0856.新人教版六年级数学上册第8课时 解决问题(4)(导学案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8课时解决问题(4)
学习目标:
1、结合具体情境,理解工程问题的特征。
2、掌握工程问题的解题方法,并能正确解答。
3、在学习过程中,体会知识间的内在联系,提高分析问题和解决问题的能力。
学习重点:
掌握“工程问题”的解题方法。
学习难点:
理解工作效率的表示方法。
使用说明与学法指导:
先由学生自学课本P42页例7,独立完成自主学习部分,通过独立思考及小组合作,知道在完成某项工程中,涉及工作量、工作效率和工作时间这三个量。与这三个量有关的问题就是工程问题。
自主学习:
写出工程问题的数量关系式:
2、修一条长2400米的路,由甲队单独做12天可以完成,由乙队单独做8天可以完成。甲队1天可以修(),乙队1天可以修();如果两队合作共要修()天。
合作探究:
例7、修一条道路,如果我们一队单独修,12天能修完。如果我们二队单独修,18天才能修完。如果两队合修,多少天能完成?
阅读与理解
弄清已知条件和所求问题。知道两队独修所需时间,求合作完成需要的天数,但这条路的总长度是未知的。
分析与解答
求合作完成所需时间,必须知道工作总量与工作效率的和,关系式:工作总量÷工作效率的和=合作的工作时间
1)假设这条道路总长为()千米。先分步解答,再列综合算式
2)再次假设这条道路总长为()千米。先分步解答,再列综合算式。
3)假设这条道路的长度是“1”,先分步解答,再列综合算式
回顾与反思
小结:用分数来解决工程问题的解题方法与用整数来解决工程问题的方法相同,所用数量关系相同;在用分数解决工程问题时,通常没有具体的工作总量,解题时把工作总量看作单位“1”,用单位时间内完成工作总量的几分之一表示工作效率。
拓展练习:一条水渠长3.3米,甲单独修要5小时完成,乙单独修要6小时完成。两人合作,要几小时可以修完?
提示:解决工程问题时工作总量和工作效率要同意,要么都用具体的量,要么都用分率表示。
学以致用:
1、想一想,填一填。
1)一辆卡车8小时运完一批货物,5小时云玩玩这批货物的()。
2)一项工作,甲单独做要15天完成,甲乙一起做要9天完成。甲乙一起做,每天完成这项工作的();乙单独做要()完成。
3)修一条公路,甲队单独修要8天完成,乙队单独修要10天完成,
甲队平均每天比乙队多修这条公路的()
2、一个蓄水池有两根水管,单开进水管,8分钟可注满全池;单开出水管,12分钟可将全池放完。两管同时打开,向空池内注水,几分钟可注满全池的43?
3、一堆沙子,甲车单独运要5天运完,乙车单独运要6天运完。现在两车合运,几天后还剩下这堆沙子的31?
小学数学公式大全
一、小学数学几何形体周长面积体积计算公式
长方形的周长=(长+宽)×2 C=(a+b)×2
正方形的周长=边长×4 C=4a
长方形的面积=长×宽S=ab
正方形的面积=边长×边长S=a.a= a
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高S=ah
梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
直径=半径×2 d=2r 半径=直径÷2 r= d÷2
圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
圆的面积=圆周率×半径×半径
三角形的面积=底×高÷2。公式S= a×h÷2
正方形的面积=边长×边长公式S= a×a
长方形的面积=长×宽公式S= a×b
平行四边形的面积=底×高公式S= a×h
梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2