数列解题技巧归纳总结---好(5份)
数列题解析常见的数学题型及解题技巧
数列题解析常见的数学题型及解题技巧数列题解析:常见的数学题型及解题技巧数学中,数列是一种按照一定规律排列的数字序列。
数列题是中学数学常见的题型之一,考察学生对数列的理解和解题能力。
本文将介绍数列题的常见题型,并提供解题技巧。
一、等差数列1. 等差数列概念等差数列是指数列中相邻两项之间的差值都相等的数列。
通常用字母a表示首项,d表示公差。
等差数列的通项公式为:an = a + (n-1)d。
2. 等差数列题型及解题技巧(1) 求前n项和:可以利用等差数列的求和公式Sn = (n/2)(2a + (n-1)d)来计算。
(2) 求项数:已知等差数列的首项和公差,求第n项可以利用通项公式an = a + (n-1)d。
(3) 求公差:已知等差数列的首项和任意两项,可以利用公式d = an - a(n-1)来计算。
二、等比数列1. 等比数列概念等比数列是指数列中相邻两项之间的比值都相等的数列。
通常用字母a表示首项,q表示公比。
等比数列的通项公式为:an = a * q^(n-1)。
2. 等比数列题型及解题技巧(1) 求前n项和:可以利用等比数列的求和公式Sn = (a(1-q^n))/(1-q)来计算。
(2) 求项数:已知等比数列的首项和公比,可以利用通项公式an = a * q^(n-1)进行转化求解。
(3) 求公比:已知等比数列的首项和任意两项,可以通过求项数的方式来计算公比。
三、递推数列递推数列是指数列中的每一项都由前一项递推而来的数列。
递推数列题型比较灵活,常见的有斐波那契数列、阶乘数列等。
解决递推数列题目的关键是找到递推关系式,将问题转化为数列的求解问题。
四、复合数列复合数列是指数列中同时具有等差和等比特征的数列。
可以通过将复合数列拆分成等差数列和等比数列两部分来解决问题。
解决复合数列题目的关键是根据题目给出的条件,分别求解等差数列和等比数列的部分,然后将结果综合起来。
五、其他常见数列题型除了上述三种常见的数列题型外,还有一些其他常见的数列题型,如费马数列、幂次数列等。
数列题有关知识点总结归纳
数列题有关知识点总结归纳数列题是高中数学中一个重要的知识点,涉及到数列的定义、性质、通项公式、求和公式等内容。
下面是对数列题相关知识点的总结归纳。
一、数列的定义和性质数列是按照一定规律排列的一组数的集合。
常用的表示数列的方法有两种:通项公式和递归式。
通项公式是由数列的第一项和公差(或公比)组成的公式,可以直接计算数列的任意一项。
递归式是通过给出数列的前几项和递推关系来给出整个数列。
数列有很多重要性质,下面是一些常见的性质:1. 数列的项与项之间可以进行运算,如加减乘除。
2. 数列的同一位置的项组成的新数列,称为数列的子列。
3. 数列的子列可以是有限的,也可以是无限的。
4. 数列中的数称为项,数列的项数称为无限项数列的项数为正无穷。
5. 数列可以按照项数的奇偶性进行分类,得到奇数项数列和偶数项数列。
二、等差数列等差数列是指数列中任意两项之间的差都相等的数列。
等差数列的通项公式为:$a_n = a_1 + (n-1)d$。
其中,$a_n$表示第n项,$a_1$表示首项,d表示公差。
等差数列常见的问题类型包括:已知首项和公差,求第n项;已知首项和第n项,求公差;已知首项和末项,求项数等。
三、等比数列等比数列是指数列中任意两项之间的比都相等的数列。
等比数列的通项公式为:$a_n = a_1 \times r^{(n-1)}$。
其中,$a_n$表示第n项,$a_1$表示首项,r表示公比。
等比数列常见的问题类型包括:已知首项和公比,求第n项;已知首项和第n项,求公比;已知首项和末项,求项数等。
四、数列求和公式数列求和是指根据数列中的项数,计算数列的部分项或全部项之和。
常用的数列求和公式包括等差数列的求和公式和等比数列的求和公式。
等差数列求和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$,其中,$S_n$表示数列的前n项和。
等比数列求和公式为:$S_n = \frac{a_1 \times (1 - r^n)}{1 - r}$,其中,$S_n$表示数列的前n项和。
高中物理数学高中数列10种解题技巧
高中物理数学高中数列10种解题技巧
当涉及到高中物理和数学中的数列问题时,以下是10种解题技巧:
确定数列类型:首先,确定数列是等差数列、等比数列还是其他类型的数列。
这将有助于你选择正确的解题方法。
寻找通项公式:对于等差数列和等比数列,寻找通项公式是解题的关键。
通过观察数列中的规律,尝试找到递推关系式,从而得到通项公式。
求和公式:对于需要求和的数列,使用相应的求和公式可以简化计算过程。
例如,等差数列的求和公式是Sn = (n/2)(2a + (n-1)d),其中Sn表示前n项和,a表示首项,d表示公差。
利用递推关系求解:对于一些复杂的数列问题,可以利用递推关系式逐步求解。
通过已知的前几项,推导出后续项的值。
利用数列性质:数列有许多性质和特点,例如对称性、周期性等。
利用这些性质可以简化问题,找到解题的突破口。
利用数列图像:将数列表示为图像,有时可以更直观地理解数列的规律。
通过观察图像,可以得到一些有用的信息。
利用数列的性质进行变形:有时,对数列进行一些变形可以使问题更容易解决。
例如,将等差数列转化为等比数列,或者将复杂的数列转化为简单的数列。
利用数列的对称性:如果数列具有对称性,可以利用对称性来简化问题。
例如,利用等差数列的对称性可以减少计算量。
利用数列的周期性:如果数列具有周期性,可以利用周期性来简化问题。
通过观察周期内的规律,可以推断出整个数列的性质。
多角度思考:对于复杂的数列问题,尝试从不同的角度思考,采用不同的解题方法。
有时,换一种思路可能会带来新的启示。
数列常用解题方法归纳总结
数列常用解题方法归纳总结一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n d n n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn ab n n n ⇔=+0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。
a d a a S n n n n 110000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。
a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27) 二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110 等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 三、求数列通项公式的常用方法1、公式法2、n n a S 求由;(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a n n =+21,∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n144==n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133== 5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n n n n 11122==++ ,由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ,∴a n n =+21三、 求数列前n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
数列的题型及解题技巧
数列的题型及解题技巧
数列题型很多,常见的有等差数列、等比数列、递推数列等。
解题技巧也因数列的类型而异,下面以常见的等差数列、等比数列为例,介绍解题技巧。
1. 等差数列:
等差数列是指数列中相邻两项之间的差值都相等的数列。
解题技巧包括:
- 求第n项数值:根据首项a1、公差d和项数n的关系,可以
得到公式an = a1 + (n-1)d,其中an为第n项的值。
- 求前n项和:根据首项a1、公差d和项数n的关系,可以得
到公式Sn = (a1+an)n/2,其中Sn为前n项的和。
2. 等比数列:
等比数列是指数列中相邻两项之间的比值都相等的数列。
解题技巧包括:
- 求第n项数值:根据首项a1、公比r和项数n的关系,可以
得到公式an = a1 * r^(n-1),其中an为第n项的值。
- 求前n项和:当公比r不等于1时,可以利用等比数列的性
质推导出求和公式Sn = a1(1-r^n)/(1-r),其中Sn为前n项的和。
除了等差数列和等比数列,还有一些特殊的数列解题技巧,例如斐波那契数列、等差数列和等比数列的混合数列等。
对于这些数列,需要根据具体的问题特点,选择适当的解题方法和技巧。
另外,数列题的解题思路也常与数学归纳法、逻辑推理等相关,需要通过多做题、经验积累和思维拓展来提高解题能力。
数列 方法和技巧
数列方法和技巧数列是由一列有规律的数按照一定的顺序排列组成的数集,它在数学中有着重要的应用和意义。
在数列中,每一个数都有一个对应的位置,我们可以用字母表示数列的位置,如a1,a2,a3...等等。
数列的通项公式是指根据数列的规律得出的用来表示第n项的公式。
通过通项公式,我们可以方便地得出数列中任意一项的值,而无需逐个计算。
下面我将介绍一些数列的常见方法和技巧。
一、等差数列等差数列是指数列中相邻两项之间差值相等的数列。
对于等差数列,我们可以通过以下方法来确定其通项公式:1. 相邻两项之间的差值相等。
设相邻两项的差值为d,那么数列的通项公式可以表示为an = a1 + (n - 1)d。
2. 已知数列的前n项和Sn。
可以使用Sn = (a1 + an) * n / 2来求出d,然后带入an = a1 + (n - 1)d求出通项公式。
3. 已知数列的前n项和Sn和数列的首项a1,可以使用Sn = (2a1 + (n - 1)d) * n / 2来求出d,然后带入an = a1 + (n - 1)d求出通项公式。
二、等比数列等比数列是指数列中任意两项之间的比值相等的数列。
对于等比数列,我们可以通过以下方法来确定其通项公式:1. 相邻两项之间的比值相等。
设相邻两项的比值为q,那么数列的通项公式可以表示为an = a1 * q^(n - 1)。
2. 已知数列的前n项和Sn和数列的首项a1,可以使用Sn = a1 * (q^n - 1) / (q - 1)来求出通项公式。
三、斐波那契数列斐波那契数列是指数列中每一项都是前两项的和。
斐波那契数列的通项公式可以表示为:an = a(n-1) + a(n-2),其中a1 = 1,a2 = 1。
四、调和数列调和数列是指数列中每一项都是其前一项的倒数。
调和数列的通项公式可以表示为:an = 1 / n,其中n ≥1。
以上是一些常见的数列及其确定通项公式的方法和技巧。
除此之外,数列还有很多其他的特殊性质和规律,需要根据具体情况来进行分析和求解。
求解数列的基本方法和技巧
求解数列的基本方法和技巧解数列是高中数学中的一个重要内容,它涉及到数学运算中的递推、递归、等差数列、等比数列等概念。
正确掌握解数列的基本方法和技巧对于高中数学的学习和考试都非常重要。
下面将介绍解数列的基本方法和技巧。
一、观察法观察法是解数列问题最基本的方法。
通过观察数列的前几项,根据数列的规律找出数列的通项公式。
在观察数列时,可以注意数列的递推关系、差分关系、倍数关系、递归关系等。
例如,对于等差数列{2, 5, 8, 11, 14, …},我们可以通过观察得到数列的公差为3,递推关系为An = An-1 + 3,因此数列的通项公式为An = 2 + 3(n-1)。
二、差分法差分法是解决数列问题的常用方法之一。
通过对数列进行差分,可以得到一个新的数列,然后再对新的数列进行观察和分析,找出其规律。
对于等差数列{2, 5, 8, 11, 14, …},我们可以对数列进行一次差分得到{3, 3, 3, 3, …},再观察得到这个新数列是一个常数数列。
因此,可以推断原数列的公差为3。
三、通项公式通项公式是在观察数列的规律后,通过一般的代数方法推导出的数列的表达式。
常见的数列通项公式有等差数列的通项公式和等比数列的通项公式。
对于等差数列{2, 5, 8, 11, 14, …},通过观察可以得到数列的公差为3,首项为2,因此数列的通项公式为An = 2 + 3(n-1)。
对于等比数列{2, 6, 18, 54, 162, …},通过观察可以得到数列的公比为3,首项为2,因此数列的通项公式为An = 2 * 3^(n-1)。
四、递推关系递推关系是指数列中后一项和前一项之间的关系,通过递推关系可以得到数列的通项公式。
对于等差数列{2, 5, 8, 11, 14, …},通过观察可以发现数列的递推关系为An = An-1 + 3,其中A1 = 2,因此数列的通项公式为An = A1 + 3(n-1)。
五、递归关系递归关系是指数列中后一项和前几项之间的关系,通过递归关系可以得到数列的通项公式。
数列题型及解题方法归纳总结
数列题型及解题方法归纳总结一、等差数列等差数列是指数列中的相邻项之差都相等的数列。
下面对等差数列的题型及解题方法进行归纳总结。
1. 求第n项的值设等差数列的首项为a,公差为d,第n项的值为an,则有公式:an = a + (n-1)d2. 求前n项和设等差数列的首项为a,公差为d,前n项和为Sn,则有公式:Sn = (n/2)(2a + (n-1)d)3. 求公差已知等差数列的首项为a,第m项与第n项的和为s,则公差d的值可以通过以下公式计算得出:d = (sm - sn)/(m - n)4. 求项数已知等差数列的首项为a,公差为d,第n项的值为an,可以通过以下公式求解项数n:n = (an - a)/d + 15. 应用题解题思路在解等差数列应用题时,关键是要找到规律。
可以通过观察数列的特点,列出方程,再解方程求解。
二、等比数列等比数列是指数列中的相邻项之比都相等的数列。
下面对等比数列的题型及解题方法进行归纳总结。
1. 求第n项的值设等比数列的首项为a,公比为q,第n项的值为an,则有公式:an = a * q^(n-1)2. 求前n项和(当公比q不等于1时)设等比数列的首项为a,公比为q,前n项和为Sn,则有公式:Sn = a * (q^n - 1) / (q - 1)3. 求前n项和(当公比q等于1时)当公比q等于1时,等比数列的前n项和为n * a。
4. 求公比已知等比数列的首项为a,第m项与第n项的比为r,则公比q的值可以通过以下公式计算得出:q = (an / am)^(1/(n-m))5. 求项数已知等比数列的首项为a,公比为q,第n项的值为an,可以通过以下公式求解项数n:n = log(an/a) / log(q)6. 应用题解题思路在解等比数列应用题时,关键是要找到规律。
可以通过观察数列的特点,列出方程,再解方程求解。
三、斐波那契数列斐波那契数列是指数列中第一、第二项为1,后续项为前两项之和的数列。
(完整版)数列题型及解题方法归纳总结
pn2 qn ,则当 n 取最靠近
q 的非零自然数时 Sn 最大;
2p
2、若等差数列 an 的首项 a1 0 ,公差 d 0 ,则前 n 项和 Sn 有最小值
(ⅰ)若已知通项 an ,则 Sn 最小
an
0
;
an 1 0
(ⅱ)若已知 Sn
pn2 qn ,则当 n 取最靠近
q 的非零自然数时 Sn 最小;
an
an 1
可裂项为:
1
an an 1
11 (
d an
1 ),
1
an 1
an
an 1
1
( d
an 1
an )
等差数列前 n 项和的最值问题 :
1、若等差数列 an 的首项 a1 0 ,公差 d 0 ,则前 n 项和 Sn 有最大值。
(ⅰ)若已知通项 an ,则 Sn 最大
an
0
;
an 1 0
(ⅱ)若已知 Sn
知识框架
数列 的概念
数列的分类 数列的通项公式 数列的递推关系
函数角度理解
两个基 本数列
数列
等差数列
等差数列的定义 an 等差数列的通项公式 等差数列的求和公式 等差数列的性质 an
an 1 d (n 2)
an a1 (n 1)d
Sn n ( a1 an ) na1 n( n 1) d
2
2
am a p aq ( m n p q)
( n 1时, a1 S1, n 2时, a n Sn Sn 1)
3、求差(商)法
如: a n 满足 1 a1 2
1 22
a2
……
1 2n
an
2n 5
高考数学数列问题的答题技巧
高考数学数列问题的答题技巧高中数学中大家都学习了数列这一知识点,而数列在高考中也是经常出现的考点,数列问题有哪些技巧可以又快又准地解答?店铺为您准备了一些高考数列通项、求和的答题技巧,希望对您有所帮助!高考数列通项、求和的答题技巧(1)解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
(2)构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
高考数列问题的易错点1.忽视等递推关系成立的条件,从而忽视检验前几项。
2.忽视n为正整数的默认条件,冒然求导,或利用不等式得到非整数的取等条件。
也会因此心理忽视这一个很好用的条件。
3.裂项相消忘记留下了几项。
可以先写几项验证。
4.通过方程求解的数列可能会漏下情况。
5.等比数列注意公比为1不等同于常数列(如0)。
6.下角标的不规范可能会使“-1”模棱两可,需要注意。
7.累加法或累乘法漏掉第一项。
高考数学数列知识点总结等差数列公式等差数列的`通项公式为:an=a1+(n-1)d或an=am+(n-m)d前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2若m+n=2p则:am+an=2ap以上n均为正整数文字翻译第n项的值=首项+(项数-1)*公差前n项的和=(首项+末项)*项数/2公差=后项-前项等比数列公式等比数列求和公式(1) 等比数列:a (n+1)/an=q (n∈N)。
(2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)(4)性质:①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;②在等比数列中,依次每 k项之和仍成等比数列.③若m、n、q∈N,且m+n=2q,则am×an=aq^2(5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。
数列解题方法技巧汇总
数列解题方法技巧汇总
1. 找规律:观察数列的前几项并找出它们之间的规律,以此推断出后面的项。
2. 递推法:通过前面的项推导出后面的项,可以采用递推关系式或递推公式来计算。
3. 通项公式:数列中任意一项可以通过通项公式来计算,这要求我们找出数列中的一些特征,例如等差、等比等等。
4. 数列套路:掌握一些数列的套路,例如等差数列的求和公式、等比数列的求和公式、等比数列求通项公式等等。
5. 折线法:将数列的前几项按照一定的规律连接起来,形成一条折线,然后通过这条折线来推导出数列中的规律。
6. 矩阵法:将数列转化成矩阵形式,然后通过矩阵的乘法来计算数列中的每一项。
7. 生成函数法:将数列中的每一项看成某个函数的系数,然后将整个数列转化成一个生成函数,通过对生成函数的展开来求解数列中的每一项。
8. 等差数列和等比数列的转换:将等比数列通过取对数或对数值相乘改为等差
数列,从而可以采用等差数列的求和公式求解。
9. 反向思维:将给出的数列倒序排列,倒推数列的规律。
10. 郝氏减法:将数列中位置相邻的两项作差,将结果构成一个新的数列,这个新的数列往往具有更为明显的规律,容易推算。
处理数列问题的五个常用小技巧
处理数列问题的五个常用小技巧高考中,解决数列问题的技巧性较强,掌握一些处理数列问题的常用技巧,对寻找切入点,化归数列问题,提高解题的准确性都有所帮助.1、 等差(比)数列的前n 项和公式和与通项公式的快速转化: 大家知道,公差为d 的等差数列{a n }的通项公式是:11(1)()n a a n d dn a d =+-=+-,前n 项和公式是:1111()[(1)](1)222n n n a a n a a n d d S na n n +++-===+-21()22d dn a n =+-.当d ≠0时,通项公式是关于n 的一次函数,前n 项和公式是关于n 的二次函数.对比1()n a dn a d =+-与n S 21()22d dn a n =+-可知:前n 项和公式变成通项公式是把n 降次:22n n s d da n n =+-,可借助导数记为:2n S an bn =+⇒'n n a S a =-,其中'n S 是n S 的导数(把n 看成自变量),用口诀可记为: 二次变一次,求导减二系.通项公式变成前n 项和公式是把n 升次:()22n n d d S a n n =-+. 用口诀记为:一次变二次,一次项减半,加上半系,然后升次如:2223[(3)1]22n n na n S n n n =-⇒=-+=- 22n S n n =-2'1(2)'1n n a S n n ⇒=-=-- 二次项系数=221n --=23n -, 一般地,n a an b =+⇒[()]22n an a S b n =++211()22an b a n =++ 2n S a n b n =+⇒2()'n a a n b n a =+-=2an b a +- 特别地,2(1)2()(2)n n a b c n S an bn c a an b a n ++=⎧=++⇒=⎨+-≥⎩若0c ≠,则数列从第二项起成等差数列.公比为q 的等比数列{a n }的通项公式为:11n n a a q -=,当q 1≠时,前n 项和公式为:1111(1)(1)()1111n n n n a q a q a a S q q q q q --===+-----.由等比数列的通项公式求其前项和公式,公比等于1的比较简单,公比等于2或12比较常用,在后面将要表述.当公比1q ≠时,也可以是1111n n n a a q a q a S q q --==--,可用口诀记为:末项乘以公比减去首项.,再把差除以(公比-1).这是主要描述前n 项和公式变成通项公式.当,0n n s aq b a b =++=且0,1abq q ≠≠()时,对比11()11n n a a S q q q =+---知,11aa q =-,从而1(1)a a q =-.即:,0n n s aqb a b =++=且⇒1(1)n n a a q q -=-.若,0n n s aq b a b =++≠且,则1,1(1),2n n aq b n a a q q n -+=⎧=⎨-≥⎩,此时的1a 不符合1(1)n n a a q q -=-. 2、公比是2或12的等比数列中,序号连续的项的和的求法 对于等比数列{}n a ,当公比1q ≠时,1111n n n a a q a q a S q q --==--,当2q =时,12n n S a a =-,若公比为12,则倒序后变为公比是2,因而可归纳为:公比为2或12的等比数列中,序号连续的项的和,等于绝对值最大的加数的2倍减去绝对值最小的加数. 如:124828115+++=⨯-=(-2)+(—4)+…+(—256)=2(—256)—(-2)=-510111111204722482048220482048++++=⨯-= 3、非常手段求等差、等比数列的公差、公比数列的项的序号应取正整数,若以每项的序号为横坐标,该项的值为纵坐标来描点,则等差数列的图象是一条直线上一系列孤立的点.等比数列的图象是一条指数型函数(不一定是指数函数)图象上一系列孤立的点.因而我们也可以把这两种数列的图象拓展为连续曲线(直线也可以看成是直线),利用曲线上其它的点来确定一次函数或指数型函数中的参数.基于这个观点,可以让数列的项的序号取正整数外的其它数,有时处理起问题来会显得更方便.尤其是在做选择题、填空题时,不需要参考解题过程评分,利用这样的方式来处理更准更快.例1、等差数列n a {}的前n 项和为n S ,且2S =10, 4S =36,则这个数列n a {}的公差是 按常规,列出一个关于首项1a 和公差d 的二元一次一方程组,消去首项1a ,解出公差d 即可. 但如此处理会更快些:2S =10⇒ 1.5a =5,4S =36⇒ 2.5a =9 于是, 2.5 1.59542.5 1.51a a d --===-.公差实质上是直线的斜率.可以利用直线上两个点11,1222(),(,)P x y P x y 的纵坐标之差除以对应的横坐标之差,即:2121y y k x x -=-(12x x ≠),或1212y y k x x -=-(12x x ≠).在数列中,利用两个点2(,),(,)m n M m a N n a 可得mn a y d m n -=-(m n ≠),或n ma a d n m-=-(m n ≠). 与等差数列类似,也可借助曲线来解决相关问题,此处不再赘述.4、递推公式为: 1()n n a qa f n +=+(0q ≠,()f n 是非零常数,或一、二次函数, 或指数型函数)的数列n a {}的通项公式的求法 对数列的考查仍然以等差、等比数列为主线,命题时加上一些加、乘、乘方运算变化,把等差、等比的属性隐盖起来,使得问题出现的面孔有所改变.作为考生要做的事情,就是把隐藏了的等差、等比性质拨离出来,再用处理等差、等比的常规手段来处理. (1)当()f n 是一个非零常数d 时,1n n a qa d +=+例2、已知数列n a {},111,23n n a a a +==+, 求数列n a {}的通项公式. 猜想:把常数3分配成两个数相加到1n a +和n a 上,变成1()n n a c q a c ++=+的形式. 解:123n n a a +=+⇒当2n ≥时,132(3)n n a a -+=+⇒113(3)2n n a a -+=+11a = ∴123n n a +=-,验证知符合 1.n =∴数列na {}的通项公式为:123n na +=-一般地,如果数列n a {}满足:11,n n a a a qa d +==+(0,1)q ≠,可以把这个数列的每项都加上一个常数c ,使它变成公比为q 的等比数列.即:{}n a c +是公比为q 的等比数列.设1()n n a c q a c -+=+(2n ≥),则1(1)n n a qa q c -=+-, 对比当2n ≥时,1n n a qa d -=+,得1d c q =-.可得到:11()()1111n n n n d d d da a q a a q q q q q --+=+⇒=+-----⇒1()1n n n aq d a q d a q -+--=-这种数列是把等比数列的各项加上一个常数后得到的数列.或者说成是等比数列平移后的数列.在通项公式上的表现是,相邻两项是一次函数的关系.(2)1n n a qa an b +=++(1q ≠)型与处理(1)类似,令1(1)()n n a s n t q a sn t ++++=++,则1(1)(1)n n a qa q sn q t s +=+-+--,对比1n n a qa an b +=++,得:(1)(1)q s aq t s b -=⎧⎨--=⎩,可得到,s t 的值.与处理1n n a qa an b +=++(1q ≠)型类似,也可求出21n n a qa an bn c +=+++型(相当于2()f n an bn c =++型的数列的通项公式.(3)1n k n n a qa ap ++=+(相当于()n k f n ap +=)的可先转化成1n n a qa d -=+型的来处理 例3、在数列n a {}中,14a =,1652n n n a a -=-⨯(2n ≥).求数列n a {}的通项公式. 过程略.答案:11526n n n a --=⨯-以上主要分析1q ≠的情形,1q =的情形较简单,后面给出3道题供练习.5、对于含有n S 和n a 的递推公式例4、已知数列{}n a 中,1n 13,S (1)(1)12n a n n a ==++-前项和 (I )求证:数列{}n a 是等差数列;(II )求数列{}n a 的通项公式.(I )证明:由n 1S (1)(1)12n n a =++-,得 当2n ≥时,n 111S (11)(1)12n n a -=-++--=11(1)12n n a -+-1n n S S --=1(1)2n n a +-112n na -+12⇒2n a =(1)n n a +-1n na -+1⇒(1)n n a --1n na -+1=0………. ①又1(1)10n n na n a +-++=………..②②-①,得:1120n n n na na na +--+=⇒11n n n n a a a a +--=- ∴ 数列{}n a 是等差数列.(Ⅱ)解:由n 1S (1)(1)12n n a =++-,得1221(21)(1)12a a a +=++-,联系13a =可得,25a =. 故d =5-3=2 ∴数列{}n a 的通项公式为:21n a n =+练习1、数列{}n a 满足:111,,n n a a a n +==+求数列{}n a 的通项公式.2、已知数列n a {},1111,3(2)n n n a a a n --==+≥, 求数列n a {}的通项公式.(312n n a -=) 3、在数列n a {}中, 1114,(2)2n n n n a a a λλλ++==++-,其中λ>0. 求数列n a {}的通项公式;通项公式为:(1)2n n n a n λ=-+;。
数列解题思想技巧总结
数列解题思想技巧总结数列是高中数学中的一个重要内容,解题技巧也是需要掌握的。
以下是数列解题思想技巧的总结:1. 观察法:观察数列中的规律,找出数列的特点和变化规律。
可以通过列出数列的前几项,比较相邻项之间的关系,寻找共同的特征来找出数列的规律。
2. 递推法:对于递推数列,通过从已知的项出发,找出每一项与前一项之间的关系,推导出数列的通项公式。
递推法是数列求和、求项数等问题的主要思路。
3. 代数法:将数列的问题转化为代数方程的问题。
通过列出数列的通项公式,得到数列的某项的表达式,然后利用已知条件列出方程,解方程得到所求的项或者数值。
4. 数学归纳法:数学归纳法是用来证明数列性质和定理的方法,也可以用来找出数列的规律。
通过证明一个条件成立的前提下,推论该条件在下一个值也成立,从而可以推断出通项公式或者数列的变化规律。
5. 等差数列和等比数列的性质:等差数列和等比数列是两种常见的数列类型。
等差数列的性质是首项与末项之和的一半与项数的乘积相等,等比数列的性质是相邻两项的比值恒定。
利用这些性质可以帮助求解数列相关问题。
6. 假设法:对于一些没有明显规律的数列,可以通过假设一些规律来解题。
假设规律之后,再验证是否满足所有已知条件,如果满足,则假设成立,可以继续求解。
7. 倒序法:对于一些复杂的数列问题,可以从最后一项开始倒序思考。
通过倒序思考,可以找到求解数列的规律,然后再用递推法或者代数法求解。
8. 分类讨论法:对于一些复杂的数列,可以根据某个条件对数列进行分类讨论。
通过不同的分类,可以得到不同的解法,从而可以更好地解决问题。
9. 数列的性质和定理:掌握数列的常见性质和定理,比如等差中项、等差数列求和公式、等比数列求和公式等,可以帮助解决数列相关问题。
10. 几何解法:有些数列问题可以通过几何解法来解决。
通过将数列的项表示为几何图形的数量,可以利用几何性质解题。
以上是数列解题思想技巧的总结,通过掌握这些技巧,可以更好地解决各种数列相关的问题。
数列解题技巧归纳总结 好(5份)
数列解题技巧归纳总结好(5份)一、典型题的技巧解法1、求通项公式(1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为an+1=an+d及an+1=qan(d,q为常数)例1、已知{an}满足an+1=an+2,而且a1=1。
求an。
例1、解∵an+1-an=2为常数∴{an}是首项为1,公差为2的等差数列∴an=1+2(n-1)即an=2n-1例2、已知满足,而,求=?(2)递推式为an+1=an+f(n)例3、已知中,,求、解:由已知可知令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a2-a1)+(a3-a2)+…+(an-an-1)★ 说明只要和f (1)+f(2)+…+f(n-1)是可求的,就可以由an+1=an+f(n)以n=1,2,…,(n-1)代入,可得n-1个等式累加而求an。
(3)递推式为an+1=pan+q(p,q为常数)例4、中,,对于n>1(n∈N)有,求、解法一:由已知递推式得an+1=3an+2,an=3an-1+2。
两式相减:an+1-an=3(an-an-1)因此数列{an+1-an}是公比为3的等比数列,其首项为a2-a1=(31+2)-1=4∴an+1-an=43n-1 ∵an+1=3an+2∴3an+2-an=43n-1 即 an=23n-1-1解法二:上法得{an+1-an}是公比为3的等比数列,于是有:a2-a1=4,a3-a2=43,a4-a3=432,…,an-an-1=43n-2,把n-1个等式累加得:∴an=23n-1-1(4)递推式为an+1=p an+q n(p,q为常数)由上题的解法,得:∴ (5)递推式为思路:设,可以变形为:,想于是{an+1-αan}是公比为β的等比数列,就转化为前面的类型。
求。
(6)递推式为Sn与an的关系式关系;(2)试用n表示an。
数列解题思想技巧总结
数列解题思想技巧总结数列是数学中常见的一类问题,解题时需要灵活运用各种思想和技巧。
以下是我总结的数列解题思想技巧:1. 观察规律:在解数列问题时,首先要仔细观察数列的前几项,寻找规律和特点。
可以关注项与项之间的差异、倍数关系、幂次关系、递推关系等等。
2. 列方程:找到数列的规律后,可以根据规律列出方程。
方程可以是递推关系、递归关系、通项公式等,根据题目的要求和条件来选择合适的方程形式。
3. 求和操作:当需要求数列的部分和时,可以运用求和公式,将数列的求和问题转化为简化了的求和问题。
常用的求和公式有等差数列的求和公式、等比数列的求和公式等。
4. 利用初项和公差找特定项:在一些题目中,我们需要找到数列中的特定项,可以利用数列的初项和公差求出目标项的位置,然后计算得到该项的值。
5. 利用递推关系求通项:递推关系是指数列中每一项与前一项之间的关系。
如果已知递推关系,我们可以利用递推关系求出数列的通项公式,从而得到数列的任意项的值。
6. 利用递归关系求通项:递归关系是指数列中每一项与前几项之间的关系。
如果已知递归关系,我们可以利用递归关系求出数列的通项公式,从而得到数列的任意项的值。
7. 利用差分操作:差分操作是指将数列中的相邻项相减得到一个新的数列。
利用差分操作可以使原数列变得更加规律,进而寻找数列的特点和规律。
8. 利用数列变形:在一些题目中,数列的形式可能较为复杂,可以通过一系列变形将其简化。
常见的变形方法有数列平移、数列伸缩、数列先做加法再做乘法等。
9. 反向思维:有时候,从数列的后面往前面推导,可以更容易地找到数列的规律和特点。
10. 数学归纳法:数学归纳法是一种证明数列性质的重要方法,通过证明基础情形成立,并且假设某个情形成立,再证明下一个情形也成立,从而推导出整个数列的性质。
以上是我总结的数列解题思想技巧,希望对你有帮助!。
(完整)数列题型及解题方法归纳总结,推荐文档
1 2
5
文德教育
n 2时,a n Sn Sn1 …… 3·4 n1
a n ca n1 d c、d为常数,c 0,c 1,d 0
建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n n 1 ,求an
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
n
a1 n
又a 1
3,∴a n
3 n
5、等差型递推公式
由a n a n1 f (n),a1 a 0,求a n ,用迭加法
令(c 1)x d,∴x d c1
(3)形如 an1 ank 的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
q 时,分奇数项偶数项讨论,结果
求数列通项公式的常用方法:
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
∴a n
c
d
1是首项为a
1
c
d ,c为公比的等比数列 1
∴a n
c
d 1
a1
c
d
1
·c
n
1
n
2时,a 2 a3
a1 a2
f (2)
f
(3)
两边相加,得:
…… ……
a n a n1 f (n)
数列方法总结
数列方法总结
嘿,朋友们!今天咱就来好好唠唠数列那些事儿!你知道吗,数列就像是一串魔法数字,有着各种各样神奇的方法呢!
先来说说等差数列吧。
它就像是一排整齐的士兵,相邻两项的差值都相等。
比如说啊,从 1 开始,每次都加 2,那 1,3,5,7,9 这就是个等差数列。
在等差数列里,我们可以通过公式来快速计算很多东西哦!
再讲讲等比数列,这可厉害了!它就像不断生长的大树,后面的项跟前一项有着固定的比例关系。
就像 2,4,8,16 这样的,每个数都是前一个的两倍。
遇到等比数列,咱也有专门的办法去搞定它!
还有求和的方法呢!那可真是解决一大串数字求和的好帮手呀!就好像要把一堆糖果加起来一样,我们有办法快速算出总数。
比如 1+2+3+4+5,用求和公式就能轻松搞定啦!
哎呀,数列的世界真是丰富多彩,充满了惊喜呀!不是吗?掌握了这些方法,我们就能在数列的海洋里畅游啦,还等什么呢!
以上就是我对数列方法的总结啦,希望能帮到大家呀!。
数列解题技巧归纳总结 打印
数列解题技巧归纳总结基础知识:1.数列、项的概念:按一定 次序 排列的一列数,叫做 数列 ,其中的每一个数叫做数列的项 . 2.数列的项的性质:① 有序性 ;② 确定性 ;③ 可重复性 .3.数列的表示:通常用字母加右下角标表示数列的项,其中右下角标表示项的位置序号,因此数列的一般形式可以写成a 1,a 2,a 3,…,a n ,(…),简记作 {a n } .其中a n 是该数列的第 n 项,列表法、 图象法、 符号法、 列举法、 解析法、 公式法(通项公式、递推公式、求和公式)都是表示数列的方法. 4.数列的一般性质:①单调性 ;②周期性 . 5.数列的分类:①按项的数量分: 有穷数列 、 无穷数列 ;②按相邻项的大小关系分:递增数列 、递减数列 、常数列、摆动数列 、其他; ③按项的变化规律分:等差数列、等比数列、其他; ④按项的变化范围分:有界数列、无界数列.6.数列的通项公式:如果数列{a n }的第n 项a n 与它的序号n 之间的函数关系可以用一个公式a n =f (n )(n ∈N +或其有限子集{1,2,3,…,n}) 来表示,那么这个公式叫做这个数列的 通项公式 .数列的项是指数列中一个确定的数,是函数值,而序号是指数列中项的位置,是自变量的值.由通项公式可知数列的图象是 散点图 ,点的横坐标是 项的序号值 ,纵坐标是 各项的值 .不是所有的数列都有通项公式,数列的通项公式在形式上未必唯一.7.数列的递推公式:如果已知数列{a n }的第一项(或前几项),且任一项a n 与它的前一项a n -1(或前几项a n-1,a n -2,…)间关系可以用一个公式 a n =f (a 1n -)(n =2,3,…) (或 a n =f (a 1n -,a 2n -)(n=3,4,5,…),…)来表示,那么这个公式叫做这个数列的 递推公式 . 8.数列的求和公式:设S n 表示数列{a n }和前n 项和,即S n =1nii a =∑=a 1+a 2+…+a n ,如果S n与项数n 之间的函数关系可以用一个公式 S n = f (n )(n =1,2,3,…) 来表示,那么这个公式叫做这个数列的 求和公式 . 9.通项公式与求和公式的关系:通项公式a n 与求和公式S n 的关系可表示为:11(1)(n 2)n n n S n a S S -=⎧=⎨-≥⎩等差数列与等比数列:等差数列等比数列文字定义 一般地,如果一个数列从第二项起,每一项与它的前一项的差是同一个常数,那么这个数列就叫等差数列,这个常数叫等差数列的公差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)2434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
(3)递推式为a n+1=pa n +q (p ,q 为常数)例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a .解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。
两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2,把n-1个等式累加得: ∴an=2·3n-1-1(4)递推式为a n+1=p a n +q n (p ,q 为常数))(3211-+-=-n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n nn n b a )31(2)21(32-==(5)递推式为21n n n a pa qa ++=+思路:设21n n n a pa qa ++=+,可以变形为:211()n n n n a a a a αβα+++-=-,想于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。
求n a 。
(6)递推式为S n 与a n 的关系式关系;(2)试用n 表示a n 。
∴)2121()(1211--++-+-=-n n n n n n a a S S∴11121-+++-=n n n n a a a ∴n n n a a 21211+=+ 上式两边同乘以2n+1得2n+1a n+1=2na n +2则{2na n }是公差为2的等差数列。
∴2na n = 2+(n-1)·2=2n数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。
2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。
3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
适用于数列11n n a a +⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a 等差) 可裂项为:111111()n n n n a a d a a ++=-⋅1d=等差数列前n 项和的最值问题:1、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。
(ⅰ)若已知通项n a ,则n S 最大⇔10n n a a +≥⎧⎨≤⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最大; 2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值 (ⅰ)若已知通项n a ,则n S 最小⇔10n n a a +≤⎧⎨≥⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小; 数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。
⑵已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。
已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。
⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。
⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅(2)n ≥。
⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。
特别地,(1)形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以nk 得到一个等差数列后,再求n a 。
(2)形如11n n n a a ka b--=+的递推数列都可以用倒数法求通项。
(3)形如1kn n a a +=的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
(8)当遇到q a a d a a n n n n ==--+-+1111或时,分奇数项偶数项讨论,结果可能是分段形式。
数列求和的常用方法:(1)公式法:①等差数列求和公式;②等比数列求和公式。
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。
(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++; ②1111()()n n k k n n k=-++; ③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k -=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<= 二、解题方法:求数列通项公式的常用方法:1、公式法2、n n a S 求由(时,,时,)n a S n a S S n n n ==≥=--12111 3、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a∴a n n =+21∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n144==n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133==5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11 令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n nn n 11122==++由已知得:1221211a a a a n n n n+=+=+ ∴11121a a n n +-= ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ∴a n n =+212.数列求和问题的方法 (1)、应用公式法等差、等比数列可直接利用等差、等比数列的前n 项和公式求和,另外记住以下公式对求和来说是有益的。