Basis of Structural Design 结构设计基础
李亚东-欧洲结构规范技术标准体系与特点简介(西南交大 20111228)
何为欧洲结构规范?
对建筑和土木工程结构物,制订出的一套欧盟共用的技 术规范,最终替代各成员国采用的各不相同的规范。
2012年5月22日
李亚东:Introduction to Eurocodes
5
采用欧洲结构规范的潜在好处
协调欧洲工程领域的劳务市场 有利于材料、构件和配件的使用、采购及销售 通过构建共同的设计框架,强化土木工程理论研究和技术 发展的共同基础 加大设计方法的透明度,易于设计方、官方和业主等之间 的沟通交流 可为设计施工提供通用的设计指南、手册、软件等 增强欧洲土木工程在全球范围内的竞争力 增强欧洲土木工程在全球范围内的竞争力 在欧洲不同地区,可获得更为一致的工程安全性水准 在欧洲不同地区,可获得更为一致的工程安全性水准 核心:协调技术规范,消除欧洲贸易中的技术障碍
2012年5月22日 李亚东:Introduction to Eurocodes 13
2012年5月22日
李亚东:Introduction to Eurocodes
9
欧洲标准的“三足鼎立”
EN 1090 - Execution of steel structures and aluminium structures EN 13670 - Execution of concrete structures EN1536 - Execution of special geotechnical work: Bored piles EN 1537 - Execution of special geotechnical work: Ground anchors
欧洲结构规范 (Structural Eurocodes) Eurocodes) 技术标准体系与特点简介
土木工程学院 桥梁工程系 李亚东 博士 教授 ydli@ 2011-122011-12-29 北京
建筑专业术语翻译
『翻译』ARCHITECTURAL & STRUCTURALTABLE OF CONTENTS1. ARCHITECTURE 建筑专业a. DESIGN BASIS 设计依据b. DESIGN STAGE 设计阶段c. CLIMATE CONDITION 气象条件d. GENERAL ROOM NAME常用房间名称e. ROOFING & CEILING屋面及天棚f. WALL(CLADDING) 墙体(外墙板)g. FLOOR & TRENCH 地面及地沟h. DOORS 、GLASS、WINDOWS & IRONMONGERY(HARDWARE)门、玻璃、窗及五金件I. STAIRCASE、LANDING & LIFT(ELEVATOR)楼梯、休息平台及电梯j. BUILDING MATERIAL WORDS AND PHRASES建筑材料词汇及短语Bricks and Tiles 砖和瓦Lime, Sand and Stone 灰、砂和石【Cement, Mortar and Concrete水泥、砂浆和混凝土】【Facing And Plastering Materials饰面及粉刷材料】【Asphalt (Bitumen) and Asbestos沥青和石棉】【Timber 木材】【Metallic Materials 金属材料】【Non-Ferrous Metal 有色金属】【Anti-Corrosion Materials防腐蚀材料】【Building Hardware 建筑五金】【Paint 油漆】k. OTHER ARCHITECTURAL TERMS 其它建筑术语【Discipline 专业】Conventional Terms 一般通用名词【Architectural Physics 建筑物理】【Name Of Professional role职务名称】【Drafting 制图】2. STRUCTURE 结构专业a. LOAD 荷载b. GROUND BASE AND FOUNDATION 地基及基础c. REINFORCEMENT CONCRETE STRUCTURE 钢筋混凝土结构d. STEEL STRUCTURE 钢结构e. DESIGN FOR ANTISEISMIC抗震设计f. GENERAL WORDS FOR DESIGN设计常用词汇g. GENERAL WORDS FOR CONSTRUCTION 施工常用词汇a. DESIGN BASIS 设计依据计划建议书planning proposals设计任务书 design order标准规范standards and codes条件图information drawing设计基础资料 basic data for design工艺流程图process flowchart工程地质资料engineering geological data原始资料 original data设计进度schedule of designb. STAGE OF DESIGN 设计阶段方案 scheme, draft草图 sketch会谈纪要summary of discussion谈判 negotiation可行性研究 feasibility study初步设计preliminary design基础设计 basic design详细设计 detail design询价图 enquiry drawing施工图 working drawing,construction drawing竣工图 as built drawingc. CLIMATE CONDITION气象条件日照 sunshine风玫瑰 wind rose主导风向prevailing wind direction最大(平均)风速maximum (mean) wind velocity风荷载 wind load最大(平均)降雨量maximum (mean) rainfall雷击及闪电 thunder and lightning飓风 hurricane台风 typhoon旋风 cyclone降雨强度rainfall intensity年降雨量annual rainfall湿球温度wet bulb temperature干球温度dry bulb temperature冰冻期 frost period冰冻线 frost line冰冻区frost zone室外计算温度calculating outdoor temperature采暖地区region with heating provision不采暖地区region without heating provision绝对大气压absolute atmospheric pressure相对湿度relative humidityd. GENERAL ROOM NAME常用房间名称办公室 office服务用房 service room换班室 shift room休息室 rest room (break room)起居室 living room浴室 bathroom淋浴间 shower更衣室 locker room厕所 lavatory门厅 lobby诊室 clinic工作间 workshop电气开关室 switchroom走廊 corridor档案室 archive电梯机房 lift motor room车库 garage清洁间 cleaning room会议室(正式) conference room会议室 meeting room衣柜间 ward robe饭店 restaurant餐厅canteen, dining room厨房 kitchen入口 entrance接待处 reception area会计室 accountant room秘书室 secretary room电气室 electrical room控制室 control room工长室 foreman office开关柜室 switch gear前室antecabinet (Ante.)生产区 production area马达控制中心 Mcc多功能用房 utility room化验室 laboratory room经理室 manager room披屋(阁楼) penthouse警卫室 guard housee. ROOFING AND CEILING屋面及天棚女儿墙 parapet雨蓬 canopy屋脊 roof ridge坡度 slope坡跨比 pitch分水线 water-shed二毡三油2 layers of felt &3 coats of bitumastic附加油毡一层 extra ply of felt檐口 eave挑檐 overhanging eave檐沟 eave gutter平屋面 flat roof坡屋面 pitched roof雨水管汇水面积 catchment area泛水 flashing内排水 interior drainage外排水 exterior drainage滴水 drip屋面排水 roof drainage找平层 leveling course卷材屋面 built-up roofing天棚 ceiling檩条 purlin屋面板 roofing board天花板 ceiling board防水层 water-proof course检查孔 inspection hole人孔 manhole吊顶suspended ceiling, false ceiling檐板(窗帘盒) cornicef. WALL (CLADDING)墙体(外墙板)砖墙 brick wall砌块墙 block wall清水砖墙 brick wall without plastering抹灰墙 rendered wall石膏板墙gypsum board, plaster board空心砖墙 hollow brick wall承重墙 bearing wall非承重墙 non-bearing wall纵墙 longitudinal wall横墙 transverse wall外墙external (exterior) wall内墙internal (interior) wall填充墙 filler wall防火墙 fire wall窗间墙 wall between window空心墙 cavity wall压顶 coping圈梁 gird, girt, girth玻璃隔断 glazed wall遮阳板 sunshade阳台 balcony伸缩缝 expansion joint沉降缝 settlement joint抗震缝 seismic joint复合夹心板 sandwich board压型单板 corrugated single steel plate外墙板 cladding panel复合板 composite panel轻质隔断light-weight partition牛腿 bracket砖烟囱 brick chimney勒脚(基座) plinthg. FLOOR AND TRENCH地面及地沟地坪 grade地面和楼面 ground and floor素土夯实 rammed earth炉渣夯实 tamped cinder填土 filled earth回填土夯实 tamped backfill 垫层bedding course, blinding面层 covering, finish结合层bonding (binding) course找平层 leveling course素水泥浆结合层neat cement binding course混凝土地面 concrete floor水泥地面 cement floor机器磨平混凝土地面machine trowelled concrete floor水磨石地面terrazzo flooring马赛克地面 mosaic flooring瓷砖地面ceramic tile flooring油地毡地面linoleum flooring预制水磨石地面precast terrazzo flooring硬木花地面hard-wood parquet flooring搁栅 joist硬木毛地面 hard-wood rough flooring企口板地面tongued and grooved flooring防酸地面acid-resistant floor钢筋混凝土楼板reinforced concrete slab (R.C Slab)乙烯基地面 vinyl flooring水磨石嵌条divider strip for terrazzo地面做2%坡 floor with 2% slope集水沟 gully集水口 gulley排水沟 drainage trench沟盖板 trench cover活动盖板removable cover plate集水坑 sump pit孔翻边 hole up stand电缆沟 cable trenchh. DOORS,GLASS,WINDOWS & IRONMONGERY(HARDWARE)门、玻璃、窗及五金件木(钢)门wooden (steel) door镶板门 panelled door夹板门 plywood door铝合金门aluminum alloy door卷帘门 roller shutter door弹簧门 swing door推拉门 sliding door平开门 side-hung door折叠门 folding door旋转门 revolving door玻璃门 glazed door密闭门 air-Tight door保温门 thermal insulating door镀锌铁丝网门galvanized steel wire mesh door防火门 fire door(大门上的)小门 wicket门框 door frame门扇 door leaf门洞 door opening结构开洞structural opening单扇门 single door双扇门 double door疏散门 emergency door纱门 screen door门槛 door sill门过梁 door lintel上冒头 top rail下冒头 bottom rail门边木 stile门樘侧料 side jumb槽口 notch木窗 wooden window钢窗 steel window铝合金窗aluminum alloy window百叶窗 (通风为主) sun-bind, louver (louver, shutter, blind) 塑钢窗 plastic steel window空腹钢窗hollow steel window固定窗 fixed window平开窗 side-hung window推拉窗 sliding window气窗 transom上悬窗 top-hung window中悬窗center-pivoted window下悬窗 hopper window活动百叶窗adjustable louver天窗 skylight老虎窗 dormer window密封双层玻璃 sealed double glazing钢筋混凝土过梁reinforced concrete lintel钢筋砖过梁reinforced brick lintel窗扇 casement sash窗台 window sill窗台板 window board窗中梃 mullion窗横木 mutin窗边木 stile压缝条 cover mould窗帘盒 curtain box合页(铰链) hinge (butts) 转轴 pivot长脚铰链 parliament hinge 闭门器 door closer地弹簧 floor closer插销 bolt门锁 door lock拉手 pull链条 chain门钩 door hanger碰球 ball latch窗钩 window catch暗插销 insert bolt电动开关器 electric opener 平板玻璃 plate glass夹丝玻璃 wire glass透明玻璃 clear glass毛玻璃(磨砂玻璃) ground glass (frosted glass)防弹玻璃bullet-proof glass石英玻璃 quartz glass吸热玻璃heat absorbing glass磨光玻璃 polished glass着色玻璃 pigmented glass玻璃瓦 glass tile玻璃砖 glass block有机玻璃 organic glassI. STAIRCASE, LANDING & LIFT (ELEVATOR)楼梯、休息平台及电梯楼梯 stair楼梯间 staircase疏散梯 emergency stair旋转梯spiral stair (circular stair)吊车梯 crane ladder直爬梯 vertical ladder踏步 step扇形踏步winder (wheel step)踏步板 tread档步板 riser踏步宽度 tread width防滑条non-slip insert (strips)栏杆 railing (balustrade)平台栏杆 platform railing吊装孔栏杆 railing around mounting hole扶手 handrail梯段高度 height of flight防护梯笼protecting cage (safety cage)平台 landing (platform)操作平台operating platform装卸平台platform for loading & unloading楼梯平台 stair landing客梯 passenger lift货梯 goods lift客/货两用梯goods/passenger lift液压电梯 hydraulic lift自动扶梯 escalator观光电梯observation elevator电梯机房 lift mortar room电梯坑 lift pit电梯井道 lift shaftj. BUILDING MATERIAL WORDS AND PHRASES建筑材料词汇及短语• Bricks and Tiles 砖和瓦红砖 red brick粘土砖 clay brick瓷砖 glazed brick (ceramic tile)防火砖 fire brick空心砖 hollow brick面砖 facing brick地板砖 flooring tile缸砖 clinkery brick马赛克 mosaic陶粒混凝土ceramsite concrete琉璃瓦 glazed tile脊瓦 ridge tile石棉瓦asbestos tile (shingle)波形石棉水泥瓦corrugated asbestos cement sheet• Lime, Sand and Stone 灰、砂和石石膏 gypsum大理石 marble汉白玉 white marble花岗岩 granite碎石 crushed stone毛石 rubble蛭石 vermiculite珍珠岩 pearlite水磨石 terrazzo卵石 cobble砾石 gravel粗砂 course sand中砂 medium sand细砂 fine sandCement, Mortar and Concrete 水泥、砂浆和混凝土波特兰水泥(普通硅酸盐水泥)Portland cement硅酸盐水泥 silicate cement火山灰水泥pozzolana cement白水泥 white cement水泥砂浆 cement mortar石灰砂浆 lime mortar水泥石灰砂浆(混合砂浆) cement-lime mortar保温砂浆 thermal mortar防水砂浆water-proof mortar耐酸砂浆acid-resistantmortar耐碱砂浆alkaline-resistant mortar沥青砂浆 bituminous mortar纸筋灰paper strip mixed lime mortar麻刀灰 hemp cut lime mortar灰缝 mortar joint素混凝土 plain concrete钢筋混凝土reinforced concrete轻质混凝土lightweight concrete细石混凝土 fine aggregate concrete沥青混凝土asphalt concrete泡沫混凝土 foamed concrete炉渣混凝土 cinder concrete Facing And Plastering Materials 饰面及粉刷材料水刷石 granitic plaster斩假石 artificial stone刷浆 lime wash可赛银 casein大白浆 white wash麻刀灰打底hemp cuts and lime as base喷大白浆两道sprayed twice with white wash分格抹水泥砂浆cement mortar plaster sectioned板条抹灰 lath and plaster Asphalt(Bitumen) and Asbestos 沥青和石棉沥青卷材 asphalt felt 沥青填料 asphalt filler沥青胶泥 asphalt grout冷底子油 adhesive bitumen primer沥青玛啼脂asphaltic mastic沥青麻丝 bitumastic oakum石棉板 asbestos sheet石棉纤维 asbestos fiber Timber 木材裂缝 crack透裂 split环裂 shake干缩 shrinkage翘曲 warping原木 log圆木 round timber方木 square timber板材 plank木条 batten板条 lath木板 board红松 red pine白松 white pine落叶松 deciduous pine云杉 spruce柏木 cypress白杨 white poplar桦木 birch冷杉 fir栎木 oak榴木 willow榆木 elm杉木 cedar柚木 teak樟木 camphor wood防腐处理的木材preservative-treated lumber胶合板 plywood三(五)合板 3(5)-plywood企口板 tongued and grooved board层夹板 laminated plank胶合层夹木材glue-laminated lumber纤维板 fiber-board竹子 bambooMetallic Materials 金属材料黑色金属 ferrous metal圆钢 steelbBar方钢 square steel扁钢 steel atrap型钢 steel section (shape)槽钢 channel角钢 angle steel等边角钢 equal-leg angle不等边角钢unequal-leg angle工字钢 I-beam宽翼缘工字钢wide flange I-beam丁( 之)字钢 T-bar (Z-bar)冷弯薄壁型钢light gauge cold-formed steel shape热轧 hot-rolled冷轧 cold-rolled冷拉 cold-drawn冷压 cold-pressed合金钢 alloy steel钛合金 titanium alloy不锈钢 stainless steel竹节钢筋 corrugated steel bar变形钢筋 deformed bar光圆钢筋 plain round bar钢板 steel plate薄钢板 thin steel plate低碳钢 low carbon steel冷弯 cold bending钢管 steel pipe (tube)无缝钢管seamless steel pipe焊接钢管 welded steel pipe黑铁管 iron pipe镀锌钢管 galvanized steel pipe铸铁 cast iron生铁 pig iron熟铁 wrought iron镀锌铁皮 galvanized steel sheet镀锌铁丝 galvanized steel wire钢丝网 steel wire mesh多孔金属网 expanded metal锰钢 managanese steel高强度合金钢 high strength alloy steelNon-Ferrous Metal 有色金属金 gold白金 platinum铜 copper黄铜 brass青铜 bronze银 silver铝 aluminum铅 leadAnti-Corrosion Materials 防腐蚀材料聚乙烯polythene, polyethylene尼龙 nylon聚氯乙烯PVC (polyvinyl chloride)聚碳酸酯 polycarbonate聚苯乙烯 polystyrene丙烯酸树酯 acrylic resin乙烯基酯 vinyl ester橡胶内衬 rubber lining氯丁橡胶 neoprene沥青漆 bitumen paint环氧树脂漆epoxy resin paint氧化锌底漆zinc oxide primer防锈漆 anti-rust paint耐酸漆acid-resistant paint耐碱漆alkali-resistant paint水玻璃 sodium silicate树脂砂浆resin-bonded mortar环氧树脂 epoxy resinBuilding Hardware 建筑五金钉子 nails螺纹屋面钉spiral-threaded roofing nail环纹石膏板钉annular-ring gypsum board nail螺丝 screws平头螺丝 flat-head screw螺栓 bolt普通螺栓 commercial bolt高强螺栓 high strength bolt预埋螺栓 insert bolt胀锚螺栓 cinch bolt垫片 washer• Paint 油漆底漆 primer防锈底漆rust-inhibitive primer防腐漆anti-corrosion paint调和漆 mixed paint无光漆 flat paint透明漆 varnish银粉漆 aluminum paint磁漆 enamel paint干性油 drying oil稀释剂 thinner焦油 tar沥青漆 asphalt paint桐油 tung oil, Chinese wood oil红丹 red lead铅油 lead oil腻子 puttyk. OTHER ARCHITECTURAL TERMS 其它建筑术语• Discipline 专业建筑 architecture土木 civil给排水water supply and drainage总图 plot plan电力供应electric power supply电气照明 electric lighting电讯 telecommunication仪表 instrument热力供应 heat power supply动力 mechanical power工艺 process technology管道 piping• Conventional Terms 一般通用名词建筑原理architectonics建筑形式architectural style民用建筑civil architecture城市建筑urban architecture农村建筑rural architecture农业建筑 farm building工业建筑industrial building重工业的 heavy industrial轻工业的 light industrial古代建筑ancient architecture现代建筑modern architecture标准化建筑standardized buildings附属建筑auxiliary buildings城市规划 city planning厂区内 within site厂区外 offsite封闭式 closed type开敞式 open type半开敞式 semi-open type模数制 modular system单位造价 unit cost概算 preliminary estimate 承包商constructor, contractor现场 site扩建 extension改建 reconstruction防火 fire-prevention防震aseismatic, quake-proof防腐 anti-corrosion防潮 dump-proof防水 water-proof防尘 dust-proof防锈 rust-proof车流量 traffic volume货流量freight traffic volume人流量 pedestrian volume透视图 perspective drawing建筑模型building model • Architectural Physics 建筑物理照明 illumination照度 degree of illumination亮度 brightness日照 sunshine天然采光 natural lighting光强 light intensity侧光 side light顶光 top light眩光 glaze方位角 azimuth辐射 radiation对流 convection传导 conduction遮阳 sun-shade保温 thermal insulation恒温 constant temperature恒湿 constant humidity噪音 noise隔音 sound-proof吸音 sound absorption露点 dew point隔汽vapor-proof Name Of Professional role 职务名称项目经理project manager (PM)设计经理 design manager首席建筑师principalarchitect总工程师 chief engineer土木工程师 civil engineer 工艺工程师process engineer电气工程师electrical engineer机械工程师mechanical engineer计划工程师planning engineer助理工程师assistant engineer实习生 probationer专家 specialist, expert制图员 draftsman技术员 technician作者:周式微?回复日期:2005-12-15 17:02:00• Drafting 制图总说明general specification工程说明project specification采用标准规范目录 list of standards and specification adopted图纸目录 list of drawings平面图 plan局部放大图detail with enlarged scale...平面示意图 schematic plan of......平剖面图 sectional plan of...留孔平面图plan of provision of holes剖面 section纵剖面longitudinal section横剖面 cross (transverse) section立面 elevation正立面 front elevation透视图 perspective drawing侧立面 side elevation背立面 back elevation详图 detail drawings典型节点 typical detail节点号 detail No.首页 front page图纸目录及说明list of contents and description图例 legend示意图 diagram草图 sketch荷载简图 load diagram流程示意图 flow diagram标准图 standard drawing...布置图 layout of ...地形图 topographical map土方工程图earth-work drawing展开图 developed drawing模板图 formwork drawing配筋arrangement of reinforcement表格 tables工程进度表working schedule技术经济指标technical and economical index建、构筑物一览表list of buildings and structures编号 coding序列号 serial No.行和栏 rows and columns备注 remarks等级 grade直线 straight Line曲线 curves曲折线 zigzag line虚线 dotted line实线 solid line影线 hatching line点划线 dot and dash line轴线 axis等高线 contour Line中心线 center Line双曲线 hyperbola抛物线 parabola切线 tangent Line尺寸线 dimension Line园形 round环形 annular方形 square矩形 rectangle平行四边形 parallelogram 三角形 triangle五角形 pentagon六角形 hexagon八角形 octagon梯形 trapezoid圆圈 circle弓形 sagment扇形 sector球形的 spherical抛物面 paraboloid圆锥形 cone椭圆形 ellipse, oblong面积 area体积 volume容量 capacity重量 weight质量 mass力 force米 meter厘米 centimeter毫米 millimeter公顷 hectate牛顿/平方米 Newton/square meter千克/立方米 kilogram/cubic meter英尺 foot英寸 inch磅 pound吨 ton加仑 gallon千磅 kip平均尺寸 average dimension变尺寸 variable dimension外形尺寸 overall dimension 展开尺寸developed dimension内径 inside diameter外径 outside diameter净重 net weight毛重 gross weight数量 quantity百分比 percentage净空 clearance净高 headroom净距 clear distance净跨 clear span截面尺寸sectional dimension开间 bay进深 depth单跨 single span双跨 double span多跨 multi-span标高 elevation, level绝对标高absolute elevation设计标高designed elevation室外地面标高ground elevation室内地面标高floor elevation柱网 column grid坐标 coordinate厂区占地 site area使用面积 usable area辅助面积 service area通道面积 passage area管架 pipe rack管廊 pipeline gallery架空管线 overhead pipeline排水沟 drain ditch集水坑 sump pit喷泉 fountain地漏 floor drain消火栓 fire hydrant灭火器 fire extinguisher二氧化碳灭火器carbon dioxide extinguisher卤代烷灭火器halon extinguisher作者:周式微?回复日期:2005-12-15 17:03:00不知道有没有人用得着这个,还有好多下次再发好讨厌的30秒和四千字2. STRUCTURE 结构专业a. Load 荷载拔力 pulling force标准值 standard value残余应力 residual stress冲击荷载 impact load, punch load残余变形residual deflection承压 bearing承载能力 bearing capacity承重 bearing, load bearing承重结构 bearing structure脆性材料 brittle material脆性破坏 brittle failure抵抗力resisting power, resistance吊车荷载 crane load分布荷载 distributed load风荷载 wind load风速wind velocity, wind speed风压 wind pressure风振 wind vibration浮力 buoyance, floatage符号 symbol, mark负弯矩negative moment, hogging moment附加荷载 additional load附加应力 additional stress 副作用side effect, by-effect刚度 rigidity刚度比 ratio of rigidity刚度系数 rigidity factor刚接 rigid connection刚性节点 rigid joint恒载 dead load荷载传递transmission of load固端弯矩 fixed-end moment活荷载 live load积灰荷载 dust load集中荷载 concentrated load加载, 加荷 loading剪力 shear, shearing force剪切破坏 shear failure剪应变 shear strain剪应力 shear stress简支 simple support静定结构statically determinate structure截面模量modulus of section,section modulus静力 static force静力分析 static analysis局部压力local pressure, partial pressure局部压屈 local bulkling绝对值 absolute value均布荷载uniformly distributed load抗拔力 pulling resistance抗剪刚度 shear rigidity抗剪强度shear strength, shearing strength抗拉强度 tensile strength抗扭 torsion resistance抗扭刚度torsional rigidity抗弯 bending resistance抗弯刚度 bending rigidity抗压强度compressive strength,compression strength可靠性 reliability可靠性设计reliability design拉力 tensile force拉应力tensile stress, tension stress拉应变tensile strain, tension strain临界点 critical point临界荷载 critical load临界应力 critical stress密度 density离心力 centrifugal force摩擦力 friction force摩擦系数 frictional factor挠度 deflection内力 internal force, inner force扭矩moment of torsion, torsional moment疲劳强度 fatigue strength偏心荷载eccentric load, non-central load偏心距 eccentric distance, eccentricity偏心受拉 eccentric tension 偏心受压eccentric compression屈服强度 yield strength使用荷载 working load水平力 horizontal force水平推力 horizontal thrust弹塑性变形elastoplastic deformation弹性elasticity, resilience, spring塑限 plastic limit弹性变形elastic deformation塑性变形plastic deformation弹性模量modulus of elastic,elastic modulus体积 volume, bulk, cubature, cubage土压力 earth pressure, soilpressure弯矩 bending moment, moment弯曲半径radius at bent, radius of curve位移 displacement温度应力temperature stress温度作用temperature action系数 coefficient, factor雪荷载 snow load压应变 compression strain压应力 compression stress应力集中 concentration of stress预应力 prestressing force, prestress振动荷载vibrating load, racking load支座反力 support reaction自重 own weight作用 action, effect 作用点point of application,application joint b. Ground Base and Foundation地基及基础板桩 sheet pile, sheeting pile板桩基础sheet pile foundation饱和粘土 saturation clay冰冻线 frost line, freezing level不均匀沉降unequal settlement, differential settlement残积土 residual soil沉积物 deposit, sediment沉降 settlement沉降差difference in settlement沉降缝 settlement joint沉井sinking well, sunk well沉箱 caisson持力层 bearing stratum冲积 alluviation锤夯 hammer tamping档土墙retaining wall, breast wall底板 base slab, base plate, bed plate地板 floor board地基 ground base, ground地基承载力 ground bearing capacity地基处理ground treatment, soil treatment地基稳定base stabilization地梁ground beam, ground sill地漏 floor drain地下工程substructure work,understructure work地下室 basement, cellar地下水 ground water地下水位 groundwater level, water table地下水压力ground water pressure地质报告 geologic report垫层 bedding, blinding独立基础isolated foundation, individual foundation端承桩 end-bearing pile筏式基础 raft foundation粉砂 silt, rock flour粉质粘土 silty clay粉质土 silty soil扶壁式档土墙buttressed retaining wall腐蚀 corrosion覆土 earth covering刚性基础 rigid foundation沟盖板 trench cover固结 consolidation灌注桩cast-in-place pile, cast in site pile护坡slope protection, revetment护桩 guard pile环墙 ring wall灰土 lime earth回填 backfill, backfilling回填土 backfill, backfill soil混凝土找平层concrete screed火山灰水泥 trass cement基槽 foundation trench基础 foundation, base基础底板 foundation slab基础埋深 embedded depth of foundation基础平面图 foundation plan 地基勘探 site exploration, site investigation基坑 foundation pit集水坑 collecting sump阶形基础stepped foundation结合层binding course, bonding course井点 well point井点排水well point unwatering开挖 excavation, cutting勘测 exploration and survey勘测资料 exploration data沥青bitumen, asphalt, pitch联合基础combined foundation卵石 cobble, pebble埋置 embedment毛石基础 rubble foundation锚筋 anchor bar锚桩 anchor pile密实度compactness,density, denseness摩擦桩friction pile, floating pile粘土 clay粘质粉土 clay silt碾压roller compaction, rolling排水 drainage, dewatering排水沟 drainage ditch排水孔weep hole, drain hole排水设备dewatering equipment普通硅酸盐水泥ordinary Portland cement群桩 grouped piles容许沉降permissible settlement容许承载力allowable bearing软土 soft soil砂垫层 sand bedding course, sand cushion砂土 sandy soil, sands砂质粉土 sandy silt设备基础equipment foundation水泥搅拌桩cement injection素土夯实rammed earth, packed soil作者:周式微?回复日期:2005-12-16 8:42:00碎石桩 stone columns弹性地基elastic foundation弹性地基梁 beam on elastic foundation填方 fill, filling填土earth-fill, earth filling, filling条形基础 strip foundation土方工程 earthwork挖方excavation work,excavation箱形基础 box foundation压实compaction, compacting压实系数 compacting factor验槽check of foundation subsoil预制混凝土桩precast concrete pile中砂 medium sand重力式档土墙gravity retaining wall桩承台 pile cap钻孔桩 bored pile钻探 exploration drilling, drilling,最终沉降 final settlementc.Reinforcement Concrete Structure 钢筋混凝土结构板缝 slab joint板厚 thickness of slab板式楼梯cranked slab stairs板跨度 span of slab薄壁结构thin-walled structure薄腹梁 thin wedded girder保护层 protective coating臂式吊车 boom crane, boom hoist边梁edge beam, boundary beam变截面variable cross-section变形缝 movement joint变形钢筋 deformed bar初凝initial setting, pre-setting次梁 secondary beam大型屋面板 precast ribbed roof slab单层厂房one-storied factory单筋梁beam with singlereinforcement单跨 single span单向板 one-way slab垫块 cushion block垫梁 template beam吊车梁crane beam, crane girder顶棚抹灰ceiling plastering端跨 end span, tail bay多跨连续梁 multi-span beam翻边 upstand反梁 upstand beam分布钢筋 distribution-bar封闭式箍筋 closed stirrup附加钢筋 additional bar刚架rigid frame, stiff frame钢筋 reinforcement, steel bar, bar钢筋表 Bar Schedules钢筋笼 steel reinforcement cage钢筋间距 spacing of bars, bar spacing钢筋网bar-mat reinforcement,mesh reinforcement钢筋砖 reinforced brick勾缝 joint pointing构架 frame, gallows构件member, structural member构造 construction构造钢筋constructional reinforcement构造柱onstructional column, tie column构筑物 structure箍筋hoop reinforcement, hooping箍筋间距 stirrup spacing固定端 fixed end, retained end固端梁fixed-end beam, fixed beam过梁 lintel, breast summer混凝土强度等级grade of concrete机制砖 machine-made brick剪力墙 shear wall简支梁simply supported beam经济跨度 economic span经济配筋率economic ratio of reinforcement劲性钢筋stiff reinforcement劲性钢筋混凝土结构steel composite construction径向钢筋radial reinforcement抗剪钢筋shear reinforcement抗拉钢筋tension reinforcement受压钢筋compression reinforcement可见裂缝 visible crack刻痕钢丝indented steel wire坑 pit, hollow, delve空斗墙 rowlock cavity wall, rolock wall空心板 hollow slab空心砖隔墙hollow tile partition跨度 span框架 frame框架剪力墙结构 frame-shear wall structure拉接钢筋 tie bar栏杆 railing, banister栏杆立柱 railing post老化 aging累积误差 accumulated error肋形楼板 ribbed floor slab冷拔低碳钢丝cold-drawn low-carbon wire冷脆性cold shortness, cooling brittleness冷弯 cold bending冷轧 cold rolling离析 segregation梁垫beam pad, template, pad梁挠度 beam deflection楼梯斜梁 string, stringer螺旋楼梯spiral stair, winding staircase马鞍形壳 saddle shell锚固 anchoring门框, 门樘 door frame门式刚架 portal frame面砖, 墙面砖 facing tile, wall tile耐火混凝土 fire-resisting concrete排架 bent, bent frame女儿墙parapet wall, parapet配筋率 reinforcement ratio配箍率 stirrup ratio砌块 block圈梁 ring beam, tie beam, bond beam作者:周式微?回复日期:2005-12-16 8:49:00山墙 gable深梁 deep beam伸缩缝 expansion joint实腹梁 solid web girder实腹柱 solid web column竖向钢筋vertical reinforcement双向配筋two-way reinforcement素混凝土 plain concrete筒中筒结构tube-in-tube structure网状钢筋steel meshreinforcement围堰 cofferdam, coffer无梁楼盖flat slab, flat plate系梁 tie beam预应力钢筋混凝土prestressed reinforced concrete预应力构件prestressed component预制 prefabrication预制板 precast slab预制构件prefabrication component预制装配式结构prefabricated construction折板 folded plate, folded slab折板结构folded-plate structure主筋main reinforcement, main bar主梁 main beam, girder柱距 column spacing, post spacing装配式结构fabricated structure纵梁 longitudinal beam纵剖面longitudinal section纵向钢筋 longitudinal bard. Steel Structure 钢结构薄壁型钢 light-gauge steel section,hollow steel section不等肢角钢unequal angle steel槽钢 channel, channel steel背对背角钢组合 angles back to back不锈钢 stainless steel除锈 rust-removal粗制螺栓 rough bolt, black bolt带钢 strip steel, band iron单面焊single weld, one-side welding地脚螺栓 foundation bolt, anchor bolt,holding down bolt点焊spot welding, point welding电动葫芦 electric hoist等边角钢 equal angle, equal leg angle对接焊, 对焊 butt welding腹板 web plate, web腹杆 web member腹板加劲件 web stiffener杆 rod, bar钢板 steel plate钢管 steel tube, steel pipe钢桁架 steel truss钢框架 steel frame钢梯, 爬梯 steel ladder高强度螺栓high strength bolt格构柱 lattice column工字梁 I-girder, I-beam工字钢 I-steel工字形截面I-shaped cross-section焊缝 welding seam焊接 welding焊接长度 weld length焊条 welding rod桁架 truss红丹底漆 red lead primer红丹漆 red lead paint加劲肋 stiffening rib, rib stiffener加劲板 stiffening plate角钢 angle steel节点 joint, node节点板 gusset plate, gusset 节点位移joint displacement节间长度 panel length紧固螺栓clamp bolt,。
结构设计基本原理
可变荷载随时间的变异可统一用随机过程来描述。对可变荷 载随机过程的样本函数处理后可得到可变荷载在任意时点的概 率分布和在设计基准期内的最大值的概率分布。
经统计分析,楼面活荷载、风荷载和雪荷载服从极值Ⅰ型分布
河南理工大学土木工程学院
9
2019/12/12
永久荷载G(Permanent load):根据构件体积和材料容重确定
经统计分析,永久荷载 G 符合正态分布
河南理工大学土木工程学院
8
2019/12/12
CH3.结构设计基本原理
3.2 荷载和材料强度的取值
1)荷载的统计特性(statistical characteristic of a load)
小,且持续期很短的状况
Accidental situation
对偶然状况,可不
地震状况— 遭遇地震作用时的状况,抗震 — 进行正常使用极限
seis河m南ic理s工it大u学at土io木n工程学院设防地区必须考虑20
状态设计 2019/12/12
CH3.结构设计基本原理
3.3 概率极限状态设计法
3.3.3 结构的功能函数和极限状态方程 Performance Function and Limit State Equation
钢筋强度标准值 具有不小于95%保证率的强度值,根 据有关标准保证率为97.73%。
fy,k= μfy - 2σf y = μfy (1-2δf y )
混凝土的强度标准值
具有95%保证率的强度值
fcu,k= μfcu – 1.645σf cu
= μfcu (1-1.645δf cu )
河南理工大学土木工程学院
结构设计基本知识
2.冲压模具
2).典型复合模具结构图介绍
2.冲压模具
3).铆合模具结构图介绍
由于铆合模 通常采取的 是整块模板 作为公模, 因此其模具 制作精度要 求低,成本 也低。
铆合示意图
2.冲压模具
4).折弯模具结构图介绍
向上成形折弯模
向下成形折弯模
V折折弯模
2.冲压模具
常用模具材料介绍:
SS41(JIS) 低碳机械构造用钢 含C量0.30%,不能进行热处理,硬度不高,塑性好,强度低, 易进行切削加工,可满足模具中非成形模板性能的要求。适用 于模具中的打背板,上、下托板,垫脚,模座,垫板,夹板等 受力不大的模板和零件。 SKD11(JIS)冷间加工合金工具钢 相当于Cr12MoV,是一种高C、高Cr的合金钢,有极高的硬度和适 宜的韧性,有回火硬化效果,是目前耐磨性最好的合金钢,同 时添加Mo、V元素,使其兼具耐磨,不弯形,耐冲击等特性。适 用于受力较大的模具成形模板和零件,如与料片相接触受力很 大的下模板和上打板. 钨钢 硬度很高,热处理后硬度可达HRC70,但脆性很大,受力不均 匀时易发生崩裂,且不易进行切削加工,材料成本和加工成本 较高。适用于受力很大的冲压模具零件。
1.结构设计 4.结构设计开发流程
产品需求 工业设计 结构设计 技术评审 打样确认
修模/改模
样品检测
开模跟踪
模具评审
厂商报价
样品检测
样品承认
模具承认
小批量
正式量产
二.塑胶材料知识及塑胶模具 1.塑料定义及常用塑胶材料 2.塑胶模具
1.塑胶材料
含义 塑料是以合成或天然的树脂作为主要成分,添加或不添加辅助材料 如填料,增塑剂,稳定剂,颜料,防老剂等,在一定温度,压力下加 工成型而成的。塑料的性能主要取决于主体成分高聚物树脂的性质, 高聚物中适当添加某些辅料可以改善材料耐寒,耐热,耐磨,导热, 机械和加工性能。 优点:密度小,具有较高的比强度;同时具有良好的耐磨性和耐腐 性,以及优良的电绝缘性、热绝缘性和成型工艺性。 缺点:不耐高温,强度差易变形,热膨胀系数大,导热差,易老化 等缺点。 分类 按受热特性分:热塑性塑料和热固性塑料。 按塑料用途分类:通用塑料和工程塑料。 常用塑料 ABS、PC、ABS+PC、POM、PP、PMMA、PE、PA、PVC等
房屋建筑结构设计中的基础设计
浅析房屋建筑结构设计中的基础设计【摘要】在房屋建筑的结构设计中基础设计占据相当重要的地位,基础的经济技术指标对于房屋建筑的经济技术指标起着至关重要的影响,因为房屋建筑顶部荷载巨大,基础埋置较深,材料耗费多,施工周期长。
房屋建筑设计的选型设计因素繁多,有时因选型不合适,将会造成房屋建筑过程出现工程事故、增加工程总造价等状况发生。
本文对房屋建筑结构设计中的基础设计进行了浅析。
【关键词】房屋建筑结构设计基础设计中图分类号:tb482.2 文献标识码:a 文章编号:abstract: in the process of building foundation design in the structural design is very important in the position because of housing construction the upper big loads , buried for deep foundation, the materials consumption, long construction period, basic technical and economic indexes of the building technical and economic indexes has very big effect. housing construction basic selection which involves many factors, because the foundation not appropriate selection, housing construction engineering accident appeared, and to increase the amount of total project cost is often happened. this article analyses the structure design of the building foundation designkey words: housing building, structure design, basis design一、前言随着经济的快速发展,国民生活水平的不断提高,新建筑的建设也随着城市的发展在不断更新。
basis of design
Web welds in tension
Brittle modes of behaviouห้องสมุดไป่ตู้ m = 1.35
Components of Steel Structures
Material Properties
Three nominal grades of steel (EN 10 025): • Fe 360 nominal yield strength = 235N/mm2 • Fe 430 nominal yield strength = 275N/mm2 • Fe 510 nominal yield strength = 355N/mm2 Strengths reduce for t > 40mm and 100mm. For all structural steels E = 210 kN/mm2. Special requirements for plastic analysis, fracture toughness, and cold-formed steel.
Both codes are based on limit-state design and state that structures should be sufficiently robust so as to withstand accidental loads.
Limit States
Terminology in the Eurocode
•Partial
strength joints: design resistance less than the connected member. Pinned joints: joints not capable of transmitting significant bending moments.
概念设计在建筑结构设计中重要性探讨
概念设计在建筑结构设计中重要性探讨摘要:本文首先探讨了概念设计在建筑结构设计中的依据,然后探讨了概念设计在建筑结构设计中的重要意义,最后探讨了概念设计的应用,具有较强的实用性。
关键词:概念设计;建筑结构;重要性;应用abstract: this paper first discusses the design concept in structural design of the basis, and then discusses the concept design in architectural structure design of the significance, and finally discusses the application of the conceptual design, with strong practicability.keywords: concept design; building structure; importance; application中图分类号:s611文献标识码:a 文章编号:概念设计,这是个在结构设计人员中耳熟能详的字句。
什么是概念设计呢,我想不会有人说不出来吧,确定结构方案,结构布置,基础选型等等。
但是又有多少结构设计人员能很好地在实际工程中运用得当呢?答案是:很少。
由于信息时代的迅猛发展,计算机的广泛使用,结构计算软件的大量使用,使得结构设计人员的工作量降低,效率提高,同时也使得结构设计人员对结构计算软件产生了过度依赖,这种现象在年轻设计人员中尤为突出。
在设计行业也总能听到一些设计工作者说“电算过去了”、“计算满足了”、“没超规范呀”的一类话。
可见现在一部分设计人员缺少对自己工作的特殊性及重要性的认识。
四川汶川5·12特大地震,警示我们作为建筑工程设计人员的责任的巨大。
我们不仅仅要提供给人民群众一个舒适的住房,更应提供一个安全的场所。
外文翻译--结构设计原理
中文1717字附录Philosophy of Structural DesignA structural engineering project can be divided into three phases: planning, design, and construction.Structural design involves determining the most suitable proportions of a structure and dimensioning the structural elements and details of which it is composed. This is the most highly technical and mathematical phase of a structural engineering project, but it cannot-and certainly should not-be conducted without being fully coordinated with the planning and construction phases of the project. The successful designer is at all times fully conscious of the various considerations that were involved in the preliminary planning for the structure and, likewise, of the various problems that may later be encountered in its construction.Specially, the structural design of any structure first involves the establishment of the loading and other design conditions that must be resisted by the structure and therefore must be considered in its design. Then comes the analysis (or computation ) of the internal gross forces (thrust, shears, bending moments, and twisting moments), stress intensities, strains, deflections, and reactions produced by the loads, temperature, shrinkage, creep, or other design conditions. Finally comes the proportioning and selection of materials of the members and connections so as to resist adequately the effects produced by the design conditions. The criteria used to judge whether particular proportions will result in the desired behavior reflect accumulated knowledge (theory, field and model tests, and practical experience), intuition, and judgment. For most common civil engineering structures such as bridges and buildings, the usual practice in the past has been to design on the basis of a comparison of allowable stress intensities with those produced by the service loadings and other design conditions. This traditional basis for design is called elastic design because the allowable stress intensities are chosen in accordance with the concept that the stress or strain corresponding to the yield point of the material should not be exceeded at the most highly stressed points of the structure. Of course, the selection of the allowable stresses may also be modified by a consideration of the permissible deflections of the structure.Depending on the type of structure and the conditions involved, the stress intensities computed in the analytical model of the actual structure for the assumed design conditions may or may not be in close agreement with the stress intensities produced in the actual structure by the actual conditions to which it is exposed. The degree of correspondence is not important, provided that the computed stress intensities can be interpreted in terms of previous experience. The selection of the service conditions and the allowable stress intensities provides a margin of safety against failure. The selection of the magnitude of this margin depends on the degree of uncertainty regarding loading, analysis, design, materials, and construction and onthe consequences of failure. For example, if an allowable tensile stress of 20000 psi is selected for structural steel with a yield stress of 33000 psi, the margin of safety (or factor of safety) provided against tensile yielding is 33000/20000, or 1.65.The allowable-stress approach has an important disadvantage in that it does not provide a uniform overload capacity for all parts and all types of structures. As a result, there is today a rapidly growing tendency to base the design on the ultimate strength and serviceability of the structure, with the older allowable-stress approach serving as an alternative basis for design. The newer approach currently goes under the name of strength design in reinforce-concrete design literature and plastic design in steel-design literature. When proportioning is done on the strength basis, the anticipated service loading is first multiplied by a suitable load factor (greater than 1), the magnitude of which depends upon the uncertainty of the loading, the possibility of its changing during the life of the structure, and, for a combination of loadings, the likelihood, frequency, and duration of the particular combination. In this approach for reinforced-concrete design, the theoretical capacity of a structural element is reduced by a capacity-reduction factor to provide for small adverse variations in material strengths, workmanship, and dimensions. The structure is then proportioned so that, depending on the governing conditions, the increased load would (1) cause a fatigue or a buckling or a brittle-fracture failure or (2) just produce yielding at one internal section (or simultaneous yielding at several sections) or (3) cause elastic-plastic displacement of the structure or (4) cause the entire structure to be on the point of collapse.Proponents of this latter approach argue that it results in a more realistic design with a more accurately provided margin of strength over the anticipated service conditions. These improvements result from the fact that nonelastic and nonlinear effects that become significant in the vicinity of ultimate behavior of the structure can be accounted for.In recent decades, there has been a growing concern among many prominent engineers that not only is the term “factor of safety”improper and unrealistic, but worse still a structural design philosophy based on this concept leads in most cases to an unduly conservative and therefore uneconomical design, and in some cases to an unconservative design with too high a probability of failure. They argue that there is no such thing as certainty, either of failure or of safety of a structure but only a probability of failure or a probability of safety. They feel, therefore, that the variations of the load effects and the variations of the structural resistance should be studied in a statistical manner and the probability of survival or the probability of serviceability of a structure estimated. It may not yet be practical to apply this approach to the design of each individual structure. However, it is believed to be practical to do so in framing design rules and regulations. It is highly desirable that building codes and specifications plainly state the factors and corresponding probabilities that they imply.If a good alignment requires a curved bridge-over a part or the total length thenall external longitudinal lines or edges of the structure should be parallel to the curved axis, thereby following again the guideline of good order.The transverse axis of piers or groups of columns should be rectangular (radial) to the curved axis, unless skew crossings over roads or rivers enforce other directions.The requirements of traffic design result occasionally in very acute angles or in level branching which cause difficulties for the bridge engineer to find pleasing solutions for the bridges.结构设计原理一个结构设计工程可以被分为三个阶段:计划、设计、施工。
欧洲规范的结构体系和发展
欧洲结构设计规范的体系和发展e Syste a d o ut o o St uctu a u ocode The System and Evolution of Structural Eurocode(Short Version)Why?h?What?When?Y.L. Wang Dr. Ing. MECCS Mar. 20101 欧洲规范的结构体系1 欧洲规范的结构体系EN 1990 Eurocode0: 设计基础EN1990E d0设计基础EN 1991 Eurocode1: 作用在结构上的荷载EN 1992 Eurocode2: 混凝土结构设计EN 1993 Eurocode3: 钢结构设计EN 1994 Eurocode4: 钢-砼组合结构设计EN 1995 Eurocode5: 木结构设计EN 1996 Eurocode6: 圬工结构设计EN 1997 Eurocode7: 土工设计EN 1998 Eurocode8: 结构抗震设计铝结构设计EN 1999 Eurocode9: 铝结构设计EUROCODES 1990 结构设计基础EN 1990Basis of design设计基础EN1990Basis of designEN 1990/A2Basis of design -Annex for bridges设计基础-桥梁附录EUROCODES1-EUROCODES 1 作用在结构上的荷载EN 1991-1-1Self-weight结构自重EN 199112Fire防火EN‐‐EN 1991‐1‐3Actions of snow雪荷载EN 1991‐1‐4Actions of wind99ct o s o d风荷载EN 1991‐1‐5Actions of temperature温度荷载EN 1991‐1‐6Actions during execution施工荷载g荷载EN 1991‐1‐7Accidental actions偶然荷载EN 1991-2Actions of transport on bridges作用在桥梁上的交通荷载p gEUROCODES 2 -混凝土结构设计EN 1992-1-1Concrete structures -General rules 混凝土结构设计-通用规则EN 1992-1-2Concrete structures -Fire resistance混凝土结构-防火设计EN 1992-2Concrete structures -Bridges混凝土结构-桥梁EN1993-1 钢结构设计:“通用条文和建筑规范” 包括:EN1993-1-1钢结构设计:通用条文和建筑规范austria+germany F+Belgium EN1993-1-2钢结构设计:结构耐火性设计EN1993-1-3钢结构设计:冷弯成型的标准杆件和薄板EN1993-1-3钢结构设计冷弯成型的标准杆件和薄板EN1993-1-4钢结构设计:不锈钢EN1993-1-5钢结构设计:板结构单元Sweden + GermanyEN1993-1-6钢结构设计:壳体结构的强度和稳定EN199316钢结构设计壳体结构的强度和稳定EN1993-1-7钢结构设计:板结构在横向荷载作用下的强度和稳定EN1993-1-8钢结构设计:接头设计DefltEN1993-1-9钢结构设计:钢结构疲劳强度ETHEN1993-1-10钢结构设计:钢的断裂韧度和沿厚度方向特性的选择ARchen EN1993-1-11钢结构设计:钢拉杆的设计EN1993111钢结构设计钢拉杆的设计EN1993-1-12钢结构设计:高强钢的附加条文EN1993-2 钢桥设计Germany19932钢桥设计GEUROCODES 4 -钢-砼组合结构EN 1994-1-1General rules and rules for buildings通用准则和房屋设计准则EN 1994‐1‐2General rules —Structural fire design通用准则-结构抗火性能设计EN 1994-2General rules and rules for bridges通用准则和桥梁设计准则EUROCODES 7 -地质和基础设计EN 1997-1Foundations -General rules通用准则EN 1997-2Foundations -Tests测试和实验EUROCODES 8 -结构抗震设计EN 1998-1Earthquake -General rules通用准则EN 1998-2Earthquake -Bridges桥梁q gEN 1998-3Earthquake -Retroffitting抗震加固EN 1998-4Earthquake -Silos, pipelines, tanks筒体,管道压力容器荷载EN19985EarthquakeEN 1998-5Earthquake -Foundations基础EN 1998-6Earthquake -Towers塔桅结构欧洲桥梁设计规范汇报2 欧洲桥梁规范历史演变和特点1975 –1989年,14年中在各个成员国代表的帮助下发展欧洲规范,导致1980年左右出现第一代的欧洲规范;年右出现第代的欧洲规范;1989年决定将欧规计划转给CEN和CEN/TC 250 “欧洲结构规范”委员会正式成立;1995 –1998 预规范ENV 正式出版;1997 –2000 重新回顾ENV并准备把ENVs转化为正式版本EN;2000 2007 出版正式的欧洲结构规范EN2000–2007出版正式的欧洲结构规范EN2002 第一部分欧洲结构规范出版(EN 1990)2003 委员会建议各成员国接受欧洲结构设计规范EN2007 出版所有的欧洲结构规范,共计58 册2010 年3月–欧洲大范围的采用欧洲结构规范,撤出和欧洲结构规范相抵触的各成员国规范March,2010‘The Big Month for EuropeanCivil Engineers第二次世界大战后的三代欧洲规范第一代规范以应力折减法和允许应力法为基础第二代规范以极限状态法为基础例如英国1980年左右颁布的BS5400规范,德国的DIN等。
欧美规范的特点和内容简述
1.各欧洲规范间的联系EN 1990 将与EN 1991 共同使用:欧洲规范1-结构作用和设计欧洲规范EN1992 至EN 1999,针对建筑物的结构设计和土木工程的结构设计,包括岩土工程技术、结构防火设计以及涉及地震、执行和临时结构的状况。
EN 1990 单独在欧洲规范系列中提出了所有独立于材料的可操作标准(例如作用的分系数、承载能力极限状态和正常使用极限状态的荷载组合公式)。
因此,没有规定独立于材料材料指导的EN 1991 和EN 1992 至EN 1999 必须要和EN 1990 一起使用。
2.欧洲规范的特点1)方法基于极限状态概念,采用分项系数法2)对象建筑结构土木工程结构(桥梁,筒体,管道,塔桅等)对特殊结构(大坝、核电站等),需用到其他相关规范3)材料钢,混凝土,铝,木,砌体等4)结构新建结构,既有结构;不同寿命要求的临时结构和永久性结构5)桥梁的适用范围(各成员国情况不尽相同)公路桥铁路桥人行及自行车桥6)规范条文的类型所有条款分为两类,一类为原则性条款(Principles),一类为应用性条款(Application Rules)原则性条款描述结构性能的基本要求,必须满足;应用性条款则是满足原则性条款要求可采用的方法(非强制性)7)成员国层面的欧洲规范的组成与格式a)成员国标题页b)成员国前言c)EN(正式版本)标题页d)EN正文e)EN附录f)成员国附录8)修订周期:5年1.欧洲规范的组成规范组成(计10册,每册由若干篇组成)EN 1990 Eurocode : 结构设计基础EN 1991 Eurocode 1: 结构作用EN 1992 Eurocode 2: 混凝土结构设计EN 1993 Eurocode 3: 钢结构设计EN 1994 Eurocode 4: 钢-混凝土组合结构设计EN 1995 Eurocode 5: 木结构设计EN 1996 Eurocode 6: 圬工(砌体)结构设计EN 1997 Eurocode 7: 土工设计EN 1998 Eurocode 8: 结构抗震设计EN 1999 Eurocode 9: 铝结构设计EN 1990 Basis of structural design•EN 1990 Basis of structural design - Annex A.2 Bridges•EN 1991-1-1 Actions on structures –Self weight & imposed loads•EN 1991-1-2 Actions on structures –Fire•EN 1991-1-3 Actions on structures –Snow loads•EN 1991-1-4 Actions on structures –Wind actions•EN 1991-1-5 Actions on structures –Thermal Actions•EN 1991-1-6 Actions on structures –Execution•EN 1991-1-7 Accidental actions•EN 1991-2 Actions on structures –Traffic loads on bridges •EN 1991-3 Actions –Cranes and machinery•EN 1991-4 Actions on structures –Silos and tanksEN 1992-1-1 Design of concrete structures –General requirements •EN 1992-1-2 Design of concrete structures –Fire design•EN 1992-2 Design of concrete structures - Bridges•EN 1992-3 Concrete –Liquid retaining•EN 1993-1-1 Design of Steel structures –General requirements •EN 1993-1-2 Design of Steel structures –Fire design•EN 1993-1-3 Steel –Cold thin gauge members•EN 1993-1-4 Steel –Structures in stainless•EN 1993-1-5 Steel -- Strength planar plated•EN 1993-1-6 Steel –Shell structures•EN 1993-1-7 Steel –Out of plane•EN 1993-1-8 Design of Steel structures - Design of joints•EN 1993-1-9 Design of Steel structures- Fatigue strength•EN 1993-1-10 Design of Steel structures –Mat. Toughness •EN 1993-1-11 Steel –Tension components•EN 1993-1-12 Steel–HSS•EN 1993-2 Steel -- Bridges•EN 1993-3-1 Steel –Towers and masts•EN 1993-3-2 Steel -- Chimneys•EN 1993-4-1 Steel –Silos•EN 1993-4-2 Steel –Tanks•EN 1993-4-3 Steel –Pipelines•EN 1993-5 Steel –Piling•EN 1993-6 Steel –Crane supporting structures•EN 1994-1-1 Design of composite structures –General req.•EN 1994-1-2 Design of composite structures –Fire design•EN 1994-2 Design of composite structures –Bridges•EN 1995-1-1 Design of timber structures –General requirements•EN 1995-1-2 Design of timber structures –Fire design•EN 1995-2 Design of timber structures –Bridges•EN 1996-1-1 Design of masonry structures –Generalrequirements•EN 1996-1-2 Design of masonry structures –Fire design•EN 1996-2 Design of masonry structures–Selection & execution•EN 1996-3 Design of masonry structures–Simplified calculation•EN 1997-1 Geotechnical design –General requirements•EN 1997-2 Geotechnical ground investigation•EN 1998-1 Design for earthquake resistance –Gen. req.•EN 1998-2 Design for earthquake resistance –Bridges•EN 1998-3 Design for earthquake resistance –Assess. andretrofitting•EN 1998-4 Earthquake –Silos, tanks & pipelines•EN 1998-5 Design for earthquake resistance –Foundations•EN 1998-6 Design for earthquake resistance –Towers masts•EN 1999-1-1 Aluminium –Common rules•EN 1999-1-2 Aluminium –Fire design•EN 1999-1-3 Aluminium –Fatigue•EN 1999-1-4 Aluminium –Trapezoidal sheeting•EN 1999-1-5 Aluminium –Shell structures欧洲规范0 建立了结构安全性,适用性和耐久性的原理和要求,描述了结构设计和校核的基础,给出了结构可靠性相关方面的准则。
栈桥建筑、结构设计说明-en
建筑、结构设计说明Notes for Architectural/Structural Design一、工程概况及设计依据I. Project overview and design basis1、建筑名称:西安市纺织产业园区供热中心工程2#栈桥。
1. Name: NO.2 trestle of Centralized Heating Project, Xi’an City Textile Industry Park,2、本工程抗震设防烈度为8度,设计地震分组为第一组,设计基本地震加速度为0.20g ,设计特征周期为0.45s 。
本工程为钢桁架结构,地基基础设计等级为丙级,混凝土结构的环境类别为二(b)类。
2. The seismic fortification intensity of this project is 8 degree, and the designed earthquake category is I. The design basic acceleration of ground motion is 0.20g, and the design characteristic period of ground motion is 0.45s. The framework of building is of steel truss, and grade of the foundation design is III. Environmental category of the concrete structure is designed as B.3、本工程标高以米为单位,其余均以毫米为单位。
3. Unit of all the elevations for this project is “meter ”. Unit of the rest is “mm ”.4、设计依据:4. Design basis(1)西安工程地质勘测公司提供的《西安市纺织产业园区供热中心岩土工程勘察报告》(详勘阶段)(1) “Geotechnical Investigation Report for the Centralized Heating Project in Xi ’an City Textile Industry Park ” (in detail geotechnical investigation stage) provided by Xi ’an Engineering Geological Prospecting Company.(2)输煤专业提供的设计条件(2) Design information provided by the coal conveying discipline(3)主要规范、规程及规定:(3) Major codes, regulations and rules建筑结构荷规范(GB50009-2006)Code for Load of Buildings/Structures (GB50009-2006)建筑抗震设计规范(GB50011-2001)(2010版)Code for Seismic Design of Buildings (GB50011-2001)(edition 2010)建筑地基基础设计规范(GB50007-2002)Code for Design of Building’s foundations (GB50007-2002)混凝土结构设计规范(GB50010-2002)Code for Design of Concrete Structure (GB50010-2002)砌体结构设计规范(GB50003-2001)Code for Design of Masonry Structures (GB50003-2001)钢结构设计规范(GB50017-2003)Code for Design of Steel Structures (GB50017-2003)建筑设计防火规范(GB50016-2006)Code for Fire Protection Design of Buildings (GB50016-2006)钢结构工程施工质量验收规范(GB50025-2001)Code for Acceptance of Construction Quality of Steel Structures (GB50025-2001)地下工程防水技术规范(GB50108-2001)Technical Code for Water Proof in Underground Engineering (GB50108-2001)工业建筑防腐蚀设计规范(GB50046)Code for Design of Anticorrosion of Industrial Buildings (GB50046)(4)设计荷载取值:(4) Design value for loads基本风压:0.25kN/m2;基本雪压:0.25kN/m2;通廊活载:4kN/m2;不上人屋面:0.5kN/m2Reference wind pressure: 0.25kN/m2Reference snow pressure: 0.25kN/m2Live load of corridor: 4kN/m2Non often step roof: 0.5kN/m2三、基础工程:本工程采用第(3)层粗砾砂为持力层,承载力为260kpa。
结构设计手册:基础成分和成员设计说明书
ISSN: 2454-132XImpact factor: 4.295(Volume 4, Issue 2)Available online at: Manual analysis of VILLA and Comparison of result withSTADD-PRO analysisM Poorna ChaitanyaCMR College of Engineering and Technology, Hyderabad, TelanganaRaja Rao BoleCMR College of Engineering and Technology, Hyderabad, TelanganaABSTRACTStructural designing is the primary aspect of civil engineering. The foremost basic in Structural designing is the design of simple basic components and members of building like beams, columns and footings in order to design them it is important to first obtain the plan of a particular building .There by depending on the suitability plan layout of beams and columns are fixed. Once the loads are obtained the component takes the load first is slab so first slab is designed. designing of slabs depends upon whether it is a one way or a two way slab the end conditions and loading .from the slab the load gets transferred to beam .The loads coming from the slabs onto the beam may be trapezoidal or triangular . Depending on this the beam may be designed. There after loads (mainly shear) from the beams are taken by the columns. For designing columns it is necessary to know the moments they are subjected to. For this purpose frame analysis i s done by Kane’s method. After this the designing of columns is taken up depending on end conditions moments, eccentricity. Finally footings are designed based on the loading from the column and also soil bearing capacity value for that particular area.Keywords:Analysis sequence, Structural Analysis, Numerical Computation, Design System.1. INTRODUCTIONIn its modern form, a gated community is a form of residential community or housing estate containing strictly-controlled entrances for pedestrians, bicycles, and automobiles, and often characterized by a closed perimeter of walls and fences. Gated communities usually consist of small residential streets and include various shared amenities. For smaller communities this may be only a park or other common area. For larger communities, it may be possible for residents to stay within the community for most day-to-day activities. Gated communities are a type of common interest development, but are distinct from intentional communities.In addition to a heightened sense of security, most gated communities provide a park or playground, community centre, swimming pool and private storage for homeowners. Larger, more prestigious communities may also include schools for young children, tenniscourts, fitness cent ers, golf courses and marinas. Homeowner’s association fees pay for the building and maintenance of common areas in a gated community.2. SCOPE OF THE STUDYAt the end of the study we will have complete knowledge of designing of structural members according to IS 456-2000 which help us to design any structural member in future,3. DESIGN OF SLAB3.1 Two adjacent edges discontinuousData:Dimension of slab = 5.18m × 4.4 m fck = 20 N/m2Support width = 230 mm fy = 415 N/m2Live load = 3 KN/m2Floor finish = 1.5 KN/m2Aspect ratio:So it is a two way continuous slabEffective stiffness depth required for:= 195 mmd = 170 mmD = 195 mmEffective span:As per IS 456:Effective span = c/c of supports (or) clear span + effective depth (whichever is less) ∙(Clear span + effective depth) = (4.4 + 0.17) = 4.57 m∙(Centre to centre of support) = (4.4+ 0.23) = 4.63 mHence L = 4.57mLoading on the slab:Self-weight of slab = (0.195 × 25) = 4.875 KN/m2Floor finish = 1.5 KN/m2Live load = 3 KN/m2Total service load = w = 9.375 KN/m2Ultimate load = wu = 1.5 × 9.375= 14.06 KN/m2Wall load = 17 x 0.23 x 0.1= 0.391 KN/m2Design load = 14.45 KN/m2Bending moment coefficients:Short span:1. Negative moment at continuous edge (-αx) = 0.0572. Positive moment at mid span (+αx) = 0.043Long span:.1. Negative moment at continuous edge (-αy) = 0.0472. Positive moment at mid span (+αy) = 0.035Bending moment:• B.M along span ( +ve) = 0.043 × 14.45 × 4.572Mux = 12.97 KN.m• B.M along span ( -ve) = 0.057 × 14.45 × 4.572Mux = 17.20 KN.m• B.M along span ( +ve) = 0.035× 14.45 × 4.572Muy = 10.56 KN.m• B.M along span ( +ve) = 0.047× 14.45 × 4.572 Muy = 14.18 KN.m4. CONCLUSIONSThe aim of this project is to portray analysis of different members of a residential villa which is made of RCC .This was made using latest software’s & manual analysis & building codes.The 3D analytical models & Kanni’s method is done in Auto-cad Software with manual analyised values which helped to develop a design with accurate values & optimized to arrive a cost efficient design.5. REFERENCES[1] Wakchaure M.R, Ped S. P on “Earthquake Analysis of High Rise Building with and Without Infill wall” International Journal of Engineering and Innovative Technology 2, August 2012, Volume 2, Issue 89, PP: 89-94.[2] Hemant B. Kaushik, Durgesh C. Rai, and Sudhir K. Jain on “A Rational approach to analytical modeling of m asonry infills in reinforced concrete frame buildings” The 14thWorld Conference on Earthquake Engineering,October 12-17, 2008, Beijing, China.[3] P. Reza*, M.F. Wahid and D.M.N. Islam on “Comparative Study of Bare Frame and Infilled Frame Buildings Due To Seismic Load” in Proceedings of 11th Global Engineering, Science and Technology Conference, 18 - 19 December.[4] Konuralp Girgin and Kutlu Darılmaz on “Seismic Response of Infilled Framed Buildings Using Pushover Analysis” volume 54, number 5, PP: 1-7[5] Sayed Mahmoud,Magdy Genidy• Hesham Tahoon on “Time-History Analysis of Reinforced Concrete Frame Buildings with Soft Storeys” Research gate: Article • December 2016[6] A. Mallika, ” study on effect of storey height on the seismic performance of tall braced building” International Journal of research in engineering and technology, vol.5 , No:2,2016,PP: 37-41[7] IS:456: 2000: Plain and Reinforced concrete -. code of practice.[8] IS: 1893( part 1 ):2002 :Criteria for Earthquake Resistant Design of Structures.part 1: general provisions and buildings.[9] IS: 875(part 2) : 1987: Code of practice for design loads ( other than earthquake loads) for buildings and structure。
结构设计基础
板的有效高度
荷载作用面积
有无抗冲切钢筋
2013-7-9 大连理工大学结构工程研究所 25
7.2 受冲切承载力
图7-8为欧洲规范冲切破坏验算的模型,主要用于均布 荷载的情形。基本控制周长u1一般取距加载区2d处的 周长。
图7-8 冲切验算模型
2013-7-9
图7-8 绕加载区的典型基本控制周长
26
大连理工大学结构工程研究所
2013-7-9
大连理工大学结构工程研究所
4
1.3 设计状况
设计状况表示在一特定时间段内出现的一组 真实情况的物理条件。
持久设计状况—时间段与结构设计工作寿命同一数 量级的设计状况。 短暂设计状况—时间段比结构设计工作寿命短得多 且出现概率很高的设计状况。 偶然设计状况—结构或结构的暴露处于异常条件下 的设计状况。 地震设计状况—地震发生时,结构在这一意外事件 下的设计状况
2013-7-9 大连理工大学结构工程研究所 23
7.1 受剪承载力
构造要求(构造配箍条件)
弯起钢筋的最大纵向间距不应超过
(7-20)
0.03 0.025 0.02 0.015 0.01 0.005 0 20 30 40 50 60 70 80 90 最小值
f ck
w
最大值
图7-7 欧洲规范箍筋的最小和最大配筋率
37
大连理工大学结构工程研究所
最大配箍率
2013-7-9 大连理工大学结构工程研究所
(7-16)
22
7.1 受剪承载力
构造要求(构造配箍条件)
当受弯构件的腹筋较少时,会发生斜拉破坏,属于 脆性破坏,承载力低,应避免这种方式的破坏。
箍筋最小配筋率 (7-17)
第三章结构基本计算原理
M Mu K
整个截面达到极限承载力才认为失效,考虑了材料塑 性和强度的充分发挥,极限荷载可以直接由试验验证,构 件的总安全度较为明确。
◎但安全系数K仍然凭经验确定, ◎没有考虑结构功能的多样性要求的问题。
3.1 极限状态设计法的基本概念
第三章 结构设计基本原理
◆ 材料力学研究的是:单一材料、线弹性、简单结构 ◆ 实际工程结构远比它复杂 ◆ 如钢筋混凝土梁的受弯,从安全角度考虑,需要确定其极
第二章 结构基本计算原则
3、结构抗力
R——结构抗力 Resistance
结构抵抗作用效应的能力,如受弯承载力Mu、受剪承载 力Vu、容许挠度[f]、容许裂缝宽度[w]
R = R(fc, fy, A, h0, As, …) 本课程的主要内容
M ufyAsh0(1k2)k1fyfA csb
4、极限状态方程Ultimate State Function
2.3.2 极限状态
第二章 结构基本计算原则
3.1.6 结构上的作用、作用效应和结构的抗力 1、结构上的作用(action):
定义:是指施加在结构上的集中力或分布力,以及引起结构
外加变形或约束变形的原因(如地震、温度变化等)。前者 称作直接作用或者荷载,后者称作间接作用。
结构上的作用按时间变异分为三类:
earthquake.
2、作用效应
S——作用效应 Action Effect 结构上的作用(使结构产生内力和变形的原因,如荷载、
不均匀沉降、温度变形、收缩变形、地震等)引起的效应 如弯矩M、轴力N、剪力V、扭矩T、挠度 f、裂缝宽度 w 等
S = S(Q)
M 1 pl2 结构力学的主要内容
8
Simplified Design of Steel Structures结构特性分析
4.1 INVESTIGATION OF STRUCTURAL BEHA VIORInvestigating how structures behave is an important part of structural design: it provides a basis for ensuring the adequacy and safety of a design, In this section I discuss structural investigation in general. As I do throughout this book. I focus on material relevant to structural design tasks.Purpose of InvestigationMost structures exist because they are needed. Any evaluation of a structure thus must begin with an analysis of how effectively the structure meets the usage requirements.Designers must consider the following three factors:●Functionality. or the general physical relationships of the structure'sform. detail. durability. fire resistance. deformation resistance. and so on.●Feasibility. including cost. availability of materials and products. andpracticality of construction.●Safety. or capacity 10 resist anticipated loads.MeansAn investigation of a fully defined structure involves the following:1. Determine the structure's physical being-materials, form, scale.orientation. location. support conditions, and internal character and detail.2. Determine the demands placed on the structure-that is. loads.3. Determine the structure's deformation limits.4. Determine the structure's load response-how it handles internal forcesand stresses and significant deformations.5. Evaluate whether the structure can safely handle the requiredstructural tasks.Investigation may take several forms. You can●Visualize graphically the structure's deformation under load.●Manipulate mathematical models.●Test the structure or a scaled model, measuring its responses to loads. When precise quantitative evaluations are required. use mathematical models based on reliable theories or directly measure physical responses. Ordinarily. mathematical modeling precedes any actual construction-even of a test model. Limit direct measurementto experimental studies or to verifying untestedtheories or design methods.Visual AidsIn this book, I emphasize graphical visualization; sketches arc invaluable learning and problem-solving aids. Three types of graphics are most useful: the free-body diagram. the exaggerated profile of a load-deformed structure. and the scaled pial.A free-body diagram combines a picture of an isolated physical clemen I with representations of all external forces. The isolated clement may be a whole structure or some part of it.For example. Figure 4.1a shows an entire structure-a beamand-eolumn rigid bent-and the external forces (represented by arrows). which include gravity. wind. and the reactive resistance of the supports (called the reactions). Note: Such a force system holds the structure in static equilibrium.Figure 4.lb is a free-body diagram of a single beam from the bent. Operating on the beam are two forces: its own weight and the interaction between the beam ends and the columns 10 which the beam is all ached. These interactions are not visible in the Ireebody diagram of the whole bent. so one purpose of the diagram for the beam is to illustrate these interactions. For example. note that the columns transmit to theendsofthe beams horizontal and vertical forces as well as rotational bending actions.Figure 4.lc shows an isolated portion ofthe beam length. illustrating the beam's internal force actions. Operating on this free body arc its own weight and the actions of the beam segments on the opposite sides of the slicing planes. since it is these actions that hold the removed portion in place in the whole beam.Figure 4.ld. a tiny segment. or particle. of the beam material is isolated, illustrating the interactions between this particle and those adjacent to it. This device helps designers visualize stress: in this case. due to its location in the beam. the particle is subjected to a combination of shear and linear compression stresses.An exaggerated profile of a load-deformed structure helps establish the qualitative nature of the relationships between force actions and shape changes. Indeed. you can infer the form deformation from the type of force or stress. and vice versa.FIGURE 4.1Free-body diagrams.For example. Figure shows {he exaggerated deformation of the bent in Figure 4.1 under wind loading. Note how you can determine the nature of bending action in each member of the frame from this figure. Figure 4.2b shows the nature of deformation of individual particles under various types ofstress.FIGURE 4.2 Structural deformationThe scaled plot is a graph of some mathematical relationship or real data. For example, the graph in Figure 4.3 represents the form of a damped ibration of an elastic spring. It consists of the plot of the displacements against elapsed time t. and represents the graph of the expression.FIGURE 4.3 Graphical plot of a damped cyclic motion.Although the equation is technically sufficient to describe the phenomenon, the graph illustrates many aspects of the relationship. such as the rate of decay of the displacement. the interval of the vibration. the specific position at some specific elapsed time. and so on..4.2 METHODS OF INVESTIGATION AND DESIGNTraditional structural design centered on the working stress method. a method now referred to as stress design or allowable stress design (ASD). This method. which relies on the classic theories of elastic behavior, measures a design's safety against two limits: an acceptable maximum stress (called allowable working stress) and a tolerable extent of deformation (deflection. stretch. erc.). These limits refer to a structure's response to service loads-that is. the loads caused by normal usage conditions. The strength me/hod, mean-while, measures a design's adequacy against its absolute load limit-that is. when the structure must fail.To convincingly establish stress. strain. and failure limits, tests were performed extensively in the field (on real structures) and laboratories (on specimen prototypes. or models). Note: Real-world structural failures are studied both for research sake and to establish liability.In essence. the working stress method consists of designing a structure to work at some established percentage of its total capacity. The strength methodconsists of designing a structure tofail. but at a load condition well beyond what it should experience. Clearly the stress and strength methods arc different. but the difference is mostly procedural.The Stress Method (ASD)The stress method is as follows:1. Visualize and quantify the service (working) load conditions asintelligently as possible. You can make adjustments by determiningstatistically likely load combinations (i.e , dead load plus live load pluswind load). considering load duration. and so on.2. Establish standard stress. stability, and deformation limits for thevarious structural responses-in tension. bending, shear, buckling.deflection, and so on.3. Evaluate the structure's response.An advantage of working with the stress method is that you focus on the usage condition (real or anticipated). The principal disadvantage comes from your forced detachment from real failure conditions-most structures develop much different forms of stress and strain as they approach their failure limits.The Strength Method (LRFD)The strength method is as follows:1. Quantify the service loads. Then multiply them by an adjustmentfactor'( essentially a safety factor) to produce thejaclOred load.2. Visualize the various structural responses and quantify the structure'sultimate (maximum, failure) resistance in appropriate terms(resistance to compression, buckling. bending. etc.). Sometimes thisresistance is subject to an adjustment factor, calledtheresistancefacror. When you employ load and resistance factors.the strength method is now sometimes called foad andresistancefaaor design (LRFD) (see Section 5.9).3. Compare the usable resistance ofthe structu re to the u ltirnatcresistance required (an investigation procedure), or a structure with anappropriate resistance is proposed (a design procedure).A major reason designers favor the strength method is that structural failure is relatively easy to test. What is an appropriate working condition is speculation. In any event, the strength method which was first developed for the design of reinforced concrete structures, is now largely preferred in all professional design work.Nevertheless, the classic theories of clastic behavior still serve as a basisfor visualizing how structures work. But ultimate responses usually vary from the classic responses, because of inelastic materials, secondary effects, multi mode responses, and so on. In other words, the usual procedure is to first consider a classic, elastic response, and then to observe (or speculate about) what happens as failure limits are approached.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ultimate limit states
STR: Internal failure or excessive deformation of the
The general format of effects of actions
and can be simplified as:
The combination of action in curly braces {} can be expressed as:
Combinations of actions for accidental design situations A-design value of the accidental action
Example of fundamental load combinations
The partial factors for properties of materials
products should be obtained from EN 1992 to EN 1999
for each project and agreed with the client".
Example: multistorey frame
Objective: design using the partial factor method a steel
multistorey frame
Example: multistorey frame
Self-weight (Gk,1) Dead load on floors (Gk,2) Exterior cladding (Gk,3)
The following actions can be identified:
– – – – – Permanent loads Gk Imposed loads Qk Snow load Sk Wind load Wk Seismic action Aed
Imposed load (Qk,1) Snow load (Sk ) Wind load (Wk )
Imposed load chessboard (Qk,2)
Seismic load (Aed )
Example: multistorey frame
Of the four possible design situations,
– – – – Persistent design situations, Transient design situations, Accidental design situations, Seismic design situations.
most relevant
Two categories of limit states need to be considered:
– Ultimate limit states (ULS) – Serviceability limit states (SLS)
Persistent design situation
Seismic design situation
ULS
SLS
ULS
SLS
11
Example: multistorey frame
Load cases (combinations of actions) Persistent design situation
– Ultimate limit states (ULS) → – Serviceability limit states (SLS) →
Seismic design situation
– Ultimate limit states (ULS) → – Serviceability limit states (SLS) → see EN 1998-1
Example: multistorey frame
Load cases (combinations of actions) Persistent design situation
– Ultimate limit states (ULS)
• • • • • • • • • • 1.35(Gk,1 + Gk,2 + Gk,3) + 1.5Qk,1 1.35(Gk,1 + Gk,2 + Gk,3) + 1.5Qk,2 1.35(Gk,1 + Gk,2 + Gk,3) + 1.5Sk,1 1.35(Gk,1 + Gk,2 + Gk,3) + 1.5Wk 0.9(Gk,1 + Gk,2 + Gk,3) + 1.5Wk 1.35(Gk,1 + Gk,2 + Gk,3) + 1.5Qk,1 + 1.05Sk 1.35(Gk,1 + Gk,2 + Gk,3) + 1.5Sk + 1.05Qk,1 1.35(Gk,1 + Gk,2 + Gk,3) + 1.5Qk,1 + 1.05Sk + 1.05Wk 1.35(Gk,1 + Gk,2 + Gk,3) + 1.5Sk + 1.05Qk,1 + 1.05Wk 1.35(Gk,1 + Gk,2 + Gk,3) + 1.5Wk + 1.05Qk,1 + 1.05Sk
check strength and stability of members and connections
12
Example: multistorey frame
Load cases (combinations of actions) Persistent design situation
– Serviceability limit states (SLS)
• • • • • (Gk,1 + Gk,2 + Gk,3) + Qk,1 (Gk,1 + Gk,2 + Gk,3) + Qk,2 (Gk,1 + Gk,2 + Gk,3) + Sk,1 (Gk,1 + Gk,2 + Gk,3) + Wk (Gk,1 + Gk,2 + Gk,3) + Wk + 0.7Qk,1 + 0.7Sk
check beam deflections check lateral storey deformations
Seismic design situation
– Ultimate limit states (ULS)
• (Gk,1 + Gk,2 + Gk,3) + 0.4(Qk,1 + Sk) + Aed
check strength, stability and ductility of members and connections
– Serviceability limit states (SLS) → check lateral storey displacements determined according to specific requirements of EN 1998-1
13
。