1.2.2集合的运算1教案教师版
高中数学集合运算教案
高中数学集合运算教案
一、教学目标:
1. 理解集合及其基本概念;
2. 掌握集合之间的基本运算;
3. 能够应用集合运算解决实际问题。
二、教学重点:
1. 集合的定义和基本概念;
2. 并集、交集、差集和补集的运算规律;
3. 集合运算的应用。
三、教学内容:
1. 集合的定义和表示方法;
2. 集合之间的基本运算:并集、交集、差集和补集;
3. 集合运算的性质和规律。
四、教学过程:
1. 集合的定义和表示方法(10分钟)
教师介绍集合的概念,并举例说明集合的表示方法,如集合的写法和集合元素的描述。
2. 集合之间的基本运算(20分钟)
教师介绍并集、交集、差集和补集的定义,并通过实例演示如何进行这些运算。
3. 集合运算的性质和规律(15分钟)
教师讲解集合运算的性质和规律,如交换律、结合律、分配律等,并通过练习加深学生对
这些规律的理解。
4. 集合运算的应用(15分钟)
教师讲解如何利用集合运算解决实际问题,如概率、逻辑等方面的问题,并进行相关练习。
五、教学反馈:
教师对学生进行集合运算的练习,检验学生掌握情况,并及时纠正错误,强化学生对集合运算的理解。
六、作业布置:
布置相关的集合运算练习题,让学生巩固所学知识,并要求学生在下节课前完成。
七、拓展延伸:
引导学生拓展集合运算的相关知识,如集合的性质、集合与函数的关系等,并鼓励学生自主学习。
1.2.2 集合的运算 第1课时 交集与并集
1.2.2集合的运算第1课时交集与并集学习目标1.理解交集、并集的概念.2.会用符号、Venn图和数轴表示并集、交集.3.会求简单集合的并集和交集.知识点一交集思考一副扑克牌,既是红桃又是A的牌有几张?答案1张.红桃共13张,A共4张,其中两项要求均满足的只有红桃A一张.梳理 1.定义:对于两个给定的集合A,B,由属于A又属于B的所有元素构成的集合,叫做A,B的交集,记作A∩B,读作“A交B”.2.交集的符号语言表示为A∩B={x|x∈A且x∈B}.3.图形语言:,阴影部分为A∩B.4.性质:A∩B=B∩A,A∩A=A,A∩∅=∅∩A=∅,如果A⊆B,则A∩B=A.知识点二并集思考某次校运动会上,高一(1)班有10人报名参加田赛,有12人报名参加径赛.已知两项都报的有3人,你能算出高一(1)班参赛人数吗?答案19人.参赛人数包括参加田赛的,也包括参加径赛的,但由于元素互异性的要求,两项都报的不能重复计算,故有10+12-3=19(人).梳理 1.定义:对于两个给定的集合A,B,由两个集合的所有的元素组成的集合,叫做A与B的并集,记作A∪B,读作“A并B”.2.并集的符号语言表示为A∪B={x|x∈A或x∈B}.3.图形语言:、阴影部分为A∪B.4.性质:A∪B=B∪A,A∪A=A,A∪∅=∅∪A=A,如果A⊆B,则A∪B=B.1.若x∈A∩B,则x∈A∪B.( √)2.A∩B是一个集合.( √)3.如果把A,B用Venn图表示为两个圆,则两圆必须相交,交集才存在.( ×) 4.若A,B中分别有2个元素,则A∪B中必有4个元素.( ×)类型一交集的运算例1 (1)(2016·全国Ⅱ)已知集合A={1,2,3},B={x|(x+1)(x-2)=0,x∈Z},则A∩B 等于( )A.{1} B.{2}C.{-1,2} D.{1,2,3}考点交集的概念及运算题点有限集合的交集运算答案B-1,2,∴A∩B={}2解析由题得,B={}(2)若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于( )A.{0} B.{1}C.{0,1,2} D.{0,1}答案D解析M={x|-2≤x<2},N={0,1,2},则M∩N={0,1},故选D.(3)集合A={(x,y)|x>0},B={(x,y)|y>0},求A∩B并说明其几何意义.解A∩B={(x,y)|x>0且y>0},其几何意义为第一象限所有点的集合.反思与感悟求集合A∩B的步骤(1)首先要搞清集合A,B的代表元素是什么.(2)把所求交集的集合用集合符号表示出来,写成“A∩B”的形式.(3)把化简后的集合A,B的所有公共元素都写出来即可.跟踪训练1 (1)集合A={x|-2<x<3},B={x|x≤0或x>5},求A∩B;(2)集合A={x|2k<x<2k+1,k∈Z},B={x|1<x<6},求A∩B;(3)集合A={(x,y)|y=x+2},B={(x,y)|y=x+3},求A∩B.解(1)A∩B={x|-2<x≤0}.(2)A∩B={x|2<x<3或4<x<5}.(3)A∩B=∅.类型二并集的运算命题角度1 数集求并集例2 (1)(2017·全国Ⅱ)设集合A={1,2,3},B={2,3,4},则A∪B等于( ) A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}考点并集的概念及运算题点有限集合的并集运算答案A解析∵A={1,2,3},B={2,3,4},∴A∪B={1,2,3,4}.故选A.(2)A={x|-1<x<2},B={x|1<x<3},求A∪B.解如图,由图知A∪B={x|-1<x<3}.反思与感悟有限集求并集就是把两个集合中的元素合并,重复的保留一个;用不等式表示的,常借助数轴求并集.由于A∪B中的元素至少属于A,B之一,所以从数轴上看,至少被一道横线覆盖的数均属于并集.跟踪训练2 (1)A={-2,0,2},B={x|x2-x-2=0},求A∪B.解B={-1,2},∴A∪B={-2,-1,0,2}.(2)A={x|-1<x<2},B={x|x≤1或x>3},求A∪B.解如图:由图知A∪B={x|x<2或x>3}.命题角度2 点集求并集例3 集合A={(x,y)|x>0},B={(x,y)|y>0},求A∪B,并说明其几何意义.解A∪B={(x,y)|x>0或y>0}.其几何意义为平面直角坐标系内第一、二、四象限内的点.反思与感悟求并集要弄清楚集合中的元素是什么,是点还是数.跟踪训练3 A={(x,y)|x=2},B={(x,y)|y=2}.求A∪B,并说明其几何意义.解A∪B={(x,y)|x=2或y=2},其几何意义是直线x=2和直线y=2上所有的点组成的集合.类型三并集、交集性质的应用例4 设集合A={x|x+1≤0或x-4≥0},B={x|2a≤x≤a+2,x∈R}.(1)若A∩B≠∅,求实数a的取值范围;(2)若A∩B=B,求实数a的取值范围.考点交集的概念及运算题点 由交集的运算结果求参数的值 解 ∵A ={x |x +1≤0或x -4≥0}, ∴A ={x |x ≤-1或x ≥4}. (1)∵A ∩B ≠∅,∴⎩⎨⎧2a ≤a +2,a +2≥4或⎩⎨⎧2a ≤a +2,2a ≤-1,∴⎩⎨⎧a ≤2,a ≥2或⎩⎪⎨⎪⎧a ≤2,a ≤-12,∴a =2或a ≤-12.∴a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a =2或a ≤-12. (2)由A ∩B =B 知,B ⊆A ,有三种情况:①⎩⎨⎧2a ≤a +2,a +2≤-1,解得a ≤-3;②⎩⎨⎧2a ≤a +2,2a ≥4,解得a =2;③B =∅,则2a >a +2,解得a >2. ∴a 的取值范围为{a |a ≤-3或a ≥2}.反思与感悟 解决此类题,首先要准确翻译,诸如“A ∪B =B ”之类的条件.在翻译成子集关系后,不要忘了空集是任何集合的子集.跟踪训练4 若集合A ,B ,C 满足A ∩B =A ,B ∪C =C ,则A 与C 一定满足( )A.A C B.C A C.A⊆C D.C⊆A考点集合的交集、并集性质及应用题点交集、并集的性质答案C解析A∩B=A⇔A⊆B,B∪C=C⇔B⊆C,所以A⊆C.1.已知集合M={-1,0,1},N={0,1,2},则M∪N等于( ) A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}答案B2.已知集合A={x|x2-3x=0},B={2,3,4},则A∩B等于( ) A.{3} B.{3,4}C.{0,3} D.{2,3}答案A3.已知集合A={x|x>1},B={x|0<x<2},则A∪B等于( )A.{x|x>0} B.{x|x>1}C.{x|1<x<2} D.{x|0<x<2}答案A4.已知A={x|x≤0},B={x|x≥1},则集合A∩B等于( )A.∅B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案A5.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于( )A.0或 3 B.0或3C.1或 3 D.1或3答案B1.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A,B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.课时对点练一、选择题1.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是( )A.N⊆M B.M∪N=MC.M∩N=N D.M∩N={2}答案D解析∵-2∈N,但-2∉M,∴A,B,C三个选项均不对.2.若集合M={x|-3≤x<4},N={-3,1,4},则M∩N等于( )A.{-3} B.{1}C.{-3,1,4} D.{-3,1}解析M={x|-3≤x<4},N={-3,1,4},则M∩N={-3,1},故选D.3.已知集合A={x|-1≤x≤1}和集合B={y|y=x2},则A∩B等于( )A.{y|0<y<1}B.{y|0≤y≤1}C.{y|y>0}D.{(0,1),(1,0)}答案B解析∵B={y|y=x2},∴B={y|y≥0},A∩B={y|0≤y≤1}.4.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N等于( ) A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}考点交集的概念及运算题点无限集合的交集运算答案A解析集合M={x|-1<x<3,x∈R},N={-1,0,1,2,3},则M∩N={0,1,2},故选A. 5.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠∅,若A∪B=A,则( ) A.-3≤m≤4B.-3<m<4C.2<m<4 D.2<m≤46.若集合A={x|x≥0},且A∩B=B,则集合B可能是( )A.{1,2} B.{x|x≤1}C.{-1,0,1} D.R答案A解析∵A∩B=B,∴B⊆A,四个选项中,符合B⊆A的只有选项A.二、填空题7.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有________个.答案2解析∵A={0,1,2,x},B={1,x2},A∪B=A,∴B⊆A,∴x2=0或x2=2或x2=x,解得x=0或2或-2或1.经检验当x=2或-2时满足题意.8.已知集合P={x||x|>x},Q={x|y=1-x},则P∩Q=________.答案{x|x<0}解析∵|x|>x⇒x<0,∴P={x|x<0},∵1-x≥0⇒x≤1,∴Q={x|x≤1},9.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围是________. 答案 {a |a ≤1}解析 A ={x |x ≤1},B ={x |x ≥a },要使A ∪B =R ,只需a ≤1.如图.10.已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z },则A ∩B =________.答案 {(0,1),(-1,2)}解析 A ,B 都表示点集,A ∩B 即是由A 中在直线x +y -1=0上的所有点组成的集合,代入验证即可.三、解答题11.已知集合A =⎩⎨⎧ x ⎪⎪⎪ ⎩⎨⎧⎭⎬⎫3-x >0,3x +6>0,集合B ={m |3>2m -1},求A ∩B ,A ∪B .解 解不等式组⎩⎨⎧ 3-x >0,3x +6>0,得-2<x <3,解不等式3>2m -1得m <2,则B ={m |m <2}.用数轴表示集合A 和B ,如图所示,则A ∩B ={x |-2<x <2},A ∪B ={x |x <3}.12.已知集合A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)若A ∩B ={x |1≤x ≤3},求实数m 的值;(2)若A ∩B =∅,求实数m 的取值范围.解 A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B ={x |1≤x ≤3},∴⎩⎨⎧ m -2=1,m +2≥3,解得m =3.(2)∵A ∩B =∅,A ⊆{x |x <m -2或x >m +2}.∴m -2>3或m +2<-1.∴实数m 的取值范围是{m |m >5或m <-3}.13.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人? 解 设参加数学、物理、化学小组的人数构成的集合分别为A ,B ,C ,同时参加数学和化学小组的有x 人,由题意可得如图所示的Venn 图.由全班共36名同学参加课外探究小组可得(26-6-x )+6+(15-10)+4+(13-4-x )+x =36,解得x =8,即同时参加数学和化学小组的有8人.四、探究与拓展14.已知集合A ={(x ,y )|y =x 2,x ∈R },B ={(x ,y )|y =x ,x ∈R },则A ∩B 中的元素个数为________.答案 2解析 由⎩⎨⎧ y =x 2,y =x ,得⎩⎨⎧ x =0,y =0或⎩⎨⎧ x =1,y =1.15.已知集合A ={x |x 2-8x +15=0},B ={x |x 2-ax -b =0}.(1)若A ∪B ={2,3,5},A ∩B ={3},求a ,b 的值;(2)若∅B A ,求实数a ,b 的值.解 (1)因为A ={3,5},A ∪B ={2,3,5},A ∩B ={3},所以3∈B,2∈B ,故2,3是一元二次方程x 2-ax -b =0的两个实数根, 所以a =2+3=5,-b =2×3=6,b =-6.(2)由∅B A ,且A ={3,5},得B ={3}或B ={5}.当B ={3}时,解得a =6,b =-9;当B ={5}时,解得a =10,b =-25.综上,⎩⎨⎧ a =6,b =-9或⎩⎨⎧ a =10,b =-25.。
数学高中集合运算教案设计
数学高中集合运算教案设计
教学目标:
1. 理解集合的概念和基本运算法则
2. 掌握集合的并、交、差等运算方法
3. 能够用集合运算解决简单的实际问题
教学重点和难点:
重点:集合的概念和运算法则
难点:运用集合运算解决实际问题
教学准备:教学课件、习题集、黑板、粉笔
教学过程:
一、导入(5分钟)
教师简要介绍集合的概念,引出集合运算的内容,并提出今天的学习目标。
二、讲解与演示(15分钟)
1. 讲解集合的并、交、差等运算方法,并通过例题进行演示。
2. 引导学生理解集合运算的基本思想和运算规则。
三、练习与讨论(20分钟)
1. 让学生在黑板上进行练习,练习集合的并、交、差等运算。
2. 学生进行小组讨论,讨论集合运算的应用场景,并分享自己的解题思路。
四、展示与总结(10分钟)
1. 随机选几组学生展示他们的解题过程和答案。
2. 教师总结集合运算的要点,并强调学生在今后的学习和应用中需要重点掌握的内容。
五、作业布置(5分钟)
布置相关的习题作业,要求学生在家继续巩固和深化对集合运算的理解和掌握。
教学反馈:
教师可以通过批改作业和学生的课堂表现来评估学生对集合运算的掌握程度,及时纠正学生的错误并给予指导。
1.2.2集合的基本运算(1)
例 2.已知全集 U={x|x 取不大于 30 的质数},A、B 是 U 的两个子集,且 A∩CUB={5,13,23},CUA∩B={11,19,29}, CUA∩CUB={3,7},求 A,B.
例 3.设集合 A={|a+1|,3,5},集合 B={2a+1,a +2a,a +2a—1},当 A∩B={2,3}时,求 A∪B
n=
2、设集合 A={x|2x +3px+2=0},B={x|2x +x+q=0},其中 p,q,x∈R,且 A∩B={
2
2
1 }时,求 p 的值和 A∪B 2
3、设集合 A={x|x +2(a+1)x+a —1=0},B={x|x +4x=0} ⑴若 A∩B=A,求 a 的值;⑵若 A∪B=A,求 a 的值
2
2
例 5.已知 A x x 3 , B x x a .⑴若 B A ,求 a 的取值范围;⑵若 A B ,求 a 的取值范围;
四、课堂练习: 1.设 A= 1,3 ,B= 2,4 ,求 A∩B 2.设 A= 0,1 ,B={0},求 A∪B
3.在平面内,设 A、B、O 为定点,P 为动点,则下列集合表示什么图形 (1){P|PA=PB} (2) {P|PO=1}
B,求实数 a 的取值范围 2.已知集合 A= 1,4 , B= , a ,若 A ≠
3.求满足{1,3}∪A={1,3,5}中的集合 A
4.设 A={x|x —x—2=0},B= 2,2,求 A∩B
2
5、设 A={(x,y)| 4x+m y =6},B={(x,y)|y=nx—3 }且 A∩B={(1,2)},则 m= 六、课后作业: 2 1、已知 A={2,—1,x —x+1},B={2y,—4,x+4},C={—1,7}且 A∩B=C,求 x,y 的值
集合的运算教案
集合的运算教案【篇一:集合的运算教案】1【引课】师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”.师:“物以类聚”;“人以群分”;这些都给我们以集合的印象.引入课题【新授】课件展示引例:(1) 某学校数控班学生的全体; (2) 正数的全体;(3) 平行四边形的全体; (4) 数轴上所有点的坐标的全体 1. 集合的概念.(1) 一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2) 构成集合的每个对象都叫做集合的元素.(3) 集合与元素的表示方法:一个集合,通常用大写英文字母a,b,c,…表示,它的元素通常用小写英文字母 a,b,c,? 表示. 2. 元素与集合的关系.(1) 如果 a 是集合 a 的元素,就说a属于a,记作a∈a,读作“a属于a”. (2)如果a不是集合a的元素,就说a不属于a,记作a ? a.读作“a不属于a”. 3. 集合中元素的特性.(1) 确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2) 互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象. 4. 集合的分类.(1) 有限集:含有有限个元素的集合叫做有限集. (2) 无限集:含有无限个元素的集合叫做无限集. 5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作 n;(2) 正整数集:非负整数集内排除0的集合,记作 n+或 n*; (3) 整数集:整数全体构成的集合,记作 z; (4) 有理数集:有理数全体构成的集合,记作 q; (5) 实数集:实数全体构成的集合,记作 r.【稳固】例1 判断以下语句能否构成一个集合,并说明理由.(1) 小于 10 的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生; (3) 英文的 26 个大写字母; (4) 非常接近 1 的实数.练习1 判断以下语句是否正确:(1) 由2,2,3,3构成一个集合,此集合共有4个元素; (2) 所有三角形构成的集合是无限集;(3) 周长为20 cm 的三角形构成的集合是有限集; (4) 如果a ∈ q,b ∈ q,则 a+b ∈ q.例2 用符号“∈”或“?”填空:n,n,-,n;,z,-z,;,q,-,;,,-r,.练习2 用符号“∈”或“?”填空:1(1) -;q;(3) z;31(4) -;(5);2【小结】1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.【作业】教材p4,练习a组第1~3题浙江省衢州中等专业学校课时工作计划2【引课】1. 集合、元素、有限集和无限集的概念是什么?2. 用符号“∈”与“?”填空白:n;(2) -2 q; (3)-2 .师:刚刚复习了集合的有关概念,这节课我们一起研究如何将集合表示出来.【新授】1. 列举法.当集合元素不多时,我们常常把集合的元素列举出来,写在大括号“{}”内表示这个集合,这种表示集合的方法叫列举法.例如,由1,2,3,4,5,6这6个数组成的集合,可表示为:{1,2,3,4,5,6}.又如,中国古代四大发明构成的集合,可以表示为: {指南针,造纸术,活字印刷术,火药}.有些集合元素较多,在不发生误解的情况下,可列几个元素为代表,其他元素用省略号表示.如:小于100的自然数的全体构成的集合,可表示为 {0,1,2,3,?,99}.例1 用列举法表示以下集合:(1) 所有大于3且小于10的奇数构成的集合;(2) 方程 x2-5 x+6=0的解集.解 (1) {5,7,9};(2) {2,3}.练习1 用列举法表示以下集合:(1) 大于3小于9的自然数全体; (2) 绝对值等于1的实数全体; (3) 一年中不满31天的月份全体; (4) 大于3.5且小于12.8的整数的全体. 2. 性质描述法.给定 x 的取值集合 i,如果属于集合 a 的任意元素 x 都具有性质p(x),而不属于集合 a 的元素都不具有性质p(x),则性质 p(x)叫做集合a的一个特征性质,于是集合 a 可以用它的特征性质描述为{x∈i | p(x)} ,它表示集合 a是由集合 i 中具有性质 p(x)的所有元素构成的.这种表示集合的方法,叫做性质描述法.使用特征性质描述法时要注意: (1) 特征性质明确;(2) 假设元素范围为 r,“x∈r”可以省略不写.【稳固】例2 用性质描述法表示以下集合:(1) 大于3的实数的全体构成的集合;【篇二:集合间的基本运算教案】集合间的基本运算教学设计〔〕授课人:伊西凡学号:2013012402数学与统计学院2013级集合间的基本运算教学设计〔〕【篇三:1.2.2集合的运算教案】1.2.2 集合的运算〔第一课时〕〔一〕教学目标1.知识与技能〔1〕理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.〔2〕能使用venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。
集合的基本运算教案1
课题:集合的基本运算(一)课型:新授课课时:1课时教学目标:(1)知识与技能目标:理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;会用Venn图表示集合关系;(2)过程与方法目标:应用自然语言与集合语言描述不同的具体问题,掌握用图形来解决集合问题,数形结合的思想方法;(3)情感态度与价值观目标:使得学生感受数学的简洁美与和谐统一美,培养学生正确的、高尚的、唯物的价值观,培养学生独立思考、敢于创新、勇于探索的科学精神,激发同学们学习数学的兴趣;教学重点:集合的交集与并集概念;教学难点:集合的交集与并集“是什么”,“为什么”,“怎样做”;教学准备:计算机、多媒体辅助教学教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。
二、新课教学——————————————第 1 页(共5页)————————————————————————————第 2 页 (共 5页)——————————————1. 并集一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(Union )记作:A ∪B 读作:“A 并B ”即: A ∪B={x|x ∈A ,或x ∈B}Venn 图表示:说明:两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。
例题(P 9-10例4、例5)说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:在上图中我们除了研究集合A 与B 的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A 与B 的交集。
2. 交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集 A ∪BB A ?——————————————第 3 页 (共 5页)——————————————合A 与B 的交集(intersection )。
集合的运算 教案
集合的运算教案教案标题:集合的运算教学目标:1. 理解集合的基本概念和符号表示法。
2. 掌握集合的交集、并集和补集的运算方法。
3. 能够应用集合的运算解决实际问题。
教学准备:1. 教学课件或黑板、白板。
2. 学生练习册或工作纸。
3. 实际生活中的例子和问题。
教学过程:一、导入(5分钟)1. 引入集合的概念,通过提问学生对集合的理解。
2. 提示学生集合的符号表示法,并举例说明。
二、讲解集合的基本运算(15分钟)1. 介绍集合的交集、并集和补集的概念,并用符号表示。
2. 讲解交集的定义和运算方法,并通过示意图展示。
3. 讲解并集的定义和运算方法,并通过示意图展示。
4. 讲解补集的定义和运算方法,并通过示意图展示。
三、练习集合的运算(20分钟)1. 给学生提供一些集合的实际例子,要求他们进行交集、并集和补集的计算。
2. 引导学生分析实际问题,将其转化为集合运算的问题,并解决。
四、巩固与拓展(10分钟)1. 提供一些更复杂的集合运算问题,让学生进行思考和解答。
2. 引导学生思考集合运算在实际生活中的应用,并提供相应的例子。
五、总结与评价(5分钟)1. 总结集合的基本运算方法和应用。
2. 对学生的学习情况进行评价,并鼓励他们继续探索集合的运算。
教学延伸:1. 鼓励学生自主学习更高级的集合运算,如差集和对称差等。
2. 提供更多的实际问题,让学生应用集合的运算解决。
教学反思:本教案通过导入、讲解、练习、巩固与拓展等环节,循序渐进地引导学生理解集合的运算方法,并能够应用于实际问题中。
在教学过程中,教师可以根据学生的实际情况进行适当的调整和扩展,以提高学生的学习兴趣和主动性。
同时,教师还可以引导学生思考集合运算在其他学科和生活中的应用,培养学生的综合运算能力。
集合的基本运算【课时教学设计】-高中数学新教材必修第一册
1.3.1集合的基本运算(1)课时教学设计一、课题:集合的基本运算(1)二、教学内容1.集合并集的含义与运算;2.集合交集的含义与运算;3.区分交、并运算的运算符号,会进行简单的离散型和连续型集合的交、并运算.三、教学目标学生能通过类比实数运算,结合具体实例,能理解集合并集、交集运算的含义,掌握简单的集合运算,并学会使用Venn图、数轴等几何方法表达集合的关系及运算,体会直观图示对理解抽象概念的作用,从而体会数形结合在理解集合中的重要作用,发展学生数学运算的核心素养.四、教学重难点教学重点:理解并集、交集的含义,并会进行简单的集合基本运算.教学难点:区分交、并集运算符号,掌握集合的交、并运算.五、教学设计过程问题1:我们知道,实数有加法运算,两个实数可以相加,集合是否也有类似的运算呢?请同学们考察下列两组集合,你能说出集合C与集合A,B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.师生活动:引导学生通过观察集合,并借助Venn图得出集合间的关系,并发现集合C的元素全部由集合A,B 构成,并且没有元素不属于集合A,B.设计意图:学生通过观察具体集合,发现集合并集的运算实质,获得数学活动经验,回顾上节知识的同时也回顾了数形结合解决问题的思想.追问:你能用集合的语言描述集合C与集合A,B之间的关系吗?师生活动:学生尝试将自然语言转化为集合语言,老师进行必要的指导和补充.设计意图:让学生学会用数学的语言来描述数学问题,获得概念的严谨表述.并集概念:一般地,由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的并集,记作:A∪B;读作“A并B”.用描述法表示为A∪B ={x|x∈A,或x∈B}.Venn图表示为:例1:设A ={4,5,6,8},B ={3,5,7,8},求A∪B.解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.设计意图:通过具体例题,深化并集概念,练习离散集合的并集运算.例2:设集合A ={x| –1<x<2},集合B ={x| 1<x<3},求A∪B.解:用数轴表示:则A∪B={x| –1<x<2}∪{x| 1<x<3}={x| –1<x<3}追问:若中间−1、2两个虚点变为实点后结果改变了吗?师生活动:学生思考后回答.设计意图:让学生做题时注意把握细节,并体会集合端点对集合并集结果的影响.问题2:下列关系式成立吗?(1)A∪A=A (2)A∪∅=A师生活动:学生根据并集的概念思考后易得到答案.设计意图:让学生体会特殊集合的并集运算,考虑问题中特殊情况的处理.追问:若A⊆B则A∪B=?师生活动:可以引导学生借助Venn图来理解和解决问题.设计意图:在问题2的基础上,继续让学生进一步理解并集概念,了解集合间的关系与集合运算的联系,并学会用Venn图来直观的研究问题.问题3:考察下面的问题,集合A,B与集合C之间有什么关系?(1)A={2,4,6,8,10}, B={3,5,8,12} ,C={8}(2)A={x |x是立德中学今年在校的女同学},B={x |x是立德中学今年在校的高一年级同学},C={x |x是立德中学今年在校的高一年级女同学}.师生活动:学生观察两组集合,发现集合C中的元素是由集合A,B中共有的元素组成的,引导学生注意并且不能有漏掉的.如果学生总结不严谨,可以给出集合D={x |x是立德中学今年在校的身高超过170cm的高一年级女同学},通过比较C与D的不同点,来引导、帮助学生更加严谨地归纳总结交集的概念,强调是集合C是由属于集合A且又属于集合B的所有元素组成.设计意图:通过给出两个实例,让学生们自己观察并交流,找出集合A,B与集合C之间的关系,通过模仿上面并集的概念,锻炼了学生观察、类比以及总结的能力.交集概念:一般地,由属于集合A且属于集合B的所有元素组成的集合,成为A与B的交集,记作A∩B,读作“A交B”.用描述法表示为:A∩B ={x|x∈A且x∈B}用Venn图表示为:例3:立德中学开运动会,设A={x |x是立德中学高一年级参加百米赛跑的同学},B={x |x是立德中学高一年级参加跳高比赛的同学},求A∩B.解:A∩B就是立德中学高一年级中既参加百米赛跑又加跳高比赛的同学组成的集合.所以,A∩B={x |x是立德中学高一年级既参加百米赛跑又参加跳高比赛的同学}.例4:设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1和 l2的位置关系.解:平面内直线l1和 l2可能有三种位置关系,即相交于一点,平行或重合.(1)直线l1和 l2相交于一点P,可表示为L1∩ L2={点P};(2)直线l1和 l2平行可表示为L1∩ L2=∅;(3)直线l1和 l2重合可表示为L1∩ L2=L1=L2.设计意图:学生通过应用交集运算解决实际问题和几何问题,巩固了对交集概念的理解,实现了交集运算的实际应用,同时也考察了学生分类讨论的能力.问题4:下列交集运算的结果是什么呢?(1)A∩A=?(2)A∩∅=?(3)若A⊆B,则A∩B=?师生活动:学生借助Venn图,思考讨论后给出答案.设计意图:让学生在问题2和交集概念的基础上,类比并集的概念,加强概念横向间的联系.问题5:请同学们对比交集和并集的概念,从文字上面能发现什么不同吗?师生活动:学生指出交集中使用的是“且”字,并集中使用的是“或”字.设计意图:让学生对比交集和并集的概念,加强概念横向间的对比.追问:如果我们称大于3或大于5的实数为集合A,那么3是集合A的元素吗?5呢?6呢?这三个元素有什么不同呢?师生活动:学生经讨论后发现,3不是集合A的元素,5和6是集合A的元素,其中3不满足大于3也不满足大于5,5只满足其中第一个,6两个都满足。
教学设计1:1.2.2 集合的运算 第2课时-补集及综合应用
§1.2.2 集合的运算第2课时补集及综合应用一. 教学目标:1. 知识与技能(1)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(2)能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.2. 过程与方法学生通过观察和类比,借助Venn图理解集合的基本运算.3.情感.态度与价值观(1)进一步树立数形结合的思想.(2)进一步体会类比的作用.(3)感受集合作为一种语言,在表示数学内容时的简洁和准确.二.教学重点.难点重点:全集与补集的概念.难点:理解交集与并集的概念.符号之间的区别与联系.三.学法与教学用具1.学法:学生借助Venn图,通过观察.类比.思考.交流和讨论等,理解集合的基本运算.2.教学用具:投影仪.四. 教学过程导入新课-)=0,其结果会相同吗?问题:①分别在整数范围和实数范围内解方程(x-3)(x3②若集合A={x|0<x<2,x∈Z},B={x|0<x<2,x∈R},则集合A、B相等吗?学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范围”问题就是本节学习的内容,引出课题.推进新课新知探究提出问题①用列举法表示下列集合:A ={x ∈Z |(x -2)(x +31)(x 2-)=0};B ={x ∈Q |(x -2)(x +31)(x 2-)=0}; C ={x ∈R |(x -2)(x +31)(x 2-)=0}. ②问题①中三个集合相等吗?为什么?③由此看,解方程时要注意什么?④问题①,集合Z ,Q ,R 分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.⑤已知全集U ={1,2,3},A ={1},写出全集中不属于集合A 的所有元素组成的集合B. ⑥请给出补集的定义.⑦用Venn 图表示 A.活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围.讨论结果:①A ={2},B ={2,31-},C ={2,31-,2}. ②不相等,因为三个集合中的元素不相同.③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同. ④一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U .⑤B ={2,3}.⑥对于一个集合A ,全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集.集合A 相对于全集U 的补集记为A ,即A ={x |x ∈U ,且x A }.⑦如图1-1-3-9所示,阴影表示补集.图1-1-3-9例题精讲1.设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求A, B.活动:让学生明确全集U中的元素,回顾补集的定义,用列举法表示全集U,依据补集的定义写出A, B.解:根据题意,可知U={1,2,3,4,5,6,7,8},所以A={4,5,6,7,8};B={1,2,7,8}.点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果.常见结论:(A∩B)=(A)∪(B);(A∪B)=(A)∩(B).变式训练1.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A)∩(B)等于( )A.{1,6}B.{4,5}C.{2,3,4,5,7}D.{1,2,3,6,7}分析:思路一:观察得(A)∩(B)={1,3,6}∩{1,2,6,7}={1,6}.思路二:A∪B={2,3,4,5,7},则(A)∩(B)=(A∪B)={1,6}.答案:A2设集合U={1,2,3,4,5},A={1,2,4},B={2},则A∩(B)等于( )A.{1,2,3,4,5}B.{1,4}C.{1,2,4}D.{3,5}答案:B3.设全集U={1,2,3,4,5,6,7},P={1,2,3,4,5},Q={3,4,5,6,7},则P∩( Q)等于( )A.{1,2}B.{3,4,5}C.{1,2,6,7}D.{1,2,3,4,5}答案:A4.设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形}.求A∩B,(A ∪B).活动:学生思考三角形的分类和集合的交集、并集和补集的含义.结合交集、并集和补集的含义写出结果.A ∩B 是由集合A ,B 中公共元素组成的集合,(A ∪B )是全集中除去集合A ∪B 中剩下的元素组成的集合.解:根据三角形的分类可知A ∩B =∅,A ∪B ={x |x 是锐角三角形或钝角三角形},(A ∪B )={x |x 是直角三角形}. 变式训练1.已知集合A ={x |3≤x <8},求 A.解:A ={x |x <3或x ≥8}.2.设S ={x |x 是至少有一组对边平行的四边形},A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},求B ∩C ,B , A.解:B ∩C ={x |正方形},B ={x |x 是邻边不相等的平行四边形},A ={x |x 是梯形}.3.已知全集I =R ,集合A ={x |x 2+ax +12b =0},B ={x |x 2-ax +b =0},满足(A )∩B ={2},(B )∩A ={4},求实数a 、b 的值.答案:a =78,b =712-. 4.设全集U =R ,A ={x |x ≤2+3},B ={3,4,5,6},则(A )∩B 等于…( ) A.{4} B.{4,5,6} C.{2,3,4} D.{1,2,3,4} 分析:∵U =R ,A ={x |x ≤2+3},∴A ={x |x >2+3}.而4,5,6都大于2+3,∴(A )∩B ={4,5,6}. 答案:B知能训练课本P 11练习4.【补充练习】1.设全集U =R ,A ={x |2x +1>0},试用文字语言表述A 的意义.解:A ={x |2x +1>0}即不等式2x +1>0的解集,A 中元素均不能使2x +1>0成立,即A 中元素应当满足2x+1≤0.∴A即不等式2x+1≤0的解集.2.如图1-1-3-14所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是_______.图1-1-3-14分析:观察图可以看出,阴影部分满足两个条件:一是不在集合S内;二是在集合M,P的公共部分内,因此阴影部分表示的集合是集合S的补集与集合M,P的交集的交集,即( S)∩(M∩P).答案:(S)∩(M∩P)3.设集合A、B都是U={1,2,3,4}的子集,已知(A)∩(B)={2},(A)∩B={1},则A 等于( )A.{1,2}B.{2,3}C.{3,4}D.{1,4}分析:如图1-1-3-15所示.图1-1-3-15由于(A)∩(B)={2},(A)∩B={1},则有A={1,2}.∴A={3,4}.答案:C4.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(S∪T)等于( )A. B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}分析:直接观察(或画出Venn图),得S∪T={1,3,5,6},则(S∪T)={2,4,7,8}.答案:B5.已知集合I={1,2,3,4},A={1},B={2,4},则A∪(B)等于( )A.{1}B.{1,3}C.{3}D.{1,2,3}分析:∵B={1,3},∴A∪(B)={1}∪{1,3}={1,3}.答案:B拓展提升问题:某班有学生50人,解甲、乙两道数学题,已知解对甲题者有34人,解对乙题者有28人,两题均解对者有20人,问:(1)至少解对其中一题者有多少人?(2)两题均未解对者有多少人?分析:先利用集合表示解对甲、乙两道数学题各种类型,然后根据题意写出它们的运算,问题便得到解决.解:设全集为U,A={只解对甲题的学生},B={只解对乙题的学生},C={甲、乙两题都解对的学生},则A∪C={解对甲题的学生},B∪C={解对乙题的学生},A∪B∪C={至少解对一题的学生},(A∪B∪C)={两题均未解对的学生}.由已知,A∪C有34个人,C有20个人,从而知A有14个人;B∪C有28个人,C有20个人,所以B有8个人.因此A∪B∪C有N1=14+8+20=42(人),(A∪B∪C)有N2=50-42=8(人).∴至少解对其中一题者有42个人,两题均未解对者有8个人.课堂小结本节课学习了:①全集和补集的概念和求法.②常借助于数轴或Venn图进行集合的补集运算.作业课本P12习题1.1A组9、10,B组4.设计。
《集合的运算》教学设计 李响大连24中学
课题:《集合的运算》大连市第二十四中学李响《集合的运算——交集与并集》教学设计一.教材分析集合的运算是学生进入高中学习的第一种运算,较初中学习过的数式的运算更为抽象,也不同于之后高中将学习的复数的运算、三角的运算及向量的运算等。
同时集合作为一种数学语言,尤其是集合的关系与运算贯穿于高中数学学习的全过程。
本节课基于学生已有的认知基础,通过创设问题情境,让学生在探究中经历知识的“再创造”过程,帮助学生实现思维的跨越,使其知其然更知其所以然,为学生后续的高中数学学习奠定扎实的基础。
二.学情分析高中阶段是学生连贯逻辑思维形成的时期,集合这部分内容为培养学生清晰而有条理地表达自己的数学思想,倾听别人的意见,学会正确使用数学符号、数学语言提供了平台。
东北育才高中是辽宁省示范性高中,学生的数学基础与能力相对较好。
基于以往的教学实践,除个别学生在表达集合运算的结果时没有养成写成集合的形式之外,对绝大多数学生来说,借助维恩图,理解“交、并”运算的意义,完成课本练习中集合的基本运算,应该不会有太大障碍。
三.教学目标分析根据学生的认知水平和教材内容,确立本节课的三维教学目标为:1.知识与技能目标(1)理解交集和并集的含义,会求两个简单集合的交集和并集。
(2)体会集合运算的内涵。
2.过程与方法目标(1)经历集合运算的生成过程,体会数形结合的思想和类比的方法。
(2)将知识问题化,学生通过问题回顾、问题提出、问题发现、问题升华、问题研判、问题解决对知识深入理解与研究,提高分析问题和解决问题的能力。
3.情感、态度与价值观目标学生通过集合运算知识体系的自主建构及实际应用,感悟数学的魅力与价值。
四.教学重点、难点分析教学重点:用自然语言、符号语言、图形语言定义集合运算中的交集与并集教学难点:交集与并集符号之间的区别与联系五.学法与教法分析教法分析(1)引导——探究式(2)合作——交流式新课程标准要求在教学过程中要以学生主动参与为主,学生的自主探究和合作学习显得格外重要。
高一数学人教B版必修1:1.2.2 集合的运算(一) 学案
1.2.2集合的运算(一)自主学习学习目标1.理解并集、交集的含义,会求两个简单集合的并集与交集.2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自主探究能力.3.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.自学导引1.一般地,对于两个给定的集合A,B,由________________的所有元素构成的集合,称为集合A与B的交集,记作________(读作“A交B”),即A∩B=________________.2.一般地,对于两个给定的集合A,B,由两个集合的________________构成的集合,称为集合A与B的并集,记作__________(读作“A并B”),即A∪B=______________.3.A∩A=________,A∪A=__________,A∩∅=__________,A∪∅=________.4.若A⊆B,则A∩B=________,A∪B=________.5.A∩B________A,A∩B________B,A________A∪B,A∩B________A∪B.对点讲练知识点一求两个集合的交集与并集例1 求下列两个集合的并集和交集.(1)A={1,2,3,4,5},B={-1,0,1,2,3};(2)A={x|x<-2},B={x|x>-5}.规律方法求两个集合的交集、并集依据它们的定义,借用Venn图或结合数轴分析两个集合的元素的分布情况,有利于准确写出交集、并集.变式迁移1 (1)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A.{x|x>-2} B.{x|x>-1}C.{x|-2<x<-1} D.{x|-1<x<2}(2)若将(1)中A改为A={x|x>a},求A∪B,A∩B.知识点二已知集合的交集、并集求参数例2 已知A={x|2a≤x≤a+3},B={x|x<-1或x>5}.(1)若A∩B=∅,求a的取值范围;(2)若A∪B=R,求a的取值范围.规律方法出现交集为空集的情形,应首先考虑集合中有没有空集,即分类讨论.其次,与不等式有关的集合的交、并运算中,数轴分析法直观清晰,应重点考虑.变式迁移2 已知集合A={x|2<x<4},B={x|a<x<3a}.(1)若A∩B=∅,试求a的取值范围;(2)若A∩B={x|3<x<4},试求a的取值范围.知识点三交集、并集性质的运用例3 已知集合A={x|1<ax<2},B={x||x|<1},且满足A∪B=B,求实数a的取值范围.规律方法明确A∩B=B和A∪B=B的含义,根据问题的需要,将A∩B=B和A∪B =B转化为等价的关系式B⊆A和A⊆B是解决本题的关键.另外在B⊆A时易忽视B=∅时的情况.变式迁移3 设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.1.A∪B的定义中“或”的意义与通常所说的“非此即彼”有原则的区别,它们是“相容”的.求A∪B时,相同的元素在集合中只出现一次.2.A∩B=A⇔A⊆B,A∪B=B⇔A⊆B,这两个性质非常重要.另外,在解决有条件A ⊆B的集合问题时,不要忽视A=∅的情况.课时作业一、选择题1.设集合A={x|-5≤x<1},B={x|x≤2},则A∩B等于()A.{x|-5≤x<1} B.{x|-5≤x≤2}C.{x|x<1} D.{x|x≤2}2.下列四个推理:①a∈(A∪B)⇒a∈A;②a∈(A∩B)⇒a∈(A∪B);③A⊆B⇒A∪B=B;④A∪B=A⇒A∩B=B.其中正确的个数是()A.1 B.2 C.3 D.43.设A={x|1≤x≤3},B={x|x<0或x≥2},则A∪B等于()A.{x|x<0或x≥1} B.{x|x<0或x≥3}C.{x|x<0或x≥2} D.{x|2≤x≤3}4.已知A={x|x≤-1或x≥3},B={x|a<x<4},若A∪B=R,则实数a的取值范围是() A.3≤a<4 B.-1<a<4C.a≤-1 D.a<-15.满足条件M∪{1}={1,2,3}的集合M的个数是()A.1 B.2 C.3 D.4二、填空题6.已知A={(x,y)|x+y=3},B={(x,y)|x-y=1},则A∩B=________.7.设集合A={x|-1≤x<2},B={x|x≤a},若A∩B≠∅,则实数a的取值范围为________.8.已知集合A={x|x<1或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=________.三、解答题9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.10.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.【探究驿站】11.求满足P∪Q={1,2}的集合P,Q共有多少组?1.2.2集合的运算(一) 答案自学导引1.属于A又属于B A∩B{x|x∈A,且x∈B}2.所有元素A∪B{x|x∈A,或x∈B}.3.A A∅A4.A B5.⊆⊆⊆⊆对点讲练例1 解(1)如图所示,A∪B={-1,0,1,2,3,4,5},A∩B={1,2,3}.(2)结合数轴(如图所示)得:A∪B=R,A∩B={x|-5<x<-2}.变式迁移1 (1)A [画出数轴,故A ∪B ={x |x >-2}.](2)解 如图所示,当a <-2时,A ∪B =A ,A ∩B ={x |-2<x <2};当-2≤a <2时,A ∪B ={x |x >-2},A ∩B ={x |a <x <2};当a ≥2时,A ∪B ={x |-2<x <2或x >a },A ∩B =∅.例2 解 (1)由A ∩B =∅,①若A =∅,有2a >a +3,∴a >3.②若A ≠∅,如图:∴⎩⎪⎨⎪⎧ 2a ≥-1a +3≤52a ≤a +3,解得-12≤a ≤2. 综上所述,a 的取值范围是{a |-12≤a ≤2或a >3}. (2)由A ∪B =R ,如图所示,∴⎩⎪⎨⎪⎧ 2a ≤-1a +3≥5,解得a ∈∅. 变式迁移2 解 (1)如图,有两类情况,一类是B ≠∅⇒a >0.此时,又分两种情况:①B 在A 的左边,如图B 所示; ②B 在A 的右边,如图B ′所示.B 或B ′位置均使A ∩B =∅成立,即3a ≤2或a ≥4,解得0<a ≤23,或a ≥4. 另一类是B =∅,即a ≤0时,显然A ∩B =∅成立.综上所述,a 的取值范围是{a |a ≤23,或a ≥4}. (2)因为A ={x |2<x <4},A ∩B ={x |3<x <4},如图所示:集合B 若要符合题意,显然有a =3,此时B ={x |3<x <9},所以a =3为所求.例3 解 ∵A ∪B =B ,∴A ⊆B .B ={x |-1<x <1}.①当a =0时,A =∅,满足A ⊆B .②当a >0时,A =⎩⎨⎧⎭⎬⎫x |1a <x <2a .∵A ⊆B ,∴⎩⎨⎧ 1a ≥-12a ≤1∴a ≥2. ③当a <0时,A =⎩⎨⎧⎭⎬⎫x |2a <x <1a . ∵A ⊆B ,∴⎩⎨⎧ 2a ≥-11a ≤1∴a ≤-2.综合①②③知,a 的取值范围是 {a |a ≤-2或a =0或a ≥2}.变式迁移3 解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅,∴B =∅或B ≠∅. 当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a}, ∴-1a ∈A ,即有-1a =-2,得a =12. 综上,得a =0或a =12. 课时作业1.A2.C [②③④正确.]3.A [结合数轴知A ∪B ={x |x <0或x ≥1}.]4.C [结合数轴知答案C 正确.]5.B [由已知得M ={2,3}或{1,2,3},共2个.]6.{(2,1)}7.a ≥-1解析 由A ∩B ≠∅,借助于数轴知a ≥-1.8.-4解析 如图所示,可知a =1,b =6,2a -b =-4.9.解 ∵B ⊆(A ∪B ),∴x 2-1∈A ∪B . ∴x 2-1=3或x 2-1=5.解得x =±2或x =±6. 若x 2-1=3,则A ∩B ={1,3}.若x 2-1=5,则A ∩B ={1,5}.10.解 A ={1,2},∵A ∪B =A ,∴B ⊆A ,集合B 有两种情况,B =∅或B ≠∅. ①B =∅时,方程x 2-4x +a =0无实数根, ∴Δ=16-4a <0,∴a >4.②B ≠∅时,当Δ=0时,a =4,B ={2}⊆A 满足条件;当Δ>0时,若1,2是方程x 2-4x +a =0的根, 由根与系数的关系知矛盾,无解,∴a =4. 综上,a 的取值范围是a ≥4.11.解 可采用列举法:当P =∅时,Q ={1,2};当P={1}时,Q={2},{1,2};当P={2}时,Q={1},{1,2};当P={1,2}时,Q=∅,{1},{2},{1,2},∴一共有9组.。
《集合的基本运算(2)》示范公开课教学设计【高中数学人教版】
《1.3.2 集合的基本运算》教学设计1.能举例说明全集;对于具体的集合,能写出其补集;并会用符号语言、图形语言表教学重点:全集、补集的含义.教学难点:补集的含义,利用Venn图解决一些与集合运算有关的问题.PPT.一、问题导入问题1:上一节课学习了交集和并集,请你默写定义,并用符号语言和图形语言表示.集合的并集是类比了实数的加法运算,实数也有减法运算,那么集合是否也可以“相减”呢?如集合A={1,2,3},B={3},则集合A“减去”集合B应该是什么呢?请写出你的猜想.师生活动:学生先默写,之后互相检查,再写出猜想,以小组交流,教师适时引导.设计意图:通过回顾并集概念,寻找集合运算与实数运算之间的相似性,为类比引入补集做好铺垫.二、全集1.形成概念问题2:小学到初中,数的研究范围逐步地由自然数到整数,再到有理数,引进无理数后,数的研究范围扩充到实数.思考下面两个集合中元素是否相同?为什么?A={x∈Q|(x-1)(x2-2)=0};B={x∈R|(x-1)(x2-2)=0}.师生活动:学生独立完成,之后展示交流,教师补充.预设的答案:两个集合中的元素不相同.原因如下:A={x∈Q|(x-1)(x2-2)=0}={1};B={x∈R|(x-1)(x2-2)=0}={1,2,-2}.教师讲解:在不同范围研究同一个问题,可能有不同的结果,如上述方程(x-1)(x2-2)=0的根在不同数集范围下是不同的.因此,在研究问题时,经常要确定研究对象的范围.即:一般地,如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集(universe set),通常记作U.设计意图:利用已有的知识类比学习新知识,学生容易接受,举例说明让学生体会到在研究对象时,确定研究范围的重要性.2.初步理解追问:你能再举出几个全集的例子吗?师生活动:学生举例,展示交流,教师补充.预设的答案:上操站队时,全校学生构成的集合是全集;班主任分配宿舍时,我班所有学生构成的集合就是全集;参加学校运动会按班级报参赛项目时,我班的运动员构成的集合就是全集.设计意图:通过举例,让学生初步理解全集的概念.三、补集3.形成概念问题3:阅读教科书第13页,什么是补集?默写定义.在问题1中,你的猜想正确吗?有哪些值得肯定之处?师生活动:学生阅读课本获得定义,并通过比较发现自己的猜想与教科书中定义的一致之处,以及不同之处.预设的答案:在学生默写的基础上教师修正,给出答案(如图1).设计意图:阅读获得定义,默写记忆定义,并通过比较,肯定学生猜想中的合理之处,激发学生的兴趣.4.精致定义问题4:学习了集合的三种运算,它们之间有哪些异同,你是如何区别的?师生活动:学生先独立梳理,再展示交流,教师设计表格帮助学生进行整理.预设的答案:语言并集交集补集自然语言由所有属于集合A或属于集合B的元素组成的集合由所有属于集合A且属于集合B的元素组成的集合由全集U中不属于集合A的所有元素组成的集合称为集合A在全集U中的补集记法A∪B A∩B AC U记法读作A并B A交B A在全集U中的补集符号语言A∪B={x|x∈A,或x∈B} A∩B={x|x∈A,且x∈B} AC U={x∈U,且x∉A}图形语言集合关系A、B可以是任意集合A、B可以是任意集合A⊆U图1自然语言符号语言图形语言对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作ACU(读作“集合A在全集U中的补集”)}{AxUxAC U∉∈=,且设计意图:集合的三种运算(并集、交集、补集)的定义相近,符号语言表示相似,易混淆,通过将三者放在一起对比,异同点一目了然,帮助学生进一步理解概念.四、概念应用问题5:自己独立完成教科书第13页的例5、例6,然后对比教材批改.每一个题目求解的依据是什么?师生活动:学生独立完成,教师巡视观察学生做的情况,有个别问题个别纠正,共性问题教师再针对性讲解.答案略.设计意图:练习补集运算,巩固集合运算.五、运算律问题6:定义了一种运算之后,为简便计算会研究其运算律.回忆一下并集、交集运算律有哪些?通过类比猜想补集运算有哪些运算律?师生活动:学生思考交流,教师给出如下提示:A∪(C U A)=________,A∩(C U A)=________,C U(C U A)=________.(其中U 为全集)预设的答案:A∪(C U A)=U,A∩(C U A)= ,C U(C U A)=A .(其中U为全集)设计意图:通过类比并集、交集的运算律,探索发现补集的运算律.六、巩固应用例1 (1)设集合U={1,2,3,4,5,6},M={1,2,4},则C U M=()A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}(2)设全集U=R,集合A={x|2<x≤5},则C U A=________.(3)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2} B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}(4)设全集为R,A={x|3≤x<7},B={x|2<x<10},则C R(A∪B)=________,(C R A)∩B=________.师生活动:学生独立完成之后展示交流.预设的答案:(1)C;(2){x|x≤2,或x>5};(3)B;(4){x|x≤2,或x≥10},{x|2<x<3,或7≤x<10}解:把全集R和集合A,B在数轴上表示如下:图2由图2知,A∪B={x|2<x<10},∴C R(A∪B)={x|x≤2,或x≥10}.∵C R A={x|x<3,或x≥7},∴(C R A)∩B={x|2<x<3,或7≤x<10}.设计意图:巩固集合的基本运算.问题7:本题求解的依据是什么?每个题目中所给集合有什么特点?你获得了什么求解经验?师生活动:学生观察总结,展示交流,师生完善补充.预设的答案:求解的依据是定义.对于用列举法给出的集合,可直接观察或借助于Venn 图写出结果.对于用描述法给出的集合,首先明确集合中的元素,其次将两个集合化为最简形式;对于连续的数集常借助数轴表示结果,此时要注意数轴上方所有“线”下面的实数组成了并集,数轴上方“双线”(即公共部分)下面的实数组成了交集,要注意端点是否在集合中.设计意图:通过应用加深对概念的理解,并提升数学运算素养.例2 设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(C U A)∩B =∅,则m=__________.问题8:本题中两个集合可否化简?集合B化简之后有几种情况?待求解的问题是否可以化简?师生活动:学生根据问题7的引导,对题目进行化简,教师引导学生对集合B要分类讨论写出其化简后的情况.然后再对化简后的问题进行求解就比较容易了.解:A={-2,-1},由(∁U A)∩B=∅,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠∅.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由这两式得m=2.经检验知m=1和m=2符合条件.∴m=1或2.设计意图:通过两个集合的运算,转化为两个集合间的关系,利用学生熟悉的一元二次方程根的情况,分类讨论求解,培养学生分析问题的能力,提升数学运算素养.七、归纳总结、布置作业问题9:本节课你有哪些收获?可以从以下几方面思考:(1)两个集合间的基本运算有哪些?(2)求解集合运算问题,你获得了哪些经验?师生活动:相互讨论、概括总结.预设的答案:(1)略;(2)①集合中的元素若是离散的,一般采用什么方法;集合中的元素若是连续的实数,则用什么方法,此时要注意端点的情况.②已知集合的运算结果求参数,要注意检验参数的值是否满足题意,或者是否满足集合中元素的互异性.设计意图:梳理总结,深化理解.布置作业:教科书习题1.3的第4,5,6题.八、目标检测设计1.设全集U={1,2,3,4,5,6},A={1,2,3,4},则C U A等于()A.{1,2,5,6} B.{5,6} C.{2} D.{1,2,3,4}2.如图所示,阴影部分表示的集合是______________,全集是_______________.3.已知集合A,B均为全集U={1,2,3,4}的子集,且C U(A∪B)={4},B={1,2},则A∩C U B等于()A.{3} B.{4} C.{3,4} D.4.设集合S={x|x>-2},T={x|-4≤x≤1},则(C R S)∪T等于()A.{x|-2<x≤1} B.{x|x≤-4}C.{x|x≤1} D.{x|x≥1}答案:1.B2.{7,9},U={1,2,3,4,5,6,7,8,9,10}或写成{n∈N|1≤n≤10}3.A4.C设计意图:1,2题考查集合的全集集和补集的概念,3,4题考查集合的运算的综合应用.。
集合教学设计
集合教学设计一、教学容本章的主要容是集合的概念、表示方法和集合之间的关系与运算。
本章共分两个课时。
第一课时,是集合与集合的表示方法。
本节首先通过实例,引入集合与集合的元素的概念,接着给出了空集的含义。
然后,学习了集合的两种表示方法(列举法和特征性质描述法)。
第二课时,是集合之间的关系与运算。
本节首先从观察集合与集合之间元素的关系开始,给出子集、真子集以及集合相等的概念,同时学习了用维恩(Venn)图表示集合。
接着,学习了交集、并集以及全集、补集的初步知识。
二、地位及作用集合语言是现代数学的基本语言。
通过集合语言的学习,有利于学生简明准确地表达学习的数学容。
集合的初步知识是学生学习、掌握和使用数学语言的基础,是高中数学学习的出发点。
三、教学目标本章是将集合作为一种语言来学习,使学生感受用集合表示数学容时的简洁性、准确性;帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行表达和交流的能力.了解集合的含义,体会元素与集合的“属于”关系.掌握某些数集的专用符号.1.理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.2.理解集合之间包含与相等的含义,能识别给定集合的子集.培养学生分析、比较、归纳的逻辑思维能力.3.能在具体情境中,了解全集与空集的含义.4.理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.培养学生从具体到抽象的思维能力.5.理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.6.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.五、教学重点及难点本章的重点是集合的特征性质描述法及集合间的相互关系。
本章的难点是用集合的特征性质描述法描述集合和补集的逻辑含义。
课本与教参;与教材相关的课件;与容有关的数学发展史;信息技术手段。
七、教学方法与学习指导建议教师指导与学生合作交流相结合,通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素与集合,集合与集合的关系及运算,从而熟练使用集合语言来表述数学对象。
1.2.2子集的有关性质及应用 学案(教师版)-高一数学人教A版(2019)第一册
§1.2.2 子集的有关性质及应用【学习目标】1.能写出集合A 的所有子集;2.理解子集的有关性质;3.能用子集的性质解决含参问题.【学习过程】活动一:子集的有关性质(1)任何集合是它本身的子集,即 A ⊆A ;(2)对于集合A 、B 、C ,如果A ⊆B 且B ⊆C ,那么 A ⊆C ; (3)对于集合A 、B 、C ,如果A ≠⊂B 且B ≠⊂C ,那么 A C .1.在平面直角坐标系中,集合C ={(x ,y )|y =x }表示直线y =x ,从这个角度看,集合D ={(x ,y )|⎩⎨⎧=+=-5412y x y x }表示什么?集合C 、D 之间有什么关系? 解:由⎩⎨⎧=+=-5412y x y x ,得⎩⎨⎧==11y x ,∴D ={(1,1)},∴集合D 表示只有一个点(1,1)的集合, 又∵点(1,1)在直线上y =x ,∴D ⊆C .2.写出集合{a ,b }的所有子集,并指出哪些是它的真子集.解:集合{a ,b }的所有子集为:∅,{a },{b },{a ,b }.真子集为:∅,{a },{b }.3.写出集合{a ,b ,c }的所有子集,并指出哪些是它的真子集.解:集合{a ,b ,c }的所有子集为:∅,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c }. 真子集为:∅,{a },{b },{c },{a ,b },{a ,c },{b ,c }.总结:集合A 中含有n 个元素,则集合A 共有 2n 个子集, 2n -1 个真子集, 2n -1 个非空子集, 2n -2 个非空真子集.活动二:子集的有关性质的应用1.已知A ={x |x 2-2x -3=0},B ={x |ax -1=0},若B ⊆A ,求实数a的值.解:A ={-1,3},(1)当a =0时,B =∅ ,满足B ⊆A ,(2)当a ≠0时,B ={1/a },若B ⊆A ,则1/a =-1或1/a =3, ∴a =-1或a =1/3,综上,a =0或-1或1/3. 2.已知集合A ={-1,2x -1,3},B ={3,x 2},若A ⊇B ,求实数x 的值.解:∵A ⊇B ,∴ x 2=2x -1,∴x =1.3.已知集合A ={x|x >b },B ={x|x >3},若A ⊇B ,求实数b 的取值范围.解: 由图可知,b ≤3,∴实数b 的取值范围是{b|b ≤3}.4.已知集合A ={x|0<x <a },B ={x|1<x <2},若B ⊆A ,求实数a 的取值范围. 解:由图可知,a ≥2,∴实数a 的取值范围是{a|a ≥2}.活动三:反馈检测1.设a ,b ∈R ,P ={-1,-b },Q ={1,a },若P =Q ,求a -b 的值.解:∵ P =Q , ∴a =-1,-b =1,∴a =b =-1,∴a -b =0. 2.已知集合A ={x |2-x <0},B ={x |x =m },当B ⊆A 时,求实数m 的取值范围. 解: A ={x |x >2},B ={m },∵ B ⊆A ,∴m >2,∴实数m 的取值范围是{m|m >2}.3.若A ={x |-3≤x ≤4},B ={x |m -1≤ x ≤m +1},当B ⊆A 时,求实数m 的取值范围. 解:由图可知,⎩⎨⎧≤+-≥-4131m m , 解得:-2≤m ≤3,∴实数m 的取值范围是{m|-2≤m ≤3}.。
1.3集合的算(1) 教案
1.3集合的运算(1)
【教学目标】
知识目标:
(1)理解并集与交集的概念;
(2)会求出两个集合的并集与交集.
能力目标:
(1)通过数形结合的方法处理问题,培养学生的观察能力;
(2)通过交集与并集问题的研究,培养学生的数学思维能力.
【教学重点】
交集与并集.
【教学难点】
用描述法表示集合的交集与并集.
【教学设计】
(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;
(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;
(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;
(4)讲与练结合,教学要符合学生的认知规律.
【教学备品】
教学课件.
【课时安排】
2课时.(80分钟)
【教学过程】
B,读作“{
=
B x x
A与集合
B.
表示方程
讲解
程组
({2,
B=
}3
…,求B.这两个集合都是用描述法表示的集合,并且无法列举出
这两个集合都可以在数轴上表示出来,{}{}
|12|03
剟{=
=-<<
B x x x x
由交集定义和上面的例题,可以得到:
对于任意两个集合A,B,都有
B.
}
23
y=,求B.}4,求A B.巡视指导
名,那么该班有多少名
B.
}4,求A B.
A B x x
=<≤
=<≤2},{0
B x x
{1
强化思想
本次课学了哪些内容?重点和难点各是什么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2 集合的运算第1课时交集与并集【学习要求】1.理解两个集合的交集与并集的含义,会求两个简单集合的交集和并集.2.能使用Venn图表示集合的交集和并集运算结果,体会直观图对理解抽象概念的作用.3.掌握有关的术语和符号,并会用它们正确进行集合的交集与并集运算.【学法指导】通过观察和类比,借助Venn图理解集合的交集及并集运算,培养数形结合的思想;体会类比的作用;感受集合作为一种语言在表示数学内容时的简洁性和准确性.填一填:知识要点、记下疑难点1.交集的定义:一般地,对于两个给定的集合A,B,由属于A又属于B的所有元素构成的集合,叫做A与B的交集,记作A∩B,读作“A交B”.即A∩B= {x|x∈A且x∈B} .2.交集的性质:(1)A∩B= B∩A ;(2)A∩A=A ;(3)A∩∅=∅∩A=∅;(4)如果A⊆B,则A∩B=A .3.并集的定义:一般地,对于两个给定的集合A,B,由两个集合的所有元素构成的集合,叫做A 与B的并集,记作A∪B,读作“A并B”.即A∪B= {x|x∈A或x∈B} .4.并集的性质:(1)A∪B= B∪A ;(2)A∪A=A ;(3)A∪∅=∅∪A=A ;(4)如果A⊆B,则A∪B=B .研一研:问题探究、课堂更高效[问题情境] 两个实数除了可以比较大小外,还可以进行加减法运算,如果把集合与实数相类比,我们会想两个集合是否也可以进行“加减”运算呢?本节就来研究这个问题.探究点一交集问题1你能说出集合C与集合A、B之间的关系吗?(1)A={1,2,3,4,5},B={3,4,5,6,8},C={3,4,5};(2)A={x|x≤3},B={x|x>0},C={x|0<x≤3};(3)A={x|x为高一(4)班语文测验优秀者},B={x|x为高一(4)班英语测验优秀者},C={x|x为高一(4)班语文、英语测验优秀者}.答:通过观察得出集合C由集合A和集合B中的相同的元素构成.问题2在问题1中,我们称集合C为集合A、B的交集,那么如何定义两个集合的交集?答:交集的定义:一般地,对于给定的集合A,B,由属于集合A又属于集合B的所有元素构成的集合,叫做A与B的交集,记作A∩B,读作“A交B”.即A∩B={x|x∈A,且x∈B}.问题3如何用集合语言表示直线l与⊙O相交于两点A,B?答:l∩⊙O={A,B}问题4对于任意两个集合A,B,它们的交集有怎样的性质?答:A∩B=B∩A, A∩B⊆A,A∩B⊆B.问题5如何用Venn图表示集合A∩B?答:集合A∩B为下图所示的阴影部分.问题6A∩B=A可能成立吗?A∩B=∅呢?答:都有可能成立.当A⊆B时,A∩B=A成立;当集合A、B没有共同的元素时,A∩B=∅.例1 求下列每对集合的交集:(1)A={x|x2+2x-3=0},B={x|x2+4x+3=0};(2)C={1,3,5,7},D={2,4,6,8}.解(1)A∩B={1,-3}∩{-1,-3}={-3};(2)C∩D=∅.小结 两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合,当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.跟踪训练1 设A ={x|x 是奇数},B ={x|x 是偶数},求A∩Z ,B∩Z ,A∩B.解:因为A 是Z 的子集,B 是Z 的子集,所以A∩Z =A ,B∩Z =B ,A∩B={x|x 是奇数}∩{x|x 是偶数}=∅.例2 已知A ={(x ,y)|4x +y =6},B ={(x ,y)|3x +2y =7},求A∩B.解:A∩B={(x ,y)|4x +y =6}∩{(x,y)|3x +2y =7}={(x ,y)|⎩⎨⎧4x +y =63x +2y =7}={(1,2)}. 小结:由于集合A 和B 都是一个二元一次方程的解集,集合A 和B 的元素是有序实数对,所以A 交B 为二元一次方程组的解集.跟踪训练2 已知A ={x|x 是等腰三角形},B ={x|x 是直角三角形},求A∩B.解 A∩B={x|x 是等腰三角形}∩{x|x 是直角三角形}={x|x 是等腰直角三角形}.探究点二 并集问题1 请同学们考察下列两组集合,你能说出集合C 与集合A ,B 之间的关系吗?(1)A ={1,3,5},B ={2,4,6},C ={1,2,3,4,5,6};(2)A ={x|x 是有理数},B ={x|x 是无理数},C ={x|x 是实数}.答:通过观察,得出集合A 和集合B 的元素放在一起即为集合C 的元素.问题2 在问题1中,我们称集合C 为集合A ,B 的并集,那么如何定义两个集合的并集?答:一般地,对于两个给定的集合A 与B ,由两个集合的所有元素构成的集合,叫做A 与B 的并集,记作A∪B,读作“A 并B”.即 A∩B={x|x∈A或x∈B}.问题3 如何用Venn 图表示集合A 与B 的并集?答:集合A∪B 可用下图(1)或(2)阴影表示.问题4 如何用并集运算符号表示问题1中A ,B ,C 三者之间的关系?答:A∪B=C.问题5 集合的并集有什么性质?答:(1)A∪B=B∪A,(2) A∪A=A ;(3)A∪∅=∅∪A=A ;(4) 如果A ⊆B ,那么A∪B=B.问题6 A∪B=A 可能成立吗? A∪B=∅呢?答:都有可能成立.当B ⊆A 时,A∪B=A 成立;只有当A =B =∅时,A∪B=∅.例3 已知Q ={x|x 是有理数},Z ={x|x 是整数},P ={x|x 是无理数},求Q∪Z,Q∪P.解:Q∪Z={x|x 是有理数}∪{x|x 是整数}={x|x 是有理数}=Q ;Q∪P={x|x 是有理数}∪{x|是无理数}={x|x 是实数}.小结:两个集合的并集仍是一个集合,是由集合A 与B 的所有元素组成的,它们的公共元素在并集中只能出现一次.对于表示不等式解集的集合的运算,可借助数轴解题.跟踪训练3 (1)设A ={4,5,6,8},B ={3,5,7,8},求A∪B.(2)设集合A ={x|-1<x<2},集合B ={x|1<x<3},求A∪B.解:(1)A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.(2)A∪B={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3}.还可以在数轴上表示A∪B,如图.探究点三 交集、并集的应用例4 已知A ={x|x 2-3x +2=0},B ={x|x 2-ax +a -1=0},若A∪B=A ,求实数a 的值. 解 ∵A={1,2},A∪B=A ,∴B ⊆A ,∴B=∅或B ={1}或B ={2}或B ={1,2}.当B =∅时,Δ<0,a 不存在,当B ={1}时,⎩⎨⎧ Δ=01-a +a -1=0,∴a=2. 当B ={2}时,⎩⎨⎧ Δ=04-2a +a -1=0,∴a 不存在. 当B ={1,2}时,⎩⎨⎧ 1+2=a 1×2=a -1,∴a=3. 综上所述,a =2或a =3.小结:在利用集合的交集、并集性质解题时,若条件中出现A∪B=A ,或A∩B=B ,解答时常转化为B ⊆A ,然后用集合间的关系解决问题,运算时要考虑B =∅的情况,切记不可漏掉.跟踪训练4 设集合A ={x|x 2+4x =0},B ={x|x 2+2(a +1)x +a 2-1=0,a∈R},若A∩B=B ,求a 的值.解:由题意得A ={-4,0},因为A∩B=B ,所以B ⊆A.当B =∅时,即关于x 的方程x 2+2(a +1)x +a 2-1=0无实数解,则Δ=4(a +1)2-4(a 2-1)<0,解得a<-1.当B≠∅时,若集合B 中仅含一个元素,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时,B ={x|x 2=0}={0}⊆A ,即a =-1符合题意.若集合B 含有两个元素,则这两个元素是-4,0,即关于x 的方程x 2+2(a +1)x +a 2-1=0的解是-4,0,则有⎩⎨⎧ -4+0=-2a +1,-4×0=a 2-1,解得a =1,则a =1符合题意.综上所述,a =1或a≤-1.练一练:当堂检测、目标达成落实处1.已知集合A ={1,2,4},B ={2,4,6},则A∪B={1,2,4,6}.解析: A∪B 是由A ,B 的所有元素组成的.A∪B={1,2,4,6}.2.设集合A ={y|y =x 2,x∈R},B ={(x, y)|y =x +2,x∈R}, 则A∩B =__∅______.解析:由于集合A 表示的是数集,集合B 表示的是点集,因此没有公共元素,故答案为∅.3.设A ={x|x>0},B ={x|x≤1},求A∩B 和A∪B.解:A∩B ={x|x>0}∩{x|x≤1}={x|0<x≤1},A∪B={x|x>0}∪{x|x≤1}=R .课堂小结:1.对并集、交集概念全方面的感悟(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A 但x ∉B ;x∈B 但x ∉A ;x∈A 且x∈B.因此,A∪B 是由所有至少属于A 、B 两者之一的元素组成的集合.(2)A∩B 中的元素是“所有”属于集合A 且属于集合B 的元素,而不是部分,特别地,当集合A 和集合B 没有公共元素时,不能说A 与B 没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值是否取到.。