二极管的理想开关模型和恒压降模型

合集下载

20大经典电路——桥式整流电路

20大经典电路——桥式整流电路

先出现一个过冲UFPUFP,经过一段时间才趋于接近稳态压降的某个值(如2V)。
正向恢复时间tfrtfr
出现电压过冲的原因:电导调制效应起作用所需的大量少子需要一定的时间来储存,在达到稳态 导通之前管压降较大;正向电流的上升会因器件自身的电感而产生较大压降。电流上升率越 大,UFPUFP越高。
理想开关模型和恒压降模型
计算
在分析整流电路工作时,认为晶闸管(开关器件)为理想器件,即晶闸管导通时其管压降等于 零,晶闸管阻断时其漏电流等于零,除非特意研究晶闸管的开通、关断过程,一般认为晶闸管 的开通与关断过程瞬时完成。
-αα:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度称为触发延迟 角,也称触发角或控制角。 -θθ:晶闸管在一个电源周期中处于通态的电角度称为导通角。 -直流输出电压平均值
u2过零变负时, 由于电感的作用晶闸管VT1和VT4中仍流过电流id,并不关断。
ωt=π+α时刻 触发VT2和VT3,VT2和VT3导通,u2通过VT2和VT3分别向VT1和VT4施加反压使 VT1和VT4关断,流过VT1和VT4的电流迅速转移到VT2和VT3上,此过程称为换 相,亦称换流。
计算
整流电压平均值为:
单相半波带阻感负载有续流二极管的电路
单相半波带阻感负载有续流二极管的波形
电路分析
··u2正半周时,与没有续流二极管时的情况是一样的。 ··当u2过零变负时,VDR导通,ud为零,此时为负的u2通过VDR向VT施加反压使其 关断,L储存的能量保证了电流id在L−R−VDR回路中流通,此过程通常称为续流。 ··若L足够大,id连续,且id波形接近一条水平线 。
ud=u2ud=u2 L的存在使idid不能突变,idid从0开始增加。

二极管模型及其电路分析

二极管模型及其电路分析

+
vD
iD
VD
(b)
(a)I-V 特性 (b)电路模型
5
Lec 03
华中科技大学电信系 张林
O
Vth
vD
(a)
+
vD
iD
Vth
rD
(b)
(a)I-V 特性 (b)电路模型
如何分析设计二极管电路?
小信号模型
R
iD
+
VDD
D
vD
-
iD/mA VDD R
ID
图解法
二极管V-I特性曲线
Q
斜率为 1 的负载线 R
O
VD
VDD vD/v
解:由电路的KVL方程,可得
iD
VDD R
vD

iD
1 R
vD
1 R
VDD
是一条斜率为-1/R的直线,称为负载线
Q (VD,ID)点称为电路的工作点
6
Lec 03
华中科技大学电信系 张林
如何分析设计二极管电路?
小信号模型 iD/mA
+ v-s
VDD
R
iD
VDD
+
R
D
vD iD ID
大写字母大写下标:静态值(直流),如,IB 小写字母大写下标:总量(直流+交流),如,iB 小写字母小写下标:瞬时值(交流),如,ib
(参见“本书常用符号表”)
3
Lec 03
华中科技大学电信系 张林
如何分析设计二极管电路?
大信号模型
理想模型
I-V 特性
iD
正向偏置时 的电路模型
+ vD

20个常见电路解析

20个常见电路解析

Di VI初级层次是熟练记住这二十个电路, 清楚这二十个电路的作用。

只要是学习 自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。

中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故 障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处 理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程; 定性了解电路输入输出阻抗的大小, 信号与阻抗的关系。

有了这些电路知识,您 极有可能成长为电子产品和工业控制设备的出色的维修维护技师。

高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号 的比值、电路中信号电流或电压与电路参数的关系、 电路中信号的幅度与频率关 系特性、相位与频率关系特性、电路中元器件参数的选择等。

达到高级层次后, 只要您愿意,受人尊敬的高薪职业一一电子产品和工业控制设备的开发设计工程 师将是您的首选职业。

电路一、桥式整流电路注意要点:1、二极管的单向导电性:二极管的PN 结加正向电压,处于导通状态;加反向电压,处于截止状态伏安特性曲线:TF1k 桥式整流ill电源濾波电存滤波 亠OUf 理想开关模型和恒压降模型: 理想模型指的是在二极管正向偏置时,其管压降为0,而当其反向偏置时,认为 它的电阻为无穷大,电流为零.就是截止。

恒压降模型是说当二极管导通以后,其管 压降为恒定值,硅管为0.7V ,锗管0.5V 。

2、 桥式整流电流流向过程: 当u2是正半周期时,二极管Vd1和Vd2导通;而夺极管Vd3和Vd4截止, 负载RL 是的电流是自上而下流过负载,负载上得到了与 u 2正半周期相同的电 压;在u 2的负半周,u 2的实际极性是下正上负,二极管 Vd3和Vd4导通而 Vd1和Vd2截止,负载RL 上的电流仍是自上而下流过负载, 负载上得到了与u 2正半周期相同的电压。

3、 计算: Vo, Io,二极管反向电压: Uo=0.9U2, lo=0.9U 2/RL,UR M=/ 2 U 2 电路二、电源滤波器 2. 电源滤波器 注意要点:1、电源滤波的过程分析:outCIOOO U F-------- Q O 电渊液波LC 濾波电源滤波是在负载RL两端并联一只较大容量的电容器。

模拟电子技术复习 Microsoft Word 文档

模拟电子技术复习 Microsoft Word 文档

(五)题型1.根据二极管的开关条件判断二极管的工作状态,求输出信号及波形。

2.根据稳压管的特点,分析稳压管电路,求输出信号及波形。

3.利用图解分析、模型分析、微变等效电路分析法分析二极管直流、交直流电路。

例1.求图所示电路的静态工作点电压和电流。

解:(1)图解分析法联立方程V=V1-IR i D =f(u D)将相应的负载线画在二极管的伏安特性曲线上,如图所示,其交点便是所求的(IQ,VQ)。

(2)模型分析法①理想二极管模型V=0,I=V1/R②恒压降模型设为硅管,V=0.7V,I=(V1-V)/R例2.试判断图中二极管是导通还是截止?并求出AO两端电压VA0。

设二极管为理想的。

解:分析方法:(1)将D1、D2从电路中断开,分别出D1、D2两端的电压;(2)根据二极管的单向导电性,二极管承受正向电压则导通,反之则截止。

若两管都承受正向电压,则正向电压大的管子优先导通,然后再按以上方法分析其它管子的工作情况。

本题中: D2优先导通,此时, D1管子截止。

VA0 = -4V。

例3.两个稳压管的稳压值VZ1=5V,VZ2=7V,它们的正向导通压降均为0.6V,电路在以下二种接法时,输出电压Vo为多少?若电路输入为正弦信号VI=20sinωt(V),画出图(a)输出电压的波形。

解:图(a)中若输入正弦信号VI=20sinωt(V):在输入信号正半周,若VI<12V ,稳压管反向截止,Vo=VI;若VI ≥12V ,稳压管反向击穿,Vo=12V。

在输入信号负半周,若VI> -1.2V,稳压管截止,Vo=VI;若VI ≤-1.2V,稳压管正向导通,Vo=-1.2V。

图(b)中:在输入信号正半周,若VI<7.6V,稳压管反向截止,Vo=VI;若VI ≥7.6V 稳压管反向击穿,Vo=7.6V。

在输入信号负半周,若VI> -5.6V,稳压管截止,Vo=VI;若VI ≤-5.6V,稳压管正向导通,Vo=-5.6V。

20种常见基本电路

20种常见基本电路

一、桥式整流电路1、二极管的单向导电性:伏安特性曲线:理想开关模型和恒压降模型:1二极管的单向导电性:二极管的PN结加正向电压,处于导通状态;加反向电压,处于截止状态。

伏安特性曲线;理想开关模型和恒压降模型:理想模型指的是在二极管正向偏置时,其管压降为0,而当其反向偏置时,认为它的电阻为无穷大,电流为零.就是截止。

恒压降模型是说当二极管导通以后,其管压降为恒定值,硅管为0.7V,锗管0.5 V2桥式整流电流流向过程:当u 2是正半周期时,二极管Vd1和Vd2导通;而夺极管Vd3和Vd4截止,负载RL 是的电流是自上而下流过负载,负载上得到了与u 2正半周期相同的电压;在u 2的负半周,u 2的实际极性是下正上负,二极管Vd3和Vd4导通而Vd1和Vd2截止,负载RL上的电流仍是自上而下流过负载,负载上得到了与u 2正半周期相同的电压。

3计算:Vo,Io,二极管反向电压Uo=0.9U2, Io=0.9U 2/RL,URM=√2 U 2二.电源滤波器1、电源滤波的过程分析:波形形成过程:1电源滤波的过程分析:电源滤波是在负载RL两端并联一只较大容量的电容器。

由于电容两端电压不能突变,因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。

波形形成过程:输出端接负载RL时,当电源供电时,向负载提供电流的同时也向电容C充电,充电时间常数为τ充=(Ri∥RLC)≈RiC,一般Ri〈〈RL,忽略Ri 压降的影响,电容上电压将随u 2迅速上升,当ωt=ωt1时,有u 2=u 0,此后u 2低于u 0,所有二极管截止,这时电容C通过RL放电,放电时间常数为RLC,放电时间慢,u 0变化平缓。

当ωt=ωt2时,u 2=u 0, ωt2后u 2又变化到比u 0大,又开始充电过程,u 0迅速上升。

ωt=ωt3时有u 2=u 0,ωt3后,电容通过RL放电。

如此反复,周期性充放电。

由于电容C的储能作用,RL上的电压波动大大减小了。

二极管等效模型

二极管等效模型

二极管等效模型
等效电路:选择合适的元件,等效的反映设备或系统在特定工作区域
的实际端口特性
建模——线性化——应用线性电路分析方法分析电路
具有局部线性
的特征
建模
(1)理想模型(Ideal Equivalent circuit )
反偏时,电阻为无穷大,电流为0
理想二极管的伏安特性
-i u D
u D
i 理想二极管的等效电路
K
正偏时,管压降为0,电阻为0
(2)恒压降模型(simplified equivalent circuit )
外加正向电压大于U D (on )时,二极管导通,电阻为0
外加电压小于U D (on )时,电流为0,二极管截止
-i
u D
u 二二二二二二二二D
i U
恒压降模型特性曲线等效电路
K U D
-+
考虑二极管的导通电压,又考虑二极管的动态电阻。

(3)折线模型(piecewise-linear equivalent circuit)+
-
D
i D
u D
u D
i D
r on
V on
V ; [exp()1];
[ex (126()p )1])
(()
T D D
D D S D T D
S D d D T D
d D D D T D u u r i i U u d di U i g d U mV r g I d m u I U A u ∆==I -∆I -===≈
≈=常温下。

二极管理想模型、恒压降模型电路参数分析图文说明

二极管理想模型、恒压降模型电路参数分析图文说明

二极管理想模型、恒压降模型电路参数分析图文说明①二极管理想模型当二极管的正向压降远小于外接电路的等效电压,其相比可忽略时,可用图 1.17(a)中与坐标轴重合曲线近视代替二极管的伏安特性,这样的二极管称为理想二极管。

它在电路中相当于一个理想开关,只要二极管外加电压稍大于零,它就导通,其压降为零,相当于开关闭合;当反偏时,二极管戒指,其电阻为无穷大,相当于开关断开。

①二极管的恒压降模型当二极管的正向压降与外加电压相比不能忽略,可采图 1.10(b)所示的伏安特性曲线和模型来近似代替实际二极管,该模型由理想二极管与接近实际工作电压的电压源UF串联构成,UF不随电流二变。

对于硅管的UF通常取0.7V,锗二极管为0.2V。

不过,这只有当流经二极管的电流近似等于或大于1mA时才是正确的。

U FU d/mA U d/mA(b)恒压降模型特性曲线(a)理想模型特性曲线图1.10 二极管电路模型例:二极管电路如图1.11所示,试分别用二极管的理想、恒压模型计算回路中的电流I D和输出电压U D。

设计二极管为硅管。

图1.11 二极管电路解:首先判断二极管是出于导通状态还是截止状态,可以通过计算(或观察)二极管未导通时的阳极和阴极间的点位差,若该电位差大于二极管所需的导通电压,则说明该二极管出于正向偏置而导通;如果该电位小于导通电压,则该二极管出于反向偏置而截止。

由图1.18可知,二极管D1未导通时阳极电位为-12V ,阴极电位为-16V ,则阳、阴两级的电位差:V U V V U U U F b a ab 7.04)16(12=>=---=-=故在理想模型中和恒压降模型中,二极管D1均为导通。

用理想模型计算:由于二极管D1导通,其管压降为零,所以:VV U mA R V V R U I O R D 12220001612112111-=-==+-=+-==用恒压降模型计算:由于二极管D 导通,UF=0.7V ,所以:VV K mA V R I U mA R U V V R U I D O F R D 7.1216265.165.120007.016121112111-=-Ω⨯=-==-+-=-+-==(6)二极管的主要参数为了正确选用及判断二极管的好坏,必须对其主要参数有所了解。

20个基本电路图讲解

20个基本电路图讲解

20个基本电路图讲解一、桥式整流电路注意要点:1、二极管的单向导电性,伏安特性曲线,理想开关模型和恒压降;2、桥式整流电流流向过程,输入输出波形;3、计算:Vo,Io,二极管反向电压。

二、电源滤波器注意要点:1、电源滤波的过程,波形形成过程;2、计算:滤波电容的容量和耐压值选择。

三、信号滤波器注意要点:1、信号滤波器的作用,与电源滤波器的区别和相同点;2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线;3、画出通频带曲线,计算谐振频率。

四、微分和积分电路注意要点:1、电路的作用,与滤波器的区别和相同点;2、微分和积分电路电压变化过程分析,画出电压变化波形图;3、计算:时间常数,电压变化方程,电阻和电容参数的选择。

1电路的作用:积分电路:五、共射极放大电路注意要点:1、三极管的结构、三极管各极电流关系、特性曲线、放大条件;2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;3、静态工作点的计算、电压放大倍数的计算。

六、分压偏置式共射极放大电路分压偏置式共射极放大电路注意要点:1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;2、电流串联负反馈过程的分析,负反馈对电路参数的影响;3、静态工作点的计算、电压放大倍数的计算;4、受控源等效电路分析。

七、共集电极放大电路(射极跟随器)共集电极放大电路注意要点:1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。

电路的输入和输出阻抗特点;2、电流串联负反馈过程的分析,负反馈对电路参数的影响;3、静态工作点的计算、电压放大倍数的计算。

八、电路反馈框图电路反馈图注意要点:1、反馈的概念,正负反馈及其判断方法、并联反馈和串联反馈及其判断方法、电流反馈和电压反馈及其判断方法;2、带负反馈电路的放大增益;3、负反馈对电路的放大增益、通频带、增益的稳定性、失真、输入和输出电阻的影响;九、二极管稳压电路二极管稳压电路注意要点:1、稳压二极管的特性曲线;2、稳压二极管应用注意事项;3、稳压的过程分析。

模拟电子技术及应用-习题解答

模拟电子技术及应用-习题解答

模拟电子技术及应用-习题解答-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII习题解答第1章1.1简述半导体的导电特性。

答:半导体的导电能力介于导体和绝缘体之间。

半导体一般呈晶体结构,其原子核对价电子的束缚较弱,当半导体受到外界光和热的刺激时,它便释放价电子,从而使导电能力发生变化。

例如纯净的锗从20℃升高到30℃时,它的电阻率几乎减小为原来的1/2。

又如一种硫化镉薄膜,在暗处其电阻为几十兆欧姆,受光照后,电阻可以下降到几十千欧姆,只有原来的百分之一。

利用这些敏感性可制成各种光敏元件和热敏元件。

若在纯净的半导体中加入微量的杂质,则半导体的导电能力会有更显著的增加,例如在半导体硅中,只要掺入亿分之一的硼,电阻率就会下降到原来的几万分之一,这是半导体最显著的导电特征。

利用这个特性,可制造出各种半导体器件。

1.2 简述PN结是如何形成的。

答:当P型和N型半导体结合在一起时,由于交界面两侧多数载流子浓度的差别,N区的多数载流子电子向P区扩散,P区的多数载流子空穴也要向N区扩散,于是电子与空穴复合,在交界面附近P区一侧因复合失去空穴而形成负离子区,N区一侧也因复合失去电子而形成正离子区。

这些不能移动的带电离子形成了空间电荷区,称为PN结。

PN结内存在一个由N区指向P区的内电场。

内电场的形成将阻止多数载流子的继续扩散,另一方面又会促进少数载流子的漂移,即N区的少数载流子空穴向P区移动,P区的少数载流子电子向N区移动。

因此,在交界面两侧存在两种对立的运动,漂移运动欲使PN结变窄,扩散运动运动欲使PN结变宽。

当扩散运动产生的扩散电流和漂移运动产生的漂移电流大小相等,两种运动达到动态平衡时,PN结宽度不再变化,即PN结维持一定的宽度。

由于内电场的存在,使载流子几乎不能在PN结内部停留,所以,PN结也称为耗尽层。

1.3 二极管的特性曲线有哪几个区域二极管的单向导电能力是指特性曲线上的哪个区域的性质二极管的稳压能力又是指特性曲线上的哪个区域性质答:二极管的特性曲线有正向特性、方向特性和反向击穿特性三个区域。

二十个经典电路

二十个经典电路

一、桥式整流电路1、二极管的单向导电性:伏安特性曲线:理想开关模型和恒压降模型:2、桥式整流电流流向过程:输入输出波形:3、计算:Vo, Io,二极管反向电压。

二、电源滤波器1、电源滤波的过程分析:波形形成过程:2、计算:滤波电容的容量和耐压值选择。

三、信号滤波器1、信号滤波器的作用:与电源滤波器的区别和相同点:2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。

3、画出通频带曲线。

计算谐振频率。

四、微分和积分电路1、电路的作用,与滤波器的区别和相同点。

2、微分和积分电路电压变化过程分析,画出电压变化波形图。

3、计算:时间常数,电压变化方程,电阻和电容参数的选择。

五、共射极放大电路1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。

2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。

3、静态工作点的计算、电压放大倍数的计算。

六、分压偏置式共射极放大电路1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。

2、电流串联负反馈过程的分析,负反馈对电路参数的影响。

3、静态工作点的计算、电压放大倍数的计算。

七、共集电极放大电路(射极跟随器)1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。

电路的输入和输出阻抗特点。

2、电流串联负反馈过程的分析,负反馈对电路参数的影响。

3、静态工作点的计算、电压放大倍数的计算。

八、电路反馈框图1、反馈的概念,正负反馈及其判断方法、并联反馈和串联反馈及其判断方法、电流反馈和电压反馈及其判断方法。

2、带负反馈电路的放大增益。

九、二极管稳压电路1、稳压二极管的特性曲线。

2、稳压二极管应用注意事项。

3、稳压过程分析。

十、串联稳压电源1、串联稳压电源的组成框图。

2、每个元器件的作用;稳压过程分析。

3、输出电压计算。

十一、差分放大电路1、电路各元器件的作用,电路的用途、电路的特点。

工程师应该掌握的20个模拟电路

工程师应该掌握的20个模拟电路

工程师应该掌握的20个模拟电路
对模拟电路的掌握分为三个层次。

 初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。

只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。

 中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什幺影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。

有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。


 高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。

达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。

 扩展阅读:什幺是TTL电平、CMOS电平?区别?
 一、桥式整流电路。

模拟电子技术 例题

模拟电子技术 例题
1
当vi>2.5V 时,D1 导通,假设此时D2 尚未导通,则 Vo=(2/3).(Vi-2.5)+2.5V; 令vo=10V,则vi=13.75V,可见当vi>13.25V 时,D1、D2 均导通,此时 Vo=10V。传输特性曲线略。
例 3.试判断图中二极管是导通还是截止?并求出 AO 两端电压VA0。设二极管 为理想的。
8
解:(1)Vc2=Vcc/2=6V,调 R1 或 R3 可以满足。 (2)交越失真,可以增大 R2。 (3)由于 T1,T2 的静态功耗 PT1=PT2=βIBVCE=β(Vcc-2|V
BE|)/(R1+R3)-Vcc/2=1156mV>>PCM, 所以会烧坏功放管。 例 3.图为某收音机的输出电路 (1)说明电路的名称; (2)简述 C2、C3、R4、R5 的作用; (3)已知电路的最大输出功率 Pmax=6.25w, 计算对称功率管 T2、T3 的饱和压 降|Vces|。
例 4.两个稳压管的稳压值VZ1=5V,VZ2=7V,它们的正向导通压降均为 0.6V, 电路在以下二种接法时,输出电压Vo 为多少?若电路输入为正弦信号V I=20sinωt(V),画出图(a)输出电压的波形。
2
解:图(a)中 D1、D2 都承受反向偏压,所以输出电压Vo=VZ1+VZ2=5V+7V=12V 若输入正弦信号VI=20sinωt(V):
答:(1)OTL 功率放大电路。
9
(2)C2、C3组成的自举电路,可增大输出幅度。C3使加到 T2、T3 管 的交流信号相等,有助于使输出波形正负对称。R4为 T2、T3提供偏置电压, 克服交越失真。R5 通过直流负反馈的方式为 T1提供偏置且稳定静态工作点。 调节 R5可使 K 点电位达到0.5Vcc。 (3)|Vቤተ መጻሕፍቲ ባይዱES|=2V

种常见基本电路

种常见基本电路

一、桥式整流电路1、二极管的单向导电性:伏安特性曲线:理想开关模型和恒压降模型:1二极管的单向导电性:二极管的PN结加正向电压,处于导通状态;加反向电压,处于截止状态。

伏安特性曲线;理想开关模型和恒压降模型:理想模型指的是在二极管正向偏置时,其管压降为0,而当其反向偏置时,认为它的电阻为无穷大,电流为零.就是截止。

恒压降模型是说当二极管导通以后,其管压降为恒定值,硅管为0.7V,锗管0.5 V2桥式整流电流流向过程:当u 2是正半周期时,二极管Vd1和Vd2导通;而夺极管Vd3和Vd4截止,负载RL 是的电流是自上而下流过负载,负载上得到了与u 2正半周期相同的电压;在u 2的负半周,u 2的实际极性是下正上负,二极管Vd3和Vd4导通而Vd1和Vd2截止,负载RL上的电流仍是自上而下流过负载,负载上得到了与u 2正半周期相同的电压。

3计算:Vo,Io,二极管反向电压Uo=0.9U2, Io=0.9U 2/RL,URM=√2 U 2二.电源滤波器1、电源滤波的过程分析:波形形成过程:1电源滤波的过程分析:电源滤波是在负载RL两端并联一只较大容量的电容器。

由于电容两端电压不能突变,因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。

波形形成过程:输出端接负载RL时,当电源供电时,向负载提供电流的同时也向电容C充电,充电时间常数为τ充=(Ri∥RLC)≈RiC,一般Ri〈〈RL,忽略Ri 压降的影响,电容上电压将随u 2迅速上升,当ωt=ωt1时,有u 2=u 0,此后u 2低于u 0,所有二极管截止,这时电容C通过RL放电,放电时间常数为RLC,放电时间慢,u 0变化平缓。

当ωt=ωt2时,u 2=u 0, ωt2后u 2又变化到比u 0大,又开始充电过程,u 0迅速上升。

ωt=ωt3时有u 2=u 0,ωt3后,电容通过RL放电。

如此反复,周期性充放电。

由于电容C的储能作用,RL上的电压波动大大减小了。

二极管使用直流恒压降模型

二极管使用直流恒压降模型

二极管使用直流恒压降模型是一种常用的电子元件,它可以用来控制电路中的电压和电流。

它的主要功能是将一个直流电压降至更低的电压,从而实现控制电路的电压和电流。

一般来说,二极管使用直流恒压降模型的原理是:当一个外部电源将一个直流电压输入到二极管的正极时,由于二极管的特性,正极和负极之间就会形成一个电压差,这个电压差会被称为恒压降。

二极管使用直流恒压降模型的优点是:它可以将一个高电压转换为一个更低的电压,这样可以保证电路中的电压和电流稳定,也可以将一个高电压转换为一个直流电压,从而实现降压的功能。

另外,二极管使用直流恒压降模型的缺点也是显而易见的:它只能提供有限的电压降压,而且电流大小有限,这意味着它不能提供很大的功率。

总之,二极管使用直流恒压降模型是一种非常有用的电子元件,它可以用来控制电路中的电压和电流,同时也可以实现降压的功能。

但是,它也有一些明显的缺点,因此在使用它时,应该根据自己的需求,谨慎斟酌。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二极管的理想开关模型和恒压降模型
分类:模拟电路2013-05-30 11:59 2520人阅读评论(0) 收藏举报
模拟电路二极管模型
二极管的模型
1.理想模型
所谓理想模型,是指在正向偏置时,其管压降为零,相当于开关的闭合。

当反向偏置时,其电流为零,阻抗为无穷,相当于开关的断开。

具有这种理想特性的二极管也叫做理想二极管。

在实际电路中,当电源电压远大于二极管的管压降时,利用此模型分析是可行的。

2.恒压降模型
所谓恒压降模型,是指二极管在正向导通时,其管压降为恒定值,且不随电流而变化。

硅管的管压降为0.7V,锗管的管压降为0.3V。

只有当二极管的电流Id大于等于1mA时才是正确的。

在实际电路中,此模型的应用非常广泛。

稳压二极管:
稳压二极管在工作时应反接,并串入一只电阻。

电阻的作用一是起限流作用,以保护稳压管;其次是当输入电压或负载电流变化时,通过该电阻上电压降的变化,取出误差信号以调节稳压管的工作电流,从而起到稳压作用。

最简单的稳压电路由稳压二极管组成如图所示。

从稳压二极管的特性可知,若能使稳压管始终工作在它的稳压区内,则VO.基本稳定在Vz左右。

当电网电压升高时,若要保持输出电压不变,则电阻器R上的压降应增大,即流过R 的电流增大。

这增大的电流由稳压二极管容纳,它的工作点将由b点移到C点,由特性曲线可知此时Vo≈Vz基本保持不变。

若稳压二级管稳压电路负载电阻变小时,要保持输出电压不变,负载电流要变大。

由于VI保持不变,则流过电阻R的电流不变。

此时负载需要增大的电流由稳压管调节出来,它的工作点将由b点移到a点。

所以,稳压管可认为是利用调节流过自身的电流大小(端电压基本不变)来满足负载电流的改变,并和限流电阻R配合将电流的变化转化为电压的变化以适应电网电压的变化。

稳压二极管电路稳压存在问题:电网电压不变时,负载电流的变化范围就是IZ的调节范围(几十mA),这就限制了负载电流I0的变化范围。

怎样才能扩大IO的变化范围。

相关文档
最新文档