线段和的最小值 万能方法
线段和最小值问题整理
线段和最小值问题是一类数学问题,通常涉及到在给定的线段上找到使某个函数取得最小值的点。
这类问题在数学建模、优化问题和几何学中都有应用。
下面是对线段和最小值问题的整理:
1. 定义线段:线段是由两个端点确定的一段连续的直线部分。
2. 定义函数:线段和最小值问题通常需要定义一个函数,该函数将线段上的点映射到一个实数上。
3. 最小值问题:线段和最小值问题的目标是找到线段上使函数取得最小值的点。
4. 解决方法:解决线段和最小值问题的方法通常包括数学分析和优化算法。
a. 数学分析:通过分析函数的性质、导数和极值点等,可以找到函数取得最小值的点。
b. 优化算法:如果函数较为复杂或者无法通过数学分析得到解析解,可以使用优化算法,如梯度下降法、遗传算法等,来搜索最小值点。
5. 约束条件:线段和最小值问题中,通常会存在一些约束条件,如线段的端点范围、函数的可行域等。
这些约束条件需要考虑在解决问题时。
线段和最小值问题的具体形式和解决方法会因具体情况而异,可以根据具体问题的特点来选择合适的方法进行求解。
例谈线段和的最小值问题的解法
例谈线段和的最小值问题的解法作者:曾晖来源:《新校园·中旬刊》2015年第06期在初三中考总复习中,我们常见到这样的题型:1.如图1,要在街道旁修建一个奶站P,向居民区A、B提供牛奶,奶站P应建在什么地方,才能使从A,B到它的距离之和最短?为什么?2.如图2,要在街道旁修建一个奶站P,向居民区A、B提供牛奶,奶站P应建在什么地方,才能使从A,B到它的距离之和最短?为什么?这就是我们所说的几条线段和的最小值问题。
今天,我们将结合几个典型的例题,用三个不同的模型,从三个方面谈一谈线段和的最小值问题的基本解题思想,总结切实可行的解题方法,以期帮助初三学生提高复习的效率。
模型一:两定一动型。
解题原理:两点之间,线段最短。
说明:在一条直线的同侧有两个定点,在直线上找一个动点P,使点P到另两点的距离之和最短。
例1:如图3,在直角坐标系中,点A的坐标是(2,4),点B的坐标是(6,2),在y 轴和x轴上找两点P、Q,使得A,B,P,Q四点组成的四边形周长最小,请画出示意图,并求出P、Q两点的坐标。
思路分析:分别作点A关于Y轴的对称点A′,点B关于X轴的对称点B′,连接A′B′,分别交Y轴于P′,交X轴于点Q′,点P′、Q′即为所求。
模型二:一定两动型。
解题原理:直线外一点到直线的所有距离中,垂线段最短。
说明:在一条直线的同侧有一个定点,一个动点,在直线上找一个动点P,使点P到另两点的距离之和最短。
例2:如图4,在锐角三角形ABC中,AB=4,∠CAB=45°,AD平分∠CAB,M、N分别是AD、AB上的动点,试求MN+MB的最小值。
思路分析:在AC上截取AE=AN,连接BE.∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,AE=AN∠EAM=∠NAMAM=AM,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°。
初中线段最值问题的常用解法
初中线段最值问题的常用解法初中线段最值问题是数学中的一个常见问题,也是初步引导学生运用数学知识解决实际问题的一种典型例题。
下面将介绍几种常用的解法。
1.分情况讨论法分情况讨论是解决初中线段最值问题的一个常用方法。
以找线段上的最大值为例,我们可以将线段分为两个部分,一部分是线段的左半部分,一部分是线段的右半部分。
然后分别在左半部分和右半部分找到最大值,最后比较这两个最大值,取较大者即为线段上的最大值。
同理,要找线段上的最小值,也可以采用相似的方法。
2.数轴法数轴法是线段最值问题中常用的一种解法。
以线段的最大值为例,我们可以将数轴上线段的两个端点列出,然后根据所给条件(如线段的起点和终点的坐标等)确定线段的位置。
然后,我们可以逐个将线段上的点都标在数轴上,然后找到其中的最大值。
同样地,我们也可以用数轴法来找线段上的最小值。
3.函数法函数法是解决线段最值问题的常用方法之一。
我们可以根据线段的起点和终点的坐标,建立一个函数来描述线段上的点。
然后,对这个函数进行求导,求出其导数为零的点,这些点即为函数的极值点。
然后,我们可以将这些极值点与线段的端点进行比较,找出线段上的最大值或最小值。
4.图像法图像法是解决线段最值问题的另一种有效方法。
我们可以根据线段的起点和终点的坐标,在坐标平面上画出对应的线段图像。
然后,通过观察图像,我们可以直观地找到线段上的最大值或最小值。
5.代数法代数法是解决线段最值问题的另一种常用方法。
我们可以先将线段上的点表示为变量的形式,然后根据线段的端点的坐标,列出相应的方程组。
然后,我们可以通过求解方程组,得到线段上的最大值或最小值。
总结起来,初中线段最值问题一般可以通过分情况讨论法、数轴法、函数法、图像法和代数法等解决。
根据实际情况和题目要求,可以选择合适的方法来解决问题。
需要注意的是,在解题过程中,我们不仅要运用数学知识,还要灵活运用判断和推理能力,善于观察和分析问题,才能高效地解决线段最值问题。
求线段之和的最小值问题的常用方法
求线段之和的最小值问题的常用方法嘿,咱今儿个就来唠唠求线段之和的最小值问题的那些常用法子!这可是数学里挺有意思的一块儿呢!你想想啊,就好像咱要在一个迷宫里找最短的路一样。
比如说,有两个固定的点 A 和 B,然后还有一条线,咱得找到从 A 到这条线再到B 的最短路径,这就是求线段之和最小值的一种常见情况。
先来说说对称法吧。
这就好比是给线段照镜子,通过找到某个点关于某条线的对称点,然后把问题转化一下,一下子就变得简单明了啦!就好像你本来要绕一大圈才能到的地方,突然发现有条捷径就在眼前。
再讲讲三角形三边关系法。
这就像是三根小棍儿,两边之和肯定得大于第三边呀,那咱就利用这个道理来找最小值。
就好比你知道走哪几条路组合起来最短,嘿,就是这么神奇!还有一种呢,就是利用一些特殊的几何图形的性质。
就像正方形、圆形之类的,它们都有自己独特的地方。
比如说在正方形里,对角线就是个很关键的线索,能帮咱找到那些最短的线段组合。
咱举个例子哈,想象有只小蚂蚁要从一个角落爬到另一个角落,但是中间有好多障碍,那咱就得开动脑筋,想想怎么让这小蚂蚁走最短的路呀!这时候这些方法就派上用场啦。
有时候啊,做这种题就跟玩游戏一样,一点点去探索,去发现其中的奥秘。
你得仔细观察题目中的条件,看看能不能找到那个关键的点或者线,然后运用合适的方法去求解。
哎呀,数学的世界就是这么奇妙!这些求线段之和最小值的方法就像是一把把钥匙,能打开各种难题的大门。
咱可得把这些宝贝方法好好记住,以后遇到问题就不怕啦!你说是不是?总之呢,求线段之和的最小值问题虽然有时候会让人觉得有点头疼,但只要咱掌握了这些常用方法,再加上一点点耐心和细心,那都不是事儿!相信自己,咱都能在数学的海洋里畅游,找到那些隐藏的宝藏!所以啊,别害怕这些问题,大胆去尝试,去探索,你会发现其中的乐趣无穷呢!。
中考几何中“线段和的最小值与定值”问题
中考几何中“线段和的最小值与定值”问题近年来,中考数学的一个热门考点就是“线段和的最值与定值”问题,也是难点之一。
学生常常找不到解题的突破口,此类试题往往同根而异形,利用两个“典型题例”进行“发散式”的概括和引申,是解决此类问题的一个捷径。
所谓“典型题例”,就是某些题例虽然不是几何公理或定理,却可以举一反三地运用于其他相关的系列问题的解答。
下面就“线段和的最值与定值”问题,运用两个“典型题例”的源命题进行探讨。
一、关于线段和的最小值源命题(北师大版七年级下册P228 第七章习题7.3“问题解决”第2 题):如图1 所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B 到它的距离之和最短?本题的解答是:作出点B 的轴对称点B1,连接AB1 交直线l于点P,则点P为所求的奶站位置。
利用这一题例的结论,可以解决一些同根异形关联题,下面试举几例:【关联题1】(2008 年湖北荆门市中考题)如图2,菱形ABCD 的两条对角线分别长6 和8,点P是对角线AC 上的一个动点,点M、N分别是边AB、BC 的中点,则PM+PN 的最小值是_____________.析解:利用菱形的对称性,在AD 上找出点M 关于AC 的对称点M'(即AD 的中点),连结M'N交AC 于P,则PM+PN 的最小值为线段M'N 的长,而M'、N 分别为边AD、BC的中点,故M'N 的长等于菱形的边长5。
【关联题2】(2007 年乐山市中考题)如图3,MN 是⊙O的直径,MN=2,点A 在⊙O 上,∠AMN=30°,B 为弧AN 的中点,P是直径MN 上一动点,则PA+PB 的最小值为()析解:连结OA,由∠AMN=30°得∠AON=60°,取点B 关于MN 的对称点B',连结OB'、AB',AB'交MN 于点P,则AB'的长为PA+PB 的最小值,且易知∠AOB'=90°,即△AOB'为等腰Rt△,故。
初中线段最值问题的常用解法
初中线段最值问题的常用解法初中线段最值问题可以通过几种常用解法来解决,其中包括暴力法、排序法、差分法、前缀和法和优先队列法等。
下面将逐一介绍这些常用解法。
一、暴力法:暴力法是最简单直接的解法,通过计算所有可能的情况,找到线段的最大最小值。
具体步骤如下:1.遍历线段的所有可能点对,计算它们之间的长度,并根据需求记录最大值或最小值。
2.对于含有n个点的线段,总共有C(n, 2) = n(n-1)/2个点对,因此时间复杂度为O(n^2)。
二、排序法:排序法首先将线段的所有点按照坐标大小进行排序,然后在有序的序列中找到最大最小值。
具体步骤如下:1.将线段的所有点按照坐标大小进行排序,可使用快速排序或归并排序等算法。
2.排序后的序列中,最小值为第一个点的坐标,最大值为最后一个点的坐标。
3.时间复杂度主要花在排序过程上,一般为O(nlogn)。
三、差分法:差分法是一种巧妙的解法,通过对坐标进行映射,将求最大最小值的问题转化为求差分数组的最大最小值。
具体步骤如下:1.首先对坐标进行离散化处理,将所有的线段点映射到一个连续段上,每个点的映射值对应它在离散化后的序列中的位置。
2.创建一个差分数组,将映射后的位置上的数值标记为1,其他位置上的值为0。
3.对差分数组进行前缀和处理,得到一个前缀和数组。
4.判断差分数组的最小值和最大值所对应的位置,即为原线段的最小值和最大值在映射后的序列中的位置。
5.根据离散化的映射关系,可将得到的位置映射回原线段上。
6.时间复杂度为O(n)。
四、前缀和法:前缀和法是一种相对简单高效的解法,通过对坐标进行前缀和处理,快速计算出每个位置的前缀和值,从而得到最值。
具体步骤如下:1.先计算出原始线段上每个点的前缀和,得到一个前缀和数组。
2.通过计算前缀和数组的差分,得到一个差分数组。
3.对差分数组求前缀和,得到一个二次前缀和数组。
4.遍历二次前缀和数组,记录最大最小值所对应的位置。
5.时间复杂度为O(n)。
用轴对称知识求线段和的最小值讲解
浅析用轴对称知识求线段和的最小值求线段和的最小值问题,在初中数学中经常会遇到,利用轴对称知识可以比较简单的解决。
我们先通过一个非常典型的例题来推导一个性质:一、性质推导例题:如图所示,在河岸L的一侧有两个村庄A、B,现要在河岸L上修建一个供水站,问供水站应建在什么地方,才能到A,B两村庄的距离之和最短?首先,我们来推导一个轴对称的性质,如图,作B点关于L的对称点B1, 在直线L上任意定一点M,连接B B1,BM,B1M,根据轴对称知识,我们可以求证BM=B1M,所以,我们可以得出这样的性质:成轴对称的两个对应点到对称轴上任意一点的距离相等。
在该例题中,利用这一性质,我们可得出:点B到河岸L上任意点M的距离等于对称B1到点M的距离。
要使AM+ B1M最小,必须使A、M、B1三点共线,也就是说,必须使点M,与A B1连线和L的交点N重合,所以,河岸上的N点为到A、B的距离之和最小的点。
B1证明:M为L上的任意点因为BM=B1M所以,BM+AM=B1M+AM,而B1M+AM大于B1A,所以,结论成立二、应用1:在图(1)中,若A到直线L的距离AC是3千米,B到直线L的距离BD是1千米,并且CD的距离4千米,在直线L上找一点P,使PA+PB的值最小。
求这个最小值。
解:作出A1B(作法如上图)过A1点画直线L的平行线与BD的延长线交于H,在Rt△A1BH中,A1H=4千米,BH=4千米,用勾股定理求得A1B的长度为42千米,即PA+PB的最小值为42千米。
A1 Array2、如图(1),在直角坐标系XOY中,X轴上的动点M(x,0)到定点P(5,5)和到Q(2,1)的距离分别为MP和MQ,那么当MP+MQ取最小值时,点M的横坐标x=__________________。
解:如图(2),只要画出点Q关于x轴的对称点Q1(2,-1),连结PQ1 交x轴于点M,则M点即为所求。
点M的横坐标只要先求出经过PQ1两点的直线的解析式,(y=2x-5),令y=0,求得x=5/2。
中考数学最值问题3-线段和的最小值(将军饮马型)学生用
最值问题3 线段和的最小值线段和的最小值在直线l上求一点+PB 值最小。
A、B在直线异侧“将军饮马”)作图在直线l上求一点PA+PB 值最小.平移型将军饮马作图在直线l上求两点M、N(M在左),使MN a,并使AM+MN+NB 的值最小.向右平单'的对称点,点左个单位称两点之间线段最短.AM最小值为A造桥选址”作图原理直线m ∥ n ,在m 、分别求点M、NMN⊥m,且AM+MN+BN值最小。
在直线l1、l2 上分别求点、N,使△PMN 的周长最小.作图在直线l1、l2上分别求点M 、N ,使四边形PQMN周长最小。
作图A 为l1上一定点,B上;A 为l1上一定点,上一定点,在l2上求点在l1上求点N ,AM+MN+NB 的值最小.作图l1上求点A,在lB,使PA+AB值最小.1. (1)已知,如图△ABC为等边三角形,高AH=10cm,P为AH上一动点,D为AB 的中点,则PD+PB的最小值为______cm.(2)如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N 分别是AD和AB上的动点,则BM+MN的最小值是.(3)如图,Rt△ABC中,∠BAC=90°,AB=3,AC=62,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.(4)如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为.(5)如图正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=22,连接CE,CF,则△CEF周长的最小值为.2. 如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)点M是抛物线对称轴上的一个动点,当MA+MC的值最小时,求点M的坐标及最小值.3. 如图,已知二次函数y=﹣x2+2x+3的图象与x轴交于点A、点B,交y轴于点C.(1)求直线BC的函数表达式;(2)如图,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,在x轴上是否存在一点M,使△CPM的周长最小,若存在求出周长的最小值;若不存在,请说明理由.y轴相交于点C,顶点为D(1)求出点A,B,D的坐标;(2)若线段OB在x轴上移动,且点O,B移动后的对应点为O′,B′.首尾顺次连接点O′、B′、D、C构成四边形O′′B′DC,请求出四边形O′B′DC的周长最小值.5.抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;y轴交于点C,已知点D(0,﹣).(1)求直线AC的解析式;(2)如图1,P为直线AC上方抛物线上的一动点,当△PBD面积最大时,过P作PQ⊥x 轴于点Q,M为抛物线对称轴上的一动点,过M作y轴的垂线,垂足为点N,连接PM,NQ,求PM+MN+NQ的最小值.7. 如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK 的最小值.8.如图1,在平面直角坐标系中,已知抛物线y=﹣x2﹣x+交x轴于A,B两点,交y轴于点C,抛物线上一点D的横坐标为﹣5.(1)求直线BD的解析式;(2)点E是线段BD上的动点,过点E作x轴的垂线交抛物线于点F,当折线EF+BE最大时,在对称轴上找一点P,在y轴上找一点Q,连接QE、OP、PQ,求OP+PQ+QE的最小值.9.如图,在平面直角坐标系中,抛物线y=﹣x2+x+3,分别交x轴于A、B两点,交y轴交于C点,顶点为D.(1)如图1,连接AD,R是抛物线对称轴上的一点,当AR⊥AD时,求点R的坐标;(2)在(1)的条件下.在直线AR上方,对称轴左侧的抛物线上找一点P,过P作PQ⊥x 轴,交直线AR于点Q,点M是线段PQ的中点,过点M作MN∥AR交抛物线对称轴于点N,当平行四边形MNRQ周长最大时,在抛物线对称轴上找一点E,y轴上找一点F,使得PE+EF+FA最小,并求此时点E、F的坐标.10. 抛物线y=﹣x+3与x轴交于A、B两点,与y轴交于点C,连接BC.(1)如图1,求直线BC的表达式;(2)如图1,点P是抛物线上位于第一象限内的一点,连接PC,PB,当△PCB 面积最大时,一动点Q从点P从出发,沿适当路径运动到y轴上的某个点G 再沿适当路径运动到x轴上的某个点H处,最后到达线段BC的中点F处停止.求当△PCB面积最大时,点P的坐标及点Q在整个运动过程中经过的最短路径的长.。
初三几何模型应用之线段和的最小值2017
初三几何模型应用之线段和的最小值2017.4.15几何模型——线段和的最小值求法线段和的最小值可以通过代数法模型——构造函数(二次函数)模型求最值方法,也可以用几何模型求解,如“将军饮马”模型、“胡不归模型”、“阿氏圆”、“费马点”等。
几何模型的理论基础包括:三角形两边之和大于第三边,垂线段最短,两点之间线段最短,圆内(或外)一点与圆上一动点的最短(或长)的连线段必过圆心,“折”大于“直”,“斜”大于“直”等思想方法。
一、“将军饮马”模型将军饮马”模型指在一条直线上选择两个点A和B,将这条直线看作河岸,再取A(或B)关于直线的对称点A′(或B′),连接A′B(或B′A),并与直线交于一点P,则点P就是将军饮马的地点,即PA+PB即为最短路线。
二、题目求解1、在直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴与y轴的正半轴上,OA=3,OB=4,D为边OB的中点。
1)若E为边OA上的一个动点,当△XXX的周长最小时,求点E的坐标。
2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标。
2、如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=230.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB的值为()。
3、如图,在矩形ABCD中,AB=5,AD=3.动点P满足△PAB/S=1,离之和PA+PB的最小值为()。
4、如图8,已知OABC是一张放在平面直角坐标系中的矩形纸片,O为坐标原点,点A在x轴上,点C在y轴上,且OA=15,OC=9,在边AB上选取一点D,将△AOD沿OD 翻折,使点A落在BC边上,记为点E。
1)求DE所在直线的解析式。
2)设点P在x轴上,以点O、E、P为顶点的三角形是等腰三角形,问这样的点P有几个,并求出所有满足条件的点P 的坐标。
换一种思路求线段和的最小值
2020^.^1i m换一种思路求战段和的最小值■马先龙摘要:解答几何题时,经常需求线段和的最小值. 对于有的问题,直接求解,非常困难;若换一种思路,则 柳暗花明,别有洞天.关键词:线段和;最小值;折叠解线段和的最小值问题时,换一种思路,往往别有 洞天,易于求解.一、加上定长线段例1 如图丨,矩形中,/lB JM D ==6,点 M 、/V 分别是边 4Z )、 \ 'P <Q nC D 上的动点,且M i V =4,点五是线段”M N 的中点,点P 是边B C 上的动A , B c求P/l +■的最小值.分析:如图1,直接求+洲的 ,最小值比较困难.依题意,易知线段 图!况的长为定值,故欲求/M +P £的最小值,可加上定长线段£>£,先求出+ /^ + 的最小值,然后再减去线段的长即可.解:如图1,因为四边形4B C D 为矩形,所以乙S /1D =/1/1B C = zlCZM = 90。
•在 R t A M /V D 中,因为 乙M Z W = 90。
,£;为 M)V 的中点,MTV = 4,所以 £>£ =^■娜=2.延长仙到点水,使似,=仙,则点关于直线B C 对称.连接/M ',则/M = /M ',所以/M +P £ + Z )£ =凡4' + P £ +连接I D ,根据“两点之间线段最短”,知线段的长就是W +洲+训即/M +洲+ £>£ 的最小值•在 Rt中,= 90°,/i4,== 8,/lD = 6,由勾股定理,得 47) = VAA'2 + AD2=782 + 62 = 10,所以(以+J P £ + £)£)mm = 10,所以 (/M +P £;)m i … = 10-2 =8,即/M +™的最小值为8.点评:本题把求两条线段和的最小值问题转化为 求三条线段和的最小值问题.其中,发现定长线段并能灵活转化是解题的关键.本题考查了“直角三角形 斜边上的中线等于斜边一半”这一重要性质,考查了 矩形的性质,考查了勾股定理的应用,考查了“两点之 间线段最短”这一公理,考查了转化、轴对称、等线段 代换、化折为直等基本的数学思想和方法[1].例2 如图2,矩形4BCZ?中 ==5,A/、7V 分别是边上的动点,点£在边上,且=1,将沿财£所在的直线折叠 得到 A /4'O Z ,连接 n/V D ,求/t 'i V+ /V D 的最小值.分析:如图2,直接求A W +图2的最小值比较困难.由图形的折叠,知线段的长为 定值,故欲求的最小值,可加上定长线段 ^先求出f /V + /VZ)的最小值,然后再减去线段4'£的长即可.解:如图2,由图形的折叠,知= 1.因为 四边形为矩形,所以乙fiCD == 90。
初中数学,两条线段之和最小,一般都是做对称点找最短距离
初中数学,两条线段之和最小,一般都是做对称点找最短距离
初中数学,线段之和最小,也就是大家说的“将军饮马”问题。
有很多种出题方式,无论哪一种,核心方法都是把可改变长度的线段转化到同一线段上。
本文主要给出最简单、最基本的一种,后续文章中将会逐渐出现复杂一点的类型。
下面这道例题主要是两条线段最小值有公共点。
一般都是作其中一个点的对称点,与另一个点相连,求点是求出直线解析式,再求交点坐标。
如果求最小长度,构造直角三角形用勾股定理(两点间距离公式初中不允许使用)。
以上方法包含在我的专栏动点40题方法视频讲解中,需要的可以
点击查看。
“求两线段长度之和的最小值”问题全解析
“求两线段长度值和最小”问题全解析在近几年的中考中,经常遇到求PA+PB最小型问题,为了让同学们对这类问题有一个比较全面的认识和了解,我们特此编写了“求两线段长度值和最小”问题全解析,希望对同学们有所帮助.一、在三角形背景下探求线段和的最小值1.1 在锐角三角形中探求线段和的最小值例1如图1,在锐角三角形ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC 于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为.分析:在这里,有两个动点,所以在解答时,就不能用我们常用对称点法.我们要选用三角形两边之和大于第三边的原理加以解决.解:如图1,在AC上截取AE=AN,连接BE.因为∠BAC的平分线交BC于点D,所以∠EAM=∠NAM,又因为AM=AM,所以∠AME∠∠AMN,所以ME=MN.所以BM+MN=BM+ME≥BE.因为BM+MN有最小值.当BE是点B到直线AC的距离时,BE 取最小值为4,以BM+MN的最小值是4.故填4.1.2在等边三角形中探求线段和的最小值例2(2010 山东滨州)如图4所示,等边∠ABC的边长为6,AD是BC边上的中线,M 是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为.分析:要求线段和最小值,关键是利用轴对称思想,找出这条最短的线段,后应用所学的知识求出这条线段的长度即可.解:因为等边∠ABC的边长为6,AD是BC边上的中线,所以点C与点B关于AD对称,连接BE交AD于点M,这就是EM+CM最小时的位置,如图5所示,因为CM=BM,所以EM+CM=BE,过点E作EF∠BC,垂足为F,因为AE=2,AC=6,所以EC=4,在直角三角形EFC中,因为EC=4, ∠ECF=60°,∠FEC=30°,所以FC=2,EF==2.因为BC=6,FC=2,所以BF=4.在直角三角形BEF中,BE==.二、在四边形背景下探求线段和的最小值2.1在直角梯形中探求线段和的最小值例3(2010江苏扬州)如图3,在直角梯形ABCD中,∠ABC=90°,AD∠BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.分析:在这里有一个动点,两个定点符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图3所示,作点D关于直线AB的对称点E,连接CE,交AB于点P,此时PC +PD和最小,为线段CE.因为AD=4,所以AE=4.因为∠ABC=90°,AD∠BC,所以∠EAP =90°.因为∠APE=∠BPC,所以∠APE∠∠BPC,所以.因为AE=4,BC=6,所以,所以,所以,因为AB=5,所以PB=3.2.2在等腰梯形中探求线段和的最小值例4如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF直线上的一点,则PA+PB的最小值为.分析:根据等腰梯形的性质知道,点A的对称点是点D,这是解题的一个关键点.其次运用好直角三角形的性质是解题的又一个关键.解:如图4所示,因为点D关于直线EF的对称点为A,连接BD,交EF于点P,此时PA+PB和最小,为线段BD.过点D作DG∠BC,垂足为G,因为四边形ABCD是等腰梯形,且AB=AD=CD=1,∠ABC=60°,所以∠C=60°,∠GDC=30°,所以GC=,DG=.因为∠ABC=60°,AD∠BC,所以∠BAD=120°.因为AB=AD,所以∠ABD=∠ADB=30°,所以∠ADBC=30°,所以BD=2DG=2×=.所以PA+PB的最小值为.2.3在菱形中探求线段和的最小值例5如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为.分析:根据菱形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图5所示,因为点B关于直线AC的对称点为D,连接DE,交AC于点P,此时PE+PB和最小,为线段ED.因为四边形ABCD是菱形,且∠BAD=60°,所以三角形ABD是等边三角形.因为E是AB的中点,AB=2,所以AE=1,DE∠AB,所以ED==.所以PE+PB的最小值为.2.4在正方形中探求线段和的最小值例6如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为.分析:根据正方形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图6所示,因为点D关于直线AC的对称点为B,连接BM,交AC于点N,此时DN+MN和最小,为线段BM.因为四边形ABCD是正方形,所以BC=CD=8.因为DM=2,所以MC=6,所以BM==10.所以DN+MN的最小值为10.例7(2009?达州)如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,果不取近似值).分析:在这里∠PBQ周长等于PB+PQ+BQ,而BQ是正方形边长的一半,是一个定值1,所以要想使得三角形的周长最小,问题就转化成使得PB+PQ的和最小问题.因为题目中有一个动点P,两个定点B,Q符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图7所示,根据正方形的性质知道点B与点D关于AC对称,连接DQ,交AC 于点P,连接PB.所以BP=DP,所以BP+PQ=DP+PQ=DQ.在Rt∠CDQ中,DQ==,所以∠PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ= +1.故答案为+1.三、在圆背景下探求线段和的最小值例8(2010年荆门)如图8,MN是半径为1的∠O的直径,点A在∠O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为()(A)2(B) (C)1(D)2分析:根据圆的对称性,作出点A的对称点D,连接DB,则线段和的最小值就是线段DB的长度.解:如图8,作出点A的对称点D,连接DB,OB,OD.因为∠AMN=30°,B为AN 弧的中点,所以弧AB的度数为30°,弧AB的度数为30°,弧AN的度数为60°.根据圆心角与圆周角的关系定理得到:∠BON=30°.由垂径定理得:弧DN的度数为60°.所以∠BOD=∠BON +∠DON= 30°+60°=90°.所以DB==.所以选择B.四、在反比例函数图象背景下探求线段和的最小值例9(2010山东济宁)如图9,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.分析:利用三角形的面积和交点坐标的意义,确定出点A的坐标是解题的第一个关键.要想确定出PA+PB的最小值,关键是明白怎样才能保证PA+PB的和最小,同学们可以联想我们以前学过的对称作图问题,明白了最小的内涵,解题的过程就迎刃而解了.解:(1)设点A的坐标为(x,y),且点A在第一象限,所以OM=x,AM=y.因为三角形OAM的面积为1,所以所以xy=2,所以反比例函数的解析式为y=.(2)因为y=x与y=相交于点A,所以=x,解得x=2,或x=-2.因为x>0,所以x=2,所以y=1,即点A的坐标为(2,1).因为点B的横坐标为1,且点B在反比例函数的图像上,所以点B的纵坐标为2,所点B的坐标为(1,2),所以点B关于x轴的对称点D的坐标为(1,-2).设直线AD的解析式为y=kx+b,所以,解得k=3,b=-5,所以函数的解析式为y=3x-5,当y=0时,x=,所以当点P在(,0)时,PA+PB的值最小.五、在二次函数背景下探求线段和的最小值例10(2010年玉溪改编)如图10,在平面直角坐标系中,点A的坐标为(1,),∠AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使∠AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;分析:在这里∠AOC周长等于AC+CO+AO,而A,O是定点,所以AO是一个定长,所以要想使得三角形的周长最小,问题就转化成使得AC+CO的和最小问题.因为题目中有一个动点C,两个定点A,O符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:(1)由题意得:所以OB=2.因为点B在x轴的负半轴上,所以点B的坐标为(-2,);(2)因为B(-2,0),O(0,0),所以设抛物线的解析式为:y=ax(x+2),将点A的坐标为(1,)代入解析式得:3a=,所以a=,所以函数的解析式为y=+x.(3)存在点C. 如图10,根据抛物线的性质知道点B与点O是对称点,所以连接AB 与抛物线的对称轴x= - 1交AC于点C,此时∠AOC的周长最小.设对称轴与x轴的交点为E.过点A作AF垂直于x轴于点F,则BE=EO=EF=1.因为∠BCE∠∠BAF,所以,所以,所以CE=.因为点C在第二象限,所以点C的坐标为(-1,).六、在平面直角坐标系背景下探求线段和的最小值例11(2010年天津)如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当∠CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.分析:本题的最大亮点是将一个动点求最小值和两个动点求最小值问题糅合在一起,并很好的运用到平面直角坐标系中.解:(1)如图12,作点D关于x轴的对称点,连接C与x轴交于点E,连接DE.若在边OA上任取点(与点E不重合),连接C、D、.由D+ C=+ C>C= D+CE=DE+CE,所以∠的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,所以BC=3,DO=O=2.所以点C的坐标为(3,4),点的坐标为(0,-2),设直线C的解析式为y=kx+b,则,解得k=2,b=-2,所以函数的解析式为y=2x-2,令y=0,则x=1,所以点E的坐标为(1,0);(2)如图13,作点D关于x轴的对称点,在CB边上截取CG=2,连接G与x 轴交于点E,在EA上截EF=2.因为GC∠EF,GC=EF,所以四边形GEFC为平行四边形,有GE=CF.又DC、EF的长为定值,所以此时得到的点E、F使四边形CDEF的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,CG=2,所以BC=3,DO=O=2,BG=1.所以点G的坐标为(1,4),点的坐标为(0,-2),设直线G的解析式为y=kx+b,则,解得k=6,b=-2,所以函数的解析式为y=6x-2,令y=0,则x=,所以点E的坐标为(,0),所以点F的坐标为(+2,0)即F的坐标为(,0)。
“求两线段长度之和的最小值”问题全解析
“求两线段长度值和最小”问题全解析山东沂源县徐家庄中心学校左进祥在近几年的中考中,经常遇到求PA+PB最小型问题,为了让同学们对这类问题有一个比较全面的认识和了解,我们特此编写了“求两线段长度值和最小”问题全解析,希望对同学们有所帮助.一、在三角形背景下探求线段和的最小值1.1 在锐角三角形中探求线段和的最小值例1如图1,在锐角三角形ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC 于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为.分析:在这里,有两个动点,所以在解答时,就不能用我们常用对称点法.我们要选用三角形两边之和大于第三边的原理加以解决.解:如图1,在AC上截取AE=AN,连接BE.因为∠BAC的平分线交BC于点D,所以∠EAM=∠NAM,又因为AM=AM,所以△AME≌△AMN,所以ME=MN.所以BM+MN=BM+ME≥BE.因为BM+MN有最小值.当BE是点B到直线AC的距离时,BE 取最小值为4,以BM+MN的最小值是4.故填4.1.2在等边三角形中探求线段和的最小值例2(2010 山东滨州)如图4所示,等边△ABC的边长为6,AD是BC边上的中线,M 是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为.分析:要求线段和最小值,关键是利用轴对称思想,找出这条最短的线段,后应用所学的知识求出这条线段的长度即可.解:因为等边△ABC的边长为6,AD是BC边上的中线,所以点C与点B关于AD对称,连接BE交AD于点M,这就是EM+CM最小时的位置,如图5所示,因为CM=BM,所以EM+CM=BE,过点E作EF⊥BC,垂足为F,因为AE=2,AC=6,所以EC=4,在直角三角形EFC中,因为EC=4, ∠ECF=60°,∠FEC=30°,所以FC=2,EF==2.因为BC=6,FC=2,所以BF=4.在直角三角形BEF中,BE==.二、在四边形背景下探求线段和的最小值2.1在直角梯形中探求线段和的最小值例3(2010江苏扬州)如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD =4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.分析:在这里有一个动点,两个定点符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图3所示,作点D关于直线AB的对称点E,连接CE,交AB于点P,此时PC +PD和最小,为线段CE.因为AD=4,所以AE=4.因为∠ABC=90°,AD∥BC,所以∠EAP=90°.因为∠APE=∠BPC,所以△APE∽△BPC,所以.因为AE=4,BC=6,所以,所以,所以,因为AB=5,所以PB=3.2.2在等腰梯形中探求线段和的最小值例4如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF直线上的一点,则PA+PB的最小值为.分析:根据等腰梯形的性质知道,点A的对称点是点D,这是解题的一个关键点.其次运用好直角三角形的性质是解题的又一个关键.解:如图4所示,因为点D关于直线EF的对称点为A,连接BD,交EF于点P,此时PA+PB和最小,为线段BD.过点D作DG⊥BC,垂足为G,因为四边形ABCD是等腰梯形,且AB=AD=CD=1,∠ABC=60°,所以∠C=60°,∠GDC=30°,所以GC=,DG=.因为∠ABC=60°,AD∥BC,所以∠BAD=120°.因为AB=AD,所以∠ABD=∠ADB=30°,所以∠ADBC=30°,所以BD=2DG=2×=.所以PA+PB的最小值为.2.3在菱形中探求线段和的最小值例5如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC 上的一个动点,则PE+PB的最小值为.分析:根据菱形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图5所示,因为点B关于直线AC的对称点为D,连接DE,交AC于点P,此时PE+PB和最小,为线段ED.因为四边形ABCD是菱形,且∠BAD=60°,所以三角形ABD是等边三角形.因为E是AB的中点,AB=2,所以AE=1,DE⊥AB,所以ED==.所以PE+PB的最小值为.2.4在正方形中探求线段和的最小值例6如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为.分析:根据正方形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图6所示,因为点D关于直线AC的对称点为B,连接BM,交AC于点N,此时DN+MN和最小,为线段BM.因为四边形ABCD是正方形,所以BC=CD=8.因为DM=2,所以MC=6,所以BM==10.所以DN+MN的最小值为10.例7(2009?达州)如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为 cm.(结果不取近似值).分析:在这里△PBQ周长等于PB+PQ+BQ,而BQ是正方形边长的一半,是一个定值1,所以要想使得三角形的周长最小,问题就转化成使得PB+PQ的和最小问题.因为题目中有一个动点P,两个定点B,Q符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图7所示,根据正方形的性质知道点B与点D关于AC对称,连接DQ,交AC 于点P,连接PB.所以BP=DP,所以BP+PQ=DP+PQ=DQ.在Rt△CDQ中,DQ==,所以△PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ= +1.故答案为+1.三、在圆背景下探求线段和的最小值例8(2010年荆门)如图8,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN =30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )(A)2(B) (C)1 (D)2分析:根据圆的对称性,作出点A的对称点D,连接DB,则线段和的最小值就是线段DB的长度.解:如图8,作出点A的对称点D,连接DB,OB,OD.因为∠AMN=30°,B为AN 弧的中点,所以弧AB的度数为30°,弧AB的度数为30°,弧AN的度数为60°.根据圆心角与圆周角的关系定理得到:∠BON=30°.由垂径定理得:弧DN的度数为60°.所以∠BOD=∠BON +∠DON= 30°+60°=90°.所以DB==.所以选择B.四、在反比例函数图象背景下探求线段和的最小值例9(2010山东济宁)如图9,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.分析:利用三角形的面积和交点坐标的意义,确定出点A的坐标是解题的第一个关键.要想确定出PA+PB的最小值,关键是明白怎样才能保证PA+PB的和最小,同学们可以联想我们以前学过的对称作图问题,明白了最小的内涵,解题的过程就迎刃而解了.解:(1)设点A的坐标为(x,y),且点A在第一象限,所以OM=x,AM=y.因为三角形OAM的面积为1,所以所以xy=2,所以反比例函数的解析式为y=.(2)因为y=x与y=相交于点A,所以=x,解得x=2,或x=-2.因为x>0,所以x=2,所以y=1,即点A的坐标为(2,1).因为点B的横坐标为1,且点B在反比例函数的图像上,所以点B的纵坐标为2,所点B的坐标为(1,2),所以点B关于x轴的对称点D的坐标为(1,-2).设直线AD的解析式为y=kx+b,所以,解得k=3,b=-5,所以函数的解析式为y=3x-5,当y=0时,x=,所以当点P在(,0)时,PA+PB的值最小.五、在二次函数背景下探求线段和的最小值例10(2010年玉溪改编)如图10,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;分析:在这里△AOC周长等于AC+CO+AO,而A,O是定点,所以AO是一个定长,所以要想使得三角形的周长最小,问题就转化成使得AC+CO的和最小问题.因为题目中有一个动点C,两个定点A,O符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:(1)由题意得:所以OB=2.因为点B在x轴的负半轴上,所以点B的坐标为(-2,);(2)因为B(-2,0),O(0,0),所以设抛物线的解析式为:y=ax(x+2),将点A的坐标为(1,)代入解析式得:3a=,所以a=,所以函数的解析式为y=+x.(3)存在点C. 如图10,根据抛物线的性质知道点B与点O是对称点,所以连接AB 与抛物线的对称轴x= - 1交AC于点C,此时△AOC的周长最小.设对称轴与x轴的交点为E.过点A作AF垂直于x轴于点F,则BE=EO=EF=1.因为△BCE∽△BAF,所以, 所以,所以CE=.因为点C在第二象限,所以点C的坐标为(-1,).六、在平面直角坐标系背景下探求线段和的最小值例11(2010年天津)如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.分析:本题的最大亮点是将一个动点求最小值和两个动点求最小值问题糅合在一起,并很好的运用到平面直角坐标系中.解:(1)如图12,作点D关于x轴的对称点,连接C与x轴交于点E,连接DE.若在边OA上任取点(与点E不重合),连接C、D、.由D+ C=+ C>C= D+CE=DE+CE,所以△的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,所以BC=3,DO=O=2.所以点C的坐标为(3,4),点的坐标为(0,-2),设直线C的解析式为y=kx+b,则,解得k=2,b=-2,所以函数的解析式为y=2x-2,令y=0,则x=1,所以点E 的坐标为(1,0);(2)如图13,作点D关于x轴的对称点,在CB边上截取CG=2,连接G与x 轴交于点E,在EA上截EF=2.因为GC∥EF,GC=EF,所以四边形GEFC为平行四边形,有GE=CF.又DC、EF的长为定值,所以此时得到的点E、F使四边形CDEF的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,CG=2,所以BC=3,DO=O=2,BG=1.所以点G的坐标为(1,4),点的坐标为(0,-2),设直线G的解析式为y=kx+b,则,解得k=6,b=-2,所以函数的解析式为y=6x-2,令y=0,则x=,所以点E 的坐标为(,0),所以点F的坐标为(+2,0)即F的坐标为(,0)。
线段差的最大值与线段和的最小值问题
线段差的最大值与线段和的最小值问题有关线段差的最大值与线段和的最小值问题的主要应用原理是:1、两点这间线段最短。
2、三角形的任意两边之和大于第三边(找和的最小值)。
3、三角形的任意两边之差小于第三边(找差的最大值)。
作图找点的关键:充分利用轴对称,找出对称点,然后,使三点在一条直线上。
即利用线段的垂直平分线定理可以把两条线段、三条线段、四条线段搬在同一条直线上。
证明此类问题,可任意另找一点,利用以上原理来证明。
一两条线段差的最大值:(1)两点同侧:如图,点P在直线L上运动,画出一点P,使︱PA-PB︱取最大值。
作法:连结AB并延长AB交直线L于点P。
点P即为所求。
︱PA-PB︱=AB证明:在直线L上任意取一点P。
,连结PA、PB,︱PA-PB︱<AB(2两点异侧:如图,如图,点P在直线L上运动,画出一点P,使︱PA-PB︱取最大值。
作法:1、作B关于直线L的对称点B。
B2、连结AB并延长AB交直线L于点P。
点P即为所求。
︱PA-PB︱=AB证明:在直线L上任意取一点P。
,连结PA、PB、PB。
︱PA-PB︱=︱PA-PB︱<AB(三角形任意两边之差小于第三边)二、两条线段和的最小值问题:(1))两点同侧:如图,点P在直线L上运动,画出一点P使PA+PB取最小值。
(三角形的任意两边之和大于第三边(找和的最小值),PA+PB=AB(2)两点异侧:如图,点P在直线L上运动,画出一点P使PA+PB取最小值。
(两点之间线段最短)三、中考考点:08年林金钟老师的最后一题:如图,在矩形ABCO中,B(3,2),E(3,1),F(1,2)在X轴与Y轴上是否分别存在点M、N,使得四边形EFNM的周长最小若存在,请求出周长的最小值,若不存在,请说明理由。
提示:EF长不变。
即求FN+NM+MF的最小值。
利用E关于X轴的对称点E,F的对称点F,把这三条线段搬到同一条直线上。
oB CEFN一、以正方形为载体,求线段和的最小值例1. 如图1,四边形ABCD 是正方形,边长是4,E 是BC 上一点,且CE =1,P 是对角线BD 上任一点,则PE +PC 的最小值是_____________。
初中几何中线段和差最大值最小值典型分析最全
初中几何中线段和(差)的最值问题一、两条线段和的最小值。
基本图形解析:(对称轴为:动点所在的直线上)一)、已知两个定点:1、在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:A、A’是关于直线m的对称点。
2、在直线m、n上分别找两点P、Q,使PA+PQ+QB最小。
(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A、B位于直线m,n 的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短.填空:最短周长=________________变式二:已知点A位于直线m,n 的内侧, 在直线m、n分别上求点P、Q点PA+PQ+QA 周长最短.二)、一个动点,一个定点:(一)动点在直线上运动:点B在直线n上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)1、两点在直线两侧:2、两点在直线同侧:(二)动点在圆上运动点B在⊙O上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)1、点与圆在直线两侧:2、点与圆在直线同侧:三)、已知A、B是两个定点,P、Q是直线m上的两个动点,P在Q的左侧,且PQ间长度恒定,在直线m上要求P、Q两点,使得PA+PQ+QB的值最小。
(原理用平移知识解)(1)点A、B在直线m两侧:过A点作AC∥m,且AC长等于PQ长,连接BC,交直线m于Q,Q向左平移PQ长,即为P 点,此时P、Q即为所求的点。
(2)点A、B在直线m同侧:练习题1.如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR 周长的最小值为.2、如图1,在锐角三角形ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M,N 分别是AD和AB上的动点,则BM+MN的最小值为.3、如图,在锐角三角形ABC中,AB=BAC=45,BAC的平分线交BC于D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少4、如图4所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为.5、如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB 上一个动点,当PC+PD的和最小时,PB的长为__________.Q6、如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF直线上的一点,则PA+PB的最小值为.7、如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为.8、如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是9、如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm.10、如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为11、如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是12、如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为.13、如图,正方形ABCD的边长是2,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为.14、如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为cm.(结果不取近似值).15、如图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是.16、如图8,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )(A)2 (B) (C)1 (D)2解答题1、如图9,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.2、如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c 与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与AC相交于点Q,求点P和点Q的坐标;(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.3、如图10,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小若存在,求出点C的坐标;若不存在,请说明理由;4.如图,抛物线y =35x 2-185x +3和y 轴的交点为A ,M 为OA 的中点,若有一动点P ,自M 点处出发,沿直线运动到x 轴上的某点(设为点E ),再沿直线运动到该抛物线对称轴上的某点(设为点F ),最后又沿直线运动到点A ,求使点P 运动的总路程最短的点E ,点F 的坐标,并求出这个最短路程的长.5.如图,已知在平面直角坐标系xOy 中,直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.6.如图,已知平面直角坐标系,A,B两点的坐标分别为A(2,-3),B(4,-1)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a为何值时,四边形ABDC的周长最短.7、如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x轴、y 轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.二、求两线段差的最大值问题 (运用三角形两边之差小于第三边)基本图形解析:1、在一条直线m上,求一点P,使PA与PB的差最大;(1)点A、B在直线m同侧:解析:延长AB交直线m于点P,根据三角形两边之差小于第三边,P’A—P’B<AB,而PA —PB=AB此时最大,因此点P为所求的点。
几何图形中两条线段之和的最小值例如P...
几何图形中两条线段之和的最小值例如P...
几何图形中两条线段之和的最小值
例如 PA + k*PB ( k > 0) 最小值问题.
一般的思路:
(1) 都是如何将3点放在一条直线上,求两点之间的距离,毕竟平面几何中两点之间线段最短。
(2) 如何将3点中的两点,放入直线的两侧,其中一点在直线上,或放入圆的内侧和外侧,其中一点在圆上。
(3) 其中构造相似的三角形一般可以将PA + k*PB ( k > 0) 中的k*PB转化成另外一条线段比如将 k*PB替换成 PC,那么C, P, B中三点一定满足(2),即点C与B在直线两侧P在直线上,C与B分别在圆的内侧和外侧,点P在圆上。
似乎取IF中点G,连接GH,2/3GH即为最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M1 A1
A2
N1
提高
例2:如图,已知AB是⊙OB中AC的 30直0 径,
,点D是线段AC上的任意一点1 C(DO不D 含端点),
连接OD,当
的最小2值为6时,求AB的
长。
在RtOO1F中
O1 D1 C
O1OF 600
DE
OO1 4 3
A
FB
AB 8 3
O
线段和的最小值
方法策略
初中数学经常遇到求PA+PB最小值问题,或 者是求△ABC的周长最小值。 1.题型:①两定一动
②一定两动 2.万能方法: ①作一定点关于动点所在直线的对称点
定点作了对称点后不用,对称点即为定点
②如果是两个定点则利用“两点之间,线段最 短”
如果是一个定点则利用“垂线段最短”
常见的数学模
存在一点P,使得△ABP的周长最
小A.B请 求BP出点APP的坐标. y 分析:因为AB的
长是确定的,故 △ABP的周长最 小时AP与BP的和
AO
x
P
为最小,所以可作 出右图所示的图
B
B
’
例3、已知:如图,AB是⊙O的直 径,AB=4,点C是半圆的三等份点, 点D是弧BC的中点,AB上有一动点 P,连接PC,PD,则PC+PD的最小 值是多2 2少?并画出点P的位置C .
型1、(浙教版数学课本八上,P50 例2)l 如
图,直线 表示草原上的一条河流。一骑
马少年从A地出发,去河边让马饮水,然后
返回位于B地的家中。他沿怎样的路线行走, 能使路程最短?作出这条最B 短路P线'A P'B
直线l A为A'
线
的中垂
A
l
P
P’
A’
常见的数学模
型
4.如图,点A是∠MON内的一点,在分
AD AD' 4
Q'
在RtAD'P'中
D'P' 2 2
D'
作定点关于动点所在直线的 作对对称称点点的垂线
例2、(2010东营)如图,已知二次函数 y=ax2-4x+c的图象与坐标轴交于点A(1, 0)和点B(0,-5).
(1)求该二次函数的解析y 式 x;2 4x 5
(2)已知该函数图象的对称轴上
D
A
O PP B
’D
’
例 1
AM1 A1M1 AN1 A2N1
A1 BAM1 A2 EAN1
在A1AA2中BAE 1200 A1 A2 600 AM1N 2A1 AN1M 2A2 AM1N AN1M 1200
AM MN AN
别在射线OM,ON上作点P,Q。使
AP+PQ最小。
A1 M
POQA来自N总结1.万能方法: ①作一定点关于动点所在直线的对称点
定点作了对称点后不用,对称点即为定点
②如果是两个定点则利用“两点之间,线段最 短”
如果是一个定点则利用“垂线段最短” 2.本质就是想方设法换含定点的已知线段
典型例题
例 1
P'