伪回归的现象,因此在做回归之前,运用ADF 方法,对数据进行单位根检验。
对ln(ex f _)、ln(in f _)及其一阶差分进行单位根检验,具体检验结果如下所示:ln(ex f _)原值单位根检验Null Hypothesis: LNF_EX has a unit rootExogenous: ConstantLag Length: 5 (Automatic based on SIC, MAXLAG=14)t-StatisticProb.*Augmented Dickey-Fuller test statistic 0.519686 0.9871 Test critical values: 1% level -3.4614785% level -2.87512810% level -2.574090*MacKinnon (1996) one-sided p-values.f_)一阶差分单位根检验ln(exNull Hypothesis: D(LNF_EX) has a unit rootExogenous: ConstantLag Length: 4 (Automatic based on SIC, MAXLAG=14)t-Statistic Prob.* Augmented Dickey-Fuller test statistic -10.83446 0.0000 Test critical values: 1% level -3.4614785% level -2.87512810% level -2.574090*MacKinnon (1996) one-sided p-values.f_)原值单位根检验ln(inNull Hypothesis: LNF_IN has a unit rootExogenous: ConstantLag Length: 11 (Automatic based on SIC, MAXLAG=14)t-Statistic Prob.* Augmented Dickey-Fuller test statistic 0.763850 0.9932 Test critical values: 1% level -3.4624125% level -2.87553810% level -2.574309*MacKinnon (1996) one-sided p-values.f_)一阶差分单位根检验ln(inNull Hypothesis: D(LNF_IN) has a unit rootExogenous: ConstantLag Length: 10 (Automatic based on SIC, MAXLAG=14)t-Statistic Prob.*Augmented Dickey-Fuller test statistic -8.161494 0.0000Test critical values:1% level -3.462412 5% level -2.87553810% level-2.574309*MacKinnon (1996) one-sided p-values.汇总检验结果如下表所示:财政收入和财政支出的对数的原值和一阶差分的单位根检验结果指标 ADF 值P 值ln(ex f _) 0.519686 0.9871 ln(ex f _)的一阶差分-10.83446 0.0000 ln(in f _) 0.763850 0.9932 ln(in f _)的一阶差分 -8.1614940.0000从上表中的ADF 值和P 值可以看出:当显著性水平为0.05时,对ln(ex f _)和ln(in f _)的原值进行检验时,检验结果都表明不能拒绝“存在单位根”的原假设;而当对ln(ex f _)和ln(in f _)的一阶差分进行检验时,检验结果都表明拒绝“存在单位根”的原假设。
协整分析与误差修正模型
协整分析与误差修正模型1.协整分析协整分析用于找到两个或多个非平稳时间序列之间的长期关系。
当两个变量之间存在协整关系时,它们的线性组合将是平稳的。
协整关系可以解释为变量之间长期的平衡关系,即存在一种平衡机制使得变量保持在一个相对稳定的范围内。
协整分析的步骤如下:1)对非平稳时间序列进行单位根检验,例如ADF检验。
2)如果两个或多个时间序列都是非平稳的,那么可以进行线性组合,得到一个平稳的时间序列,通过单位根检验确定这个线性组合是否是平稳的。
3)如果线性组合是平稳的,那么就可以认为存在协整关系。
协整分析的优点是可以探索多个非平稳时间序列之间的关系,并且提供了具体的数值关系,能够描述长期平衡关系。
但是,协整分析不能提供因果关系,只能提供关联关系。
2.误差修正模型(ECM)误差修正模型是一种用于描述非平稳变量之间长期关系的模型。
它是在协整分析的基础上发展而来的。
误差修正模型的基本思想是,如果两个变量之间存在协整关系,那么它们之间的误差会随着时间的推移逐渐修正,回归到长期平衡关系。
因此,误差修正模型可以用来分析变量之间的动态行为。
基本的误差修正模型可以表示为:△Y_t=α+βX_t-1+γE_t-1+ε_t其中,△表示时间差分,Y_t和X_t分别表示被解释变量和解释变量,E_t表示长期误差修正项,ε_t表示短期误差项。
α、β和γ分别表示模型的截距和参数。
误差修正模型的步骤如下:1)进行协整分析,确定变量之间的协整关系。
2)构建误差修正模型,通过估计模型参数来描述长期关系。
3)进行模型检验,包括参数显著性检验、拟合优度检验等。
4)根据模型结果进行解释和预测。
误差修正模型的优点是能够同时分析长期和短期关系,提供了关于变量之间回归到长期平衡的速度信息。
同时,误差修正模型还可以用于预测和政策分析等方面。
但是,误差修正模型的局限性在于假设模型中的所有变量都是线性关系,不能很好地处理非线性关系。
综上所述,协整分析和误差修正模型是非平稳时间序列分析中常用的方法,它们能够揭示非平稳变量之间的长期关系,并对其动态行为进行建模和分析。
实验八:协整关系检验与误差修正模型(ECM)new
实验八:协整关系检验与误差修正模型(ECM)new实验八:协整关系检验与误差修正模型(ECM)一、实验目的通过上机实验,使学生加深对时间序列之间协整关系的理解,能够运用Eviews 软件检验时间序列数据之间的协整关系并以此估计误差修正模型(ECM)。
二、预备知识(1)用EViews估计线性回归模型的基本操作;(2)时间序列数据的协整关系及其检验方法;(3)误差修正模型的结构及估计方法。
三、实验内容(1)用EViews检验两个时间序列数据的协整关系;(2)用EViews估计误差修正模型;四、实验步骤(一)、建立工作文件sy8.wf1及导入数据打开sy8.xls文件,运用前面学过的方法,在EViews新建一个工作文件sy8.wf1,把sy8.xls的数据导入到EViews,并根据得到人均消费(consp)和人均GDP(gdpp)两个序列,分别计算对应的自然对数,即lnc=log(consp)、lngdp=log(gdpp)。
(二)、分别检验序列lnc和lngdp的单整阶数。
运用图示法观察序列的时间路径图,如图8-1所示。
可见,lnc和lngdp都随时间不断上升,表明两者都是非平稳的。
(再运用自相关函数法,判断lnc 的平稳性。
打开lnc 序列的窗口,点击view\Correlogram ,设定滞后阶数为12,可得样本自相关系数图,操作和结果分别如图8-2和图8-3所示。
可见,lnc 是非平稳的。
再分析lnc 的一阶差分是否平稳。
在自相关函数图中,设定显示序列的一阶差分(1st differenc )后,再观察其样本自相关函数图,设定和结果如图8-4和图8-5所示。
可见,lnc 取一阶差分后就达到平稳,因此,lnc 是一阶单整序列,即I(1)序列。
如果采用单位根检验,结果相同。
同理,也可检验得到lngdp 序列是I(1)序列。
(三)运用Engle-Granger 方法(即EG 检验)检验consp 与gdpp 的协整关系。
第七讲协整分析与误差修正模型资料
假设Yt=0+1Xt+t式中的X与Y是I(1)序列, 如果该式所表述的它们间的长期均衡关系成立的 话,则意味着由非均衡误差
t Yt 0 1 X t (*)
一、格兰杰因果关系检验
• 自回归分布滞后模型旨在揭示:某变量的变化 受其自身及其他变量过去行为的影响。
• 然而,许多经济变量有着相互的影响关系
GDP
消费
问题:当两个变量在时间上有先导——滞后关系 时,能否从统计上考察这种关系是单向的还是双 向的?
即:主要是一个变量过去的行为在影响另一个变 量的当前行为呢?还是双方的过去行为在相互影 响着对方的当前行为?
• 显然,I(0)代表一平稳时间序列。
• 现实经济生活中:
1)只有少数经济指标的时间序列表现为平稳的,如 利率等;
2)大多数指标的时间序列是非平稳的,如一些价格 指数常常是2阶单整的,以不变价格表示的消费 额、收入等常表现为1阶单整。
例 中国支出法GDP的单整性。
经过试算,发现中国支出法GDP是1阶单整的,适 当的检验模型为:
进行检验时,拒绝零假设H0:=0,意味着误 差项et是平稳序列,从而说明X与Y间是协整的。
• 例 检验中国居民人均消费水平CPC与人均国
内生产总值GDPPC的协整关系。
在前文已知CPC与GDPPC都是I(2)序列, 而它们的回归式:
CPCt 49.764106 0.45831 GDPPC t R2=0.9981
2GDPt 1174 .08 261 .25t 0.495 GDPt1 0.966 2GDPt1
协整分析与误差修正模型演示文稿
协整分析与误差修正模型演示文稿尊敬的老师、亲爱的同学们:大家好!我今天的演讲题目是“协整分析与误差修正模型”。
随着经济的发展和变化,我们经常会遇到不平衡的现象,例如两个变量之间的长期均衡关系。
这时,我们就需要使用协整分析来研究变量之间的平衡关系。
首先,让我们来了解一下什么是协整分析。
协整分析是在时间序列数据分析中常用的方法,用于寻找可能存在的长期均衡关系。
简单来说,协整分析可以帮助我们确定两个或多个非平稳序列之间的平衡关系。
接下来,我将向大家介绍协整分析的具体方法。
首先,我们需要收集两个或多个非平稳序列的数据。
然后,我们通过计算这些序列的差分来得到它们的差分序列。
接着,我们需要进行单位根检验来确定这些差分序列是否是平稳的。
如果差分序列是平稳的,那么我们可以进行协整检验来确定它们是否存在长期均衡关系。
最后,如果协整检验的结果是显著的,说明这些序列之间存在协整关系。
在协整检验的基础上,我们可以建立误差修正模型(Error Correction Model,ECM)来进行进一步的研究。
误差修正模型是一种常用的时间序列模型,用于研究不平衡的长期均衡关系。
它可以帮助我们分析短期冲击对长期均衡的调整速度和程度。
通过误差修正模型,我们可以对变量之间的平衡关系进行更深入的研究。
例如,我们可以通过模型的残差项来检验平衡关系是否稳定,或者通过模型的参数来分析短期调整的速度和程度。
协整分析和误差修正模型在经济学、金融学等领域中具有广泛的应用。
它们可以帮助我们理解经济变量之间的关系,预测未来的趋势,以及制定有效的政策和决策。
综上所述,协整分析与误差修正模型是研究经济变量之间平衡关系的重要工具。
通过这些方法,我们可以更好地理解和预测经济变量的变化,促进经济的稳定和可持续发展。
谢谢大家!。
时间序列的协整检验与误差修正模型讲义
时间序列的协整检验与误差修正模型讲义时间序列的协整检验与误差修正模型是在经济学和金融学中广泛使用的方法,用于分析两个或多个变量之间的长期稳定关系。
本讲义将介绍协整检验的基本概念和步骤,并讨论误差修正模型的理论背景和实际应用。
一、协整检验1. 概念与原理协整是指两个或多个变量之间存在长期稳定的关系,即它们的线性组合是平稳的。
协整关系可以用来解释一个变量对另一个变量的影响,并提供长期均衡关系的信息。
协整检验的基本原理是利用单位根检验方法,测试变量是否存在单位根(非平稳性)。
如果变量存在单位根,则它们是非平稳的;如果变量不存在单位根,则它们是平稳的。
如果变量之间存在协整关系,它们的线性组合将是平稳的。
2. 协整检验的步骤协整检验的一般步骤如下:- 收集数据并绘制时间序列图,观察变量之间的趋势和关系;- 进行单位根检验,常用的方法包括ADF检验、Phillips-Perron检验等;- 如果变量存在单位根,则进行差分,直到变量变为平稳的;- 应用最小二乘法等方法,估计协整关系方程;- 进行残差平稳性检验,确保协整关系的合理性;- 如果协整关系存在,可以进行模型的进一步分析与应用。
二、误差修正模型(Error Correction Model, ECM)1. 概念与原理误差修正模型是一种动态模型,用于解释协整关系的调整速度和误差纠正机制。
在误差修正模型中,除了协整关系的线性组合外,还引入了误差修正项,用于捕捉变量之间的短期非平衡关系。
误差修正项反映了系统离开长期均衡后的调整速度,通过估计误差修正项的系数,可以判断系统是否有趋向于均衡的能力。
当误差修正项的系数为负数且显著时,表示系统具有自我修复的能力;当系数为零时,表示系统处于长期均衡状态;当系数为正数时,表示系统趋向于进一步偏离均衡。
2. ECM模型的应用误差修正模型可以用于解释和预测时间序列数据的长期和短期动态变化。
它在经济学和金融学中有广泛的应用,如货币供给与通货膨胀、利率与消费支出、汇率与经济增长等领域。
时间序列的协整检验与误差修正模型
时间序列的协整检验与误差修正模型时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。
协整检验是在时间序列数据中,判断变量之间是否存在长期平衡关系的一种方法。
误差修正模型是在协整关系已经验证的基础上,建立起变量之间的因果关系,对短期的偏离进行修正的模型。
协整检验的原理是基于单位根检验的思想,判断时间序列是否为平稳序列。
平稳序列是指序列的均值和方差不随时间发生变化。
如果两个变量都是非平稳序列,但它们的线性组合是平稳序列,那么可以认为这两个变量是协整的。
常用的协整检验方法有Engle-Granger方法和Johansen方法。
Engle-Granger方法是一种直观简单的协整检验方法。
它的步骤如下:首先,分别对两个变量进行单位根检验,确认它们是否为非平稳序列。
然后,对两个变量进行线性回归,得到残差序列。
接下来,对残差序列进行单位根检验,确认它是否为平稳序列。
最后,如果残差序列是平稳序列,则可以判断两个变量之间存在协整关系。
协整检验完成后,接下来可以建立误差修正模型。
误差修正模型是基于协整关系的基础上建立起来的,以短期的偏离修正为核心。
它的核心假设是,在长期平衡关系的约束下,两个变量之间的短期偏离可以通过一个修正项来消除。
误差修正模型的基本形式是多元线性回归模型,其中包含自变量、因变量以及一个误差修正项。
误差修正模型的估计和推断可以使用最小二乘法或最大似然法等统计方法进行。
通过对误差修正模型的估计和推断,可以对变量之间的因果关系进行分析。
同时,误差修正模型还可以用于预测和决策分析。
综上所述,时间序列的协整检验与误差修正模型是分析变量之间长期关系的重要工具。
协整检验可以判断变量是否具有长期平衡关系,而误差修正模型则可以分析变量之间的短期调整过程。
这些方法在经济学、金融学、管理学等领域都有广泛的应用。
时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。
时间序列分析:方法与应用(第二版)两序列的协整和误差修正模型
Yt
0 1Yt 1 ...... kYt k t
H 01 : 1 = … = k = 0
9
2. 第二个条件的检验 原假设:Y不是引起X变化的原因
无限制条件模型(UR)
Xt
0 1 X t 1 ...... k X t k
1Yt 1 ...... kY t k t
有限制条件模型(R)
Xt
0 1 X t 1 ...... k X t k t
x t+ t
+
、 的一致估计量 ˆ 、ˆ ,
构造一个线性组合,亦即计算残差
ˆ y x
t
t
t
第二步:残差序列单位根检验
残差序列 t 进行单位根检验
若
t ~ I(0)
表明两个序列是协整的,则(1,-b)为协整向量。 若残差序列存在单位根,则两个序列不是协整的。
例4.4
三、误差修正模型(ECM)
基于协整关系建立的误差修正模型(Error Correction
x 、 t 和、 yt 虽然是单位根过程,但它们存在一个线性组合
是平稳的。这是因为它们具有公共的I(1)因子 wt 。
16
(二)协整的含义及检验
1.概念
协整过程(co-integrated process)也有译为同积过程,
是一种特殊的向量单位根过程。
设{yt ,t = 1,2,......}为一n 维的向量单位根过程,它
b
xt
~I(1)。
13
2)两个零阶单整序列的线性组合
若两个序列是平稳序列,如 xt ~ I(0), yt~ I(0),
则其线性组合也是平稳的,有a xt+ b yt~ I(0);
时间序列协整检验与误差修正模型讲义
二、协整检验—EG检验
1、两变量的Engle-Granger检验
• 为了检验两变量Yt,Xt是否为协整,Engle和Granger于1987年提 出两步检验法,也称为EG检验。
第一步,用OLS方法估计方程 Yt=0+1Xt+t
并计算非均衡误差,得到:
Yˆt ˆ0 ˆ1 X t
eˆt Yt Yˆt 称为协整回归(cointegrating)或静态回归(static regression)。
• 如果X与Y间的长期均衡关系正确,该式表述的非均 衡误差应是一平稳时间序列,并且具有零期望值,即 是具有0均值的I(0)序列。
• 非稳定的时间序列,它们的线性组合也可能成为平稳的。 称变量X与Y是协整的(cointegrated)。
3、协整
• 如果序列{X1t,X2t,…,Xkt}都是d阶单整,存在向量 =(1,2,…,k),使得Zt=XT ~ I(d-b), 其中,b>0,X=(X1t,X2t,…,Xkt)T,则认为序列 {X1t,X2t,…,Xkt}是(d,b)阶协整,记为Xt~CI(d,b),为 协整向量(cointegrated vector)。
一定是I(0)序列。
由于vt象t一样,也是Z、X、Y、W四个变量的线性组合, 由此vt 式也成为该四变量的另一稳定线性组合。
(1, -0,-1,-2,-3)是对应于t 式的协整向量,(1,0-0,-1,1,-1)是对应于vt式的协整向量。
• 检验程序:
–对于多变量的协整检验过程,基本与双变量情形相同, 即需检验变量是否具有同阶单整性,以及是否存在稳 定的线性组合。
ADF临界值还要小。
– MacKinnon(1991)通过模拟试验给出了协整检验的临 界值。
Eviews实验:E-G两步法
E-G两步法协整检验和误差修正模型的建立实验内容:使用Eviews软件进行E-G两步法协整检验的操作,并建立误差修正模型。
分析我国居民实际可支配收入与居民实际消费之间是否存在长期均衡关系。
实验数据:我国的实际居民消费和实际可支配收入,变量均为剔除了价格因素的实际年度数据,样本区间为1978—2006年。
数据来源于各年的统计年鉴。
实验过程:1、实际居民消费CSP等于名义居民消费CS除于CPI,实际可支配收入INC 等于名义可支配收入YD除于CPI。
把上述数据导入到Eviews中,建立相应的系列。
2、对实际居民消费CSP序列和实际可支配收入INC序列进行ADF单位根检验,检验结果如下:变量检验形式(C T K)ADF统计量P值结论csp (C T 1) 5.13 1.00 不平稳△csp (C T 1) -2.46 0.34 不平稳△2 csp (0 0 1) -7.16﹡0.00 平稳inc (C T 1) 7.03 1.00 不平稳△inc (C T 1) -1.42 0.83 不平稳△2 inc (0 0 2) -5.93﹡0.00 平稳注:△表示一阶差分,△2 表示二阶差分。
(C T K)表示检验类型,C表示常数项,T表示趋势项,K 表示滞后阶数。
﹡表示在1%的显著性水平下显著。
从ADF单位跟检验结果可知,csp和inc系列均为2阶单整系列,即csp~I(2),inc~I(2)。
因此可以对csp和inc系列进行协整关系检验。
3、建立回归方程。
点击菜单栏里的quick,选择下拉菜单的estimate equation。
在出现的对话框中依次输入:CSP、C、INC。
如下图所示:4、点击确定得到方程回归结果,如下图所示:5、在方程对象框中,单击proc,选择 make residual series,生成方程的残差系列,命名为“e”。
并对e系列进行ADF单位根检验,检验结果如下图所示:检验形式为即不包含常数项也不包含趋势项。
计量经济学实验报告
实验一一、实验内容:以1978-2012年中国进口总额(IM)、GDP、CPI(以1978年为基期)序列为例,取对数(LnIm, lnGDP, lnCPI),对其进行单位根检验,协整检验,并建立误差修正模型。
二、实验步骤:1、平稳—ADF单位根检验图1由图1可知,这些序列都带有明显的上升趋势,即非平稳。
因此对这三个序列逐一进行单位根检验。
打开LnIm序列,点击View→Unit Root Test,出现如图2所示界面,需进行多次试验,分别选择含截距项,含时间趋势向和截距项,不含时间趋势项和截距项,对序列分别进行水平,一阶差分和二阶差分,选择AIC准则,点击ok。
图2对另外连个序列做同样的操作。
最后三个序列的单位根检验结果如下:表1注:检验形式(C,T,L)中,C、T、L分别代表常数项、时间趋势和滞后阶数。
***表示在1%显著水平上拒绝零假设。
根据单位根检验结果,LnIm、LnGDP、LnCPI的水平序列的ADF 值在5%的显著性水平上大于其临界值,不能拒绝单位根假设。
一阶差分后,其ADF值小于5%的临界值,则应拒绝单位根假设。
因此,LnIm、LnGDP、LnCPI是非平稳的,服从I(1)过程,而其一阶差分是平稳的,服从I(0)过程。
2、协整检验根据前面的实验结果可知,LnIm、LnGDP、LnCPI都是一阶单整,因此符合协整检验的前提条件。
①建立VAR模型点击Quick→Estimate VAR,出现如图3所示界面:输入内生变量(Endogenous Variables)LnIm、LnGDP、LnCPI,点击确定。
图3 其运行结果如图4所示,三列分别代表三个方程式,第一行的三个变量表示三个方程式等号左边的被解释变量,不带括号的数字分别表示相应方程式右侧变量的回归系数估计值,回归系数下面第一个带括号的数字表示相应回归系数估计量的标准差,第二个括号里的数字表示相应回归系数估计量的t统计量的值。
图4②VAR模型最佳滞后期的选择在VAR模型估计结果窗口点击View→Lag structure→Lag Length Criteria,在弹出的对话框中填2,其结果如图5所示。
单整,协整,误差修正模型
五 单位根检验、协整与误差修正模型【实验目的与要求】1.准确掌握单位根检验方程的形式和检验原理。
2.准确掌握单整、协整和误差修正模型的概念和形式。
3.学会利用单位根检验方法对样本序列进行协整关系检验。
4.熟练掌握运用误差修正模型对样本序列间的短期、长期关系进行分析。
5. 在老师的指导下独立完成实验,得到正确的结果,并完成实验报告。
【实验准备知识】在上个实验中,我们学习了如何运用相关分析图判断随机过程是否平稳,但这种方法比较粗略。
检验随机过程是否平稳的一种比较正式的方法就是单位根检验。
在介绍单位根检验之前,我们有必要认识几种典型的非平稳随机过程。
1. 几种典型的非平稳随机过程(1) 随机游走过程t t t u y y +=-1,t u ~ IID(0, 2σ) (5.1)随机游走过程上个实验已经介绍,这里不再赘述。
图5—1为一个00=y ,t u ~ IID(0, 1)的随机游走过程的序列图。
-8-6-4-2图5—1 一个随机游走过程的序列图(2) 随机趋势过程t t t u a y y ++=-1,t u ~ IID(0, 2σ) (5.2) 其中a 称作位移项或漂移项。
将上式作如下迭代变换:∑=---++==++++=++=t i it t t t t t u y at u a u a y u a y y 10121)( (5.3)可知,t y 由时间趋势项at 和∑=+ti iu y 10(可看作截距项)组成。
在不存在任何冲击t u 的情况下,截距项为0y 。
而每个冲击t u 都表现为截距的移动。
每个冲击u t 对截距项的影响都是持久的,导致序列的条件均值发生变化,所以称这样的过程为随机趋势过程或有漂移项的随机游走过程。
图5—2为一个t t t u y y ++=-3.01,00=y ,t u ~ IID(0, 1)的随机趋势过程的序列图。
图5—2 一个随机趋势过程的序列图图5—2表明,虽然总趋势不变,但该过程围绕趋势项上下游动。
实验四协整检验及误差修正模型实验报告
实验四协整检验及误差修正模型实验报告一、实验目的协整检验及误差修正模型是时间序列分析中常用的方法。
本实验的目的是通过对两个时间序列数据的协整检验,并建立误差修正模型,来研究两个变量之间的长期关系以及短期波动情况。
二、实验步骤1.数据准备本实验所用数据为两个变量的时间序列数据。
我们需要确保数据的平稳性,并进行必要的数据预处理,如差分、对数化等。
2.协整检验协整检验是用来判断两个变量之间是否存在长期的关系。
本实验使用了Johansen协整检验方法。
该方法是基于向量自回归(VAR)模型的极大似然估计,用于检验多个时间序列之间的协整关系。
在进行协整检验之前,需要明确时间序列的滞后阶数,以及是否需要进行季节调整。
3.误差修正模型误差修正模型(ECM)是一种动态模型,用来描述变量之间的长期关系以及短期波动调整过程。
该模型基于协整检验的结果,使用差分变量进行建模,其中包含了误差修正项。
实验中,我们需要确定模型的滞后阶数,以及是否需要引入滞后差分变量等。
4.模型评估建立模型后,我们需要进行模型的评估与诊断,确保模型的有效性与准确性。
评估指标包括模型的拟合度、残差的正态性、自相关性以及异方差性等。
三、实验结果通过进行协整检验,我们得到了两个变量之间的协整关系。
根据检验结果,我们建立了误差修正模型,并进行参数估计与显著性检验。
最终的模型结果显示,模型的拟合效果良好,残差的正态性与自相关性得到了充分的满足。
四、实验分析根据实验结果1.两个变量存在着长期的关系,即它们在长期内呈现出稳定的均衡状态。
2.模型中的误差修正项描述了两个变量之间的短期波动调整过程,即使两个变量之间存在着均衡关系,也需要通过误差修正项来实现调整。
3.通过模型的参数估计与显著性检验,我们可以得到两个变量对于均衡关系的贡献程度,以及它们之间的动态调整速度。
五、实验总结协整检验及误差修正模型是时间序列分析中常用的方法,用于研究变量之间的长期关系以及短期波动调整过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
协整检验及误差修正模型实验指导
一、实验目的
理解经济时间序列之间的理论关系,并学会用统计方法验证他们之间的关系。
学会验证时间序列存在的不平稳性,掌握ADF检验平稳性的方法。
认识不平稳的序列容易导致虚假回归问题,掌握为解决虚假回归问题引出的协整检验,协整的概念和具体的协整检验过程。
协整描述了变量之间的长期关系,为了进一步研究变量之间的短期均衡是否存在,掌握误差纠正模型方法。
二、实验内容及要求
1、实验内容
用Eviews来分析1982年到2002年中国居民实际消费支出的对数序列和中国居民实际可支配收入的对数序列{}之间的关系。
内容包括:
(1)对两个对数序列分别进行ADF平稳性检验;
(2)进行二者之间的协整关系检验;
(3)若存在协整关系,建立误差修正模型ECM。
2、实验要求
(1)在认真理解本章内容的基础上,通过实验掌握ADF检验平稳性的方法;
(2)掌握具体的协整检验过程,以及误差修正模型的建立方法;
(3)能对宏观经济变量间的长期均衡关系进行分析。
三、实验指导
1、对两个数据序列分别进行平稳性检验:
(1)做时序图看二者的平稳性
在workfile中按住ctrl选择要检验的二变量,击右键,选择open—as group,此时他们可以作为一个数据组被打开。
点击“View”―“graph”—“line”,得到两个序列的时序图。
给出两个序列的时序图。
从上图可以看出两个序列都呈上升趋势,显然不平稳,但二者有大致相同的增长和变化趋势,说明二者可能存在协整关系。
但若要证实二者有协整关系,必须先看二者的单整阶数,如果都是一阶单整,则可能存在协整关系,若单整地阶数不相同,则需采取差分的方式,
将他们变成一阶单整序列。
(2)用ADF检验分别对序列和进行单整检验
双击每个序列,对其进行ADF单位根检验,有两种方法。
方法一:“view”—“unit root test”;方法二:点击菜单中的“quick”―“series statistic”―“unit root test”。
给出相关结果并做出结论。
序列lnxt的检验结果:
序列lnyt的检验结果:
于是尝试对其一阶差分序列采用带常数项的模型进行ADF检验,首先点击主菜单Quick/Generate series,在方程设定栏里分别输入dlnxt=lnxt-lnxt(-1)和dlnyt=lnyt-lnyt(-1),产生lnxt和lnyt的一阶差分序列,为了方便,简记为alnxt和blnyt,一阶差分能初步消除增长的趋势,于是可以对其进行只带常数项的ADF检验,检验结果见下图:
Alnxt的检验结果如下:
blnyt的检验结果如下:
如上图所示两个一阶差分序列在=0.05下都拒绝存在单位根的原假设的结论,说明alnxt 和blnyt序列在α=0.05下平稳,这样就可以对两者的关系进行协整检验。
2、协整检验:给出相关结果(包括协整回归即残差检验的结果),做出结论,并解释本例中协整回归的实际含义。
首先用变量对进行普通最小二乘回归,然后检验残差是否平稳。
最小二乘回归如下图:
得到回归方程估计结果:lnyt=0.5656+0.8769lnxt+εt
在此基础上我们得到回归残差,现在的任务是检验残差是否平稳,对残差进行ADF检验结果见下图:
在0.05显著性水平下拒绝存在单位根的原假设,说明残差平稳,又因为lnxt 和lnyt都是1阶单整序列,所以二者具有协整关系。
3、误差修正模型ECM的建立(error correction mechanism)
给出相关结果并做出结论,最后总结说明本例中误差修正模型的实际含义。
构建ECM模型:blnyt=β0alnxt+β1ECM(t-1)+ε1
其中ECM(t-1)=lny(t-1)-0.5656-0.8769lnx(t-1)
参数估计结果如下:
ECM模型可以表示如下:blnyt=0.3829alnxt-0.3331ECM(t-1)+ε1
通过上述分析发现,1978年到2002年中国农村居民对数生活费支出序列{ln}ty和对数人均纯收入{lntx}序列都是不平稳的,但对其进行一阶差分后序列平稳,且都是一阶单整的,进行普通最小二乘回归后,残差在0.05的显著性水平下也平稳,说明二者存在协整关系,进而建立了短期波动的误差修正模型。
误差修正模型显示:人均纯收入当期波动对生活费支出的当期波动有显著性影响,上期误差对当期波动的影响不显著;同时,从回归系数的绝对值大小可以看出可支配收入的当期波动对生活费支出的当期波动调整幅度很大,每增加1元的可支配收入便会增加0.3829元的人均生活费支出,上期误差对当期人均生活费支出的当期波动调整幅度很小,单位调整比例为-0.3331。