1期权、期货和其他衍生品 1-3习题解答zhaoyang
约翰.赫尔,期权期货和其他衍生品(third edition)习题答案
12.1 一个证券组合当前价值为$1000万,β值为1.0,S&P100目前位于250,解释一个执行价格为240。
标的物为S&P100的看跌期权如何为该组合进行保险?当S&P100跌到480,这个组合的期望价值是10 ×(480/500)=$9.6million.买看跌期权10,000,000/500=20,000可以防止这个组合下跌到$9.6million下的损失。
因此总共需要200份合约12.2 “一旦我们知道了支付连续红利股票的期权的定价方法,我们便知道了股票指数期权、货币期权和期货期权的定价”。
请解释这句话。
一个股票指数类似一个连续支付红利的股票12.3 请说明日圆看涨期权与日圆期货看涨期权的不同之处一个日元的看涨期权给了持有者在未来某个时刻以确定的价格购买日圆的权利,一个日圆远期看涨期权给予持有者在未来时刻远期价格超过特定范围按原先价格购买日圆的权利。
如果远期齐权行使,持有者将获得一个日圆远期和约的多头。
12.4请说明货币期权是如何进行套期保值的?12.5 计算3个月期,处于平价状态的欧式看涨股票指数期权的价值。
指数为250。
无风险年利率为10%,指数年波动率为18%,指数的年红利收益率为3%。
一个日元的看涨期权给了持有者在未来某个时刻以确定的价格购买日圆的权利,一个日圆远期看涨期权给予持有者在未来时刻远期价格超过特定范围按原先价格购买日圆的权利。
如果远期齐权行使,持有者将获得一个日圆远期和约的多头。
12.6 有一美式看涨期货期权,期货合约和期权合约同时到期。
在任何情况下期货期权比相应的标的物资产的美式期权更值钱?当远期价格大于即期价格时,美式远期期权在远期和约到期前的价值大于相对应的美式期权/12.7 计算5个月有效期的欧式看跌期货期权的价值。
期货价格为$19,执行价格为$20,无风险年利率为12%。
期货价格的年波动率为20%。
本题中12.8 假设交易所构造了一个股票指数。
期权期货与其他衍生产品第九版课后习题与答案Chapter
CHAPTER 31Interest Rate Derivatives: Models of the Short Rate Practice QuestionsProblem 31.1.What is the difference between an equilibrium model and a no-arbitrage model?Equilibrium models usually start with assumptions about economic variables and derive the behavior of interest rates. The initial term structure is an output from the model. In ano-arbitrage model the initial term structure is an input. The behavior of interest rates in ano-arbitrage model is designed to be consistent with the initial term structure.Problem 31.2.Suppose that the short rate is currently 4% and its standard deviation is 1% per annum. What happens to the standard deviation when the short rate increases to 8% in (a) Vasicek’s model;(b) Rendleman and Bartter’s mod el; and (c) the Cox, Ingersoll, and Ross model?In Vasicek’s model the standard deviation stays at 1%. In the Rendleman and Bartter model the standard deviation is proportional to the level of the short rate. When the short rate increases from 4% to 8% the standard deviation increases from 1% to 2%. In the Cox, Ingersoll, and Ross model the standard deviation of the short rate is proportional to the square root of the short rate. When the short rate increases from 4% to 8% the standard deviation increases from 1% to 1.414%.Problem 31.3.If a stock price were mean reverting or followed a path-dependent process there would be market inefficiency. Why is there not market inefficiency when the short-term interest rate does so?If the price of a traded security followed a mean-reverting or path-dependent process there would be market inefficiency. The short-term interest rate is not the price of a traded security. In other words we cannot trade something whose price is always the short-term interest rate. There is therefore no market inefficiency when the short-term interest rate follows amean-reverting or path-dependent process. We can trade bonds and other instruments whose prices do depend on the short rate. The prices of these instruments do not followmean-reverting or path-dependent processes.Problem 31.4.Explain the difference between a one-factor and a two-factor interest rate model.In a one-factor model there is one source of uncertainty driving all rates. This usually means that in any short period of time all rates move in the same direction (but not necessarily by the same amount). In a two-factor model, there are two sources of uncertainty driving all rates. The first source of uncertainty usually gives rise to a roughly parallel shift in rates. The second gives rise to a twist where long and short rates moves in opposite directions.Problem 31.5.Can the approach described in Section 31.4 for decomposing an option on a coupon-bearing bond into a portfolio of options on zero-coupon bonds be used in conjunction with a two-factor model? Explain your answer.No. The approach in Section 31.4 relies on the argument that, at any given time, all bond prices are moving in the same direction. This is not true when there is more than one factor.Problem 31.6.Suppose that 01a =. and 01b =. in both the Vasicek and the Cox, Ingersoll, Ross model. In both models, the initial short rate is 10% and the initial standard deviation of the short rate change in a short time t ∆is 0.zero-coupon bond that matures in year 10.In Vasicek’s model, 01a =., 01b =., and 002σ=. so that01101(10)(1)63212101B t t e -.⨯,+=-=..22(63212110)(010100002)00004632121(10)exp 00104A t t ⎡⎤.-.⨯.-..⨯.,+=-⎢⎥..⎣⎦071587=. The bond price is therefore 63212101071587038046e -.⨯..=.In the Cox, Ingersoll, and Ross model, 01a =., 01b =.and 00200632σ=.=.. Also013416γ==. Define10()(1)2092992a e γβγγ=+-+=.102(1)(10)607650e B t t γβ-,+==.225()2(10)069746ab a e A t t σγγβ/+⎛⎫,+==. ⎪⎝⎭The bond price is therefore 60765001069746037986e -.⨯..=.Problem 31.7.Suppose that 01a =., 008b =., and 0015σ=. in Vasicek’s model with the initial value of the short rate being 5%. Calculate the price of a one-year European call option on azero-coupon bond with a principal of $100 that matures in three years when the strike price is $87.Using the notation in the text, 3s =, 1T =, 100L =, 87K =, and2010015(1002588601P e σ-⨯..=-=.. From equation (31.6), (01)094988P ,=., (03)085092P ,=., and 114277h =. so thatequation (31.20) gives the call price as call price is 100085092(114277)87094988(111688)259N N ⨯.⨯.-⨯.⨯.=. or $2.59.Problem 31.8.Repeat Problem 31.7 valuing a European put option with a strike of $87. What is the put –call parity relationship between the prices of European call and put options? Show that the put and call option prices satisfy put –call parity in this case.As mentioned in the text, equation (31.20) for a call option is essentially the same as Bl ack’s model. By analogy with Black’s formulas corresponding expression for a put option is (0)()(0)()P KP T N h LP s N h σ,-+-,- In this case the put price is 87094988(111688)100085092(114277)014N N ⨯.⨯-.-⨯.⨯-.=.Since the underlying bond pays no coupon, put –call parity states that the put price plus the bond price should equal the call price plus the present value of the strike price. The bond price is 85.09 and the present value of the strike price is 870949888264⨯.=.. Put –call parity is therefore satisfied:82642598509014.+.=.+.Problem 31.9.Suppose that 005a =., 008b =., and 0015σ=. in Vasicek’s model with the initialshort-term interest rate being 6%. Calculate the price of a 2.1-year European call option on a bond that will mature in three years. Suppose that the bond pays a coupon of 5% semiannually. The principal of the bond is 100 and the strike price of the option is 99. The strike price is the cash price (not the quoted price) that will be paid for the bond.As explained in Section 31.4, the first stage is to calculate the value of r at time 2.1 years which is such that the value of the bond at that time is 99. Denoting this value of r by r *, we must solve(2125)(2130)25(2125)1025(2130)99B r B r A e A e **-.,.-.,...,.+..,.=where the A and B functions are given by equations (31.7) and (31.8). In this case A (2.1, 2.5)=0.999685, A (2.1,3.0)=0.998432, B(2.1,2.5)=0.396027, and B (2.1, 3.0)= 0.88005. and Solver shows that 065989.0*=r . Since434745.2)5.2,1.2(5.2*)5.2,1.2(=⨯-r B e Aand56535.96)0.3,1.2(5.102*)0.3,1.2(=⨯-r B e Athe call option on the coupon-bearing bond can be decomposed into a call option with a strike price of 2.434745 on a bond that pays off 2.5 at time 2.5 years and a call option with a strike price of 96.56535 on a bond that pays off 102.5 at time 3.0 years. The options are valued using equation (31.20).For the first option L =2.5, K = 2.434745, T = 2.1, and s =2.5. Also, A (0,T )=0.991836, B (0,T ) = 1.99351, P (0,T )=0.880022 while A (0,s )=0.988604, B (0,s )=2.350062, andP (0,s )=0.858589. Furthermore σP = 0.008176 and h = 0.223351. so that the option price is 0.009084.For the second option L =102.5, K = 96.56535, T = 2.1, and s =3.0. Also, A (0,T )=0.991836, B (0,T ) = 1.99351, P (0,T )=0.880022 while A (0,s )=0.983904, B (0,s )=2.78584, andP (0,s )=0.832454. Furthermore σP = 0.018168 and h = 0.233343. so that the option price is0.806105.The total value of the option is therefore 0.0090084+0.806105=0.815189.Problem 31.10.Use the answer to Problem 31.9 and put –call parity arguments to calculate the price of a put option that has the same terms as the call option in Problem 31.9.Put-call parity shows that: 0()c I PV K p B ++=+ or 0()()p c PV K B I =+--where c is the call price, K is the strike price, I is the present value of the coupons, and 0B is the bond price. In this case 08152c =., ()99(021)871222PV K P =⨯,.=., 025(025)1025(03)874730B I P P -=.⨯,.+.⨯,=. so that the put price is0815287122287473004644.+.-.=.Problem 31.11.In the Hull –White model, 008a =. and 001σ=.. Calculate the price of a one-year European call option on a zero-coupon bond that will mature in five years when the term structure is flat at 10%, the principal of the bond is $100, and the strike price is $68.Using the notation in the text 011(0)09048P T e -.⨯,==. and 015(0)06065P s e -.⨯,==.. Also4008001(100329008P e σ-⨯..=-=.. and 04192h =-. so that the call price is10006065()6809048()0439P N h N h σ⨯.-⨯.-=.Problem 31.12.Suppose that 005a =. and 0015σ=. in the Hull –White model with the initial term structure being flat at 6% with semiannual compounding. Calculate the price of a 2.1-year European call option on a bond that will mature in three years. Suppose that the bond pays a coupon of 5% per annum semiannually. The principal of the bond is 100 and the strike price of the option is 99. The strike price is the cash price (not the quoted price) that will be paid for the bond.This problem is similar to Problem 31.9. The difference is that the Hull –White model, which fits an initial term structure, is used instead of Vasicek’s model where the initial term structure is determined by the model.The yield curve is flat with a continuously compounded rate of 5.9118%.As explained in Section 31.4, the first stage is to calculate the value of r at time 2.1 years which is such that the value of the bond at that time is 99. Denoting this value of r by r *, we must solve(2125)(2130)25(2125)1025(2130)99B r B r A e A e **-.,.-.,...,.+..,.=where the A and B functions are given by equations (31.16) and (31.17). In this case A (2.1, 2.5)=0.999732, A (2.1,3.0)=0.998656, B(2.1,2.5)=0.396027, and B (2.1, 3.0)= 0.88005. and Solver shows that 066244.0*=r . Since434614.2)5.2,1.2(5.2*)5.2,1.2(=⨯-r B e Aand56539.96)0.3,1.2(5.102*)0.3,1.2(=⨯-r B e Athe call option on the coupon-bearing bond can be decomposed into a call option with a strike price of 2.434614 on a bond that pays off 2.5 at time 2.5 years and a call option with a strike price of 96.56539 on a bond that pays off 102.5 at time 3.0 years. The options are valued using equation (31.20).For the first option L =2.5, K = 2.434614, T = 2.1, and s =2.5. Also, P (0,T )=exp(-0.059118×2.1)=0.88325 and P (0,s )= exp(-0.059118×2.5)=0.862609. Furthermore σP = 0.008176 and h = 0.353374. so that the option price is 0.010523. For the second option L =102.5, K = 96.56539, T = 2.1, and s =3.0. Also, P (0,T )=exp(-0.059118×2.1)=0.88325 and P (0,s )= exp(-0.059118×3.0)=0.837484. Furthermore σP = 0.018168 and h = 0.363366. so that the option price is 0.934074.The total value of the option is therefore 0.010523+0.934074=0.944596.Problem 31.13.Observations spaced at intervals ∆t are taken on the short rate. The ith observation is r i (1 ≤ i ≤ m). Show that the maximum likelihood estimates of a, b, and σ in Vasicek’s model are given by maximizing[]∑=--⎪⎪⎭⎫ ⎝⎛∆σ∆----∆σ-m i i i i t t r b a r r t 122112)()ln(What is the corresponding result for the CIR model?The change r i –r i -1 is normally distributed with mean a (b − r i -1) and variance σ2∆t. The probability density of the observation is⎪⎭⎫⎝⎛∆σ---∆πσ--t r b a r r ti i i 21122)(exp 21We wish to maximize∏=--⎪⎭⎫⎝⎛∆σ---∆πσmi i i i t r b a r r t121122)(exp 21Taking logarithms, this is the same as maximizing[]∑=--⎪⎪⎭⎫ ⎝⎛∆σ∆----∆σ-m i i i i t t r b a r r t 122112)()ln(In the case of the CIR model, the change r i –r i -1 is normally distributed with mean a (b − r i -1) and variance t r i ∆σ-12and the maximum likelihood function becomes[]∑=----⎪⎪⎭⎫ ⎝⎛∆σ∆----∆σ-mi i i i i i t r t r b a r r t r 11221112)()ln(Problem 31.14.Suppose 005a =., 0015σ=., and the term structure is flat at 10%. Construct a trinomial tree for the Hull –White model where there are two time steps, each one year in length.The time step, t ∆, is 1 so that 0002598r ∆=.=.. Also max 4j = showing that the branching method should change four steps from the center of the tree. With only three steps we never reach the point where the branching changes. The tree is shown in Figure S31.1.Figure S31.1: Tree for Problem 31.14Problem 31.15.Calculate the price of a two-year zero-coupon bond from the tree in Figure 31.6.A two-year zero-coupon bond pays off $100 at the ends of the final branches. At nodeB it is worth 01211008869e -.⨯=.. At nodeC it is worth 010********e -.⨯=.. At nodeD it is worth 00811009231e -.⨯=.. It follows that at node A the bond is worth 011(88690259048059231025)8188e -.⨯.⨯.+.⨯.+.⨯.=. or $81.88Problem 31.16.Calculate the price of a two-year zero-coupon bond from the tree in Figure 31.9 and verify that it agrees with the initial term structure.A two-year zero-coupon bond pays off $100 at time two years. At nodeB it is worth 0069311009330e -.⨯=.. At nodeC it is worth 0052011009493e -.⨯=.. At nodeD it is worth 0034711009659e -.⨯=.. It follows that at node A the bond is worth 003821(933001679493066696590167)9137e -.⨯.⨯.+.⨯.+.⨯.=.or $91.37. Because 00451229137100e -.⨯.=, the price of the two-year bond agrees with the initial term structure.Problem 31.17.Calculate the price of an 18-month zero-coupon bond from the tree in Figure 31.10 and verify that it agrees with the initial term structure.An 18-month zero-coupon bond pays off $100 at the final nodes of the tree. At node E it is worth 0088051009570e -.⨯.=.. At node F it is worth 00648051009681e -.⨯.=.. At node G it is worth 00477051009764e -.⨯.=.. At node H it is worth 00351051009826e -.⨯.=.. At node I it is worth 00259051009871e .⨯.=.. At node B it is worth 0056405(011895700654968102289764)9417e -.⨯..⨯.+.⨯.+.⨯.=.Similarly at nodes C and D it is worth 95.60 and 96.68. The value at node A is therefore 0034305(016794170666956001679668)9392e -.⨯..⨯.+.⨯.+.⨯.=.The 18-month zero rate is 0181500800500418e -.⨯..-.=.. This gives the price of the 18-month zero-coupon bond as 00418151009392e -.⨯.=. showing that the tree agrees with the initial term structure.Problem 31.18.What does the calibration of a one-factor term structure model involve?The calibration of a one-factor interest rate model involves determining its volatility parameters so that it matches the market prices of actively traded interest rate options as closely as possible.Problem 31.19.Use the DerivaGem software to value 14⨯, 23⨯, 32⨯, and 41⨯ European swap options to receive fixed and pay floating. Assume that the one, two, three, four, and five year interest rates are 6%, 5.5%, 6%, 6.5%, and 7%, respectively. The payment frequency on the swap is semiannual and the fixed rate is 6% per annum with semiannual compounding. Use the Hull –White model with 3a %= and 1%σ=. Calcula te the volatility implied by Black’s model for each option.The option prices are 0.1302, 0.0814, 0.0580, and 0.0274. The implied Black volatilities are 14.28%, 13.64%, 13.24%, and 12.81%Problem 31.20.Prove equations (31.25), (31.26), and (31.27).From equation (31.15) ()()()()r t B t t t P t t t A t t t e -,+∆,+∆=,+∆ Also ()()R t t P t t t e -∆,+∆= so that()()()()R t t r t B t t t e A t t t e -∆-,+∆=,+∆or()()()()()()()()R t B t T t B t t t r t B t T B t T B t t t e eA t t t -,∆/,+∆-,,/,+∆=,+∆ Hence equation (31.25) is true with()ˆ()(B t T t Bt T B t t t ,∆,=,+∆ and()()()ˆ()()B t T B t t t A t T At T A t t t ,/,+∆,,=,+∆ or()ˆln ()ln ()ln ()()B t T At T A t T A t t t B t t t ,,=,-,+∆,+∆Problem 31.21.(a) What is the second partial derivative of P(t,T) with respect to r in the Vasicek and CIR models?(b) In Section 31.2, ˆDis presented as an alternative to the standard duration measure D. What is a similar alternative ˆCto the convexity measure in Section 4.9? (c) What is ˆCfor P(t,T)? How would you calculate ˆC for a coupon-bearing bond? (d) Give a Taylor Series expansion for ∆P(t,T) in terms of ∆r and (∆r)2 for Vasicek and CIR.(a) ),(),(),(),(),(2),(222T t P T t B e T t A T t B rT t P r T t B ==∂∂- (b) A corresponding definition for Cˆis 221r QQ ∂∂(c) When Q =P (t ,T ), 2),(ˆT t B C=For a coupon-bearing bond C ˆis a weighted average of the Cˆ’s for the constituent zero -coupon bonds where weights are proportional to bond prices. (d)+∆+∆-=+∆∂∂+∆∂∂=∆22222),(),(21),(),(),(21),(),(r T t P T t B r T t P T t B r rT t P r r T t P T t PProblem 31.22.Suppose that the short rate r is 4% and its real-world process is0.1[0.05]0.01dr r dt dz =-+while the risk-neutral process is0.1[0.11]0.01dr r dt dz =-+(a) What is the market price of interest rate risk?(b) What is the expected return and volatility for a 5-year zero-coupon bond in the risk-neutral world?(c) What is the expected return and volatility for a 5-year zero-coupon bond in the real world?(a) The risk neutral process for r has a drift rate which is 0.006/r higher than the real world process. The volatility is 0.01/r . This means that the market price of interest rate risk is −0.006/0.01 or −0.6.(b) The expected return on the bond in the risk-neutral world is the risk free rate of 4%. The volatility is 0.01×B (0,5) where935.31.01)5,0(51.0=-=⨯-e Bi.e., the volatility is 3.935%.(c) The process followed by the bond price in a risk-neutral world isPdz Pdt dP 03935.004.0-=Note that the coefficient of dz is negative because bond prices are negatively correlated with interest rates. When we move to the real world the return increases by the product of the market price of dz risk and −0.03935. The bond price process becomes:Pdz Pdt dP 03935.0)]03935.06.0(04.0[--⨯-+=orPdz Pdt dP 03935.006361.0-=The expected return on the bond increases from 4% to 6.361% as we move from the risk-neutral world to the real world.Further QuestionsProblem 31.23.Construct a trinomial tree for the Ho and Lee model where 002σ=.. Suppose that the initial zero-coupon interest rate for a maturities of 0.5, 1.0, and 1.5 years are 7.5%, 8%, and 8.5%. Use two time steps, each six months long. Calculate the value of a zero-coupon bond with a face value of $100 and a remaining life of six months at the ends of the final nodes of the tree. Use the tree to value a one-year European put option with a strike price of 95 on the bond. Compare the price given by your tree with the analytic price given by DerivaGem.The tree is shown in Figure S31.2. The probability on each upper branch is 1/6; the probability on each middle branch is 2/3; the probability on each lower branch is 1/6. The six month bond prices nodes E, F, G, H, I are 0144205100e -.⨯., 0119705100e -.⨯., 0095205100e -.⨯., 0070705100e -.⨯., and 0046205100e -.⨯., respectively. These are 93.04, 94.19, 95.35, 96.53, and 97.72. The payoffs from the option at nodes E, F, G, H, and I are therefore 1.96, 0.81, 0, 0, and 0. The value at node B is 0109505(0166719606667081)08192e -.⨯..⨯.+.⨯.=.. The value at node C is00851050166708101292e -.⨯..⨯.⨯=.. The value at node D is zero. The value at node A is 0075005(01667081920666701292)0215e -.⨯..⨯.+.⨯.=. The answer given by DerivaGem using the analytic approach is 0.209.Figure S31.2: Tree for Problem 31.23Problem 31.24.A trader wishes to compute the price of a one-year American call option on a five-year bond with a face value of 100. The bond pays a coupon of 6% semiannually and the (quoted) strike price of the option is $100. The continuously compounded zero rates for maturities of sixmonths, one year, two years, three years, four years, and five years are 4.5%, 5%, 5.5%, 5.8%, 6.1%, and 6.3%. The best fit reversion rate for either the normal or the lognormal model has been estimated as 5%.A one year European call option with a (quoted) strike price of 100 on the bond is actively traded. Its market price is $0.50. The trader decides to use this option for calibration. Use the DerivaGem software with ten time steps to answer the following questions.(a) Assuming a normal model, imply the σ parameter from the price of the European option.(b) Use the σ parameter to calculate the price of the option when it is American. (c) Repeat (a) and (b) for the lognormal model. Show that the model used does notsignificantly affect the price obtained providing it is calibrated to the known European price.(d) Display the tree for the normal model and calculate the probability of a negative interest rate occurring.(e) Display the tree for the lognormal model and verify that the option price is correctly calculated at the node where, with the notation of Section 31.7, 9i = and 1j =-.Using 10 time steps:(a) The implied value of σ is 1.12%.(b) The value of the American option is 0.595(c) The implied value of σ is 18.45% and the value of the American option is 0.595. Thetwo models give the same answer providing they are both calibrated to the same European price.(d) We get a negative interest rate if there are 10 down moves. The probability of this is0.16667×0.16418×0.16172×0.15928×0.15687×0.15448×0.15212×0.14978×0.14747 ×0.14518=8.3×10-9 (e) The calculation is0052880101641791707502789e -.⨯..⨯.⨯=.Problem 31.25.Use the DerivaGem software to value 14⨯, 23⨯, 32⨯, and 41⨯ European swap options to receive floating and pay fixed. Assume that the one, two, three, four, and five year interest rates are 3%, 3.5%, 3.8%, 4.0%, and 4.1%, respectively. The payment frequency on the swap is semiannual and the fixed rate is 4% per annum with semiannual compounding. Use thelognormal model with 5a %=, 15%σ=, and 50 time steps. Calculate the volatility implied by Black’s model for each option.The values of the four European swap options are 1.72, 1.73, 1.30, and 0.65, respectively. The implied Black volatilities are 13.37%, 13.41%, 13.43%, and 13.42%, respectively.Problem 31.26.Verify that the DerivaGem software gives Figure 31.11 for the example considered. Use the software to calculate the price of the American bond option for the lognormal and normalmodels when the strike price is 95, 100, and 105. In the case of the normal model, assume that a = 5% and σ = 1%. Discuss the results in the context of the heavy-tails arguments of Chapter 20.With 100 time steps the lognormal model gives prices of 5.585, 2.443, and 0.703 for strike prices of 95, 100, and 105. With 100 time steps the normal model gives prices of 5.508, 2.522, and 0.895 for the three strike prices respectively. The normal model gives a heavier left tail and a less heavy right tail than the lognormal model for interest rates. This translates into a less heavy left tail and a heavier right tail for bond prices. The arguments in Chapter 20 show that we expect the normal model to give higher option prices for high strike prices and lower option prices for low strike. This is indeed what we find.Problem 31.27.Modify Sample Application G in the DerivaGem Application Builder software to test theconvergence of the price of the trinomial tree when it is used to price a two-year call option on a five-year bond with a face value of 100. Suppose that the strike price (quoted) is 100, the coupon rate is 7% with coupons being paid twice a year. Assume that the zero curve is as in Table 31.2. Compare results for the following cases:(a) Option is European; normal model with 001σ=. and 005a =..(b) Option is European; lognormal model with 015σ=. and 005a =..(c) Option is American; normal model with 001σ=. and 005a =..(d) Option is American; lognormal model with 015σ=. and 005a =..The results are shown in Figure S31.3.Figure S31.3: Tree for Problem 31.27Problem 31.28.Suppose that the (CIR) process for short-rate movements in the (traditional) risk-neutral world is()dr a b r dt =-+and the market price of interest rate risk is λ(a) What is the real world process for r?(b) What is the expected return and volatility for a 10-year bond in the risk-neutral world? (c) What is the expected return and volatility for a 10-year bond in the real world?(a) The volatility of r (i.e., the coefficient of rdz in the process for r ) is real world process for r is therefore increased by r r λσ⨯ so that the process isdz r dt r r b a dr σ+λσ+-=])([(b) The expected return is r and the volatility is (,B t T σin the risk-neutral world.(c) The expected return is r T t B r ),(λσ+ and the volatility is as in (b) in the real world.。
期权期货与其他衍生产品第九版课后习题与答案Chapter(.
cHAPTra KI betUrM M«4duxn«x<^ ar ••••• f«g ・t plM OM<a to MB ll ・—TL —▼rMdV — ■ M 9•&・ Mtw«aH 叩■厂 1—、M»A-l S*2*0«M ■■ ^7521 1*4SeM 0|«tc4WB* ap*w ^«K « <* o az «•«!io •e ・fOMHVu ・w« Aft. xW*・9«v MBMk t» W*»|w «WM !•«•••— %-V> K ・9. ■・•( •*©> T-»» ■.空竺J 马A 空兰.…计•A SK<•4 «>A7・・1・•・R ・08*・5ZE 11*.F<<O<MI4WV ■❷•waw JttM <«•<«■■ J ・I9H74・ MrtMyiiPH—W ・(VAlw«・・,•■■■>•・" M «M 4 MI « E f R —W •字•字)vfViurutMjnr^vMtai 111 A —i"・^«hW —WI4»••一 y wt 卯 v >•*♦ *» <wr* 戸 x« tv•I Mt «wM ■*■<> «W ■・vfl !• mtvwvF k» VKM »> t»l • p< c» IW Mk vtt»•••• MM• tl»>■斗・4r.•丄防| n*kw !•*J M **vWatAM)' H MB*・朴・卜:卞”・ 4tJJ• Mm K -W ・ r ・Q.・ 9-QS.M > T-«» ・4CMP»c»to« A ■a0>■!«<•(■・•《 Mkwtaa 血”•>« «WE>y«»«vP • IF —・••—■—■科M4_ <tl ・oaMalWMi .11创n 11MM ■— 一A""・v«r■n«^»a w'«•!•<.•..»■ •> i- a-k>―初|・(« _F0R »*i!<■<■« i ・9” ■*!•«••«・》MM E ・》*k>e« —«E.r ■MIC ■一* »» ■•• ”・$«s» •• ts. no ¥ wr ■5— wK ・・«■•*・•••■•••・•••• *♦"■・••••・”•・•・~•l*« f*ASK"*""b QU ,,•・"♦(■* rI・・t ・K •WR XVIM •一刪・0|«・・・<||"• 8K kfk •■>•••<• ■…m»«*w<WH ” IK* lMW«IM iewr mu ■・—A« 巧 ki j«"U >• >^*10* t••<!•.»<»• ••••(■a * 、・r R if 。
赫尔《期权、期货及其他衍生产品》(第7版)课后习题详解(曲率、时间与Quanto调整)
赫尔《期权、期货及其他衍⽣产品》(第7版)课后习题详解(曲率、时间与Quanto调整)29.2 课后习题详解⼀、问答题1. 解释你如何去对⼀个在5年后付出100R 的衍⽣产品定价,其中R 是在4年后所观察到的1年期利率(按年复利)。
当⽀付时间在第4年时,会有什么区别?当⽀付时间在第6年时,会有什么区别?Explain how you would value a derivative that pays off 100R in five years where R is the one-year interest rate (annually compounded) observed in four years. What difference would it make if the payoff were in four years? What difference would it make if tile payoff were in six years?答:衍⽣产品的价值是,其中P(0,t)是⼀个t 期零息债券的价格,为期限在和之间的远期利率,以年复利计息。
当⽀付时间在第4年时,价值为,其中c 为由教材中⽅程(29-2)得到的曲率调整。
曲率调整公式为:其中,是远期利率在时间和之间的波动率。
表达式100(R4,5 + c)为在⼀个远期风险中性的世界中,⼀个4年后到期的零息债券的预期收益。
如果在6年后进⾏⽀付,由教材中的⽅程(29-4)得到其价值为:其中,ρ为(4,5)和(4,6)远期利率之间的相关系数。
作为估计,假定,近似计算其指数函数,得到衍⽣产品的价值为:。
2. 解释在下⾯情况下,有没有必要做出任何曲率或时间调整?(a)要对⼀种期权定价,期权每个季度⽀付⼀次,数量等于5年的互换利率超出3个⽉LIBOR利率的部分(假如超出的话),本⾦为100美元,收益发⽣在利率被观察到后的90天。
(b)要对⼀种差价期权定价,期权每季度⽀付⼀次,数量等于3个⽉的LIBOR利率减去3个⽉的短期国库券利率,收益发⽣在利率被观察后的90天。
赫尔《期权、期货及其他衍生产品》(第7版)课后习题详解(期权市场的运作过程)
8.2 课后习题详解一、问答题1. 某投资者以3美元的价格买入欧式看跌期权,股票价格为42美元,执行价格为40美元,在什么情况下投资者会盈利?在什么情况下期权会被行使?画出在到期时投资者盈利与股票价格的关系图。
An investor buys a European put on a share for $3. The stock price is $42 and the strike price is $40. Under what circumstances does the investor make a profit? Under what circumstances will the option be exercised? Draw a diagram showing the variation of the investor's profit with the stock price at the maturity of the option.答:如果到期日股票价格低于37美元,投资者执行将获得利润。
在这种情况下执行期权获得的收益高于3美元。
如果到期日股票价格低于40美元,期权就会被执行。
图8-1显示了投资者的利润随股票价格而变化的情况。
图8-1 投资者的利润2. 某投资者以4美元的价格卖出一欧式看涨期权,股票价格为47美元,执行价格为50美元,在什么情况下投资者会盈利?在什么情况下期权会被行使?画出在到期时投资者盈利与股票价格的关系图。
An investor sells a European call on a sbare for $4. The stock price is $47 and the strike price is $50. Under what circumstances does the investor make a profit? Under what circumstances will the option be exercised? Draw a diagram showing the variation of tlle investor's profit with tlle stock price at the maturity of the option.答:如果到期日股票价格低于54美元,投资者将获得利润;如果到期日股票价格低于50美元,期权将不被执行,投资者将获得利润4美元;如果到期日股票价格介于50美元与54美元之间,期权将被执行,投资者的利润介于0到4美元之间。
期权、期货课后题答案
第1章引言1.3远期合约多头与远期合约空头的区别是什么?答:持有远期合约多头的交易者同意在未来某一确定的时间以某一确定的价格购买一定数量的标的资产;而持有远期合约空头的交易者则同意在未来某一确定的时间以某一确定的价格出售一定数量的标的资产。
1.6某交易员进入期货价格每磅50美分的棉花远期合约空头方。
合约的规模是50000磅棉花。
当合约结束时棉花的价格分别为(a)每磅48.20美分,(b)每磅51.30美分,对应以上价格交易员的盈亏为多少?答:(a)此时交易员将价值48.20美分/磅的棉花以50美分/磅的价格出售,收益=(0.50 00-0.482)×50000=900(美元)。
(b)此时交易员将价值51.30美分/磅的棉花以50美分/磅的价格出售,损失=(0.513 -0.500)×50000=650(美元)。
1.9你认为某股票价格将要上升,股票的当前价格为29美元,而3个月期限,执行价格为30美元的看涨期权价格为2.90美元,你总共有5800美元的资金。
说明两种投资方式:一种是利用股票,另一种是利用期权。
每种方式的潜在盈亏是什么?答:在目前的资金规模条件下,一种方式为买入200只股票,另一种方式是买入2000个期权(即20份合约)。
如果股票价格走势良好,第二种方式将带来更多收益。
例如,如果股票价格上升到40美元,将从第二种方式获得2000×(40-30)-5800=14200(美元),而从第一种方式中仅能获得200×(40-29)=2200(美元)。
然而,当股票价格下跌时,第二种方式将导致更大的损失。
例如,如果股票价格下跌至25美元,第一种方式的损失为200×(29-25)=800(美元),而第二种方式的损失为全部5800美元的投资。
这个例子说明了期权交易的杠杆作用。
1.12解释为什么期货合约既可以用于投机也可以用于对冲。
答:如果一个交易员对一资产的价格变动有风险敞口,他可以用一个期货合约来进行对冲。
赫尔《期权、期货及其他衍生产品》复习笔记及课后习题详解(利率期货)【圣才出品】
赫尔《期权、期货及其他衍⽣产品》复习笔记及课后习题详解(利率期货)【圣才出品】第6章利率期货6.1 复习笔记1.天数计算和报价惯例天数计算常表⽰为X/Y,计算两个⽇期间获得的利息时,X定义了两个⽇期间天数计算的⽅式,Y定义了参照期内总天数计算的⽅式。
两个⽇期间获得的利息为:(两个⽇期之间的天数/参考期限的总天数)×参考期限内所得利息在美国常⽤的三种天数计算惯例为:①实际天数/实际天数;②30/360;③实际天数/360。
(1)美国短期债券的报价货币市场的产品报价采⽤贴现率⽅式,该贴现率对应于所得利息作为最终⾯值的百分⽐⽽不是最初所付出价格的百分⽐。
⼀般来讲,美国短期国债的现⾦价格与报价的关系式为:P=360(100-Y)/n其中,P为报价,Y为现⾦价格,n为短期债券期限内以⽇历天数所计算的剩余天数。
(2)美国长期国债美国长期国债是以美元和美元的1/32为单位报出的。
所报价格是相对于⾯值100美元的债券。
报价被交易员称为纯净价,它与现⾦价有所不同,交易员将现⾦价称为带息价格。
⼀般来讲,有以下关系式:现⾦价格=报价(即纯净价)+从上⼀个付息⽇以来的累计利息2.美国国债期货(1)报价超级国债和超级国债期货合约的报价与长期国债本⾝在即期市场的报价⽅式相同。
(2)转换因⼦当交割某⼀特定债券时,⼀个名为转换因⼦的参数定义了空头⽅的债券交割价格。
债券的报价等于转换因⼦与最新成交期货价格的乘积。
将累计利息考虑在内,对应于交割100美元⾯值的债券收⼊的现⾦价格为:最新的期货成交价格×转换因⼦+累计利息(3)最便宜可交割债券在交割⽉份的任意时刻,许多债券可以⽤于长期国债期货合约的交割,这些可交割债券有各式各样的券息率及期限。
空头⽅可以从这些债券中选出最便宜的可交割债券⽤于交割。
因为空头⽅收到的现⾦量为:最新成交价格×转换因⼦+累计利息买⼊债券费⽤为:债券报价+累计利息因此最便宜交割债券是使得:债券报价-期货的最新报价×转换因⼦达到最⼩的债券。
约翰.赫尔,期权期货和其他衍生品(third edition)习题答案
8.14 执行价格为$60 的看涨期权成本为$6,相同执行价格和到期日的看跌期权成
本为$4,制表说明跨式期权损益状况。请问:股票价格在什么范围内时,
跨式期权将导致损失呢?
解:可通过同时购买看涨看跌期权构造跨式期权:max( ST -60,0)+max(60
- ST )-(6+4),其损益状况为:
股价 ST
解:(a)该组合等价于一份固定收益债券多头,其损益V = C ,不随股票价格变化。 (V 为组合损益,C 为期权费,下同)如图 8.2: (b)该组合等价于一份股票多头与一份固定收益债券多头,其损益V = ST + C , 与股价同向同幅度变动。( ST 为最终股票价格,下同)如图 8.3 (c)该组合等价于一份固定收益债券多头与一份看涨期权空头,其损益为
8.18 盒式价差期权是执行价格为 X 1 和 X 2 的牛市价差期权和相同执行价格的熊 市看跌价差期权的组合。所有期权的到期日相同。盒式价差期权有什么样的 特征?
解:牛市价差期权由 1 份执行价格为 X 1 欧式看涨期权多头与 1 份执行价格为 X 2 的欧式看涨期权空头构成( X 1 < X 2 ),熊市价差期权由 1 份执行价格为 X 2 的 欧式看跌期权多头与 1 份执行价格为 X 1 的看跌期权空头构成,则盒式价差
8.17 运用期权如何构造出具有确定交割价格和交割日期的股票远期合约? 解:假定交割价格为 K,交割日期为 T。远期合约可由买入 1 份欧式看涨期权,
同时卖空 1 份欧式看跌期权,要求两份期权有相同执行价格 K 及到期日 T。 可见,该组合的损益为 ST -K,在任何情形下,其中 ST 为 T 时股票价格。 假定 F 为远期合约价格,若 K=F,则远期合约价值为 0。这表明,当执行价 格为 K 时,看涨期权与看跌期权价格相等。
约翰.赫尔_期权期货和其他衍生品第八版部分课后思考题
思考题1.1 远期合约长头寸与短期头寸之间的区别1)长头寸是买入,短头寸是卖出2)长头寸的收益是S-K 短头寸的收益是K-S1.2 期货合约与远期合约的区别1.3 卖出一个看涨期权与买入一个看跌期权的区别1)卖出看涨期权是一种义务,买入看跌期权是一种权利2)期初现金流不同3)收益公式不同卖出看涨期权买入看跌期权靠期权费赚利润1.4 期权与期货/远期合约的区别期货/远期合约,赋予它的持有者一个义务:以某个约定的价格买入或卖出标的资产。
期权合约,赋予它的持有者一个权利:以某个约定的价格买入或卖出标的资产。
1.5对冲、投机和套利之间的区别共同点:都是通过低买高卖或者高卖低买获利,都基于对未来市场预期的判断不同点:投机风险大,看涨看跌均没有保护性套期具有保护性对冲,如果货币市场流动性没问题,风险较低2.1 什么是逐日盯市逐日盯市制度,是指结算部门在每日闭市后计算、检查保证金账户余额,通过适时发出追加保证金通知,使保证金余额维持在一定水平之上,防止负债现象发生的结算制度。
2.2 保证金制度如何可以保证投资者免受违约风险?为了保证投资者保证金账户的资金余额在任何情况下都不为负值,设置了维持保证金,若保证金账户的余额低于维持保证金,投资者就会收到保证金催付,这部分资金称为变动保证金。
如果投资者未提供变动保证金,经纪人将出售该合约来平仓。
2.3一个交易的完成,会对未平仓合约数量产生什么样的影响?若交易是开仓,数量增加,若交易是平仓,则是减少2.4一天内发生的交易数量可以超过交易结束时未平仓合约的数量吗?交易数量包括开仓数量和平仓数量,若开仓=平仓,就会使未平仓数量为02.5设计一个新的期货合约时需要考虑哪几个重要方面?选择期货合约的标的资产、合约规模、交割月份3.1对冲的本质是什么?定义:为了减低另一项投资的风险而进行的投资。
目的:选择期货头寸,从而使得自身整体的投资风险尽量呈中性。
方法:用于对冲的期货交易,与需对冲的资产交易相比,头寸相等,在将来确定的时刻,操作方向相反。
期权、期货课后题答案
第1章引言1.3远期合约多头与远期合约空头的区别是什么?答:持有远期合约多头的交易者同意在未来某一确定的时间以某一确定的价格购买一定数量的标的资产;而持有远期合约空头的交易者则同意在未来某一确定的时间以某一确定的价格出售一定数量的标的资产。
1.6某交易员进入期货价格每磅50美分的棉花远期合约空头方。
合约的规模是50000磅棉花。
当合约结束时棉花的价格分别为(a)每磅48.20美分,(b)每磅51.30美分,对应以上价格交易员的盈亏为多少?答:(a)此时交易员将价值48.20美分/磅的棉花以50美分/磅的价格出售,收益=(0.50 00-0.482)×50000=900(美元)。
(b)此时交易员将价值51.30美分/磅的棉花以50美分/磅的价格出售,损失=(0.513 -0.500)×50000=650(美元)。
1.9你认为某股票价格将要上升,股票的当前价格为29美元,而3个月期限,执行价格为30美元的看涨期权价格为2.90美元,你总共有5800美元的资金。
说明两种投资方式:一种是利用股票,另一种是利用期权。
每种方式的潜在盈亏是什么?答:在目前的资金规模条件下,一种方式为买入200只股票,另一种方式是买入2000个期权(即20份合约)。
如果股票价格走势良好,第二种方式将带来更多收益。
例如,如果股票价格上升到40美元,将从第二种方式获得2000×(40-30)-5800=14200(美元),而从第一种方式中仅能获得200×(40-29)=2200(美元)。
然而,当股票价格下跌时,第二种方式将导致更大的损失。
例如,如果股票价格下跌至25美元,第一种方式的损失为200×(29-25)=800(美元),而第二种方式的损失为全部5800美元的投资。
这个例子说明了期权交易的杠杆作用。
1.12解释为什么期货合约既可以用于投机也可以用于对冲。
答:如果一个交易员对一资产的价格变动有风险敞口,他可以用一个期货合约来进行对冲。
期权、期货及其他衍生品(第8版)课后作业题解答(1-3章)
第一次作业参考答案
第1章 1.26 远期合约多头规定了一年后以每盎司 1000 美元买入黄金,到期远期合约必 须执行,交易双方权利义务对等; 期权合约多头规定了一年后以每盎司 1000 美元买入黄金的权利,到期合约 可以不执行,也可以执行,交易双方权利义务不对等。 假设 ST 为一年以后黄金的价格,则远期合约的收益为 ST -1000; 期权合约的受益为 ST -1100, 如果 ST >1000; -100, 如果 ST <1000 1.27 投资人承诺在 7 月份以 40 美元的执行价格买入股票。如果未来股票价格 跌至 37 美元以下,则该投资人赚取的 3 美元期权费不足以弥补期权上的 损失,从而亏损。当未来股票价格为 37-40 美元时,交易对手会执行期权, 此时,投资人此时同样有正收益。如果未来股票价格高于 40 美元,该期权 不会被对手执行,此时投资者仅赚取期权费。 1.28 远期:购入三个月期限的 300 万欧元的欧元远期合约,并在三个月后,用 到期的远期合约进行支付 300 万欧元。 期权:购入三个月期限的 300 万欧元的欧元看涨期权,如果三个月后汇率 高于期权约定执行汇率,则执行该期权,反之则不执行该期权。 1.29 当股票到期价格低于 30 美元时,两个期权合约都与不会被执行,该投 资者无头寸; 当股票价格高于 32.5 美元时, 两个期权都会执行,该投资者无 头寸,若股票价格在 30-32.5 美元之间时,该投资者买入期权会被执行,卖 出的期权不会被执行,因此该投资者持有长头寸。 1.30 (低买高卖)借入 1000 美元资金,买入黄金,同时在卖出一年期的黄金远 期合约,锁定到期的价格 1200 美元,到期偿还本金和利息。到期时的受益 为 1200-1000(1+10%)=100;收益率为 100/1000=10% 1.31
赫尔《期权、期货及其他衍生产品》(第7版)课后习题详解(波动率微笑)
赫尔《期权、期货及其他衍生产品》(第7版)课后习题详解(波动率微笑)18.2 课后习题详解一、问答题1.在下列情形所观察到的波动率微笑是什么形式?(a )股票价格分布两端的尾部均没有对数正态分布肥大;(b )股票价格分布右端的尾部比对数正态分布要肥大,右端尾部没有对数正态分布肥大。
What pattern of implied volatilities is likely to be observed whena. Both tails of the stock price distribution are less heavy than those of the lognormal distribution?b. The right tail is heavier, and the left tail is less heavier than that of alognormal distribution?答:(a )当股票价格分布两端的尾部均没有对数正态分布肥大时,对于深度虚值或深度实值的期权而言,布莱克—斯科尔斯倾向于高估期权的价格。
这将导致类似于图18-6中的波动率微笑。
图18-6 波动率微笑(b )相比较而言,当股票价格分布右端的尾部比对数正态分布要肥大,右端尾部没有对数正态分布肥大时,对于虚值看涨期权和实值看跌期权而言,布莱克—斯科尔斯倾向于低估期权的价格;对于虚值看跌期权和实值看涨期权而言,布莱克—斯科尔斯倾向于高估期权的价格。
这将导致隐含波动率是执行价格的增函数,即波动率微笑将向上倾斜。
2.股票的波动率微笑形式是什么?What volatility smile is observed for equities?答:观察到的股票期权的波动率微笑通常是向下倾斜的,即股票期权的隐含波动率是执行价格的减函数。
具体参见本章复习笔记。
3.标的资产价格有跳跃时会造成什么形式的波动率微笑?这种形式对于2年和3个月期限的期权中哪个更显著?What pattern of implied volatilities is likely to be caused by jumps intheunderlying asset price? Is the pattern likely to be more pronounced for a two-year option than for a three-month option?答:(1)通常标的资产价格的跳跃将使得资产价格分布的两侧比对数正态分布都要肥大。
期权期货和其他衍生品约翰赫尔第九版答案 (2)
期权期货和其他衍生品约翰赫尔第九版答案简介《期权期货和其他衍生品》是由约翰·赫尔(John C. Hull)编写的一本经典教材,是金融衍生品领域的权威参考书籍之一。
该书第九版是在第八版的基础上进行了更新和修订,以适应当前金融市场的动态变化。
本文档旨在提供《期权期货和其他衍生品第九版》的答案,帮助读者更好地理解和应用书中的知识点。
以下将按照书籍的章节顺序,逐一给出答案。
第一章期权市场的基本特征1.什么是期权?答:期权是一种金融衍生品,它赋予买方在特定时间以特定价格买入或卖出标的资产的权力,而不是义务。
可以将期权分为看涨期权和看跌期权。
2.期权的四个基本特征是什么?答:期权的四个基本特征是价格、到期日、标的资产和行权方式。
价格即期权的成交价,到期日是期权到期的日期,标的资产是期权合约要买入或卖出的资产,而行权方式则决定了期权何时可以行使。
3.什么是期权合约?答:期权合约是买卖双方约定的具体规定和条件,包括标的资产、行权价格、到期日等。
它规定了买方在合约到期前是否可以行使期权。
第二章期权定价:基础观念1.定价模型的基本原理是什么?答:期权定价模型的基本原理是假设市场是有效的,即不存在无风险套利机会。
通过建立基于风险中性概率的模型,可以计算期权的理论价值。
2.什么是风险中性概率?答:风险中性概率是指在假设市场是有效的情况下,使得在无套利条件下资产价格在期望值与当前价格之间折现的概率。
风险中性概率的使用可以将市场中的现金流折算为无风险利率下的现值。
3.什么是期权的内在价值和时间价值?答:期权的内在价值是指期权当前即时的价值,即行权价格与标的资产价格之间的差额。
时间价值是期权除去内在价值后剩余的价值,它受到时间、波动率和利率等因素的影响。
第三章期权定价模型:基础知识1.什么是布莱克斯科尔斯期权定价模型?答:布莱克斯科尔斯期权定价模型是一种用于计算欧式期权价格的数学模型。
它基于连续性投资组合原理,使用了假设市场是完全有效的和无交易成本的条件,可以通过著名的布拉克斯科尔斯公式来计算期权的价格。
赫尔《期权、期货及其他衍生产品》(第9版)笔记和课后习题详解答案
赫尔《期权、期货及其他衍生产品》(第9版)笔记和课后习题详解完整版>精研学习䋞>无偿试用20%资料全国547所院校视频及题库全收集考研全套>视频资料>课后答案>往年真题>职称考试第1章引言1.1复习笔记1.2课后习题详解第2章期货市场的运作机制2.1复习笔记2.2课后习题详解第3章利用期货的对冲策略3.1复习笔记3.2课后习题详解第4章利率4.1复习笔记4.2课后习题详解第5章如何确定远期和期货价格5.1复习笔记5.2课后习题详解第6章利率期货6.1复习笔记6.2课后习题详解第7章互换7.1复习笔记7.2课后习题详解第8章证券化与2007年信用危机8.1复习笔记8.2课后习题详解第9章OIS贴现、信用以及资金费用9.1复习笔记9.2课后习题详解第10章期权市场机制10.1复习笔记10.2课后习题详解第11章股票期权的性质11.1复习笔记11.2课后习题详解第12章期权交易策略12.1复习笔记12.2课后习题详解第13章二叉树13.1复习笔记13.2课后习题详解第14章维纳过程和伊藤引理14.1复习笔记14.2课后习题详解第15章布莱克-斯科尔斯-默顿模型15.1复习笔记15.2课后习题详解第16章雇员股票期权16.1复习笔记16.2课后习题详解第17章股指期权与货币期权17.1复习笔记17.2课后习题详解第18章期货期权18.1复习笔记18.2课后习题详解第19章希腊值19.1复习笔记19.2课后习题详解第20章波动率微笑20.1复习笔记20.2课后习题详解第21章基本数值方法21.1复习笔记21.2课后习题详解第22章风险价值度22.1复习笔记22.2课后习题详解第23章估计波动率和相关系数23.1复习笔记23.2课后习题详解第24章信用风险24.1复习笔记24.2课后习题详解第25章信用衍生产品25.1复习笔记25.2课后习题详解第26章特种期权26.1复习笔记26.2课后习题详解第27章再谈模型和数值算法27.1复习笔记27.2课后习题详解第28章鞅与测度28.1复习笔记28.2课后习题详解第29章利率衍生产品:标准市场模型29.1复习笔记29.2课后习题详解第30章曲率、时间与Quanto调整30.1复习笔记30.2课后习题详解第31章利率衍生产品:短期利率模型31.1复习笔记31.2课后习题详解第32章HJM,LMM模型以及多种零息曲线32.1复习笔记32.2课后习题详解第33章再谈互换33.1复习笔记33.2课后习题详解第34章能源与商品衍生产品34.1复习笔记34.2课后习题详解第35章章实物期权35.1复习笔记35.2课后习题详解第36章重大金融损失与借鉴36.1复习笔记36.2课后习题详解。
赫尔《期权、期货及其他衍生产品》(第7版)课后习题详解(远期和期货价格的确定)
5.2 课后习题详解一、问答题1. 当一位投资者卖空一只股票时,会有什么情况发生?Explain what happens when an investor shorts a certain share.答:投资者的经纪人从其他客户账户中借入股票并按一般的方式将其出售。
为了将这一头寸平仓,投资者必须购买股票,然后由经纪人将股票归还到借出股票的客户的账户中。
短头寸方必须向经纪人支付股票的股息及其他收入,再由经纪人将资金转到借出股票的客户的账户中。
有时经纪人无法再借到股票,投资者就被挤空而不得不立刻将头寸平仓。
2. 远期价格与远期合约价值有什么不同?What is the difference between the forward price and the value of a forward contract?答:当前资产的远期价格是允诺的在未来某一时刻买入或卖出资产的价格。
当刚开始签订远期合约时,远期合约价值为零。
随着时间流逝,标的资产的价格在变化,远期合约价值也可能变为正值或是负值。
3. 假定你签署了一个对于无股息股票的6个月期限的远期合约,股票当前价格为30美元,无风险利率为12%(连续复利),合约远期价格为多少?Suppose that you cuter into a six-month forward contract on a non-dividend-paying stock when the stock price is $30 and the risk-free interest rate (with continuous compounding) is 12% per annum. What is the forward price?答:远期价格为30×=31.86(美元)。
.05.012e4. 一个股指的当前价格为350美元,无风险利率为每年8%(连续复利),股指的股息收益率为每年4%。
赫尔《期权、期货及其他衍生产品》(第7版)课后习题详解(利率衍生品标准市场模型)
28.2 课后习题详解一、问答题1. 一家企业签署了一项上限合约,合约将3个月期LIBOR利率上限定为每年10%,本金为2000万美元。
在重置日3个月的LIBOR利率为每年12%。
根据利率上限协议,收益将如何支付,付款日为何时?A company caps three-month LIBOR at 10% per annum. The principal amount is $20 million. On a reset date, three-month LIBOR is 12% per annum. What payment would this lead to under the cap? When would the payment be made?答:应支付的数量为:20000000×0.02×0.25=100000(美元),该支付应在3个月后进行。
2. 解释为什么一个互换期权可以看作是一个债券期权。
Explain why a swap option can be regarded as a type of bond option.答:互换期权是是基于利率互换的期权,它给予持有者在未来某个确定时间进入一个约定的利率互换的权利。
利率互换可以被看作是固定利率债券和浮动利率债券的交换。
因而,互换期权可以看成是固定利率债券和浮动利率债券的交换的选择权。
在互换开始时,浮动利率债券的价值等于其本金额。
这样互换期权就可以被看作是以债权的面值为执行价格、以固定利率债券为标的资产的期权。
即互换期权可以看作是一个债券期权。
3. 采用布莱克模型来对一个期限为1年,标的资产为10年期债券的欧式看跌期权定价。
假定债券当前价格为125美元,执行价格为110美元,1年期利率为每年10%,债券远期价格的波动率为每年8%,期权期限内所支付票息的贴现值为10美元。
Use Black’s model to value a one-year European put option on a 10-year bond. Assume that the current value of the bond is $125, the strike price is $110, the one-year interest rate is 10% per annum, the bond's price volatility is 8% per annum, and the present value of the coupons to be paid during the life of the option is $10.答:根据布莱克模型,F0=(125-10)e0.1×1=127.09,K=110,P(0,T)=e-0.1×1,σB=0.08和T=1.0。
期货、期权及其他衍生品习题集
第2章期货市场的运作机制【2.1】说明未平仓合约数量与交易量的区别。
【2.2】说明自营经纪人与佣金经纪人的区别。
【2.3】假定你进入纽约商品交易所的一个7月份白银期货合约的短头寸,在合约中你能够以每盎司10.20美元的价格卖出白银。
期货合约规模为5000盎司白银。
最初保证金为4000美元,维持保证金为3000美元,期货价格如何变动会导致保证金的催付通知?你如果不满足催付通知会有什么后果?【2.4】假定在2009年9月一家公司进入了2010年5月的原油期货合约的长头寸。
在2010年3月公司将合约平仓。
在进入合约时期货价格(每桶)68.30美元,在平仓时价格为70.50美元,在2009年12月底为69.10美元。
每个合约是关于1000桶原油的交割。
公司的盈利是多少?什么时间实现该盈利?对以下投资者应如何征税?(a)对冲者;(b)投机者。
假定公司年度末为12月31日。
【2.5】止损指令为在2美元卖出的含义是什么?什么时候可采用这一指令。
一个限价指令为在2美元卖出的含义是什么?什么时候可采用这一指令。
【2.6】结算中心管理的保证金账户的运作与经纪人管理的保证金账户的运作有什么区别?【2.7】外汇期货市场、外汇即期市场、以及外汇远期市场的汇率报价的区别是什么?【2.8】期货合约的短头寸方有势有权选择交割的资产种类、交割地点以及交割时间等。
这些选择权会使期货价格上升还是下降?解释原因。
【2.9】设计一个新的期货合约时需要考虑那些最重要的方面。
【2.10】解释保证金如何保证投资者免受违约风险。
【2.11】某投资者净土两个7月橙汁期货合约的长寸头。
每个期货合约的规模均为15000磅橙汁。
当前期货价格为每磅160美分。
最初保证金每个合约6000美元,维持保证金为每个合约4500美元。
怎样的价格变化会导致保证金的催付?在哪种情况下可以从保证金账户中提取2000美元。
【2.12】如果在交割期间内期货价格大于即期价格,证明存在套利机会。
期权期货与其他衍生产品第九版课后习题与答案Chapter
CHAPTER 29Interest Rate Derivatives: The Standard Market ModelsPractice QuestionsProblem 29.1.A company caps three-month LIBOR at 10% per annum. The principal amount is $20 million. On a reset date, three-month LIBOR is 12% per annum. What payment would this lead to under the cap? When would the payment be made?An amount20000000002025100000$$,,⨯.⨯.=,would be paid out 3 months later.Problem 29.2.Explain why a swap option can be regarded as a type of bond option.A swap option (or swaption) is an option to enter into an interest rate swap at a certain time in the future with a certain fixed rate being used. An interest rate swap can be regarded as the exchange of a fixed-rate bond for a floating-rate bond. A swaption is therefore the option to exchange a fixed-rate bond for a floating-rate bond. The floating-rate bond will be worth its face value at the beginning of the life of the swap. The swaption is therefore an option on a fixed-rate bond with the strike price equal to the face value of the bond.Problem 29.3.Use the Black’s model to value a one -year European put option on a 10-year bond. Assume that the current value of the bond is $125, the strike price is $110, the one-year risk-free interest rate is 10% per annum, the bond’s forward price volatility is 8% per annum, and the present value of the coupons to be paid during the life of the option is $10.In this case, 0110(12510)12709F e .⨯=-=., 110K =, 011(0)P T e -.⨯,=, 008B σ=., and 10T =.. 2121ln(12709110)(0082)1845600800817656d d d ./+./==..=-.=. From equation (29.2) the value of the put option is011011110(17656)12709(18456)012e N e N -.⨯-.⨯-.-.-.=.or $0.12.Problem 29.4.Explain carefully how you would use (a) spot volatilities and (b) flat volatilities to value a five-year cap.When spot volatilities are used to value a cap, a different volatility is used to value eachcaplet. When flat volatilities are used, the same volatility is used to value each caplet within a given cap. Spot volatilities are a function of the maturity of the caplet. Flat volatilities are afunction of the maturity of the cap.Problem 29.5.Calculate the price of an option that caps the three-m onth rate, starting in 15 months’ time, at 13% (quoted with quarterly compounding) on a principal amount of $1,000. The forward interest rate for the period in question is 12% per annum (quoted with quarterlycompounding), the 18-month risk-free interest rate (continuously compounded) is 11.5% per annum, and the volatility of the forward rate is 12% per annum.In this case 1000L =, 025k δ=., 012k F =., 013K R =., 0115r =., 012k σ=., 125k t =., 1(0)08416k P t +,=..250k L δ=2120529505295006637d d ==-.=-.-.=-. The value of the option is25008416[012(05295)013(06637)]N N ⨯.⨯.-.-.-.059=. or $0.59.Problem 29.6.A bank uses Black’s model to price European bond options. Suppose that an implied price volatility for a 5-year option on a bond maturing in 10 years is used to price a 9-year option on the bond. Would you expect the resultant price to be too high or too low? Explain.The implied volatility measures the standard deviation of the logarithm of the bond price at the maturity of the option divided by the square root of the time to maturity. In the case of a five year option on a ten year bond, the bond has five years left at option maturity. In the case of a nine year option on a ten year bond it has one year left. The standard deviation of a one year bond price observed in nine years can be normally be expected to be considerably less than that of a five year bond price observed in five years. (See Figure 29.1.) We would therefore expect the price to be too high.Problem 29.7.Calculate the value of a four-year European call option on bond that will mature five years from today using Black’s model. The five -year cash bond price is $105, the cash price of a four-year bond with the same coupon is $102, the strike price is $100, the four-year risk-free interest rate is 10% per annum with continuous compounding, and the volatility for the bond price in four years is 2% per annum.The present value of the principal in the four year bond is 40110067032e -⨯.=.. The present value of the coupons is, therefore, 1026703234968-.=.. This means that the forward price of the five-year bond is401(10534968)104475e ⨯.-.=. The parameters in Black’s model are therefore 104475B F =., 100K =, 01r =., 4T =,and 002B =.σ.212111144010744d d d ==.=-.=. The price of the European call is014[104475(11144)100(10744)]319e N N -.⨯..-.=.or $3.19.Problem 29.8.If the yield volatility for a five-year put option on a bond maturing in 10 years time isspecified as 22%, how should the option be valued? Assume that, based on today’s interest rates the modified duration of the bond at the maturity of the option will be 4.2 years and the forward yield on the bond is 7%.The option should be valued using Black’s model in equation (29.2) with the bond price volatility being4200702200647.⨯.⨯.=. or 6.47%.Problem 29.9.What other instrument is the same as a five-year zero-cost collar where the strike price of the cap equals the strike price of the floor? What does the common strike price equal?A 5-year zero-cost collar where the strike price of the cap equals the strike price of the floor is the same as an interest rate swap agreement to receive floating and pay a fixed rate equal to the strike price. The common strike price is the swap rate. Note that the swap is actually a forward swap that excludes the first exchange. (See Business Snapshot 29.1)Problem 29.10.Derive a put –call parity relationship for European bond options.There are two way of expressing the put –call parity relationship for bond options. The first is in terms of bond prices:0RT c I Ke p B -++=+where c is the price of a European call option, p is the price of the corresponding European put option, I is the present value of the bond coupon payments during the life of the option, K is the strike price, T is the time to maturity, 0B is the bond price, and Ris the risk-free interest rate for a maturity equal to the life of the options. To prove this we can consider two portfolios. The first consists of a European put option plus the bond; the second consists of the European call option, and an amount of cash equal to the present value of the coupons plus the present value of the strike price. Both can be seen to be worth the same at the maturity of the options.The second way of expressing the put –call parity relationship isRT RT B c Ke p F e --+=+where B F is the forward bond price. This can also be proved by considering two portfolios. The first consists of a European put option plus a forward contract on the bond plus the present value of the forward price; the second consists of a European call option plus thepresent value of the strike price. Both can be seen to be worth the same at the maturity of the options.Problem 29.11.Derive a put–call parity relationship for European swap options.The put–call parity relationship for European swap options is+=c V pwhere c is the value of a call option to pay a fixed rate ofs and receive floating, p isKthe value of a put option to receive a fixed rate ofs and pay floating, and V is the valueKof the forward swap underlying the swap option wheres is received and floating is paid.KThis can be proved by considering two portfolios. The first consists of the put option; the second consists of the call option and the swap. Suppose that the actual swap rate at thes. The call will be exercised and the put will not be maturity of the options is greater thanKexercised. Both portfolios are then worth zero. Suppose next that the actual swap rate at thes. The put option is exercised and the call option is not maturity of the options is less thanKs is received and floating is paid. exercised. Both portfolios are equivalent to a swap whereKIn all states of the world the two portfolios are worth the same at time T. They must therefore be worth the same today. This proves the result.Problem 29.12.Explain why there is an arbitrage opportunity if the implied Black (flat) volatility of a cap is different from that of a floor. Do the broker quotes in Table 29.1 present an arbitrage opportunity?Suppose that the cap and floor have the same strike price and the same time to maturity. The following put–call parity relationship must hold:+=cap swap floorwhere the swap is an agreement to receive the cap rate and pay floating over the whole life of the cap/floor. If the implied Black volatilities for the cap equal those for the floor, the Black formulas show that this relationship holds. In other circumstances it does not hold and there is an arbitrage opportunity. The broker quotes in Table 29.1 do not present an arbitrage opportunity because the cap offer is always higher than the floor bid and the floor offer is always higher than the cap bid.Problem 29.13.When a bond’s price is lognormal can the bond’s yield be negative? Explain your answer.Yes. If a zero-coupon bond price at some future time is lognormal, there is some chance that the price will be above par. This in turn implies that the yield to maturity on the bond is negative.Problem 29.14.What is the value of a European swap option that gives the holder the right to enter into a3-year annual-pay swap in four years where a fixed rate of 5% is paid and LIBOR is received? The swap principal is $10 million. Assume that the LIBOR/swap yield curve is used for discounting and is flat at 5% per annum with annual compounding and the volatility of the swap rate is 20%. Compare your answer to that given by DerivaGem.Now suppose that allswap rates are 5% and all OIS rates are 4.7%. Use DerivaGem to calculate the LIBOR zero curve and the swap option value?In equation (29.10), 10000000L =,,, 005K s =., 0005s =., 10202d =.=., 2.02-=d , and 56711122404105105105A =++=.... The value of the swap option (in millions of dollars) is1022404[005(02)005(02)]0178N N ⨯...-.-.=.This is the same as the answer given by DerivaGem. (For the purposes of using theDerivaGem software, note that the interest rate is 4.879% with continuous compounding for all maturities.)When OIS discounting is used the LIBOR zero curve is unaffected because LIBOR swap rates are the same for all maturities. (This can be verified with the Zero Curve worksheet in DerivaGem). The only difference is that2790.2047.11047.11047.11765=++=Aso that the value is changed to 0.181. This is also the value given by DerivaGem. (Note that the OIS rate is 4.593% with annual compounding.)Problem 29.15.Suppose that the yield, R , on a zero-coupon bond follows the processdR dt dz μσ=+where μ and σ are functions of R and t , and dz is a Wiener process. Use Ito’s lemma to show that the volatility of the zero-coupon bond price declines to zero as it approaches maturity.The price of the bond at time t is ()R T t e -- where T is the time when the bond matures. Using Itô’s lemma the volatility of the bond price is ()()()R T t R T t e T t e Rσσ----∂=--∂ This tends to zero as t approaches T .Problem 29.16.Carry out a manual calculation to verify the option prices in Example 29.2.The cash price of the bond is005050005100005100051044410012282e e 卐e -.⨯.-.⨯.-.⨯-.⨯++++=.As there is no accrued interest this is also the quoted price of the bond. The interest paid during the life of the option has a present value of00505005100515005244441504e e e e -.⨯.-.⨯-.⨯.-.⨯+++=.The forward price of the bond is therefore005225(122821504)12061e .⨯..-.=. The yield with semiannual compounding is 5.0630%.The duration of the bond at option maturity is 00502500577500577500502500507500577500577502547754775100444100e 卐e e e 卐e -.⨯.-.⨯.-.⨯.-.⨯.-.⨯.-.⨯.-.⨯..⨯++.⨯+.⨯++++ or 5.994. The modified duration is 5.994/1.025315=5.846. The bond price volatility is therefore 584600506300200592.⨯.⨯.=.. We can therefore value the bond option using Black’s model with 12061B F =., 005225(0225)08936P e -.⨯.,.==., 592B %=.σ, and 225T =.. When the strike price is the cash price 115K = and the value of the option is 1.74. When the strike price is the quoted price 117K = and the value of the option is 2.36. This is in agreement with DerivaGem.Problem 29.17.Suppose that the 1-year, 2-year, 3-year, 4-year and 5-year LIBOR-for-fixed swap rates for swaps with semiannual payments are 6%, 6.4%, 6.7%, 6.9%, and 7%. The price of a 5-year semiannual cap with a principal of $100 at a cap rate of 8% is $3. Use DerivaGem (the zero rate and Cap_and_swap_opt worksheets) to determine(a) The 5-year flat volatility for caps and floors with LIBOR discounting(b) The floor rate in a zero-cost 5-year collar when the cap rate is 8% and LIBOR discounting is used(c) Answer (a) and (b) if OIS discounting is used and OIS swap rates are 100 basis points below LIBOR swap rates.(a) First we calculate the LIBOR zero curve using the zero curve worksheet of DerivaGem.The 1-, 2-, 3-, 4-, and 5_year zero rates with continuous compounding are 5.9118%,6.3140%, 6.6213%, 6.8297%, and 6.9328%, respectively. We then transfer these to the choose the Caps and Swap Options worksheet and choose Cap/Floor as the Underlying Type. We enter Semiannual for the Settlement Frequency, 100 for the Principal, 0 for the Start (Years), 5 for the End (Years), 8% for the Cap/Floor Rate, and $3 for the Price. We select Black-European as the Pricing Model and choose the Cap button. We check the Imply Volatility box and Calculate. The implied volatility is 25.4%.(b) We then uncheck Implied Volatility, select Floor, check Imply Breakeven Rate. Thefloor rate that is calculated is 6.71%. This is the floor rate for which the floor is worth $3.A collar when the floor rate is 6.61% and the cap rate is 8% has zero cost.(c) The zero curve worksheet now shows that LIBOR zero rates for 1-, 2-, 3-, 4-, 5-yearmaturities are 5.9118%, 6.3117%, 6.6166%, 6.8227%, and 6.9249%. The OIS zero rates are 4.9385%, 5.3404%, 5.6468%, 5.8539%, and 5.9566%, respectively. When these are transferred to the cap and swaption worksheet and the Use OIS Discounting box is checked, the answer to a) becomes 24.81%% and the answer to b) becomes 6.60%.Problem 29.18.Show that 12V f V += where 1V is the value of a swaption to pay a fixed rate of K s and receive LIBOR between times 1T and 2T , f is the value of a forward swap to receive a fixed rate of K s and pay LIBOR between times 1T and 2T , and 2V is the value of a swap option to receive a fixed rate of K s between times 1T and 2T . Deduce that 12V V = when K s equals the current forward swap rate.We prove this result by considering two portfolios. The first consists of the swap option toreceive K s ; the second consists of the swap option to pay K s and the forward swap.Suppose that the actual swap rate at the maturity of the options is greater than K s . The swapoption to pay K s will be exercised and the swap option to receive K s will not be exercised.Both portfolios are then worth zero since the swap option to pay K s is neutralized by theforward swap. Suppose next that the actual swap rate at the maturity of the options is less than K s . The swap option to receive K s is exercised and the swap option to pay K s is not exercised. Both portfolios are then equivalent to a swap where K s is received and floating ispaid. In all states of the world the two portfolios are worth the same at time 1T . They musttherefore be worth the same today. This proves the result. When K s equals the currentforward swap rate 0f = and 12V V =. A swap option to pay fixed is therefore worth thesame as a similar swap option to receive fixed when the fixed rate in the swap option is the forward swap rate.Problem 29.19.Suppose that LIBOR zero rates are as in Problem 29.17. Use DerivaGem to determine the value of an option to pay a fixed rate of 6% and receive LIBOR on a five-year swap starting in one year. Assume that the principal is $100 million, payments are exchanged semiannually, and the swap rate volatility is 21%. Use LIBOR discounting.We choose the Caps and Swap Options worksheet of DerivaGem and choose Swap Option as the Underlying Type. We enter 100 as the Principal, 1 as the Start (Years), 6 as the End (Years), 6% as the Swap Rate, and Semiannual as the Settlement Frequency. We choose Black-European as the pricing model, enter 21% as the Volatility and check the Pay Fixed button. We do not check the Imply Breakeven Rate and Imply Volatility boxes. The value of the swap option is 5.63.Problem 29.20.Describe how you would (a) calculate cap flat volatilities from cap spot volatilities and (b) calculate cap spot volatilities from cap flat volatilities.(a) To calculate flat volatilities from spot volatilities we choose a strike rate and use the spot volatilities to calculate caplet prices. We then sum the caplet prices to obtain cap prices and imply flat volatilities from Black’s model. The answe r is slightlydependent on the strike price chosen. This procedure ignores any volatility smile in cap pricing.(b) To calculate spot volatilities from flat volatilities the first step is usually to interpolate between the flat volatilities so that we have a flat volatility for each caplet payment date. We choose a strike price and use the flat volatilities to calculate cap prices. By subtracting successive cap prices we obtain caplet prices from which we can imply spot volatilities. The answer is slightly dependent on the strike price chosen. Thisprocedure also ignores any volatility smile in caplet pricing.Further QuestionsProblem 29.21.Consider an eight-month European put option on a Treasury bond that currently has 14.25 years to maturity. The current cash bond price is $910, the exercise price is $900, and the volatility for the bond price is 10% per annum. A coupon of $35 will be paid by the bond in three months. The risk-free interest rate is 8% for all maturities up to one year. Use Black’s model to determine the price of the option. Consider both the case where the strike price corresponds to the cash price of the bond and the case where it corresponds to the quoted price.The present value of the coupon payment is008025353431e -.⨯.=.Equation (29.2) can therefore be used with 008812(9103431)92366B F e .⨯/=-.=., 008r =., 010B σ=. and 06667T =.. When the strike price is a cash price, 900K = and12103587002770d d d ==.=-.=.The option price is therefore00806667900(02770)87569(03587)1834e N N -.⨯.-.-.-.=.or $18.34.When the strike price is a quoted price 5 months of accrued interest must be added to 900 to get the cash strike price. The cash strike price is 900350833392917+⨯.=.. In this case12100319001136d d d ==-.=-.=-.and the option price is0080666792917(01136)87569(00319)3122e N N -.⨯...-..=.or $31.22.Problem 29.22.Calculate the price of a cap on the 90-day LIBOR rate in nine months’ time when the principal amount is $1,000. Use Black’s model with LIBOR discounting and the following information:(a) The quoted nine-month Eurodollar futures price = 92. (Ignore differences betweenfutures and forward rates.)(b) The interest-rate volatility implied by a nine-month Eurodollar option = 15% perannum.(c) The current 12-month risk-free interest rate with continuous compounding = 7.5%per annum.(d) The cap rate = 8% per annum. (Assume an actual/360 day count.)The quoted futures price corresponds to a forward rate of 8% per annum with quarterly compounding and actual/360. The parameters for Black’s model are therefore: 008k F =., 008K =., 0075R =., 015k σ=., 075k t =., and 007511(0)09277k P t e -.⨯+,==.21220065000650d d ==.==-. and the call price, c , is given by[]025100009277008(00650)008(00650)096c N N =.⨯,⨯...-.-..=.Problem 29.23.Suppose that the LIBOR yield curve is flat at 8% with annual compounding. A swaption gives the holder the right to receive 7.6% in a five-year swap starting in four years. Payments are made annually. The volatility of the forward swap rate is 25% per annum and the principal is $1 million. Use Black’s model to price the swaption with LIBOR discounting. Compare your answer to that given by DerivaGem.The payoff from the swaption is a series of five cash flows equal to max[00760]T s .-, in millions of dollars where T s is the five-year swap rate in four years. The value of an annuity that provides $1 per year at the end of years 5, 6, 7, 8, and 9 is 95129348108i i ==..∑ The value of the swaption in millions of dollars is therefore2129348[0076()008()]N d N d ..--.-where2103526d ==. and2201474d ==-. The value of the swaption is29348[0076(01474)008(03526)]003955N N ...-.-.=.or $39,550. This is the same answer as that given by DerivaGem. Note that for the purposes of using DerivaGem the zero rate is 7.696% continuously compounded for all maturities.Problem 29.24.Use the DerivaGem software to value a five-year collar that guarantees that the maximum and minimum interest rates on a LIBOR-based loan (with quarterly resets) are 7% and 5% respectively. The LIBOR and OIS zero curves are currently flat at 6% and 5.8% respectively (with continuous compounding). Use a flat volatility of 20%. Assume that the principal is $100. Use OIS discountingWe use the Caps and Swap Options worksheet of DerivaGem. Set the LIBOR zero curve as 6% with continuous compounding. ( It is only necessary to enter 6% for one maturity.) . Set the OIS zero curve as 5.8% with continuous compounding. ( It is only necessary to enter5.8% for one maturity.) To value the cap we select Cap/Floor as the Underlying Type, enter Quarterly for the Settlement Frequency, 100 for the Principal, 0 for the Start (Years), 5 for the End (Years), 7% for the Cap/Floor Rate, and 20% for the Volatility. We selectBlack-European as the Pricing Model and choose the Cap button. We do not check the ImplyBreakeven Rate and Imply Volatility boxes. We do check the Use OIS Discounting button. The value of the cap is 1.576. To value the floor we change the Cap/Floor Rate to 5% and select the Floor button rather than the Cap button. The value is 1.080. The collar is a long position in the cap and a short position in the floor. The value of the collar is therefore1.576 ─ 1.080 = 0.496Problem 29.25.Use the DerivaGem software to value a European swap option that gives you the right in two years to enter into a 5-year swap in which you pay a fixed rate of 6% and receive floating. Cash flows are exchanged semiannually on the swap. The 1-year, 2-year, 5-year, and 10-year LIBOR-for-fixed swap rate where payments are exchanged semiannually are 5%, 6%, 6.5%, and 7%, respectively. Assume a principal of $100 and a volatility of 15% per annum. (a) Use LIBOR discounting (b) Use OIS discounting assuming that OIS swap rates are 80 basis points below LIBOR swap rates (c) Use the incorrect approach where OIS discounting is applied to swap rates calculate from LIBOR discounting. What is the error from using the incorrect approach?We first use the zero rates worksheet to calculate the LIBOR zero curve with LIBOR discounting. We then calculate the LIBOR and OIS zero curve with OIS discounting.(a)The LIBOR zero rates are transferred to the cap and swap option worksheet. Thevalue of the swaption is 4.602(b)The LIBOR and OIS zero rates are transferred to the cap and swap option worksheet.The value of the swaption is 4.736(c)The LIBOR zero curve from (a) and the OIS zero curve from (b) are transferred tothe cap and swap option worksheet. The value of the swaption is 4.783. The errorfrom using the incorrect approach is 4.783−4.736 = 0.047 or 4.7 basis points.。
John.Hull-第三版中文-期权,期货和其它衍生产品的答案1-3习题解答
第一章1.1请解释远期多头与远期空头的区别。
答:远期多头指交易者协定将来以某一确定价格购入某种资产;远期空头指交易者协定将来以某一确定价格售出某种资产。
1.2请详细解释套期保值、投机与套利的区别。
答:套期保值指交易者采取一定的措施补偿资产的风险暴露;投机不对风险暴露进行补偿,是一种“赌博行为”;套利是采取两种或更多方式锁定利润。
1.3请解释签订购买远期价格为$50的远期合同与持有执行价格为$50的看涨期权的区别。
答:第一种情况下交易者有义务以50$购买某项资产(交易者没有选择),第二种情况下有权利以50$购买某项资产(交易者可以不执行该权利)。
1.4一位投资者出售了一个棉花期货合约,期货价格为每磅50美分,每个合约交易量为50,000磅。
请问期货合约结束时,当合约到期时棉花价格分别为(a)每磅48.20美分;(b)每磅51.30美分时,这位投资者的收益或损失为多少?答:(a)合约到期时棉花价格为每磅$0.4820时,交易者收入:($0.5000-$0.4820)×50,000=$900;(b)合约到期时棉花价格为每磅$0.5130时,交易者损失:($0.5130-$0.5000) ×50,000=$6501.5假设你出售了一个看跌期权,以$120执行价格出售100股IBM的股票,有效期为3个月。
IBM股票的当前价格为$121。
你是怎么考虑的?你的收益或损失如何?答:当股票价格低于$120时,该期权将不被执行。
当股票价格高于$120美元时,该期权买主执行该期权,我将损失100(st-x)。
1.6你认为某种股票的价格将要上升。
现在该股票价格为$29,3个月期的执行价格为$30的看跌期权的价格为$2.90.你有$5,800资金可以投资。
现有两种策略:直接购买股票或投资于期权,请问各自潜在的收益或损失为多少?答:股票价格低于$29时,购买股票和期权都将损失,前者损失为$5,800$29×(29-p),后者损失为$5,800;当股票价格为(29,30),购买股票收益为$5,800$29×(p-29),购买期权损失为$5,800;当股票价格高于$30时,购买股票收益为$5,800 $29×(p-29),购买期权收益为$$5,800$29×(p-30)-5,800。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章1.1请解释远期多头与远期空头的区别。
答:远期多头指交易者协定将来以某一确定价格购入某种资产;远期空头指交易者协定将来以某一确定价格售出某种资产。
1.2请详细解释套期保值、投机与套利的区别。
答:套期保值指交易者采取一定的措施补偿资产的风险暴露;投机不对风险暴露进行补偿,是一种“赌博行为”;套利是采取两种或更多方式锁定利润。
1.3请解释签订购买远期价格为$50的远期合同与持有执行价格为$50的看涨期权的区别。
答:第一种情况下交易者有义务以50$购买某项资产(交易者没有选择),第二种情况下有权利以50$购买某项资产(交易者可以不执行该权利)。
1.4一位投资者出售了一个棉花期货合约,期货价格为每磅50美分,每个合约交易量为50,000磅。
请问期货合约结束时,当合约到期时棉花价格分别为(a)每磅48.20美分;(b)每磅51.30美分时,这位投资者的收益或损失为多少?答:(a)合约到期时棉花价格为每磅$0.4820时,交易者收入:($0.5000-$0.4820)×50,000=$900;(b)合约到期时棉花价格为每磅$0.5130时,交易者损失:($0.5130-$0.5000) ×50,000=$6501.5假设你出售了一个看跌期权,以$120执行价格出售100股IBM的股票,有效期为3个月。
IBM股票的当前价格为$121。
你是怎么考虑的?你的收益或损失如何?答:当股票价格低于$120时,该期权将不被执行。
当股票价格高于$120美元时,该期权买主执行该期权,我将损失100(st-x)。
1.6你认为某种股票的价格将要上升。
现在该股票价格为$29,3个月期的执行价格为$30的看跌期权的价格为$2.90.你有$5,800资金可以投资。
现有两种策略:直接购买股票或投资于期权,请问各自潜在的收益或损失为多少?答:股票价格低于$29时,购买股票和期权都将损失,前者损失为$5,800×(29-p),后者损失为$5,800;当股票价格为(29,30),购买$29×(p-29),购买期权损失为$5,800;当股票价格高股票收益为$5,800$29于$30时,购买股票收益为$5,800×(p-29),购买期权收益为$29×(p-30)-5,800。
$$5,800$291.7假设你拥有5,000股每股价值$25的股票,如何运用看跌期权来确保你的股票价值在未来的四个月中不会受到股价下跌的影响。
答:通过购买5,000份价格为$25,期限为4个月的看跌期权来保值。
1.8一种股票在首次发行时会为公司提供资金。
请说明CBOE股票期权是否有同样的作用。
答:股票期权不为公司提供资金,它只是交易者之间相互买卖的一种证券,公司并不参与交易。
1.9请解释为什么远期合同既可用来投机又可用来套期保值?答:如果投资者预期价格将会上涨,可以通过远期多头来降低风险暴露,反之,预期价格下跌,通过远期空头化解风险。
如果投资者资产无潜在的风险暴露,远期合约交易就成为投机行为。
1.10假设一个执行价格为$50的欧式看涨期权价值$2.50,并持有到期。
在何种情况下期权的持有者会有盈利?在何种情况下,期权会被执行?请画图说明期权的多头方的收益是如何随期权到期日的股价的变化而变化的。
答:由欧式看涨期权多头的损益计算公式:max(,0)T S X -2.5=T S -52.5,该欧式看涨期权的持有者在标的资产的市场价格大于$52.5时,会有盈利;当标的资产的市场价格高于$50时,期权就会被执行。
图形如下:损益T S 0 52.51.11假设一欧式看跌期权执行价格为$60,价值为$4.00并持有到期。
在何种情况下,期权持有者(即空头方)会有盈利?在何种情况下,期权会被执行?请画图说明期权的空头方的收益是如何随期权到期日的股价的变化而变化的。
答:由欧式看跌期权多头的损益计算公式:max(,0)T X S --4=56-T S ,该欧式看跌期权的持有者在标的资产的市场价格低于$56时,会有盈利;当标的资产的市场价格低于$60时,期权就会被执行。
图形如下: 损益T S 0 561.12一位投资者出售了一个欧式9月份到期的看涨期权,执行价格为$20。
现在是5月,股票价格为18,期权价格为$20,现在是5月,股票价格为$18,期权价格为$2如果期权持有到期,并且到期时的股票价格为$25,请描述投资者的现金流状况。
答:由欧式看涨期权空头的损益计算公式:max(,0)T X S -+2=20-25+2=-3,投资者到期时将损失$3。
1.13一位投资者出售了一个欧式12月份到期的看跌期权,执行价格为$30,期权价值为$4。
在什么情况下,投资者会有盈利?答:当市场价格高于$20时,该看跌期权不被执行,投资者盈利为$4,当市场价格为(30,34)时,投资者盈利为4-(30-T S )。
1.14请说明在1.4节中描述的标准石油公司的债券是一种普通债券、一个执行价格为$25的基于油价的看涨期权的多头和一个执行价格为$40的基于油价的看涨期权的空头的组合。
max(25,0)T S -+min(40,0)T T S S -+,若市场价格高于$25,低于$40,则投资者损失为$25;若市场价格高于或等于$40,投资者收入为T S -25+40-T S +T S =T S +15;因此,该组合为一种普通债券,一个执行价格为$25的看涨期权多头和一个执行价格为$40的看涨期权空头。
1.15一家公司将在4个月后收到一笔外币。
选用哪种期权合约,可以进行套期保值?答:通过购入四月期的看跌期权进行套期保值。
1.16黄金的现价为每盎司$500。
一年后交割的远期价格为每盎司$700。
一位套期保值者可以10%的年利率借到钱。
套利者应当如何操作才能获利?假设储存黄金费用不计。
答:套利者以10%的年利率借入货币,购买黄金现货,卖出黄金远期,一年后交割收益为700-(1+10%)1.17芝加哥交易所提供标的物为长期国债的期货合约。
请描述什么样的投资者会使用这种合约。
答:投资者预期长期利率下降的套期保值者;长期利率的投机者以及在现货和期货市场套利者,可购买该期货合约。
1.18一种股票的现价为$94,执行价格为$95的3个月期的看涨期权价格为$4.70。
一位投资者预计股票价格将要上升,正在犹豫是购买100股股票,还是购买20份看涨期权(每份合约为100股)。
两种策略都须投资$9,400。
你会给他什么建议?股票价格上升到多少时,购买期权会盈利更大?答:购买股票盈利更大些。
由:max(,0)T S X C --=20max(95,0)9,400T S --因此,当股票价格高于$94009520+=$565时,期权会盈利更大。
1.19“期权和期货是零合游戏”你是怎样理解这句话的?答:这句话是说期权和期货的一方损失程度等于另一方的盈利程度,总的收入为零。
1.20请描述下述组合的损益:同时签订一项资产的远期多头合约和有同样到期日的基于该项资产的欧式看跌期权的多头,并且在构造该组合时远期价格等于看跌期权的执行价格。
答:T S -X +max(X -T S ,0),当T S >X 时,收入为T S -X ,当T S <X 时,收入为0。
1.21说明在1.4节中描述的ICON 是由一种普通股票和两种期权组合而成。
答:假设ICON 中外汇汇率为T S ,则ICON 的收益为1000,若T S <X1000-a(T S -X),当1000T X S X a+>> 0,当1000T X S a+< 因此,ICON 的收益来自:(a ) 普通债券(b ) 执行价格为X 的欧式空头看涨期权(c ) 执行价格为1000X a+的欧式多头看涨期权 如下图所示:普通债券 空头看涨期权 多头看涨期权 总收益T S <X 1000 0 0 10001000X a+>T S >X 1000 -a(T S -X ) 0 1000-a(T S -X )T S >X +1000a 1000 -a(T S -X ) -a(T S -X -1000a) 01.22说明在1.4节中描述的范围远期合约可由两种期权组合而成。
如何构造价值为零的范围远期合约?答:假设用范围远期合约去购买一单位的外汇,T S 为汇率,则(a ) 若T S <1X ,支付1X(b ) 若T S >1X ,支付2X(c ) 若1X ≤T S ≤2X ,支付即期利率范围远期合约可以看作由一个执行价格为1X 的空头看跌期权和一个执行价格为2X 的多头看涨期权组成。
如下表所示:外汇成本 看跌期权价值 看涨期权价值 净成本T S <1X -T S -(1X -T S ) 0-1X1X <T S <2X -T S 0 0-T S2X <T S -T S 0 T S -2X -2X由于范围远期合约看跌期权与看涨期权头寸在建立初相等,因此构建范围远期合约不需要成本。
1.23某公司在1996年7月1日签订了一份远期合约,在1997年1月1日,购买1000万日元。
1996年9月1日,又签订了在1997年1月1日出售1000万日元的远期合约。
请描述这项策略的损益。
答:第一份远期合约的收益为T S -1F ,第二份远期合约的收益为T S -2F ,因此总收益为2F -1F 。
1.24假设英镑兑美元的即期和远期汇率如表1.1所示。
在下列情况中,投资者会有何获利机会?(A ) 一个180天的欧式看涨期权执行价格为1英镑兑1.5700美元,成本2美分。
(B ) 一个90天的欧式看跌期权执行价格为1英镑兑1.6400美元,成本2美分。
答:交易者通过卖出(A ),90天后买入(B )来套利。
则(A )合约的损失为min(,0)T X S -+0.02=0.0118,(B)合约盈利为max(,0)T X S --0.02=0.0144,净收益为0.0026。
1.25请解释下面这句话:“一个远期合约的多头等价于一个欧式看涨期权的多头和一个欧式看跌期权的空头。
”答:由欧式看涨期权和看跌期权的损益公式得,一个欧式看涨期权的多头和一个欧式看跌期权的空头组合的损益为:max(,0)T S X -+min(,0)T X S -,当T S >X 时,总收入为T S -X +X -T S =0;当T S <X 时,总收入亦为0。
与远期合约多头相一致。
第二章2.1请说明未平仓合约数与交易量的区别。
答:未平仓合约数既可以指某一特定时间里多头合约总数,也可以指空头合约总数,而交易量是指在某一特定时间里交易的总和约数。
2.2请说明自营经纪人与佣金经纪人的区别。