电化学分析法
化学实验中的常见电化学分析方法
化学实验中的常见电化学分析方法电化学分析是一种常见的化学分析方法,通过应用电化学原理,利用电流、电势、电解质溶液等参数来进行物质的检测和分析。
它能够快速、灵敏地检测出微量物质,并且具有较高的准确性和重现性。
本文将介绍几种在实验室中常见的电化学分析方法。
一、电解电位法电解电位法是最常见的电化学分析方法之一,它通过测量电极在电解质溶液中产生的电位变化来分析物质。
在实验中,通常采用参比电极和工作电极的组合,参比电极用于提供一个标准的电势参考,而工作电极用于与待测物质发生反应。
主要包括极谱法、库仑分析法和电势滴定法等。
1. 极谱法极谱法是通过控制电解质溶液中的电流,测量电极的电势变化来分析物质。
常见的极谱法包括阳极极谱和阴极极谱。
阳极极谱常用于有机化合物的分析,如药物、农药等,而阴极极谱常用于金属、合金等无机物质的分析。
2. 库仑分析法库仑分析法是通过测量电解质溶液中的电流大小和时间,计算出反应物质的含量。
它常用于分析氧化还原反应、电沉积和电解等过程中的物质。
3. 电势滴定法电势滴定法是利用电解电位的变化来进行滴定分析的方法。
它常用于测定银离子、溶氧量、氟离子等物质的含量。
二、电化学传感器法电化学传感器法是基于电化学原理的一种常见的快速检测方法,它通过改变电极电位来检测待测物质。
电化学传感器的结构一般由工作电极、参比电极和引用电极(或对电极)组成。
1. 离子选择电极离子选择电极通过选择性地与某种特定离子发生反应,从而改变电极电位来检测离子的浓度。
常见的离子选择电极包括氢离子选择电极、钠离子选择电极等。
2. 气体传感器气体传感器是使用气敏电极或半导体电极来检测气体成分的一种电化学分析方法。
它广泛应用于环境监测、工业安全等领域,能够快速、灵敏地检测气体的浓度。
三、电化学阻抗法电化学阻抗法是通过测量电化学电路中的阻抗变化来分析物质。
它主要用于表征电极界面的电化学过程,包括界面电容、界面电导、界面电阻等参数。
电化学阻抗法常用于金属腐蚀、电池性能评价、涂层质量检测等领域。
电化学分析法
电化学分析法电化学分析法(electrochemical analysis),是建立在物质在溶液中的电化学性质基础上的一类仪器分析方法,是由德国化学家C.温克勒尔在19世纪首先引入分析领域的,仪器分析法始于1922年捷克化学家J.海洛夫斯基建立极谱法。
电化学分析(electrochemical analysis),是仪器分析的重要组成部分之一。
它是根据溶液中物质的电化学性质及其变化规律,建立在以电位、电导、电流和电量等电学量与被测物质某些量之间的计量关系的基础之上,对组分进行定性和定量的仪器分析方法。
1.发展历史电分析化学的发展具有悠久的历史,是与尖端科学技术和学科的发展紧密相关的。
近代电分析化学,不仅进行组成的形态和成分含量的分析,而且对电极过程理论,生命科学、能源科学、信息科学和环境科学的发展具有重要的作用。
作为一种分析方法,早在18世纪,就出现了电解分析和库仑滴定法。
19世纪,出现了电导滴定法,玻璃电极测pH值和高频滴定法。
1922年,极谱法问世,标志着电分析方法的发展进入了新的阶段。
二十世纪六十年代,离子选择电极及酶固定化制作酶电极相继问世。
二十世纪70年代,发展了不仅限于酶体系的各种生物传感器之后,微电极伏安法的产生扩展了电分析化学研究的时空范围,适应了生物分析及生命科学发展的需要。
纵观当今世界电分析化学的发展,美国电分析化学力量最强,研究内容集中于科技发展前沿,涉及与生命科学直接相关的生物电化学;与能源、信息、材料等环境相关的电化学传感器和检测、研究电化学过程的光谱电化学等。
捷克和前苏联在液-液界面电化学研究有很好的基础。
日本东京,京都大学在生物电化学分析,表面修饰与表征、电化学传感器及电分析新技术方法等方面很有特色。
英国一些大学则重点开展光谱电化学、电化学热力学和动力学及化学修饰电极的研究。
2. 基本原理电化学分析法的基础是在电化学池中所发生的电化学反应。
电化学池由电解质溶液和浸入其中的两个电极组成,两电极用外电路接通。
第一节 电化学分析法
21
响应机理
纯SiO2石英玻璃没有可供离子交换 的电荷点
当加入碱金属的氧化物后,使部分 Si-O键断裂,生成带负电荷的Si- O骨架,在骨架的网络中是活动能 力强的M+离子。
H+ + Na+Gl- ↔ H+Gl- + Na+
在玻璃膜表面形成一层水化凝胶层。 使用前需活化
充分浸泡,24小时以上
42
电位终点的确定
绘制E-V曲线 用加入滴定剂的
体积(V)作横坐标, 电动势读数(E)作 纵坐标,绘制E-V曲 线,曲线上的转折 点即为化学剂量点。 简单、准确性稍差。
43
绘(△E/ △V)-V曲线 法
△E/ △V为E的 变化值与相对应的 加入滴定剂的体积 的增量的比。
曲线上存在着极 值点,该点对应着 E-V 曲线中的拐点。
45
2、氧化还原滴定 指示电极: 一般为铂电极
参比电极:甘汞电极
3、沉淀滴定
指示电极:根据不同的沉淀反应来采
用不同的指示电极.如:硝酸盐标准溶液滴定 卤素 可用银
电极做指示电极 。
参比电极:双盐桥甘汞电极
4、络合电极
指示电极:铂电极
参比电极:甘汞电极
46
2.3电位法测量仪器
原理:将参比电极、指示电极和测量仪器构成回路来测量组成的 原电池的电动势而实现的。
电位分析法根据测量方 式可分为:直接电位法、 电位滴定法。
9
电极电位
金属片插入溶液中时,金属表面晶格上的离子,受到 极性水分子的吸引,有脱离金属表面进入溶液形成水 合离子的趋势,金属表面由于电子过剩而带负电而溶 液相带正电。溶液中的金属离子亦有由溶液相进入金 属相而使电极表面带正电的趋势。
金属离子总是从电化学势较高的相转入电化学势较低
第八章电化学分析法
二、电化学分析法的特点
(1)灵敏度、准确度高,选择性好 被测物质的最低量可以达到10-12mol/L数量级。 (2)电化学仪器装置较为简单,操作方便 直接得到电信号,易传递,尤其适合于化工生产中的自动控 制和在线分析。 (3)应用广泛 传统电化学:无机离子分析H+、F-、Cl-、K+; 有机电化学分析:蛋白质、氨基酸 药物分析:磺胺类药物含量分析 活体分析:肌苷含量、酶活性分析
1、直接电位法:电极电位与溶液中电活性物质活度有关,通 过测量溶液的电动势,根据能斯特方程计算被测物质的含量 如饮用水中氟离子含量测定 研制各种高灵敏度、高选择性的电极是电位分析法最活跃的 研究领域之一。目前应用最多、选择性最好的是膜电极
2、理论基础:能斯特方程(电极电位与溶液中待测离子间 的定量关系式)。
对于氧化还原体系: Ox + ne- = Red
O Ox/RedR nFTlnaaROedx
对于金属电极(还原态为金属,活度定为1):
M On/MR nF TlnaMn
二、离子选择性电极种类、结构与原理 1、种类
离子选择性电极(又称膜电极)。
1976年IUPAC基于膜的特征,推荐将其分为以下几类: 重点使用 原电极(primary electrodes)
电池工作时,电流必须在电池内部和外 部流过,才能构成回路。
溶液中的电流:正、负离子的移动。
1、原电池
负极:发生氧 化反应的电极。
正极:发生还 原反应的电极。
电极电位较高 的为正极
电极电位较低 的为负极
电池总反应是 两个电极反应 的加合
2、电解电池
阳极:与直流 电源正极相连 的一段,发生 氧化反应。
电化学分析的学习参考资料
电化学分析法
电化学分析法
电化学分析法是一种用电子换算来获取分析物质的含量的一种常用实验分析方法,有时也被称为“电感耦合等离子体发射光谱法”,是一种微量分析技术。
它被广泛运用在化学、制药、食品、石油、环境分析、材料测试等领域。
电化学分析的特点是用电解液进行表征而不需要耗费大量的时间,可以检测出微量元素。
它有三大特点:一是测量灵敏度高,二是分析速度快,三是准确可靠。
电化学分析法可以检测一种元素能否转变成另一种元素,也可以分析化合物中的成分。
它的原理是,利用电解电池,通过产生的电流的多寡来检测物质的含量,从而推断物质的部分成分和构造。
电化学分析法的实验方法主要有两种:一种是反应比色分析法,另一种是电化学计数法。
反应比色分析法是一种快速、简便的实验方法,可以在短时间内得到比较可靠的结果。
而电化学计数法则是一种更有效率的实验方法,可以对物质的含量进行精确测定。
电化学分析法有一些限制,主要是需要具备较为复杂的实验设备,需要操作人员具备一定的技术水平。
另外,这种方法依赖于电池电流的大小,多数现代设备可以获得比较准确的结果,但仍有一定误差值的存在。
电化学分析法的应用主要表现在它可以用来检测微量的金属离子,用来检测有机化合物中的有毒成分,也可以用来分析电子器件的成分元素,以及定量和定性分析等。
总之,电化学分析法是一种快速、灵敏度高、准确可靠的分析技术,从海量数据中获得有效信息,为实验者提供了一种全面、有效的检测方法。
通过此方法对物质的组成成分进行定性和定量分析,使用者可以深入了解物质的结构和变化,为科学的深入发展提供有力的依据。
第7章 电化学分析法
7.2 直接电位法
是一种直接电位分析,用玻璃电极做指示电极, 饱和甘汞电极为参比电极组成工作电池。 玻璃电极——H+专属性离子选择电极 1.pH的测定原理
pH的测定原理 pH计的使用
以一pH值已确定的标准溶液为基准,通过比 较被测水样和标准缓冲溶液两个电池的电极 电位来计算水样的pH,其中(25℃):
lg( x1 1cx
)
式中:χ 1为游离态待测离子占总浓度的分数;γ 1是活度系
数;cx 是待测离子的总浓度。
往试液中准确加入一小体积Vs(约为V0的
1/100)的用待测离子的纯物质配制的标准溶液,
浓度为cs(约为cx的100倍)。由于V0>Vs,可认
为溶液体积基本不变。
浓度增量为:⊿c = cs Vs / V0
③溶液特性:溶液特性主要是指溶液离子强度、pH及共存组 分等。溶液的总离子强度应保持恒定。 ④电位测量误差:当电位读数误差为1mV时,
一价离子,相对误差为3.9% 二价离子,相对误差为7.8% 故电位分析多用于测定低价离子。相对误差较小。
7.3 电位滴定法
向水样中滴加能与被测物质进行化学反应的滴 定剂,利用化学计量点时电极电位的突跃来确定滴定 终点;根据滴定剂的浓度和用量,求出水样中被测 物质的含量和浓度。
1.滴定曲线
每滴加一次滴定剂,平衡后测量电 位, 将相应的电极电位数值()和滴定
剂用量(V ) 作图得到 ~ V 滴定曲线。
达到化学计量点时,电极电位有一突跃, 即可确定终点。
2.电位滴定终点确定方法
通常采用三种方法来确定电位滴定终点。
(1) -V 曲线法:如图(a)所示。
滴定曲线对称且电位突跃部分陡直。绘制 —V曲线方法简单,但准确性稍差。
仪器分析第2章电化学分析法
原电池
阳极:发生 氧化反应的 电极(负极) 阴极:发生 还原反应的 电极(正极)
阳极≠正极 阴极≠负极 电极电位较 正的为正极
2021/5/6
电解电池
阳极:发生氧 化反应的电极 (正极); 阴极:发生还 原反应的电极 (负极); 阳极=正极 阴极=负极
2021/5/6
电池的表达式
2021/5/6
电位分析的理论基础
理论基础:能斯特方程(电极电位与溶液中待测离子间 的定量关系)。
对于氧化还原体系: Ox + ne- = Red
EEO Ox/RedR nF TlnaaR Odex
对于金属电极(还原态为金属,活度定为1):
EEM On/MR nF TlnaMn
2021/5/6
M n O 4 8 H 5 e M n 2 4 H 2 O
Zn |Zn2+(0.1mol/L ) | Cu2+(1mol/L) | Cu
用盐桥后 Zn |Zn2+(0.1mol/L ) || Cu2+(1mol/L) | Cu
|表示由电势差产生。用于两相界面不相混的两种溶液 之间。
左边:氧化反应,负极
右边:还原反应,正极
||用盐桥连接,消除液接电位。 溶液位于两电极之间。
E外 = k2 + 0.059 lg(a1 / a1’ )
a1 、 a2 分别表示外部试液和电极内参比溶液的H+活度;
a’1 、 a’2 分别表示玻璃膜外、内水合硅胶层表面的H+活度;
k1 、 k2 则是由玻璃膜外、内表面性质决定的常数。
玻璃膜内、外表面的性质基本相同,则k1=k2 , a’1 = a’2
KSP,CaC2O4 [Ca2 ][C2O42]
什么是电化学分析法
什么是电化学分析法
电化学分析法是应用电化学原理和技术,利用化学电池内被分析溶液的组成及含量与其电化学性质的关系而建立起来的一类分析方法。
其操作方便,应用广泛,既可定性,又可定量;既能分析有机物,又能分析无机物,并且许多方法便于自动化,可用于生产、生活等各个领域。
电化学分析法通常将试液作为化学电池的一个组成部分,根据该电池的某种电参数(如电阻、电导、电位、电流、电量或电流-电压曲线等)与被测物质的浓度之间存在一定的关系而进行测定的方法。
其中,电位分析法是基于溶液中某种离子活度和其指示电极组成的原电池的电极电位之间关系的分析方法。
直接电位法是通过测量溶液中某种离子与其指示电极组成的原电池的电极电动势直接求算离子活度的方法。
电位滴定法是通过测量滴定过程中原电池电动势的变化来确定滴定终点的滴定分析方法。
电解分析法则是根据基于溶液中某种离子和其指示电极组成的电解池的电解原理建立的分析方法。
电化学分析法的优点包括灵敏度高、选择性好、设备简单等。
许多电化学分析法既可定性,又可定量,既能分析有机物,又能分析无机物,并且许多方法便于自动化,可用于生产、生活等各个领域。
以上信息仅供参考,如有需要,建议查阅相关书籍或咨询专业人士。
仪器分析-电化学分析法
银-氯化银电极:
银丝镀上一层AgCl沉淀,浸在一定浓度 的KCl溶液中即构成了银-氯化银电极。 电极反应:AgCl + e- = Ag + Cl半电池符号:Ag,AgCl(固)︱KCl 电极电位(25℃):
O EAgCl/Ag EAgCl/Ag 0.059lg aCl
表 银-氯化银电极的电极电位(25℃)
流动载体电极(electrodes with a mobile carrier)
敏化电极(sensitized electrodes) 气敏电极(gas sensing electrodes)
酶电极(enzyme electrodes)
4 离子选择性电极的结构与原理
组成:敏感膜,内参比电极、内参比溶液 (敏感膜:单晶、混晶、液膜、功能膜及生物膜等) 特点:仅对溶液中特定离子有选择性响应。 测定依据: 膜电位:膜内外被测离子活度的不同而产生电位差 使用方法及原理 将膜电极和参比电极一起插到被测溶液中,组成电池:
3 离子选择性电极的种类
Type , principle and structure of ion selective electrode (ISE) 离子选择性电极(又称膜电极)。
1976年IUPAC基于膜的特征,推荐将其分为以下几类: 原电极(primary electrodes) 晶体膜电极(crystalline membrane electrodes) 均相膜电极(homogeneous membrane electrodes) 非均相膜电极(heterogeneous membrane electrodes) 非晶体膜电极(crystalline membrane electrodes) 刚性基质电极(rigid matrix electrodes)
电化学分析法
2、电解条件的特殊性 离子到达电极表面除扩散外,还有迁移和对流,后 两者应该除去。
(1)消除迁移电流——加支持电解质, 使池内阻变小,电压降低。
(2)消除对流电流——不搅拌消除。
(3)消除氧波和极谱极大——
极谱分析还需加入除氧剂和表面活性剂,以 除氧和消除极谱极大。 O2 + 2 H+ + 2e H2O2 + 2e +2H+ i 极谱极大 H2O2 2H2O E = - 0.05V E = - 0.9V
电化学分析的关键是电极:
Pt电极系统——电解分析和库仑分析 离子选择性电极——电位分析和电位型传感器 滴汞、铂碳或微铂电极——极谱与伏安分析、电流 型传感器
3、电化学分析的特点:
1、仪器简单,价格较光学分析仪器便宜;
2、灵敏度高,如极谱分析可达10-12 M;
由于电导分析比较简单,教材没有讲。
电导分析的一个重要用途是测量水的纯度。如果水的纯 度达到18M,则认为是高纯水。
Cd2+ + 2e +Hg
分三个阶段
Cd(Hg)
(1)电位尚未负到Cd 的还原电位;
(2)Cd开始还原,扩 散电流产生; (3)极限扩散电流产 生。
i
极限扩散电流 id 电流上升阶段 i
残余电流 ir
-0.2
-0.5
-1
E(V)
C
C C0 X C0—电极表面浓度 C—本体溶液浓度
X
C [Cd ] [Cd ] i X
— +
纳米传感
Semi-conducting Nanotube Molecular Wires as Chemical Sensors for NH3 and NOx. Hydrogen Sensors / Palladium Mesowire Arrays
第一节 电化学分析法概述
3)当两种电解质之间通过盐桥连接起来,消除了液接电
位,则用两条竖线“||”表示,如阴极电解质和盐桥之
间,以及盐桥与阳极电解质之间的界面。
19
4)气体的电极反应要用惰性材料(如铂、金等)作电极,以 传导电流;
5)电池中的溶液应注明浓度(活度);如有气体应注明压力、 温度等,如:
Zn | Zn2+(0.1mol/L)|| H+(1 mol/L)| H2(101 325Pa),Pt
13
原电池(galvanic cell):能自发地将化学能
转化为电能(见图);
阳极:发生氧化反应的电极(负极); 阴极:发生还原反应的电极(正极); 阳极≠正极 阴极≠负极 电极电位较正的为正极
14
电解池(electrolytic cell):
需要消耗外部电源提供的电能,使电池内部发生 化学反应(见图)。
6
• 1889年W.Nernst提出能斯特方程. • 1922年,J.Heyrovsky,创立极谱学. • 1925年,志方益三制作了第一台极谱仪. • 1934年D.Ilkovic提出扩散电流方程.
7Leabharlann • 2.电分析方法体系的发展与完善 • 电分析成为独立方法分支的标志是上述三
大定量关系的建立. • 50 年代,极谱法灵敏度,和电位法pH测
5
1.3 电化学分析的发展历史与展望
• 一、电化学分析的发展历史
• 发展历史可概适为四阶段: • 1. 初期阶段,方法原理的建立 • 1801年W.Cruikshank,发现金属的电解作
铜和银的定性分析方法. • 1834年M.Faraday 发表“关于电的实验研
究”论文,提出Faraday定律Q=nFM.
电化学分析法
零类电极:由一种惰性金属(如Pt)和同 处于溶液中的物质的氧化态和还原态所组成的 电极,表示为Pt/氧化态,还原态。
如Pt/Fe3+,Fe2+,其电极反应为:
Fe3++e=Fe2+
0 0.0592 lg aFe3
aFe2
标准氢电极
Pt, H2(101.325Pa)
H
(a H
1mol / kg)
玻璃膜形成示意图
ir:内参比电极,j:玻璃膜内表面与参比溶液界面间的电位, 0:玻璃膜外表面与试液界面间的电位,a:不对称电位, ISE:玻璃电极总电位
ISE ir j o a
ISE ir j o a
其中0取决于试液中的氢离子活度和硅胶层中的氢离子活度
o
o
RT ln nF
lg
aR(还原态) aO(氧化态)
0.0592V z
lg
aR(还原态) aO(氧化态)
4、电极类型
指示电极:用来指示被测试液中某 离子的活度(浓度)的电极,电极表 面没有电流通过
工作电极:在电化学测量中,电极 表面有电流通过的电极
4、电极类型
参比电极:在测量电极电位时提供电 位标准的电极,其电位始终不变。标 准氢电极,基准,电位值为零(任何温 度)。
电极:相应的氧化还原电对构成 电极
化学电池的阴极和阳极: 发生氧化反应的电极称为阳极,
而将发生还原反应的电极叫做阴 极。
几个概念
电对表示方法:氧化型物质在左侧,还原 型物质在右侧,中间用斜线“/”隔开, 即Ox/Red。
Zn电极: Zn2 Zn Cu电极: Cu 2 Cu
一般表示方法: Ox Re d
在氧化还原电对中,氧化型物质得电 子,在反应中做氧化剂;还原型物质失电 子,在反应中做还原剂。氧化型物质的氧 化能力越强,其对应的还原型物质的还原 能力就越弱;氧化型物质的氧化能力越弱, 其对应的还原型物质的还原能力就越强。
电化学分析法的类别
电导增量法
总结词
电导增量法是通过比较反应前后溶液电导率 的变化来确定反应进程的方法。
详细描述
电导增量法利用了化学反应过程中离子浓度 的变化会导致电导率变化的原理,通过比较 反应前后溶液的电导率,可以了解反应进程
和反应速率。
电导滴定法
总结词
电导滴定法是一种通过滴定操作来测定物质浓度的电 导法。
详细描述
应用范围
常规极谱法广泛应用于环境监测、生物分析、药物研究等领域,可检测 多种金属离子、有机物和生物分子等。
脉冲极谱法
定义
脉冲极谱法是一种改进的极谱法,通过施加短暂的脉冲电压来减小充电电流的影响,提高 检测灵敏度和分辨率。
工作原理
在脉冲极谱法中,施加一个短暂的脉冲电压,使待测物质在电极上还原或氧化,产生电流 响应。由于脉冲电压的持续时间较短,可以减小充电电流的影响,提高检测的灵敏度和分 辨率。
总结词
控制电位电解法是一种通过控制电极电位,使电解质溶液中的离子在电极上发生氧化或还原反应的方 法。
详细描述
控制电位电解法主要用于研究电极反应的动力学过程和机理,以及测定电极反应的速率常数、活化能 等参数。该方法对于研究电极过程和电化学反应机制具有重要意义。
恒电量放电法
总结词
恒电量放电法是一种通过控制放电电量 的大小和时间,使电解质溶液中的离子 在电极上发生氧化或还原反应的方法。
电化学分析法的类别
目录
• 伏安法 • 电位法 • 电解法 • 电导法 • 极谱法
01
伏安法
线性扫描伏安法
总结词
线性扫描伏安法是一种常用的电化学分析方法,通过在电极 上施加线性电压扫描,测量电流响应来研究电化学反应过程 。
详细描述
第十章 电化学分析法
主要内容
概念 参比电极与指示电极 电位法测溶液的pH值
永停滴定法
概念:
电化学分析法:根据物质在溶液中的电化学性质及 其变化来进行含量测定的方法。它是以测量溶液 的电导、电位、电流和电量等电化学参数,对待 测组分进行含量测定。 电位法:电化学分析方法之一,是利用测量原电池 的电动势以求出被测物质含量的分析方法。将待 测物质的溶液与指示电极、参比电极组成原电池, 由于电池电动势和被测溶液浓度之间服从能斯特 方程式,因此测得电池的电动势,即可求出待测 溶液的浓度。
3、滴定剂与被测滴定剂均为可逆电对 如硫酸铈滴定亚铁: 开始滴定后,溶液中生成Fe3+, 形成可逆电对Fe3+/Fe2+,产生电 流,并随着[Fe3+]增大,电流增 强,当[Fe3+]=[Fe2+]时电流最大, 然后,随着[Fe2+]变小电流减弱 终点到达时,过量的Ce4+与反应 生成的Ce3+形成可逆电对,产生 电流
玻璃膜电位的形成:
玻璃电极在水溶液中浸泡,形成一个三层结构,即中间的干 玻璃层和两边的水化硅胶层。浸泡后的玻璃膜示意图:
续前
因玻璃膜内的[H+]的浓度和Ag-AgCl电极的电位是 恒定的,则玻璃电极的电位就取决于膜外溶液的 [H+]浓度,即被测溶液的[H+]浓度。因此,通过 测定玻璃电极的电位,就可以测定溶液的pH 值。
AgCl + e
Ag + Cl E = E0 AgCl/Ag
电极电位(25℃):
- 0.059 lg [Cl-]
银-氯化银电极:
银-氯化银电极的电极电位(25℃)
0.1mol/LAg-AgCl 电极 KCl 浓度 电极电位(V) 0.1 mol / L +0.2880 标准 Ag-AgCl 电极 1.0 mol / L +0.2355 饱和 Ag-AgCl 电极 饱和溶液 +0.2000
电化学分析方法
杨航锋化学工程2111506055电化学分析法电化学分析法是应用电化学原理和技术,利用化学电池内被分析溶液的组成及含量与其电化学性质的关系而建立起来的一类分析方法。
操作方便,许多电化学分析法既可定性,又可定量;既能分析有机物,又能分析无机物,并且许多方法便于自动化,可用于,在生产、等各个领域有着广泛的应用。
电化学分析法可分为三种类型。
第一种类型是最为主要的一种类型,是利用试样溶液的浓度在某一特定的实验条件下与化学电池中某种电参量的关系来进行定量分析的,这些电参量包括电极电势、电流、电阻、电导、电容以及电量等;第二种类型是通过测定化学电池中某种电参量的突变作为滴定分析的终点指示,所以又称为电容量分析法,如电位滴定法、电导滴定法等;第三种类型是将试样溶液中某个待测组分转入第二相,然后用重量法测定其质量,称为电重量分析法,实际上也就是电解分析法。
习惯上按电化学性质参数之间的关系来划分,可分为: 电导分析法、电位分析法、电解与库仑分析法、极谱与伏安分析法等。
1. 电位分析法电位分析法是利用电极电位与溶液中待测物质离子的活度(或浓度)的关系进行分析的一种电化学分析法。
Nernst方程式就是表示电极电位与离子的活度(或浓度)的关系式,所以Nernst方程式是电位分析法的理论基础。
参比电极搅拌器电位分析法利用一支指示电极(对待测离子响应的电极)及一支参比电极(常用SCE)构成一个测量电池(是一个原电池)如上图所示。
在溶液平衡体系不发生变化及电池回路零电流条件下,测得电池的电动势(或指示电极的电位)E =©参比一©指示由于©参比不变,©指示符合Nernst方程式,所以E的大晓取决于待测物质离子的活度(或浓度),从而达到分析的目的。
1.1电位分析法的分类直接电位法一一利用专用的指示电极一一离子选择性电极,选择性地把待测离子的活度(或浓度)转化为电极电位加以测量,根据Nernst方程式,求出待测离子的活度(或浓度),也称为离子选择电极法。
电化学分析法
测定其它离子浓度,目前多采用离子选择性电极作指示电极。
第十五章 电化学分析法
课堂互动
你知道如何使用pH计测定饮用水和葡萄糖的pH值吗?如 何选择标准缓冲溶液校正仪器?
酸度计测定溶液pH动画
三、电位滴定法
1.基本原理
电位滴定法是在滴定过程中通过测定电位变化以确 定滴定终点的方法,和直接电位法相比,电位滴定 法不需要准确测定电极的电极电势,它是靠电极电 势的突跃来指示滴定终点。
第十五章 电化学分析法
四、永停滴定法
2.滴定方式 (1)滴定液为不可逆电对而被测物质为可逆电对
化学计量点
S2O32+滴定I2溶液
(2)滴定液为可逆电对而被测物质为不可逆电对
化学计量点 I2滴定S2O32+溶液
第十五章 电化学分析法
(3)滴定液与被测物质均为可逆电对
化学计量点 Ce4+滴定Fe2+溶液
第十五章 电化学分析法
2. 确定化学计量点的方法
E-V曲线法
△E/△V-V曲线法
△2E/△V 2-V曲线法
四、永停滴定法
1. 基本原理
永停滴定法测定时,是把两只铂指示电极同时插入待滴定 的溶液中,在两个铂电极间外加一小电压(10 mV~ 100mV),然后进行滴定,通过观察滴定过程中电流计指 针变化,根据电流变化的特性,确定化学计量点。
第十五章 电化学分析法
(1)指示电极 指示电极的电极电势随待测溶液离子活度(或浓度) 的变化而变化;
参比电极的电极电势不随待溶液离子活度(或浓度) 的变化而变化,具有稳定性和重现性。
指示电极 (1)金属-金属离子电极简称金属电极 由于只有一个相 界面,又称为第一类电极。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电位符号
规定: 规定半反应写成还原过程:
Ox+ne=Red Cu2++2e=Cu Zn2++2e=Zn 电极电位的符号:电极与标准氢电极组成电池时,电极所带 静电荷的符号。
电极的分类
▪指示电极和工作电极:其电极电位反应离子或分子浓度的变化。 ▪参比电极:在测量过程中,其电位基本不发生变化。 ▪辅助电极或对电极:电流过大时,提供电子传导的场所。
• 电位分析的理论基础 • 理论基础:能斯特方程(电极电位与溶液中待
测离子间的定量关系)。
• 对于氧化还原体系:
•
Ox + ne- = Red
E
EO Ox/Red
RT nF
ln
aOx aRe d
• 对于金属电极(还原态为金属,活度定为1):
E
EO Mn/M
RT nF
ln
aMn
MnO4 8H 5e Mn2 4H2O
• 电流滴定或库仑滴定:在恒电流下,电解产生 的滴定剂与被测物作用。
• ③ 极谱法与伏安分析—— • 伏安分析是通过测定特殊条件下的电流—电压
曲线来分析电解质的组成和含量的一类分析方 法的总称。而极谱法则是使用滴汞电极的一种 特殊的伏安分析法。
• ④ 电导分析法——电导分析法是根据溶液的电 导性质进行的方法
一、基本概念和术语
• (2)依据测定电参数分别命名各种电化学分析方法:如电位、电导分 析法;
• (3)依据应用方式不同可分为: 直接法和间接法。
化学电池
• 电极:将金属放入对应的溶液后所组成 的系统。
• 化学电池:由两支电极构成的系统;化 学能与电能的转换装置;
• 电化学分析法中涉及到两类化学电池: • 原电池:自发地将化学能转变成电能; • 电解电池:由外电源提供电能,使电流
通过电极,在电极上发生电极反应的装 置。 • 电池工作时,电流必须在电池内部和外 部流过,构成回路。
• 溶液中的电流:正、负离子的移动。
原电池
• 阳极:发生氧化反应的电极(负 极)
• 阴极:发生还原反应的电极(正 极)
• 阳极≠正极 • 阴极≠负极(正 极);
• 电位分析原理
• 电位分析是通过在零电流条件下测定两电极间 的电位差(电池电动势)所进行的分析测定。
•
ΔE = E+ - E- + E液接电位
• 装置:参比电极、指示电极、电位差计;
• + 当测定时,参比电极的电极电位保持不变, 电池电动势随指示电极的电极电位而变,而指 示电极的电极电位随溶液中待测离子活度而变, 有金属基指示电极和离子选择性电极。
第六章 电化学 分析法
小组成员:侯飞 张松 赵逸洁
目录
1 6.1电化学分析法概述 2 6.2电位分析法基本原理
一、基本概念和术语
• 什么是电化学分析
• 应用电化学的基本原理和实验技术,依据物质电化学性质来测定物质 组成及含量的分析方法称为电化学分析或电分析化学。
• 电化学分析法的重要特征
• (1)直接通过测定电流、电位、电导、电量等物理量, 在溶液中有电 流或无电流流动的情况下,来研究、确定参与反应的化学物质的量。
• 阴极:发生还原反应的电极(负 极);
• 阳极=正极 • 阴极=负极
电池的表达式
• Zn |Zn2+(0.1mol/L ) | Cu2+(1mol/L) | Cu • 用盐桥后 Zn |Zn2+(0.1mol/L ) || Cu2+(1mol/L) | Cu • |表示由电势差产生。用于两相界面不相混的两种溶液之间。
电化学分析法的分类
① 电位分析法
• 直接电位法:电极电位与溶液中电活性物质的活度有关,通过测量溶 液的电动势,根据奈斯特方程计算被测物质的含量;
• 电位滴定法:用电位测量装置指示滴定分析过程中被测组分的浓度变 化,通过记录或绘制滴定曲线来确定滴定终点的滴定分析方法。研制 各种高灵敏度、高选择性的电极是电位分析法最活跃的研究领域。
• ② 电解与库仑分析法——
• 电解分析:在恒电流或控制电位的条件下,使 被测物质在电极上析出,实现定量分离测定目 的的方法。
• 电重量分析法:电解过程中在阴极上析出的物 质量通常可以用称重的方法来确定。
• 库仑分析法:依据法拉第电解定律,由电解过 程中电极上通过的电量来确定电极上析出的物 质量的分析方法。
E电池=E右-E左 Zn |Zn2+(0.1mol/L ) || Cu2+(1mol/L) | Cu
Zn+ Cu2+= Cu+ Zn2+
E电池=E右-E左=ECu2 -EZn2 =0.337 0.763=1.1V
Cu
Zn
正,该反应自发进行。---原电池
Cu+ Zn2 + = Zn+ Cu2 +
E电池=EZn2 -ECu2 = 0.337 0.763=1.1V
E E RT ln aMnO4 nF aMn2
E
E
RT
ln
aMnO4
•
a H
nF
aMn2
E
E
RT
ln
aMnO4
• a8 H
nF
aMn2
• 金属基指示电极
• (1)第一类电极──金属-金属离子电极
•
例如:Ag-AgNO3电极(银电极),Zn-ZnSO4
电极(锌电极)等
• 电极电位为(25°C) :
• 左边:氧化反应,负极
右边:还原反应,正极
• ||用盐桥连接,消除液接电位。
• 溶液位于两电极之间。
• Pt|H2(101 325 Pa ),H+(1mol/L)||Ag2+(1mol/L)|Ag • Pt,气体或均相反应,惰性材料作为电极,交换电子的场所。
• H2,25℃ 下的压强。
电池电动势
• 电化学分析法的特点
• 灵敏度、准确度高,选择性好,应用广泛。被 测物质的最低量可以达到10-12mol/L数量级。
• 电化学仪器装置较为简单,操作方便,尤其适 合于化工生产中的自动控制和在线分析。电位 滴定法尤其适合于滴定突跃小、浑浊、有色溶 液。
• 传统电化学分析:无机离子的分析;测定有机 化合物也日益广泛。
Zn
Cu
负,该反应不能自发进行,必须外加能量。--电解池
电极电位
E E RT ln ao nF aR
a0_氧化态活度 aR 还原态活度 电池电动势:由组成电池的两个电极计算得出。 电极电位:统一以标准氢电极(SHE)作为标准,人为规定它的电极电位为零, 并且将氢电极作为负极。
标准氢电极|| 待测电极