2.5常微分方程课后答案(第三版)王高雄
王高雄版《常微分方程》习题解答4.1

习题4.11.设和是区间上的连续函数,证明:如果在区间上有()t x ()t y b t a ≤≤b t a ≤≤常数或常数,则和在区间上线形无关。
()()≠t y t x ()()t x t y ()t x ()t y b t a ≤≤证明:假设在,在区间上线形相关()t x ()t y b t a ≤≤则存在不全为零的常数,,使得αβ()()0=+t y t x βα那么不妨设不为零,则有()t x ()()βα-=t x t y 显然为常数,与题矛盾,即假设不成立,在区间上线形无关βα-()t x ()t y b t a ≤≤2.证明非齐线形方程的叠加原理:设,分别是非齐线形方程()t x 1()t x 2(1)()()=+++--x t a dtxd t a dt x d n n n n n 111()t f 1(2)()()=+++--x t a dtxd t a dt x d n n n nn 111()t f 2的解,则+是方程 +的解。
()t x 1()t x 2()()=+++--x t a dtxd t a dt x d n n n n n 111()t f 1()t f 2证明:由题可知,分别是方程(1),(2)的解()t x 1()t x 2则: (3)()()()()()()t f t x t a dtt x d t a dt t x d n n n n n 1111111=+++--(4)()()()()()()t f t x t a dtt x d t a dt t x d n n n n n 2212112=+++-- 那么由(3)+(4)得:+()()()()()()()()()()()=++++++--t x t x t a dt t x t x d t a dt t x t x d n n n n n 211211121 ()t f 1()t f 2即+是方程是+的解。
常微分方程第三版课后习题答案

习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。
解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y =ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
常微分方程第三版习题答案

常微分方程第三版习题答案常微分方程是数学中的一个重要分支,它研究的是描述自然界中变化规律的方程。
在学习常微分方程的过程中,习题是非常重要的一部分,通过解习题可以加深对理论知识的理解和应用能力的培养。
本文将为大家提供《常微分方程第三版》习题的部分答案,希望能对大家的学习有所帮助。
1. 习题一1.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2y + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。
令$y = u(t)e^{2t}$,则$\frac{dy}{dt} = \frac{du}{dt}e^{2t} + 2ue^{2t}$将上述结果代入原方程,得到:$\frac{du}{dt}e^{2t} + 2ue^{2t} = 2(u(t)e^{2t}) + t^2$化简得到:$\frac{du}{dt}e^{2t} = t^2$两边同时除以$e^{2t}$,得到:$\frac{du}{dt} = t^2e^{-2t}$对上式两边同时积分,得到:$u = -\frac{1}{4}t^2e^{-2t} + C$将$u$代入$y = u(t)e^{2t}$,得到最终的解:$y = (-\frac{1}{4}t^2e^{-2t} + C)e^{2t}$1.2 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = \frac{t}{y}$这是一个一阶可分离变量的常微分方程,我们可以通过分离变量来求解。
将方程变形,得到:$ydy = tdt$对上式两边同时积分,得到:$\frac{1}{2}y^2 = \frac{1}{2}t^2 + C$解得:$y^2 = t^2 + C$由于题目中给出了初始条件$y(0) = 1$,将初始条件代入上式,得到:$1 = 0 + C$解得:$C = 1$将$C$代入$y^2 = t^2 + C$,得到最终的解:$y^2 = t^2 + 1$2. 习题二2.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2ty + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。
常微分方程第三版答案(王高雄)

dx
2 2
y
1 2 = ln x − ln 1 + x + ln c (c ≠ 0), (1 + 2
y )(1 + x ) = c x
1+
y
2
(1 + x ) = c x
2
2
4 (1 + x) ydx + (1 − y ) xdy = 0 y=0 x=0 ln x + x + ln y − y = c, xy ≠ 0 ln xy + x − y = c, 1+ x 1− y dx = dy = 0 x y
按
dy 1 − 2 x y −1 dx 够 x 2 次0 个 dy 1 − 2 x y +1 dx 次- x 2 个
18.
x dy = = f ( xy ) y dx x dy 2 + x 2 y 2 = y dx 2 − x 2 y 2 xy = u, x
xy = u
1 . y (1 + x 2 y 2 )dx = xdy (2).
y+x
dy dy = , dx dx
x
dy du = −y dx dx
1 du du u 1 − 1 = f(u), = (f(u) + 1) = (uf(u) + u) y dx dx = y(f(u) + 1) x x x=0 y=0 du 1 3 = (2u + u ), dx x xy ≠ 0s du 2u + u
在个
次个e 次 ce
− sin t
+ sin t − 1 个个个
个
截
dy x − y = ex xn dx n 个个 个个个n
2.5常微分方程课后答案(第三版)王高雄

习题2.52.ydy x xdy ydx 2=- 。
解:2x ,得:ydy x xdyydx =-2c y x yd +-=221即c y x y =+221 4.xyx ydx dy -=解:两边同除以x ,得xy x y dxdy -=1令u x y= 则dxdu x u dx dy += 即dx dux u dx dy +=uu -=1 得到()2ln 211y c u -=,即2ln 21⎪⎭⎫ ⎝⎛-=y c y x另外0=y 也是方程的解。
6.()01=-+xdy ydx xy 解:0=+-xydx xdy ydxx d x yx d yy d x -=-2得到c x y x d +-=⎪⎪⎭⎫⎝⎛221即c x y x =+221 另外0=y 也是方程的解。
8.32xy x y dx dy += 解:令u xy= 则:21u x u dx du x u dx dy +=+= 即21u x dx du x= 得到22x dxu du =故c xu +-=-11 即211xx c y += 另外0=y 也是方程的解。
10. 21⎪⎭⎫⎝⎛+=dx dy dx dy x解:令p dxdy= 即pp x 21+=而p dx dy=故两边积分得到 c p p y +-=ln 212因此原方程的解为pp x 21+=,c p p y +-=ln 212。
12.x y xe dx dy e =⎪⎭⎫⎝⎛+-1 解:y x xe dxdy+=+1令 u y x =+则 dx du dx dy =+111-=-=u xe dx du dx dy 即xdx eduu =c x e u+=--221故方程的解为c x eyx =++221 14.1++=y x dxdy解: 令u y x =++1则dx du dx dy =+1 那么u dx du dx dy =-=1dx u du=+1求得: ()c x u +=+1ln故方程的解为()c x y x +=++1ln 或可写 为xce y x =++1 16.()y e dxdyx -=++211 解:令u e y=- 则u y ln -= ()1211-=+-u dxduu x ()dx x du u u 11121+-=-c x u u ++=-`1112 即方程的解为()c x y x e y+=+218.()0124322=-+dy y x dx y x 解: 将方程变形后得124322-=y x y x dx dy 22223412412y x y x y x y x dy dx -=-= 同除以2x 得:232412yy x dy dx x -=令3x z = 则24323yy z dy dz -= 23223cy y z +=即原方程的解为232323cy y x +=19.X(04)(2)2=+-x dxdyy dx dy 解:方程可化为2y()(24)(,4)()22dxdy x dx dy x y x dxdyx dx dy +=+= 令[][]ce t e t c dt e t y pdx dy e t x t p dy x e dxdyc x y x arctg xdx y x darctg xdx y x xdy ydx xdy y x x y y c y y x c y yy x dyy y y x d dy y y y xdy ydx y dy y xdy ydx dy y x ydx cy y x c y yx y d y x d dy y x ydx xy y e y xy x xy xNy M x x N x y M dy x y xydx dy y x y dx y x cye x c e yxy c e z y y e z y dy dz e z e dy dz y z e e z z e e z z ze e e z dy dx dy e z dx e dy dzy z dy dx yz x z y x dy yxe dx e y p c x y c tg c d c d x d d dy p dy dx y y p dx dy dx dy y x c yc c c x c x x c x x y cx p xdp pdx x y p xdp pdx p dp p x dx p p dp x xp dx p p dp p x x dx p p dx dp p x x p p dx dp p x p dx dp x p p x p x p x p x xp y p dx dy t t tt dx dydy y y xy xzzz z z z z z z z z z z yx y x +-+=++==+====-++===+-=-+-=+=+++-=+=+=-+=-=++-=-=-=-=-+=⎰-=-=-∂∂-∂∂-=∂∂=∂∂=-+=-+=+=+=+-=+-=+++=++-=+--+=+-=-=++====-++±==++=+∂=+∂∂=+∂∂=∂∂=∂∂∂∂=∂==∂==∂-∂===⎥⎦⎤⎢⎣⎡-+=+=+⋅===-±===-=∴=---=+-+-=-+--=--++=+=-==⎰⎰⎰----)1(,0.25.2,0)(.240),()111,1,)1(0)1(.23101,0)3(24282,6,20)3(2032.22)(,)(,ln ln 1,111)1(,)1()1(,0)1()1.(2110,1)sec cos cos cos sin sin 1sin ,cos 11(sin 1,sin 1)(1.20.42,2424,,0,24,040)4()4(0)4()4(,0)22()22(,)22()22(2222,2224,22222222222222322323242234422422322222222222222222222232222得由解:令所以方程的解为解:方程可化为也是解。
常微分方程(第三版) 王高雄等编 高等教育出版社 课后习题答案

1常微分方程习题答案2.11.xy dx dy2=,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123.yxy dx dy x y 321++=解:原式可化为:x x y xxyxyx yyxyc c c c x dx x dy y yx ydxdy2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dxdy dx dy xycy ud uudx x x y u dx xydy x y ydx dy y x x c dy yy yydxdy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdudxdux u dx dy ux y u x y y dx dy xc x arctgu dx x du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y ee ee ee eexy uu xy x uu xyxyyx xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。
《常微分方程》(王高雄)第三版课后答案

(2).
x y
dy dx
=
2+ 2−
x2 y2 x2 y2
证明:因为xy = u,关于x求导导得y + x dy = dy ,所以x dy = du − y
dx dx
dx dx
得:1 du −1 = f(u),
du
= u (f(u) + 1) = 1 (uf(u) + u)
y dx
dx = y(f(u) + 1) x
17. dy = 2x3 + 3xy + x
dx 3x2 y + 2 y3 − y
解:原方程化为 dy = x(2x2 + 3y 2 + 1) ;;;;; dy 2 = 2x2 + 3y 2 + 1
dx y(3x 2 + 2 y 2 −1) dx 2 3x 2 + 2 y 2 −1
令 y 2 = u,;;;;; x2 = v;;;;;;;则 du = 2v + 3u + 1.......(1)
解:对原式进行变量分离得:
− 1 dx = 1 dy,当y ≠ 0时,两边同时积分得;ln x + 1 = 1 + c,即y = 1
x +1
y2
y
c + ln x + 1
当y = 0时显然也是原方程的解。当x = 0, y = 1时,代入式子得c = 1,故特解是
y= 1 。 1 + ln1 + x
2. dx +3x=e 2t dt
解:原方程可化为 : dx =-3x+e 2t dt
∫ 所以:x=e ∫ −3dt ( e 2t e − ∫ −3dt dt + c )
常微分方程第三版课后习题答案

习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。
解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
常微分方程第三版课后答案

常微分方程1.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x yx yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。
王高雄版《常微分方程》习题解答3.1

习题3.11 求方程dxdy =x+y 2通过点(0,0)的第三次近似解; 解: 取0)(0=x ϕ 200200121)()(x xdx dx y x y x xx ==++=⎰⎰ϕ 522200210220121])21([])([)(x x dx x x dx x x y x x x +=+=++=⎰⎰ϕϕ dx x x x y x x ])20121([)(252003+++=⎰ϕ = 1185244001160120121x x x x +++2 求方程dx dy =x-y 2通过点(1,0)的第三次近似解; 解: 令0)(0=x ϕ则 200200121)()(x xdx dx y x y x xx ==-+=⎰⎰ϕ 522200210220121])21([])([)(x x dx x x dx x x y x x x -=-=-+=⎰⎰ϕϕ dx x x x y x x ])20121([)(252003--+=⎰ϕ =1185244001160120121x x x x -+- 3 题 求初值问题:⎪⎩⎪⎨⎧=-=0)1(2y x dx dy R :1+x ≤1,y ≤1 的解的存在区间,并求解第二次近似解,给出在解的存在空间的误差估计;解: 因为 M=max{22y x -}=4 则h=min(a,M b )=41 则解的存在区间为0x x -=)1(--x =1+x ≤41 令 )(0X ψ=0 ;)(1x ψ=y 0+⎰-xx x 0)0(2dx=31x 3+31;)(2x ψ =y 0+])3131([2132⎰-+-xx x dx=31x 3-9x -184x -637x +4211 又 yy x f ∂∂),(2≤=L 则:误差估计为:)()(2x x ψ-ψ≤322)12(*h L M +=24114 题 讨论方程:3123y dx dy =在怎样的区域中满足解的存在唯一性定理的条件, 并求通过点(0,0)的一切解;解:因为y y x f ∂∂),(=3221-y 在y 0≠上存在且连续; 而3123y 在y 0 σ≥上连续 由 3123y dx dy =有:y =(x+c )23又 因为y(0)=0 所以:y =x 23另外 y=0也是方程的解;故 方程的解为:y =⎪⎩⎪⎨⎧≥00023 x x x或 y=0;6题 证明格朗瓦耳不等式:设K 为非负整数,f(t)和g(t)为区间βα≤≤t 上的连续非负函数,且满足不等式:f(t)≤k+⎰tds s g s f α)()(,βα≤≤t则有:f(t)≤kexp(⎰tds s g α)(),βα≤≤t证明:令R (t )=⎰tds s g s f α)()(,则R '(T)=f(R '(T)-R(t)g(t)= f(t)g(t)- R(t)g(t) ≤kg(t)R '(T)- R(t)g(t)≤kg(t);两边同乘以exp(-⎰tds s g α)() 则有:R '(T) exp(-⎰tds s g α)()-R(t)g(t) exp(-⎰t ds s g α)()≤ kg(t) exp(-⎰tds s g α)()两边从α到t 积分:R(t) exp(-⎰t ds s g α)()≤-⎰t ds s kg α)(exp(-⎰tdr r g α)()ds即 R(t) ≤⎰t ds s kg α)( exp(-⎰tsdr r g )()ds又 f(t) ≤1≤k+R(t) ≤k+k ⎰t s g α)(exp(-⎰tsdr r g )()ds≤k(1-1+ exp(-⎰t s dr r g )()=k exp(⎰stdr r g )()即 f(t) ≤k ⎰tdr r g α)(;7题 假设函数f(x,y)于(x 0,y 0)的领域内是y 的 不增函数,试证方程dxdy = f(x,y)满足条件y(x 0)= y 0的解于x ≥ x 0一侧最多只有一个解; 证明:假设满足条件y(x 0)= y 0的解于x ≥ x 0一侧有两个ψ(x),ϕ(x)则满足:ϕ(x)= y 0+⎰xx x x f 0))(,(ϕdxψ(x)= y 0+⎰xx x x f 0))(,(ψdx不妨假设ϕ(x) ψ(x),则ϕ(x)- ψ(x)≥0而ϕ(x)- ψ(x)= ⎰x x x x f 0))(,(ϕdx-⎰xx x x f 0))(,(ψdx=⎰-xx x x f x x f 0))(,())(,([ψϕdx又因为 f(x,y)在(x 0,y 0)的领域内是y 的 增函数,则: f(x, ϕ(x))-f(x, ψ(x))≤0则ϕ(x)- ψ(x)= ⎰-xx x x f x x f 0))(,())(,([ψϕdx ≤0则ϕ(x)- ψ(x)≤0所以 ϕ(x)- ψ(x)=0, 即 ϕ(x)= ψ(x) 则原命题方程满足条件y(x 0)= y 0的解于x ≥ x 0一侧最多 只有一个解;。
王高雄《常微分方程》(第3版)(课后习题 一阶线性偏微分方程)【圣才出品】

第7章 一阶线性偏微分方程1.求下列方程组的通积分及满足指定条件的解:解:(1)两个方程相加得到令u=x+y,则上面方程可以写成这是一阶线性微分方程,可解出得即得原方程的一个首次积分为两个方程相减得到解之得于是得到另一个首次积分为所以,原方程组的通积分为(2)两个方程相加,得到解之得两个方程相减得到解之得.于是,原方程的通积分为而满足条件t=0,x=-2,y=0的特解为(3)两个方程相除可以得到令则得到解之得,即另外,由原方程组得到第一项乘以(-y)加上第二项乘以x,则得到变形上式可得两边积分后得到所以原方程组的通积分为把条件t=0,x=y=1代入上面的通解表达式可得,所以,特解满足解之可得(4)将三项相加可得故是原方程组的一个首次积分.将第1项乘x,第2项乘z,第3项乘z可得故可得原方程组的另一个首次积分所以,原方程的通积分为2.求下列方程的通解及满给定条件的解解:(1)特征方程为由可得一个首次积分为由可得另外一个首次积分为容易验证上面两个首次积分是独立的,故原方程的通解可表示为其中是的任意连续可微函数.(2)特征方程为由后两项可得令则有解之得或,故得到方程的一个首次积分为另外,容易得到故可得方程的另一个首次积分所以,原方程的通解可以表示为其中是的任意连续可微函数.(3)特征方程为由前两项可得解之得把代入可得即积分得再把代入上式,则得到显然两个首次积分是独立的,故方程的通解为(4)特征方程为由前两项可得令即y =ux ,则上面方程化为解之得或特征方程可以变形为。
《常微分方程》(王高雄)第三版课后

y= 1 。 1 + ln1 + x
3
dy = 1 + y2 dx xy + x3 y
解:原式可化为:
dy = 1 + y2 •
1
1+ 显然
y2
≠
0, 故分离变量得
y
dy =
1
dx
dx y x + x3
y
1+ y2
x + x3
两边积分得 1 ln1 + 2
y2
=
ln
x
−
1 ln1 + 2
x2
+ ln c (c
c x2 , y
=
0也包含在此通解中。
故原方程的解为原
x2
y2 y2 +
2
=
c
x2,
x
=
0.
解 (2)令xy = u,则原方程化为 du = 1 (u 2 + u 2 + u) = 1 4u
dx x 2 − u 2
x 2−u2
分离变量得 2 − u 2 du = 1 dx,两边积分得 ln y = x 2 y 2 + c,这也就是方程的解。
dx dx
dx t 2
变量分离
t
t2 2 +1
dt
=
dx,两边积分t
−
arctgt
=
x
+
c,代回变量
x + y − arctg(x + y) = x + c
13. dy = 2x − y − 1 dx x − 2 y + 1
解:方程组2x − y −1 = 0, x − 2 y + 1 = 0;的解为x = − 1 , y = 1 33
(完整版)常微分方程第三版课后习题答案

习题 1.21. dy=2xy, 并满足初始条件: x=0,y=1 的特解。
dx2特解为 y= e x.22. y 2dx+(x+1)dy=0 并求满足初始条件: x=0,y=1 的特解。
2dy 1 解: y dx=-(x+1)dy 2 dy=- dx y x 11两边积分 : -=-ln|x+1|+ln|c|y特解: y=ln |c(x 1)|2 3.dy 1 y 2 3dx1 y 2dy=dy=4. (1+x)ydx+(1-y)xdy=01 y x 1 解:原方程为: dy=- dxyx两边积分: ln|xy|+x-y=c 另外 x=0,y=0 也是原方程的解。
5.( y+x ) dy+(x-y)dx=0y x解: 原方程为:dy =1 y2 dxy两边积分: x(1+x 2)(1+y 2)= 2cx解: dy =2xdxy2 两边积分有: ln|y|=x 2+cx 2cy=e +e =cex另外 y=0 也是原方程的解, c=0 时, y=0原方程的通解为 y= cex 2 ,x=0 y=1 时 c=1y=ln |c(x 1)|另外 y=0,x=-1 也是原方程的解 x=0,y=1 时 c=e3xy x y 13 dxx解:原方程为:dx x yu 1 1- 2du= dxu2 1 x22ln(u +1)x =c-2arctgu即ln(y 2+x 2)=c-2arctg y2.x2dy du=u+ xdx dx1du=sgnx dxxyarcsin =sgnx ln|x|+cx7. tgydx-ctgxdy=0两边积分:1siny=ccosx cosx所以原方程的通解为sinycosx=c.y2 3xdy e8 + =0dx y解:原方程为:dy=dx e y y3x e3x y22 e -3e=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dy=y ln y令y =u 则dy=u+x dudx dx 代入有:6. x dydx-y+ x2y2=0解:原方程为:dy=y+|x|dx x x 1 ( y)x则令y=u x11 u2解: 原方程为:dy dxtgy ctgxln|siny|=-ln|cosx|-ln|c|c另外y=0 也是原方程的解,而c=0 时,y=0.dx x xduu+ x =ulnudxln(lnu-1)=-ln|cx|y1+ln =cy.x10. dy=e x y dx解:原方程为:e y=cexdu 2-1=udx12du=dx1 u2arctgu=x+c arctg(x+y)=x+c解:令x+y=u, 则dy=du-1 dx dx du 1-1=dx -1=u2u-arctgu=x+c y-arctg(x+y)=c.13.dy=2x y 1 dx x 2y 1解: 原方程为: ( x-2y+1 ) dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 22 dxy-d(y -y)-dx +x=c22xy-y +y-x -x=cdy x y 5dx x y 2解:原方程为: (x-y-2 ) dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0令y=u ,则dyx dxdu=u+ xdx12.dy=1dx =(x y) 2dy x y=e edx11 dy 2ddyx=(x+y)解:令x+y=u, 则dy du= -1dx dx14:1 2 1 2 dxy-d( y +2y)-d( x +5x)=02222y +4y+x +10x-2xy=c.15: dy=(x+1) 2+(4y+1) 2+8xy 1 dx解:dy 2原方程为:=( x+4y ) +3dx令x+4y=u 则dy= 1 du- 1dx 4 dx 4 1 du 1 2- =u +34 dx 4du 2=4 u 2+133u= 2tg(6x+c)-12tg(6x+c)= (x+4y+1).316: 证明方程x dy=f(xy), 经变换xy=u 可化为变量分离方程,并由此求下列方程:y dx221) y(1+x y )dx=xdyx dy 2 x 2y2 y dx 2-x 2 y2证明:令 xy=u, 则 x dy+y=du dx dx 则dy=1 du- u2,有:dx x dx x2 x du =f(u)+1 u dx11 du= dx u( f(u) 1) x所以原方程可化为变量分离方程。
常微分答案 王高雄版

Good morning.Nearly 150 years ago, in one of the darkest years of our nation's history, President Abraham Lincoln set aside the last Thursday in November as a day of Thanksgiving. America was split by Civil War. But Lincoln said in his first Thanksgiving decree that difficult times made it even more appropriate for our blessings to be (and I quote), "gratefully acknowledged as with one heart and one voice by the whole American people."This week, the American people came together with families and friends to carry on this distinctly American tradition. We gave thanks for loved ones and for our lasting pride in our communities and our country. We took comfort in good memories while looking forward to the promise of change.But this Thanksgiving also takes place at a time of great trial for our people. Across the country, there were empty seats at the table, as brave Americans continue to serve in harm’s way from the mountains of Afghanistan to the deserts of Iraq. We honor and give thanks for their sacrifice, and stand by the families who endure their absence with such dignity and resolve.At home, we face an economic crisis of historic proportions. More and more Americans are worried about losing a job or making their mortgage payment. Workers are wondering if next month's paycheck will pay next month's bills. Retirees are watching their savings disappear, and students are struggling with the cost of tuition.It's going to take bold and immediate action to confront this crisis. That's why I'm committed to forging a new beginning from the moment I take office as President of the United States. Earlier this week, I announced my economic team. This talented and dedicated group is already hard at work crafting an Economic Recovery Plan that will create or save 2.5 million new jobs, while making the investments we need to fuel long-term economic growth and stability.But this Thanksgiving, we're reminded that the renewal of our economy won't come from policies and plans alone. It will take the hard work, innovation, service, and strength of the American people. I've seen this strength firsthand over many months -- in workers who are ready to power new industries, and farmers and scientists who can tap new sources of energy; in teachers who stay late after school, and parents who put in that extra hour reading to their kids; in young Americans enlisting in a time of war, seniors who volunteer their time, and service programs that bring hope to the hopeless.It's a testament to our national character that so many Americans took time outthis Thanksgiving to help feed the hungry and care for the needy. On Wednesday, I visited a food bank at Saint Columbanus Parish in Chicago. And there, as in so many communities across America, folks pitched in time and resources to give a lift to their neighbors in need. It is this spirit that binds us together as one American family -- the belief that we rise and fall as one people; that we want that American Dream not just for ourselves, but for each other.That's the spirit we must summon as we make a new beginning for our nation. Times are tough. There are difficult months ahead. But we can renew our nation the same way that we have in the many years since Lincoln's first Thanksgiving: by coming together to overcome adversity; by reaching for -- and working for -- new horizons of opportunity for all Americans.。
王高雄《常微分方程》(第3版)(章节题库 绪 论)【圣才出品】

第1章 绪 论一、填空题1.微分方程(y'')2+(y')5 sin x+2x cos3y'''=0的阶数是______.【答案】三阶【解析】微分方程的阶是指这个方程中出现未知函数的最高阶导数的阶数.2.具有特定解y1(x)=x,y2(x)=sin x的最低阶实常系数线性齐次微分方程是______.【答案】y(4)+y''=0.【解析】所求方程有特征根为λ1,2=0,λ3,4=±i5.令X=x-1,y=y+1,原方程可化为克莱罗方程y=x y'+(y')2其通解为y=yc+(C)2.二、名词解释1.常微分方程.答:常微分方程是指含有一个自变量、未知函数以及未知函数的某些阶导数的关系式.三、解答题1.指出下列微分方程的阶数解:(1)一阶微分方程;(2)二阶微分方程;(3)二阶微分方程;(4)一阶微分方程;(5)四阶微分方程.2.求下列两个微分方程的公共解:解:两方程的公共解满足条件即所以或代入检验可知不符合.所以两方程的公共解为3.利用等倾线作下列方程的方向场,并且描出经过指定点的积分曲线(1)(2)(3)(4)(5)(6)解:(1)所求方向场和经过(1,1)的积分曲线如图1-1所示图1-1(2)所求方向场及经过(0,0),(0,1)的积分曲线如图1-4所示图1-2(3)所求方向场,及过点(1,0)的积分曲线如图1-3所示图1-3(4)所求的方向场及过点的积分曲线如图1-4所示图1-4(5)所求的方向场及经过点(0,0),(0, 1)的积分曲线如图1-5所示图1-5(6)所求的方向场及过点(1,2)的积分曲线如图1-6所示图1-64.当方程的等倾线就是积分曲线时,应满足什么条件?解:由于方程的等倾线就是积分曲线,所以即f(x,y)应满足的条件为5.若方程的等倾线就是积分曲线时,试证此方程必为克莱罗(Clairaut)方程.证明:由于是方程的解;于是是所要求的满足的曲线方程,该曲线具有与切线有关而与切点无关的性质,则=0一定是克莱罗方程.事实上,设切点(x,y),切线动点坐标为(X,Y),有或于是切线的性质可以用与关系式表示,由此解出可得到:或(克莱罗方程).6.求微分方程的通解,并分别求满足下列条件的特解.(1)通过点(2,1);(2)与直线y=x相切;(3)与直线y=-3x+1正交.解:直接积分得方程的通解为(1)将x=2,y=1代入通解中得C=-7,则通过点(2,1)的解为(2)与直线y=x相切的解满足在切点处斜率相同,有即得切点坐标为和同(1)的解法,与直线y=x相切的解为和(3)与直线y=-3x+1正交的解在正交点处斜率满足即得正交点坐标为和同(1)的解法所求方程的解为和7.求微分方程y'+xy'2-y=0的直线积分曲线.解:设直线积分曲线为y=ax+b,则y'=a,代入原方程得。
(完整版)常微分方程第三版课后习题答案

习题 1.21. dy=2xy, 并满足初始条件: x=0,y=1 的特解。
dx2特解为 y= e x.22. y 2dx+(x+1)dy=0 并求满足初始条件: x=0,y=1 的特解。
2dy 1 解: y dx=-(x+1)dy 2 dy=- dx y x 11两边积分 : -=-ln|x+1|+ln|c|y特解: y=ln |c(x 1)|2 3.dy 1 y 2 3dx1 y 2dy=dy=4. (1+x)ydx+(1-y)xdy=01 y x 1 解:原方程为: dy=- dxyx两边积分: ln|xy|+x-y=c 另外 x=0,y=0 也是原方程的解。
5.( y+x ) dy+(x-y)dx=0y x解: 原方程为:dy =1 y2 dxy两边积分: x(1+x 2)(1+y 2)= 2cx解: dy =2xdxy2 两边积分有: ln|y|=x 2+cx 2cy=e +e =cex另外 y=0 也是原方程的解, c=0 时, y=0原方程的通解为 y= cex 2 ,x=0 y=1 时 c=1y=ln |c(x 1)|另外 y=0,x=-1 也是原方程的解 x=0,y=1 时 c=e3xy x y 13 dxx解:原方程为:dx x yu 1 1- 2du= dxu2 1 x22ln(u +1)x =c-2arctgu即ln(y 2+x 2)=c-2arctg y2.x2dy du=u+ xdx dx1du=sgnx dxxyarcsin =sgnx ln|x|+cx7. tgydx-ctgxdy=0两边积分:1siny=ccosx cosx所以原方程的通解为sinycosx=c.y2 3xdy e8 + =0dx y解:原方程为:dy=dx e y y3x e3x y22 e -3e=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dy=y ln y令y =u 则dy=u+x dudx dx 代入有:6. x dydx-y+ x2y2=0解:原方程为:dy=y+|x|dx x x 1 ( y)x则令y=u x11 u2解: 原方程为:dy dxtgy ctgxln|siny|=-ln|cosx|-ln|c|c另外y=0 也是原方程的解,而c=0 时,y=0.dx x xduu+ x =ulnudxln(lnu-1)=-ln|cx|y1+ln =cy.x10. dy=e x y dx解:原方程为:e y=cexdu 2-1=udx12du=dx1 u2arctgu=x+c arctg(x+y)=x+c解:令x+y=u, 则dy=du-1 dx dx du 1-1=dx -1=u2u-arctgu=x+c y-arctg(x+y)=c.13.dy=2x y 1 dx x 2y 1解: 原方程为: ( x-2y+1 ) dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 22 dxy-d(y -y)-dx +x=c22xy-y +y-x -x=cdy x y 5dx x y 2解:原方程为: (x-y-2 ) dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0令y=u ,则dyx dxdu=u+ xdx12.dy=1dx =(x y) 2dy x y=e edx11 dy 2ddyx=(x+y)解:令x+y=u, 则dy du= -1dx dx14:1 2 1 2 dxy-d( y +2y)-d( x +5x)=02222y +4y+x +10x-2xy=c.15: dy=(x+1) 2+(4y+1) 2+8xy 1 dx解:dy 2原方程为:=( x+4y ) +3dx令x+4y=u 则dy= 1 du- 1dx 4 dx 4 1 du 1 2- =u +34 dx 4du 2=4 u 2+133u= 2tg(6x+c)-12tg(6x+c)= (x+4y+1).316: 证明方程x dy=f(xy), 经变换xy=u 可化为变量分离方程,并由此求下列方程:y dx221) y(1+x y )dx=xdyx dy 2 x 2y2 y dx 2-x 2 y2证明:令 xy=u, 则 x dy+y=du dx dx 则dy=1 du- u2,有:dx x dx x2 x du =f(u)+1 u dx11 du= dx u( f(u) 1) x所以原方程可化为变量分离方程。
常微分方程(第三版)课后答案共84页word资料

常微分方程2.1 1.xy dx dy2=,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:3 y xy dx dy x y321++=解:原式可化为:12.2)(1y x dx dy+=解15.18)14()1(22+++++=xy y x dx dy16.2252622y x xy x y dx dy +-= 解:,则原方程化为,,令u y x xy x y dx dy x xy y x y dx dy =+-==+-=32322332322232]2)[(32(2)(126326322222+-=+-=x ux u x xu x u dx du ,这是齐次方程,令cx x y x y c x y x y c x x y x y c x z z dx x dz dz z z z z x y x y z z z z z z z dx dz x dx dz x z z z dx dz x z dx du z x u 15337333533735372233222)2()3(023)2()3,)2()3112062312306)1.( (1)261263=+-=-===+-=+-=--+≠---==-===--+--=+=+-+==的解为时。
故原方程包含在通解中当或,又因为即(,两边积分的(时,变量分离当是方程的解。
或)方程的解。
即是(或,得当,,,,所以,则 17. yy y x x xy x dx dy -+++=3232332 解:原方程化为123132;;;;;)123()132(2222222222-+++=-+++=y x y x dx dy y x y y x x dx dy 令)1.......(123132;;;;;;;;;;;;,22-+++===u v u v dv du v x u y 则 方程组,,,);令,的解为(111101230132+=-=-⎩⎨⎧=-+=++u Y v Z u v u v 则有⎪⎪⎩⎪⎪⎨⎧++==+=+z y z y dz dy y z y z 23321023032)化为,,,,从而方程( 令)2.( (232223322),,,,,所以,,则有tt dz dt z t t dz dt z t dz dt z t dz dy z y t +-=++=++== 当是原方程的解或的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题2.52.ydy x xdy ydx 2=- 。
解:2x ,得:ydy x xdyydx =-2c y x yd +-=221即c y x y =+221 4.xyx ydx dy -=解:两边同除以x ,得xy x y dxdy -=1令u x y= 则dxdu x u dx dy += 即dx dux u dx dy +=uu -=1 得到()2ln 211y c u -=,即2ln 21⎪⎭⎫ ⎝⎛-=y c y x另外0=y 也是方程的解。
6.()01=-+xdy ydx xy 解:0=+-xydx xdy ydxx d x yx d yy d x -=-2得到c x y x d +-=⎪⎪⎭⎫⎝⎛221即c x y x =+221 另外0=y 也是方程的解。
8.32xy x y dx dy += 解:令u xy= 则:21u x u dx du x u dx dy +=+= 即21u x dx du x= 得到22x dxu du =故c xu +-=-11 即211xx c y += 另外0=y 也是方程的解。
10. 21⎪⎭⎫⎝⎛+=dx dy dx dy x解:令p dxdy= 即pp x 21+=而p dx dy=故两边积分得到 c p p y +-=ln 212因此原方程的解为pp x 21+=,c p p y +-=ln 212。
12.x y xe dx dy e =⎪⎭⎫⎝⎛+-1 解:y x xe dxdy+=+1令 u y x =+则 dx du dx dy =+111-=-=u xe dx du dx dy 即xdx eduu =c x e u+=--221故方程的解为c x eyx =++221 14.1++=y x dxdy解: 令u y x =++1则dx du dx dy =+1 那么u dx du dx dy =-=1dx u du=+1求得: ()c x u +=+1ln故方程的解为()c x y x +=++1ln 或可写 为xce y x =++1 16.()y e dxdyx -=++211 解:令u e y=- 则u y ln -= ()1211-=+-u dxduu x ()dx x du u u 11121+-=-c x u u ++=-`1112 即方程的解为()c x y x e y+=+218.()0124322=-+dy y x dx y x 解: 将方程变形后得124322-=y x y x dx dy 22223412412y x y x y x y x dy dx -=-= 同除以2x 得:232412yy x dy dx x -=令3x z = 则24323yy z dy dz -= 23223cy y z +=即原方程的解为232323cy y x +=19.X(04)(2)2=+-x dxdyy dx dy 解:方程可化为2y()(24)(,4)()22dxdy x dx dy x y x dxdyx dx dy +=+= 令[][]ce t e t c dt e t y pdx dy e t x t p dy x e dxdyc x y x arctg xdx y x darctg xdx y x xdy ydx xdy y x x y y c y y x c y yy x dyy y y x d dy y y y xdy ydx y dy y xdy ydx dy y x ydx cy y x c y yx y d y x d dy y x ydx xy y e y xy x xy xNy M x x N x y M dy x y xydx dy y x y dx y x cye x c e yxy c e z y y e z y dy dz e z e dy dz y z e e z z e e z z ze e e z dy dx dy e z dx e dy dzy z dy dx yz x z y x dy yxe dx e y p c x y c tg c d c d x d d dy p dy dx y y p dx dy dx dy y x c yc c c x c x x c x x y cx p xdp pdx x y p xdp pdx p dp p x dx p p dp x xp dx p p dp p x x dx p p dx dp p x x p p dx dp p x p dx dp x p p x p x p x p x xp y p dx dy t t tt dx dydy y y xy xzzz z z z z z z z z z z yx y x +-+=++==+====-++===+-=-+-=+=+++-=+=+=-+=-=++-=-=-=-=-+=⎰-=-=-∂∂-∂∂-=∂∂=∂∂=-+=-+=+=+=+-=+-=+++=++-=+--+=+-=-=++====-++±==++=+∂=+∂∂=+∂∂=∂∂=∂∂∂∂=∂==∂==∂-∂===⎥⎦⎤⎢⎣⎡-+=+=+⋅===-±===-=∴=---=+-+-=-+--=--++=+=-==⎰⎰⎰----)1(,0.25.2,0)(.240),()111,1,)1(0)1(.23101,0)3(24282,6,20)3(2032.22)(,)(,ln ln 1,111)1(,)1()1(,0)1()1.(2110,1)sec cos cos cos sin sin 1sin ,cos 11(sin 1,sin 1)(1.20.42,2424,,0,24,040)4()4(0)4()4(,0)22()22(,)22()22(2222,2224,22222222222222322323242234422422322222222222222222222232222得由解:令所以方程的解为解:方程可化为也是解。
另外即(所以方程的解为得两边同除以解:即所以方程的解为所以方程有积分因子解:所以方程的解为方程为则解:令也得另外由(所以方程的解为,)则解:令时当时当或求导得两边对则cy e y x e y de y x e d e e y x x Ny M x x N y x x y M dy y x dx y y x xy ce t e t c dt e t y e t x ce t e t c dt e t y pdx dy e t x t p dx dy x e dxdyx x x x x x t t tt t t tt dx dy=+=+=+∂∂-∂∂=∂∂++=∂∂=+++++-+=++=+=+-+=++==+====-+⎰⎰323222222232223031,2,20)()32.262)1(2)1(0.25所以方程的解为:得方程两边同乘所以方程有积分因子解:(,所以方程的解为:得由则解:令27.234465dy x y dx x y ++=++ 解: 令23u x y =+,4232325du dy u dx dx u +=+=++,则 72225du u dx u +=+,25722u du dx u +=+,9171=221427dx u -+, 两边积分得 2239ln 2314(3)72x y y x c ++=-+ 即为方程的通解。
另外,7220u +=,即222307x y ++=也是方程的解。
28. 2222()dyxy x y y x dx-=- 解: 两边同除以x ,方程可化为: 222()dy yxy y x dx x=+- 令yu x=,则 22222()duxu u ux u x x dx+=+-即332()dux u u dx =-, 332du x dx u u=- 3111()22(1)2(1)du x dx u u u+-=+-两边积分得 4211x ce u-即 4222x x y cy e -= 为方程的解。
29.xy dy ye dx x+= 解: 令xye u =,则 ln uy x=, 2ln x duudy u dxdx x -=, 那么221ln ln du u uu ux dx x x-+= 即 2duxdx u=两边积分得 212xyx e c -+=即为方程的解。
30. 332252422363dy x xy x dx x y y y -+=-+ 解:方程332252(422)(363)0x x y x d x x y y y d y -+--+=42322363()()()0d x x y dx x dy d y y +-++-=两边积分得 426323x x y y x y c ++--= 即 4623(1)(1)x x c x y ++=+- 为方程的解。
31. 2()()0y xdx ydy x ydx xdy ++-=解: 方程可化为 2320y xdx y dy xydx x dy ++-=两边同除以2y ,得 2()0x ydx xdy xdx ydx y -++=即221()02dx d x y x dy++= 令cos x ρθ=,sin y ρθ=,则cos 0d dctg ρρρθθ+=即 2sin 0sin d d θρρθ-=两边积分得 1sin c ρθ=-+ 将1sin yρθ=代入得, c y ρρ=-+即2222(1)y c y ρ+=故 222222()(1)x y y c y ++=32. 33101dy xy dx x y++=+解: 方程可化为 3311dy xy dx x y--=+ 两边同加上1,得 223()()1d x y xy x y dx x y+-=+ (*) 再由()d xy xdy ydx =+,可知223()()(1)1d xy dy x y x y x y dx dx x y--=+=+ (**) 将(*)/(**)得22()()()1d x y xy x y d xy x y ++=-即 21du uvdv v =- 整理得21du v dv u v =-两边积分得cu =即 ()c x y +=另外,0x y +=也是方程的解。
33. 求一曲线,使其切线在纵轴上之截距等于切点的横坐标。
解: 设(,)p x y 为所求曲线上的任一点,则在p 点的切线l 在y 轴上的截距为:dy y xdx - 由题意得 dyy x x dx -= 即11dy y dx x=- 也即 ydx xdy dx -+=-两边同除以2x ,得2ydx xdy dxx x -+=-即 ()ln yd d x x=-即 ln y cx x x =+为方程的解。