动点问题、存在性问题小结
(教学反思)二次函数综合(动点)问题平行四边形存在问题

《二次函数综合(动点)问题——平行四边形存在性问题》
教学反思
本节课是在学习二次函数y=ax2+bx+c的图像和性质及平行四边形性质的基础上来探究二次函数中动点问题与平行四边形模型的一节复习课;通过教学,让熟练掌握二次函数y=ax2+bx+c的图像和性质;熟练掌握平行四边形的性质;并会对平行四边形模型进行探究,分类讨论不同的情况;在整个教学中,我首先在学生掌握二次函数
y=ax2+bx+c的图像和性质的基础上,先脱离二次函数,再回到二次函数的情景中研究;先从简单入手探究平面直角坐标系中动点情况下平行四边形的存在问题,然后回到二次函数前提下的平行四边形存在问题。
利用几何画板,充分运用数形结合、转化、方程等数学思想来帮助解题。
在整个教学过程中培养了学生的处理图像综合运用的能力;让学生养成从特殊到一般,从简单到复杂的学习方法;形成对图形的处理能力,形成解题技巧,树立对解决此类问题的信心。
菱形动点及存在性问题

菱形动点及存在性问题
背景
动点是指在几何形状中移动的点。
菱形是一种四边形,其中所有边长度相等且对角线相互垂直。
研究菱形动点的存在性和性质对于几何学来说是一个有趣且重要的问题。
菱形动点的定义
假设我们有一个固定的菱形,其顶点坐标分别为$(x_1, y_1)$, $(x_2, y_2)$, $(x_3, y_3)$, $(x_4, y_4)$。
菱形动点是指一个点$(x, y)$,其满足以下条件:
1. 点$(x, y)$在菱形内部;
2. 点$(x, y)$的运动轨迹是连续的。
存在性问题
对于给定的菱形,是否存在一个点满足动点的定义?这就是存
在性问题。
结论
对于任意菱形,存在一个满足动点定义的点。
证明概要
我们可以通过构造一个具体的动点来证明存在性。
考虑一个菱形的中心点$(x_c, y_c)$,即 $(x_c, y_c) =
\left(\frac{x_1+x_2+x_3+x_4}{4},
\frac{y_1+y_2+y_3+y_4}{4}\right)$。
由菱形的性质可知,这个中心
点一定在菱形内部。
因此,我们可以将中心点作为动点,这样就满足了动点的定义。
总结
菱形动点的存在性问题得到了肯定的回答。
对于任意给定的菱形,都存在满足定义的动点。
这个结论对于几何学研究和实际问题的解决具有重要意义。
动点问题知识点总结

动点问题知识点总结动点问题是数学中的一个重要概念,也被应用于物理学等其他领域。
在解决动点问题时,我们需要考虑物体在不同时间点的位置和速度,并通过数学方法来描述和预测物体的运动。
本文将介绍动点问题的一些基本知识点和解决方法。
1.位置和速度在动点问题中,物体的位置和速度是两个基本概念。
位置表示物体所处的空间位置,通常用一个坐标来表示,例如二维平面上的(x, y)坐标,或者三维空间中的(x, y, z)坐标。
速度则表示物体在单位时间内移动的距离,也可以用一个向量来表示,其中向量的方向表示物体的移动方向,而向量的大小表示物体的移动速度。
2.位移和速度的关系物体的位移是指物体从一个位置移动到另一个位置的变化量。
位移可以通过物体的初始位置和最终位置之间的差计算得到。
而速度则是物体在单位时间内的位移变化量,也可以通过物体在单位时间内的位移除以时间得到。
因此,我们可以通过速度和时间来计算物体的位移,或者通过已知的位移和时间来计算物体的速度。
3.加速度加速度是描述物体在单位时间内速度变化的物理量。
加速度可以用一个向量来表示,其中向量的方向表示速度变化的方向,而向量的大小表示速度变化的大小。
加速度的单位通常是米每平方秒(m/s²)。
在动点问题中,加速度可以是常数,也可以是随时间变化的函数。
对于常数加速度的情况,我们可以通过加速度和时间来计算速度变化和位移变化。
4.运动方程运动方程是描述物体运动的数学方程。
对于匀速直线运动,物体的位移可以通过位移公式来计算:位移等于速度乘以时间。
对于匀加速直线运动,物体的位移可以通过运动方程来计算:位移等于初始速度乘以时间加上加速度乘以时间的平方的一半。
通过运动方程,我们可以根据已知的物体的初始条件和运动情况,来预测物体在未来某个时间点的位置和速度。
5.自由落体自由落体是指没有空气阻力的物体在重力作用下的运动。
在自由落体中,物体的加速度恒定为重力加速度,大小约为9.8米每平方秒。
初中数学动点问题总结

初中数学动点问题总结第一篇:初中数学动点问题总结初二动点问题1.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.解答:解:(1)∵四边形PQCD平行为四边形∴PD=CQ ∴24-t=3t 解得:t=6 即当t=6时,四边形PQCD平行为四边形.(2)过D作DE⊥BC于 E 则四边形ABED为矩形∴BE=AD=24cm ∴EC=BC-BE=2cm ∵四边形PQCD为等腰梯形∴QC-PD=2CE 即3t-(24-t)=4 解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2 解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.2.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC 的形状并证明你的结论.分析:(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.解答:解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF=(∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.点评:本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.3.如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形;(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;(4)探究:t为何值时,△PMC为等腰三角形.分析:(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM;四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值.(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论:①当MP=MC时,那么PC=2NC,据此可求出t的值.②当CM=CP时,可根据CM和CP 的表达式以及题设的等量关系来求出t的值.③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.综上所述可得出符合条件的t的值.解答: 解:(1)∵AQ=3-t ∴CN=4-(3-t)=1+t 在Rt△ABC中,AC2=AB2+BC2=32+42 ∴AC=5 在Rt△MNC中,cos∠NCM= =,CM=(2)由于四边形PCDQ构成平行四边形∴PC=QD,即4-t=t 解得t=2.(3)如果射线QN将△ABC的周长平分,则有:MN+NC=AM+BN+AB 即:(1+t)+1+t=(3+4+5)解得:t=(5分)而MN= NC=(1+t).∴S△MNC=(1+t)2=(1+t)2×4×3 当t= 时,S△MNC=(1+t)2= ≠ ∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.(4)①当MP=MC时(如图1)则有:NP=NC 即PC=2NC∴4-t=2(1+t)解得:t=②当CM=CP时(如图2)则有:(1+t)=4-t 解得:t=③当PM=PC时(如图3)则有:在Rt△MNP中,PM2=MN2+PN2 而MN= NC=(1+t)PN=NC-PC=(1+t)-(4-t)=2t-3 ∴[(1+t)]2+(2t-3)2=(4-t)2 解得:t1= ∴当t=,t=,t2=-1(舍去),t=时,△PMC为等腰三角形点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.4.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.分析:以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20cm,BQ+MC=BC即x+3x=20cm.所以可以根据这两种情况来求解x的值.以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MC,BQ=ND;当点P在点N的右侧时,AN=MC,BQ=PD.所以可以根据这些条件列出方程关系式.如果以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形.解答:解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN 为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.①当点P与点N重合时,由x2+2x=20,得x1=-1,x2=--1(舍去).因为BQ+CM=x+3x=4(-1)<20,此时点Q与点M不重合.所以x=-1符合题意.②当点Q与点M重合时,由x+3x=20,得x=5.此时DN=x2=25>20,不符合题意.故点Q与点M不能重合.所以所求x的值为-1.(2)由(1)知,点Q只能在点M的左侧,①当点P在点N的左侧时,由20-(x+3x)=20-(2x+x2),解得x1=0(舍去),x2=2.当x=2时四边形PQMN是平行四边形.②当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4.当x=4时四边形NQMP是平行四边形.所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.由于2x>x,所以点E一定在点P的左侧.若以P,Q,M,N为顶点的四边形是等腰梯形,则点F一定在点N的右侧,且PE=NF,即2x-x=x2-3x.解得x1=0(舍去),x2=4.由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,所以以P,Q,M,N为顶点的四边形不能为等腰梯形.点评:本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形MNCD是平行四边形?(2)当t为何值时,四边形MNCD是等腰梯形?分析:(1)根据平行四边形的性质,对边相等,求得t值;(2)根据等腰梯形的性质,下底减去上底等于12,求解即可.解答:解:(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;(2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形点评:考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容.6.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s).(1)设△BPQ的面积为S,求S与t之间的函数关系;(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?分析:(1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PM×QB=96-6t;(2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由 PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出;②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出;③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出.解答:解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形.∴PM=DC=12,∵QB=16-t,∴s= •QB•PM=(16-t)×12=96-6t(0≤t≤(2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况).:①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得;②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,此方程无解,∴BP≠PQ.③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得合题意,舍去).综上所述,当形.或时,以B、P、Q为顶点的三角形是等腰三角,t2=16(不点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.7.直线y=-34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t (秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.分析:(1)分别令y=0,x=0,即可求出A、B的坐标;(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A的时间是8秒,点P的速度是2,从而可求出,当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得PD=48-6t5,利用S= 12OQ×PD,即可求出答案;(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.解答:解:(1)y=0,x=0,求得A(8,0)B(0,6),(2)∵OA=8,OB=6,∴AB=10.∵点Q由O到A的时间是 81=8(秒),∴点P的速度是6+108=2(单位长度/秒).当P在线段OB上运动(或O≤t≤3)时,OQ=t,OP=2t,S=t2.当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,如图,做PD⊥OA于点D,由 PDBO=APAB,得PD= 48-6t5.∴S= 12OQ•PD=-35t2+245t.(3)当S= 485时,∵ 485>12×3×6∴点P在AB上当S= 485时,-35t2+245t= 485 ∴t=4 ∴PD= 48-6×45= 245,AD=16-2×4=8 AD= 82-(245)2= 325 ∴OD=8-325= 85 ∴P(85,245)M1(285,245),M2(-125,245),M3(125,-245)点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.第二篇:初中数学几何动点问题初中数学几何动点问题动点型问题是最近几年中考的一个热点题型,从你初二的动点问题就不是很好这点来看,我认为你对动点问题缺乏技巧。
第二讲动点存在性问题

第一讲动点存在性问题一.考情分析二.知识回顾1、题型分类在中考中,存在性问题一般分为四类:1.是否存在三角形(等腰三角形、直角三角形);2.是否存在四边形(平行四边形、直角梯形和等腰梯形);3.是否存在三角形与已知三角形相似或者全等;4.是否存在三角形与已知三角形的面积之间有数量关系。
2、方法归纳在解决动点存在性问题时,一般先假设其存在,得到方程,如果有解,则存在,反之,则不存在。
而在列方程时,一般要用到特殊三角形以及特殊平行四边形的性质、相似、解直角三角形等知识点,需要注意的是,列方程时,一定要遵循:用两种不同的方法表示同一个量,否则,将会得到“1=1”之类的恒等式。
对于是否存在三角形,一般按顶点分为三类情况。
而对于是否存在平行四边形则有两种形式的题目:如果已知三个定点,就有三种情况,一般利用平移坐标法即可求出答案;如果只有两个定点就应该按与边平行以及与对角线平行两种情况考虑了。
对于等腰梯形,就应该考虑腰长在下底边上的投影了。
对于是否存在三角形与已知三角形相似或者全等,则与是否存在三角形一样,分三类情况,当然,如果有一个角是一个定角(比如直角),则就分为两类情况。
类型一:是否存在三角形(等腰三角形、直角三角形) (A )【典型例题1】如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。
动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。
设运动的时间为t (秒)。
当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形?(C )【典型例题2】如图2,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图3),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图4),是否存在点P ,使PMN △为等腰三角形?若存在, 请求出所有满足要求的x 的值;若不存在,请说明理由.(B )【典型例题3】如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
二次函数中动点的存在性问题

专题复习:二次函数中动点的存在性问题通过探究、讨论、展示等学习活动,培养学生自信心,逐步消除学生对数学科的畏难情绪。
并在教学中培养学生同他人合作完成任务,以及及时反思、总结的良好学习习惯。
目标要求是:学生熟练掌握二次函数的概念、函数解析式、图象和性质。
以探索简单实际问题中的数量关系和变化规律为背景,学生再次经历“建立函数模型表示变量之间的对应关系,讨论函数模型,解决实际问题”的过程,掌握研究函数知识的一般方法,体会到蕴涵其中的数形结合、建模等数学思想方法。
教学策略选择与设计1、教师启发引导,学生实践操作;2、自主探究,合作交流学习策略:互相讨论、交流、合作的课堂氛围;3、问题串设计策略:运用有序的问题串有层次的灵活呈现问题,组织教学内容,提出有启发性的隐身问题,激发学生的学习兴趣,积极的参与到探究“分类策略”当中;4、鼓励、激励策略:积极肯定学生的学习成果,及时评价学生的课堂表现。
教学资源多媒体教学平台,几何画板,视频软件教学问题诊断分析1、函数的学习需要学生用运动变化的眼光,把抽象的数量关系和直观的函数图象结合起来认识、分析并解决问题,抽象性较强,这对学生而言有一定的难度。
教师引导学生在动点运动变化的过程中,抓住那些不变量、不变关系或特殊关系,恰恰就是解题的关键,分类的前提是抓住动态过程中的不变量和不变关系画出相应的图形。
2、通过“课前训练”以及探究、讨论、合作等学习活动,引导学生归纳出动点形成三角形和四边形的分类策略;重难点分析重点:综合运用函数知识解决实际问题,特别是二次函数中动点的存在性问题;难点:探究二次函数中动点形成三角形、四边形;教学环节与活动环节问题与设计设计意图课前演练1、如图,A、B、C 是格点,画出格点D,E 使得三角形ABD 是等腰三角形、四边形ABCE 是平行四边形.2、如图,点B 的坐标为(4,4),作BA⊥x 轴,BC⊥y 轴,垂足分别为A,C,点 D 为线段OA 的中点,点P 从点A 出发,在线段AB 、BC 上沿A→B→C 运动,当OP=CD 时,点P 的坐标为.学习活动:①学生先独立思考完成,再小组交流答案;②教师引导学生归纳出分类策略:动点形成的等腰三角形,可以按照顶角的不同进行分类,即三角形有三个角,每个角都有可能是顶角.动点形成的平行四边形的分类可以按照“线段地位的不确定性”来分,即不动的线段既可以做平行四边形的边,也可以做平行四边形的对角线.此部分考点:坐标与图形性质;分类讨论;题目的难度不是很大,但是学生往往因为审题不细致容易漏解或错解。
动点问题知识点总结

动点问题知识点总结一、动点问题概念动点问题是指在力学中考虑质点的运动情况。
质点是一个物理点,具有质量,但没有空间体积,所以可以看作质点沿某条轨迹运动。
动点问题是力学中的一个重要问题,研究质点在力的作用下的运动规律,可以帮助我们更好地理解物体的运动状态和动力学定律。
二、动点问题的基本概念1. 位移、速度和加速度:质点在运动过程中的位置变化称为位移,位移的大小和方向决定了物体的运动状态。
速度是描述质点运动状态的基本物理量,是位移对时间的比值。
而加速度是速度对时间的比值,它描述了速度的变化情况。
2. 牛顿运动定律:牛顿运动定律包括三个基本定律,分别是惯性定律、动量定律和作用与反作用定律。
这些定律描述了质点在受力作用下的运动规律,是研究动点问题的重要基础。
3. 弹性碰撞和非弹性碰撞:碰撞是研究质点运动的重要问题之一,弹性碰撞要求碰撞前后能量守恒且动量守恒,而非弹性碰撞不满足这两个条件。
三、动点问题的研究方法1. 采用牛顿第二定律:牛顿第二定律是研究质点在力作用下的运动规律的基本方法,根据牛顿第二定律可以得到质点在力作用下的运动方程。
2. 采用能量守恒定律:能量守恒定律是描述质点在力场中运动时,系统总能量守恒的原理,通过能量守恒定律可以求解质点的运动轨迹和速度。
3. 采用动量守恒定律:动量守恒定律是描述碰撞问题时常用的方法,通过动量守恒定律可以求解碰撞后质点的速度和运动方向。
四、动点问题的应用1. 机械运动:在机械运动中,常常需要研究质点在受力作用下的运动规律,如机械臂的运动、机械传动系统等。
2. 弹道学问题:在弹道学中,需要研究弹丸在飞行过程中的运动规律,如炮弹的射击、导弹的飞行等。
3. 天体运动:在天体物理学中,需要研究星球、卫星、流星等天体在引力作用下的运动规律。
五、动点问题的解决过程1. 建立运动方程:首先要根据物体所受的力或者速度等信息,建立质点的运动方程,包括位置、速度和加速度。
2. 求解运动方程:根据质点的运动方程,可以求解质点在不同时间的位置和速度,进而分析质点的运动状态。
动点问题解题总结

解题关键是动中求静
一.建立动点问题的函数解析式(特点:动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?)
1.应用勾股定理建立函数解析式
2.应用比例式子建立函数解析式
3.应用求图形面积的方法建立函数关系式
二.动态几何型压轴题(特点:问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性,如特殊角、特殊图形的性质、图形的特殊位置。
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
)此类题型一般考察点动问题、线动问题、面动问题。
解题方法:1、特殊探路,一般推证。
2、动手实践,操作确认。
3、建立联系,计算说明。
三.双动点问题。
点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力。
主要分一下四种。
1.以双动点为载体,探求函数图像问题
2.以双动点为载体,探求结论开放性问题
3.以双动点为载体,探求存在性问题
4.以双动点为载体,探求函数最值问题
四.函数中因动点产生的相似三角形问题
五. 以圆为载体的动点问题。
专题:二次函数中的动点问题(平行四边形存在性问题)

二次函数中的动点问题(二)平行四边形的存在性问题一.技巧提炼如图1,点人(召,开)、3(忑,儿)、C(X3Os)是坐标平面内不在同一直线上的三点。
平面直角坐标系中是否存在点D,使得以A、B、C、D四点为顶点的四边形为平行四边形,如果存在,请求出点D的坐标。
如图2,过A、B、C分别作BC、AC、AB的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。
由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。
3、平面直角坐标系中直线和直线12:当h时k尸k2;当h丄I2时ki-k2=-14、二次函数中平行四边形的存在性问题:解题思路:(1)先分类(2)再画图(3)后计算二、精讲精练1、已知抛物线y=ax-+bx+c与x轴相交于A、E两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C点,且OA:OB:OC=1:3:3,AABC的面积为6,(如图1)(1)求抛物线的解析式:(2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由;(3)如图2,在直线BC±方的抛物线上是否存在一动点P,ABCP面枳最大?如果存在,求出最人面积,2、如图,己知抛物线经过A(-2,0),B(・3,3)及原点6顶点为C(1)求抛物线的函数解析式:(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标。
【变式练习】7如图,对称轴为直线x二一的抛物线经过点A(6,0)和B(0,4)・2(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四彖限,四边形0EAF是以0A为对角线的平行四边形, 求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形0EAF是否为菱形?②是否存在点E,使平行四边形0EAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.、方法规律1、平行四边形模型探究如图1,点&(內,开)、3(七,儿)、C(X3,”)是坐标平面内不在同一直线上的三点。
初中数学动点问题归纳

初中数学动点问题归纳动点问题是数学中常见的问题类型之一,它涉及到点在一定规律下的运动轨迹及相关的计算。
在初中数学学习过程中,学生们大多会接触到动点问题,并掌握解决此类问题的方法和技巧。
本文将对初中数学动点问题进行归纳总结,帮助初中学生更好地理解和解决这类问题。
1. 直线运动问题直线运动问题是最基本的动点问题之一。
在这类问题中,点按照直线路径运动,常涉及到时间、距离和速度的关系。
解决直线运动问题时,可以使用速度等于位移除以时间的公式来计算,即 v = s/t。
例子1:小明从家里骑自行车到学校,全程15公里,用时1小时。
求小明的平均速度。
解析:根据公式,平均速度 v = s/t = 15/1 = 15 km/h例子2:小红开车从A市到B市,全程200公里,平均时速60km/h。
求小红从A市到B市的行驶时间。
解析:根据公式,时间 t = s/v = 200/60 = 3.33 小时≈ 3小时20分2. 圆周运动问题圆周运动问题中,点按照圆形轨迹运动。
这类问题通常涉及到半径、圆周长和角度的计算与关系。
解决圆周运动问题时,需要掌握圆周长的计算公式,即 c = 2πr,其中 r 为半径。
例子1:一个半径为5米的圆,它的周长是多少?解析:根据公式,周长c = 2πr = 2 × 3.14 × 5 ≈ 31.4米例子2:一辆汽车在圆形赛道上行驶,赛道半径为100米,驾驶员开车一圈需要用时50秒。
求汽车的平均速度。
解析:首先计算圆周长c = 2πr = 2 × 3.14 × 100 = 628米然后计算平均速度v = c/t = 628/50 ≈ 12.56 m/s3. 直角三角形运动问题直角三角形运动问题是指点在直角三角形内运动,涉及到时间、速度和直角三角形边长的关系。
解决直角三角形运动问题时,可以利用勾股定理或三角函数来计算相关的未知量。
例子1:一个直角三角形的两条边长分别为3米和4米,角度为90度。
初中数学动点问题总结

初中数学动点问题总结
初中几何动点问题一直以来都是很大一部分学生的难中难,甚至有部分同学看到动点问题直接放弃,从心理上告诉自己,这种题不是我的菜。
针对这个问题,老师帮大家梳理了一些关于动点问题的相关解题思路,希望能帮助到大家。
1、什么是动点问题?
所谓'动点问题'是指在题设图形中存在一个或多个在线段、直线上运动的点的一类开放性题目,此类题目灵活性较强.解决这类问题的关键是'动中取静',换言之就是一切动点问题全部静点化。
以不动应万变,灵活运用有关数学知识将问题解决.
2、动点问题的解题思路
解题关键:一切动点问题全部静点化。
数学思想:分类思想函数思想方程思想数形结合思想转化思想
考察范围:学生对几何图形运动变化分析能力和相关几何知识综合运用能力。
课改之后中考数学压轴题正逐步向数形结合、动态几何、动手操作、实验探究等方向蔓延发展.这些压轴题题型新颖、题意创新,再题型的设计上更加注重考察学生分析问题、解决问题的能力,在内容上更加注重培养学生的空间立体思维能力、应用意识、逻辑推理能力等.在教学层面上更加关注学生对于(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等的理解和运用.例题解析:。
动点问题的知识点总结

动点问题的知识点总结一、基本概念1. 位移:位移是指一个物体从初始位置到最终位置之间的直线距离,通常用Δx表示。
2. 速度:速度表示单位时间内物体运动的距离,通常用v表示。
平均速度的计算公式为v=Δx/Δt,而瞬时速度的计算公式为v=dx/dt。
3. 加速度:加速度表示单位时间内速度改变的快慢,通常用a表示。
加速度的计算公式为a=Δv/Δt。
4. 力:力是物体之间相互作用的结果,常用F表示。
根据牛顿第二定律,力可以用F=ma 来表示,其中m为物体的质量。
二、匀变速直线运动1. 速度和位移关系:如果物体做匀变速直线运动,其位移与速度之间存在一定的关系。
在匀变速运动中,速度是匀变的,即速度与时间成正比,而位移则是速度和时间的积。
2. 加速度和速度关系:在匀变速直线运动中,物体的加速度是恒定的,即加速度在任意时刻都保持不变。
因此,加速度与速度之间也存在一定的关系,即加速度与速度成正比。
3. 速度和时间图像:匀变速直线运动过程中,速度和时间之间的图像是一条直线。
通过速度-时间图像可以清楚地看出物体的速度如何随时间改变。
三、牛顿运动定律1. 牛顿第一定律:牛顿第一定律也被称为惯性定律,指出物体在没有外力作用时将保持匀速运动或静止。
2. 牛顿第二定律:牛顿第二定律指出,物体的加速度与作用力成正比,与物体的质量成反比。
数学上可以表示为F=ma。
3. 牛顿第三定律:牛顿第三定律也被称为作用-反作用定律,指出物体之间的相互作用力大小相等、方向相反。
四、动能和动能定理1. 动能:动能是物体由于运动而具有的能量,通常用K表示。
动能的计算公式为K=1/2mv²,其中m为物体的质量,v为物体的速度。
2. 动能定理:动能定理指出,物体的动能变化等于外力对物体做功的量。
动能定理可以表示为ΔK=Work,其中ΔK为动能的变化量,Work为外力对物体做功的量。
五、机械能守恒1. 势能和势能定理:势能是物体由于位置而具有的能量,通常用U表示。
动点问题、存在性问题小结 - 副本

动点问题和存在性问题小结训练一、基础训练1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为X=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:① b2-4ac>0;② 2a+b<0;③ 4a-2b+c=0;④ a:b:c= -1:2:3.其中正确的是( )(A) ①② (B) ②③ (C) ③④ (D)①④3.已知二次函数的图象过(-2,0)、(4,0)、(0,3)三点,求这个二次函数的关系式.4.已知一个二次函数当x = 8时,函数有最大值9,且图象过点(0,1),求这个二次函数的关系式.5.已知二次函数的图象过(3,0)、(2,-3)二点,且对称轴是x=1,求这个二次函数的关系式.6.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?7.如图,在平面直cbxaxy++=2角坐标系中,抛物线cbxaxy++=2经过A(-2,-4),O(0,0),B(2,0)三点.(1)求抛物线的解析式;(2)若点M是抛物线对称轴上一点,求AM+OM的最小值.二、温故提升1.如图,在△ABC 中,AB=8,BC=7,AC=6,有一动点P 从A 沿AB 移动到B ,移动速度为2单位/秒,有一动点Q 从C 沿CA 移动到A ,移动速度为1单位/秒,问两动点同时移动多少时间时,△PQA 与△BCA 相似。
2.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,判断△BPQ 的形状,并说明理由;(2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR//BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?3.如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.(1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标; (2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;(3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.解:(1)A B ∴、两点的坐标为(10-,)、(30,). (2)当0x=时,3y m =-,∴点C 的坐标为(03)m ,-.:1:2.BCM ABC S S ∴=△△分(3)存在使BCM △为直角三角形的抛物线.过点C作CN DM⊥于点N,则C M N △为Rt △,13CN OD DN OC m ====,,①如果BCM △是Rt△02m m >∴=,②如果BCM△是Rt △,01m m >∴= ,.∴存在抛物线223y x x =--,使得BCM△是Rt △;③如果BCM△是Rt △,且90CBM∠=°,那么222BC BM CM +=,即222994161.mm m +++=+整理得212m =-,此方程无解.综上所述,存在抛物线222y x =-和223y x x =--.使得BCM △是Rt △.4.如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1). (1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.答案:解:(1)∵二次函数c bx x y ++=221的图像经过点A (2,0)C(0,-1) ∴⎩⎨⎧-==++1022c c b解得: b =-21c =-1 ∴二次函数的解析式为121212--=x x y (2)设点D 的坐标为(m ,0) (0<m <2)∴ OD =m ∴AD =2-m 由△AD E ∽△AOC 得,OCDEAO AD = ∴122DEm =- ∴DE =22m -∴△CDE 的面积=21×22m-×m=242mm +-=41)1(412+--m 当m =1时,△CDE 的面积最大∴点D 的坐标为(1,0)(3)存在 由(1)知:二次函数的解析式为121212--=x x y 设y=0则1212102--=x x 解得:x 1=2 x 2=-1 ∴点B 的坐标为(-1,0) C (0,-1)设直线BC 的解析式为:y =kx +b∴ ⎩⎨⎧-==+-10b b k 解得:k =-1 b =-1∴直线BC 的解析式为: y =-x -1在Rt △AOC 中,∠AOC=900OA=2 OC=1 由勾股定理得:AC=5 ∵点B(-1,0) 点C (0,-1) ∴OB=OC ∠BCO=450①当以点C 为顶点且PC=AC=5时, 设P(k , -k -1)过点P 作PH ⊥y 轴于H ∴∠HCP=∠BCO=450 CH=PH=∣k ∣ 在Rt △PCH 中k 2+k 2=()25 解得k 1=210, k 2=-210 ∴P 1(210,-1210-) P 2(-210,1210-)②以A 为顶点,即AC=AP=5 设P(k , -k -1)过点P 作PG ⊥x 轴于G AG=∣2-k ∣ GP=∣-k -1∣ 在Rt △APG 中 AG 2+PG 2=AP 2(2-k )2+(-k -1)2=5 解得:k 1=1,k 2=0(舍)∴P 3(1, -2)③以P 为顶点,PC=AP 设P(k , -k -1) 过点P 作PQ ⊥y 轴于点Q PL ⊥x 轴于点L∴L(k ,0)∴△QPC 为等腰直角三角形 PQ=CQ=k 由勾股定理知 CP=PA=2k∴AL=∣k -2∣, PL=|-k -1| 在Rt △PLA 中(2k)2=(k -2)2+(k +1)2 解得:k =25∴P 4(25,-27) 综上所述: 存在四个点:P 1(210,-1210-) P 2(-210,1210-) P 3(1, -2) P 4(25,-27)5.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C(1)求抛物线的函数解析式;(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标。
八年级数学动点问题中平行四边形存在性问题的探究

动点问题中平行四边形存在性问题的探究一、知识点综述动点问题是近几年各地中考的重中之重,也是教学的难点,其中平行四边形的存在性问题是其中的一种题型。
此类题目通常与代数式、平面直角坐标系、勾股定理、平行四边形及特殊平行四边形的判定等结合起来,综合性特别强。
二、典型图形分析图形条件结论ABCD为平行四边形A(x A,y A)、B(x B,y B)、C(x C,y C)、D(x D,y D) x A+ x C= x B+ x D y A+ y C= y B+ y DA、B、C是已知点,以A、B、C、D为顶点的四边形是平行四边形这样的四边形有三个:四边形FACB、四边形ABCD、四边形ABEC三、易错点分析1. 注意区分“以A、B、C、D为顶点的四边形”和“四边形ABCD”的不同之处;2. 注意分析动点的运动过程,看它是否反复运动而存在多种情况;3. 看清题目,注意“当AB=CD和AB∥CD时,分别求出动点P的运动时间”和“当AB=CD且AB∥CD时,动点P的运动时间”之间的区别.下面我们就以一些具体实例加以分析论述.四、典型例题例题1. 如图1-1,在平面直角坐标系中,以A(﹣1,0),B(2,0),C(0,1)为顶点构造平行四边形,则平行四边形顶点D的坐标是图1-1例题2.如图2-1,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以每秒3个单位的速度沿A→D→C向终点C运动,同时点Q从点B出发,以每秒1个单位的速度沿B→A向终点A运动.当四边形PQBC为平行四边形时,运动时间为()图2-1A.4s B.3s C.2s D.1s例题3. 如图3-1所示,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.图3-1例题4. 如图4-1,矩形ABCD中,AB=4,BC=8,动点M从点D出发,沿折线DCBAD方向以2单位每秒的速度运动,动点N从点D出发,沿折线DABCD方向以1单位每秒的速度运动,.(1)若动点M、N同时出发,多长时间相遇?(2)若点E在线段BC上,且BE=3. 若动点M、N同时出发,相遇时停止运动,几秒钟,点A、E、M、N组成平行四边形.图4-1例题5.如图5-1,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为32秒时,求此时四边形ADEC的周长是多少?图5-1例题6. 如图6-1,在矩形ABCD 中,AB =30 cm ,BC =10 cm ,点P 从A 开始沿折线A -B -C -D 以6cm /s 的速度移动,点Q 从点C 开始沿折线C -D -B 以6 cm /s 的速度移动,如果点P 、Q 分别从A 、C同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动时间为t (s ).当t 为何值时,以Q 、P 、B 、C 为顶点的四边形是矩形?DCBAQP图6-1例题7. 如图7-1,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 的延长线上,并且AF =CE .(1)求证:四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论.图7-1例题8. 如图8-1所示,在矩形ABCD中,AB=8,BC=12,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度都是每秒2个单位长度,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.图8-1例题9. 如图9-1,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.图9-1答案与解析题1. 如图1-1,在平面直角坐标系中,以A(﹣1,0),B(2,0),C(0,1)为顶点构造平行四边形,则平行四边形顶点D的坐标是图1-1【答案】(3,1)或(-3,1)或(1,-1).【解析】分两种情况讨论:①AB为边,则AB=CD=3,所以D点坐标为(3,1)或(-3,1)②AB为对角线,根据x A+ x B= x C+ x D,y A+ y B= y C+ y D得:x D=1,y D=-1,即D点坐标为(1,-1).故答案为:(3,1)或(-3,1)或(1,-1).题2.如图2-1,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以每秒3个单位的速度沿A→D→C向终点C运动,同时点Q从点B出发,以每秒1个单位的速度沿B→A向终点A运动.当四边形PQBC为平行四边形时,运动时间为()图2-1A.4s B.3s C.2s D.1s【答案】B.【解析】因为AB∥CD,即PC∥BQ,所以只需PC=BQ时,四边形PQBC为平行四边形设运动时间为t,则PC=AD+CD-3t,BQ=t∴5+7-3t=t解得:t=3故答案为:B.题3. 如图3-1所示,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.图3-1 【答案】见解析.【解析】(1)如图3-2所示.图3-2 证明:∵CE平分∠ACB,CF平分∠ACB的外角,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∠2+∠5+∠4+∠6=180°∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴在Rt△CEF中,由勾股定理得:∴EF=13,又∵O是EF的中点∴OC=12EF=6.5;(3)解:当点O在边AC上运动到线段AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.题4. 如图4-1,矩形ABCD中,AB=4,BC=8,动点M从点D出发,沿折线DCBAD方向以2单位每秒的速度运动,动点N从点D出发,沿折线DABCD方向以1单位每秒的速度运动,.(1)若动点M、N同时出发,多长时间相遇?(2)若点E在线段BC上,且BE=3. 若动点M、N同时出发,相遇时停止运动,几秒钟,点A、E、M、N组成平行四边形.图4-1【答案】见解析.【解析】(1)设动点M、N同时出发,x秒相遇,由题意得:2x+x=2×(4+8)解得:x=8.即8秒点M、N相遇.(2)分两种情况讨论:①AE为边时,如图4-2所示.图4-2因为AN∥EM,只需AN=EM时,AEMN为平行四边形设运动时间为t,则AN=8-t,CM=2t-4,EM=5-CM=9-2t,所以8-t=9-2t,解得:t=1不符合题意,舍去.②AE为对角线时,如图4-3所示.图4-3因为AN∥EM,只需AN=EM时,AEMN为平行四边形设运动时间为t,则AN=8-t,CM=2t-4,EM= CM-5=2t-9,所以8-t=2t-9,解得:t=17 3.所以173秒时,点A、E、M、N组成平行四边形.题5.如图5-1,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为32秒时,求此时四边形ADEC的周长是多少?图5-1【答案】见解析.【解析】(1)证明:连接CD交AE于F,如图5-2所示.图5-2∵四边形PCOD 是平行四边形,∴CF =DF ,OF =PF ,∵PE =AO ,∴AF =EF ,又∵CF =DF ,∴四边形ADEC 为平行四边形;(2)解:当点P 运动的时间为32秒时,OP =32,OC =3,则OE =92,在Rt △AOC 中,由勾股定理得,AC =32,在Rt △COE 中,由勾股定理得,CE =3132,∵四边形ADEC 为平行四边形,∴周长为(32+3132)×2=62313.题6. 如图6-1,在矩形ABCD 中,AB =30 cm ,BC =10 cm ,点P 从A 开始沿折线A -B -C -D 以6 cm /s 的速度移动,点Q 从点C 开始沿折线C -D -B 以6 cm /s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动时间为t (s ).当t 为何值时,以Q 、P 、B 、C 为顶点的四边形是矩形?D CBA Q P图6-1【答案】见解析.【解析】依据点P 、Q 所在不同位置分类讨论:①如图6-2所示,点P 在线段AB 上,点Q 在线段CD 上时,D CBA Q P图6-2 根据题意得:CQ =6t ,AP =6t ,则BP =30-6t ,∵四边形ABCD 是矩形∴∠B =∠C =90°,CD ∥AB ,∴只有CQ =BP 时四边形QPBC 是矩形,即6t =30-6t解得:t =52即当t =52时,四边形QPBC 是矩形.②如图6-3所示,点P 在线段CD 上,点Q 在线段AB 上时,D CBA P Q图6-3 根据题意得:BQ =70-6t ,CP =6t -40,当BQ =CP 时四边形QPBC 是矩形,即70-6t =6t -40解得:t =556即当t =556时,四边形QPBC 是矩形.题7. 如图7-1,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE的延长线上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.图7-1【答案】见解析.【解析】(1)证明:∵DE为BC的垂直平分线,∴∠EDB=90°,BD=DC,又∵∠ACB=90°,∴DE∥AC,∴E为AB的中点,∴在Rt△ABC中,CE=AE=BE,∴∠AEF=∠AFE,且∠BED=∠AEF,∠DEC=∠DFA,∴AF∥CE,又∵AF=CE,∴四边形ACEF为平行四边形;(2)解:当∠B=30°时,四边形ACEF是菱形,理由如下:因为∠B=30°,所以∠BAC=60°又EC=AE,所以△AEC是等边三角形,所以EC=AC,又ACEF为平行四边形所以ACEF为菱形.故当∠B=30°时,四边形ACEF是菱形.题8. 如图8-1所示,在矩形ABCD中,AB=8,BC=12,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度都是每秒2个单位长度,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.图8-1【答案】见解析.【解析】(1)解:因为ABCD为矩形,所以AP∥BQ,当AP=BQ时,ABQP为矩形,由题意知:AP=12-2t,BQ=2t,所以12-2t=2t,解得:t=3.即t=3时,四边形ABQP是矩形.(2)解:由题意知:BQ=PD,由矩形性质得:AD=BC所以CQ=AP,又CQ∥AP,所以四边形AQCP是平行四边形,当AQ=QC时,AQCP是菱形,即AQ2=QC2,在Rt△ABQ中,由勾股定理得:AQ2=AB2+BQ2,所以82+(2t)2=(12-2t)2,解得:t=5 3,即t=53时,四边形AQCP是菱形.(3)由(2)知:AP=12-2t= 26 3所以菱形AQCP的周长为:104 3,菱形AQCP的面积为:208 3.题9. 如图9-1,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.图9-1【答案】见解析.【解析】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形.理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴平行四边形BECD是菱形;(3)解:当∠A=45°时,四边形BECD是正方形,理由是:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.。
初中数学动点问题总结(5篇)

初中数学动点问题总结第1篇在鼓励教师创造性地工作的同时,也不放松对教学常规的指导和监督,我组加强了教学工作各个环节的管理。
根据学校的工作计划,结合本组的特点,经过全组教师的热烈讨论,制定了工作目标和具体计划。
坚持每周进行教案检查,发现问题当面指出,共同讨论研究解决。
坚持两周一次的作业检查。
在发挥教师各自教学特色和风格的基础上,积极规范教师的教案书写和课堂教学行为。
定期开展教研活动,相互听课和研究备课。
教研组活动有主题、有内容,有组织人和执行人,有及时的详细的记录。
教研活动中老教师无私传授,新教师虚心好学。
本组教师听课都在20节以上。
中年教师x xx、xxx、xxx有实干精神,年轻教师范莉、xxx积极好学。
我们初中数学组的全体教师决心认真研究新形势下的教育教学工作,转变教育教学观念,将更加团结协作,真抓实干。
本组教师在课堂上认真上好每一节课,在课堂教学中积极落实素质教育,在教学过程中都时时考虑对学生进行学习指导,本学期重点是学习方法的指导,指导的要点是怎样听课、怎样做作业和怎样复习,为了能更好地体现学生的主体地位,教师引导学生参与教学活动,给学生自主参与活动的时间和空间,教学中做到以人为本、关爱学生。
教师在精选习题的基础上,认真做好作业批改工作,力求做到及时反馈矫正,讲求实效,各年级都本着因材施教的原则,进行分层教学,培优补差。
初一抓好起始阶段数学学习习惯的养成;初二抓好基础教学,培养数学素质;初三多角度训练学生的思维品质,提高数学解题能力。
坚持每周进行教研活动,每次教研活动事先都经过精心准备,定内容、定时间、定教师,多次组织学习教育理论和本学科的教学经验,充实教师的现代教育理论和学科知识。
认真安排新教师xxx的合格课,耐心指导她参加青年教师的赛课活动,精心安排中年教师的示范课,对公开课严格把关,要求每一节公开课前都经过老师认真备课,每堂公开课后,全组的老师都要进行认真的评课,我们组的老师对评课向来非常认真,从不避丑,不走过场,不管你的资格有多老,你有多年轻,大家能本着对事不对人的原则,对有研究性的问题、有争议的问题都能畅所欲言,尽管有时争论的很激烈,但道理是越辩越明的,大家通过争议都很有收获,同时也对本组教师的教学有帮助。
初中动点问题的方法归纳

初中动点问题的方法归纳动点问题是指在学习过程中遇到的一些难题或难点,这些问题可能会让学生感到困惑和烦恼。
针对初中生在学习过程中遇到的动点问题,老师和家长应该采取合适的方法来帮助他们解决问题。
本文将从“分析问题原因”、“鼓励学生自主解决问题”、“提供适当的辅导”和“鼓励学生勇于尝试”四个方面详细讨论初中动点问题的解决方法。
首先,对于初中生遇到的动点问题,最重要的是要分析问题的原因。
学生遇到的问题可能是因为知识点理解不够深入,学习方法不正确,或者是缺乏兴趣和动力。
因此,老师和家长首先要耐心倾听学生的困惑,了解他们的思维和学习习惯。
通过与学生的沟通,了解问题的根源,有针对性地解决问题,才能真正帮助学生摆脱困境。
其次,老师和家长应该鼓励学生自主解决问题。
在学习过程中,学生可能会遇到各种各样的困难,如果老师和家长总是替他们解决问题,长期下来会形成依赖性,学生缺乏独立思考和解决问题的能力。
因此,老师和家长应该引导学生从不同的角度思考问题,鼓励他们去尝试解决问题,让他们学会从错误中总结经验,提高自己的学习能力。
此外,对于初中生遇到的动点问题,老师可以提供适当的辅导。
在学习过程中,老师可以通过例题分析,解题技巧讲解等方式帮助学生理解知识点和解决问题。
同时,老师还可以给学生制定学习计划,指导他们合理安排时间,提高学习效率。
通过老师的指导和辅导,学生可以更好地理解知识点,提高解决问题的能力。
最后,老师和家长应该鼓励学生勇于尝试。
在学习过程中,学生可能会因为害怕失败而不敢尝试,这样会限制了他们的学习能力和创造力。
因此,老师和家长要给予学生足够的鼓励和支持,让他们从错误中学习,不断尝试,不断进步。
通过不断地尝试和实践,学生可以积累更多的经验,不断完善自己的学习方法,从而更好地解决动点问题。
综上所述,对于初中生遇到的动点问题,我们可以通过分析问题原因、鼓励学生自主解决问题、提供适当的辅导和鼓励学生勇于尝试等方法来帮助他们解决问题。
关于动点问题的总结

关于动点问题的总结“动点型问题”是指题设图形中存有一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静关键:动中求静. 思想函数揭示了运动变化过程中量与量之间的变化规律,和动点问题反映的是一种函数思想,因为某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系, 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相对应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线HM NGPOAB图1x y段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH中,22236x PH OP OH -=-=, ∴2362121x OH MH -==.在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6).(3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意.②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y .(1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.2222233621419x x x MH PH MP +=-+=+= A EDCB 图2解:(1)在△ABC 中,∵AB=AC,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CEAB =,∴11x y=, ∴xy 1=.(2)因为∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90.当=-2αβ︒90时,函数解析式x y 1=成立.例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.A3(2)3(1)。
初二数学动点问题初二数学动点问题分析初二数学动点问题总结

所谓“ 动点型问题”是指题设图形中存在一个或多个动点, 它们在线段、射线或弧线上运动的一类开放性题目. 解决这种问题的重点是动中求静 , 灵巧运用相关数学知识解决问题.重点:动中求静.数学思想:分类思想函数思想方程思想数形联合思想转化思想着重对几何图形运动变化能力的观察。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,经过“对称、动点的运动”等研究手段和方法,来研究与发现图形性质及图形变化,在解题过程中浸透空间看法和合情推理。
选择基本的几何图形,让学生经历研究的过程,以能力立意,观察学生的自主研究能力,促使培育学生解决问题的能力.图形在动点的运动过程中察看图形的变化状况,需要理解图形在不一样地点的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”研究题的基本思路, 这也是动向几何数学识题中最中心的数学实质。
二期课改后数学卷中的数学压轴性题正逐渐转向数形联合、动向几何、着手操作、实验研究等方向发展.这些压轴题题型众多、题意创新,目的是观察学生的剖析问题、解决问题的能力,内容包含空间看法、应意图识、推理能力等.从数学思想的层面上讲:(1)运动看法;( 2)方程思想;( 3)数形联合思想;( 4)分类思想;( 5)转变思想等.研究历年来各区的压轴性试卷,就能找到今年中考数学试卷的热门的形成和命题的动向,它有益于我们教师在教学设计中研究对策,掌握方向.只的这样,才能更好的培育学生解题修养,在素质教育的背景下更明确地表现课程标准的导向.本文拟就压轴题的题型背景和划分度丈量点的存在性和划分度小题办理手法提出自己的看法.专题一:成立动点问题的函数解读式函数揭露了运动变化过程中量与量之间的变化规律 , 是初中数学的重要内容 . 动点问题反应的是一种函数思想 , 因为某一个点或某图形的有条件地运动变化 , 惹起未知量与已知量间的一种变化关系 , 这种变化关系就是动点问题中的函数关系 . 那么 , 我们如何成立这种函数解读式呢 ?下边联合中考试卷举例剖析 .一、应用勾股定理成立函数解读式。
动点存在性问题

第一讲动点存在性问题一.考情分析二.知识回顾1、题型分类在中考中,存在性问题一般分为四类:1.是否存在三角形(等腰三角形、直角三角形);2.是否存在四边形(平行四边形、直角梯形和等腰梯形);3.是否存在三角形与已知三角形相似或者全等;4.是否存在三角形与已知三角形的面积之间有数量关系。
2、方法归纳在解决动点存在性问题时,一般先假设其存在,得到方程,如果有解,则存在,反之,则不存在。
而在列方程时,一般要用到特殊三角形以及特殊平行四边形的性质、相似、解直角三角形等知识点,需要注意的是,列方程时,一定要遵循:用两种不同的方法表示同一个量,否则,将会得到“1=1”之类的恒等式。
对于是否存在三角形,一般按顶点分为三类情况。
而对于是否存在平行四边形则有两种形式的题目:如果已知三个定点,就有三种情况,一般利用平移坐标法即可求出答案;如果只有两个定点就应该按与边平行以及与对角线平行两种情况考虑了。
对于等腰梯形,就应该考虑腰长在下底边上的投影了。
对于是否存在三角形与已知三角形相似或者全等,则与是否存在三角形一样,分三类情况,当然,如果有一个角是一个定角(比如直角),则就分为两类情况。
类型一:是否存在三角形(等腰三角形、直角三角形) (A )【典型例题1】如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。
动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。
设运动的时间为t (秒)。
当t为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形(C )【典型例题2】如图2,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图3),PMN △的形状是否发生改变若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图4),是否存在点P ,使PMN △为等腰三角形若存在, 请求出所有满足要求的x 的值;若不存在,请说明理由.(B )【典型例题3】如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
七年级动点问题知识点总结

七年级动点问题知识点总结动词是学习语法的重要组成部分,而其中动点问题更是让人头疼的一块。
所谓动点问题,即是指在句子中,动词与介词或副词搭配时所产生的语法问题。
七年级语法的学习中,动点问题的出现更是不可避免。
本文将对七年级动点问题的相关知识点进行总结,并提供一些学习技巧,帮助同学们能够更好地理解和运用动点问题。
一、动点问题的概念和分类动点问题是指动词在句子中与介词或副词搭配时,产生的语法问题。
常见的动点问题有三种:1.动词后面跟介词。
例如:Think of,depend on,listen to,wait for等。
2.动词后面跟副词。
例如:look up,take off,go away,break down等。
3.动词既可以后面跟介词,也可以后面跟副词。
例如:get up,put on,turn off,come in等。
二、动点问题的学习技巧1.记忆动点搭配首先我们需要记忆常见的动点搭配,这样就可以对语法形成感性认识。
同时,同学们可以通过各种方式来帮助记忆,例如画画、卡片、模仿等等。
2.应用语境进行理解记忆搭配之后,同学们可以通过应用语境来理解各个动点的意义和用法。
需要注意的是,同一个动态可以有不同搭配,这时需要根据句子的语法特征来进行判断。
3.切记机械记忆动点问题的正确运用应该是建立在理解的基础上,而不是机械的记忆。
同学们应该理解搭配的用法,并在阅读和写作中灵活运用。
三、常见的动点搭配接下来,我们总结了一些常见的动点搭配,供同学们参考。
1.动词后跟介词Think of,depend on,listen to,talk about,put up with,believe in,take care of,get on with,look after,get ready for,apply for,wait for等。
例如:I’m thinking of going to the cinema tonight.She depends on her family for help.2.动词后跟副词look up,take off,go away,break down,come back,run out,turn around,pick up,set up,fall down,get in等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题和存在性问题小结训练
一、基础训练
1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为X=﹣.下列结论中,
正确的是()
A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b
2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:
① b2-4ac>0;② 2a+b<0;③ 4a-2b+c=0;④ a:b:c= -1:2:3.
其中正确的是( )
(A) ①② (B) ②③ (C) ③④ (D)①④
3.已知二次函数的图象过(-2,0)、(4,0)、(0,3)三点,求这个二次函数的关系式.
4.已知一个二次函数当x = 8时,函数有最大值9,且图象过点(0,1),求这个二次函数的关系式.
5.已知二次函数的图象过(3,0)、(2,-3)二点,且对称轴是x=1,求这个二次函数的关系式.
6.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
7.如图,在平面直c
bx
ax
y+
+
=2角坐标系中,抛物线c
bx
ax
y+
+
=2经过
A(-2,-4),O(0,0),B(2,0)三点.
(1)求抛物线的解析式;
(2)若点M是抛物线对称轴上一点,求AM+OM的最小值.
(3)在此抛物线上是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.
二、温故提升
1.如图,在△ABC 中,AB=8,BC=7,AC=6,有一动点P 从A 沿AB 移动到B ,移动速度为2单位/秒,有一动点Q 从C 沿CA 移动到A ,移动速度为1单位/秒,问两动点同时移动多少时间时,△PQA 与△BCA 相似。
2.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,判断△BPQ 的形状,并说明理由;
(2)设△BPQ 的面积为S (cm 2
),求S 与t 的函数关系式;
(3)作QR//BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?
3.如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于
C 点.
(1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标; (2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;
(3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,
请说明理由.
4.如图, 已知抛物线c bx x y ++=
2
2
1与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1). (1)求抛物线的解析式;
(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的
面积最大时,求点D 的坐标;
(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐
标,若不存在,说明理由.
5.如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C (1)求抛物线的函数解析式;
(2)设点D 在抛物线上,点E 在抛物线的对称轴上,且以AO 为边的四边形AODE 是平行四边形,求点D 的坐标。
6.在平面直角坐标系中,点A和点B分别在x轴的负半轴和y轴的正半轴上,且OA、
OB分别是关于x的方程x2-7x+12=0的两个根(OA<OB)
(1)求直线AB的解析式;
(2)线段AB上一点C使得S△ACO:S△BCO=1:2,请求出点C的坐标;
(3)在(2)的条件下,y轴上是否存在一点D,使得以点A、C、O、D为顶点的四
边形是梯形?若存在,请直接写出点D的坐标;若不存在,请说明理由
7.如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0
)、C(0,3)三点,对称轴与
抛物线相交于点P、与直线BC相交于点M,连接PB.
(1)求该抛物线的解析式;
(2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等?若存在,求点Q的坐标;若不存在,说明理由;
(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等?若存在,直接写出点R的坐标;若不存在,说明理由.。