多边形及其内角和练习题

合集下载

八年级数学多边形及其内角和(含解析答案)

八年级数学多边形及其内角和(含解析答案)

多边形和内角和练习题温故而知新:1.多边形多边形的内角和:n边形内角和等于_(n-2)·180°__多边形的外角和:任意多边形外角和等于__360°_多边形的对角线:凸n边形共有_1(3)2n n-_条对角线。

2.平面镶嵌定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)问题.说明:正三角形、正方形和正六边形可以镶嵌平面图案,正五边形不能镶嵌平面图案.多边形的对角线例 1 今年暑假,佳一学校安排全校师生的假期社会实践活动,将每班分成三个组,每组派1名教师作为指导教师,为了加强同学间的联系,学校要求该班每两人之间(包括指导教师)每周至少通一次电话,现知该校七(1)班共有50名学生,那么该班师生之间每周至少要通几次电话?为了解决这一问题,小明把该班师生人数n与每周至少通话次数s之间的关系用下列模型表示,如图。

解析:师生53人看作是53边形的53个顶点,n边形的对角线条数公式为:1(3)2n n-。

答案:解:将七(1)班师生53人看作是53边形的53个顶点,由多边形对角线条数公式1(3)2n n-得1⨯⨯-=53(533)13252所以1325+53=1378次。

答:该班每周师生之间至少要通1378次电话小结:(1)建立数学模型是解决实际问题的基本方法;(2)n边形的对角线的条数公式是1(3)n n-2多边形的内角和与外角和例2 已知一个多边形的外角和等于内角和的1/3,求这个多边形的边数。

解析:多边形的外角和为360°,根据多边形的内角和及外角和列方程.答案:解:设这个多边形的边数为n,根据题意,得1n-⨯=(2)1803603解得 n=8答:这个多边形的边数是8.小结:利用方程求解是解决此类问题的一般方法。

例3 如图,小陈从O点出发,前进5米后向右转20°,再前进5米后又向右转20°,……这样一直走下去,他第一次回到出发点O时一共走了()A.60米B.100米C.90米D.120米解析:根据多边形的外角和求出这个多边形的边数。

多边形及其内角和试题

多边形及其内角和试题

多边形及其内角和试题1.从n 边形的一个顶点可以引 条对角线,它们把n 边形分成 个三角形;2.n 边形共有 条对角线;3.各个角都 ,各条边都 的多边形叫做正多边形,正三角形的每个内角为 度;4.正五边形的每个内角为 度,正六边形的每个内角为 度,正八边形的每个内角为 度;5.一个多边形的内角和为1800°,则它是 边形;6.一个电冰箱的每一个内角都等于140°,则它的每一个外角等于 °,它是 边形;7.一个多边形的每一个外角的度数等于其相邻内角度数的1/3,则这个多边形是 边形;8.在ABCD 中,若∠A ∶∠B ∶∠C ∶∠D = 3∶1∶2∶3,则∠A= ,∠B= ,∠C= ,∠D= ;9.如果一个角的两边与另一个角的两边互相垂直,则这两个角的关系是: ; 10.一个凸多边形的内角从小到大排列起来,恰好依次增加相同的度数,其中最小角是100°,最大角为140°,则这个多边形的边数是 ; 11.下列可能是n 边形内角和的是 ( ) A 、300° B 、550° C 、720° D 、960°12.下列说法:⑴四边形中四个内角可以都是锐角;⑵ 四边形中四个内角可以都是钝角;⑶ 四边形中四个内角可以都是直角;⑷ 四边形中四个内角最多可以有两个钝角;⑸四边形中最多可以有两个锐角;其中正确的是( ) A 、1个 B 、2个 C 、3个 D 、4个 13.一个多边形的外角不可能都等于( )A 、30°B 、40°C 、50°D 、60° 14.过多边形的一个顶点可以引9条对角线,那么这个多边形的内角和为( )A 、1620°B 、1800°C 、1980°D 、2160° 15.多边形每一个内角都等于150°,则此多边形一个顶点发出的对角线有 ( ) A 、7条 B 、8条 C 、9条 D 、10条16.一个多边形的每一个外角都等于且小于45°,那么这个多边形的边数最少是 ( ) A 、7条 B 、8条 C 、9条 D 、10条17.一个多边形的内角和是外角和的3倍,则这个多边形的对角线有 ( )A 、20条B 、24条C 、27条D 、30条 18.一个多边形截去一个内角后,形成另一个多边形,它的内角和为2520°,则原来多边形的边数不可能是( ) A 、15条 B 、16条 C 、17条 D 、18条 19.一个多边形的每一个内角都比相邻的外角的3倍还多20°,求这个多边形的内角和。

11.3多边形及其内角和练习题

11.3多边形及其内角和练习题

1. 各角都相等的n 边形的一个外角可能取得的值是 ( ) A.(2)180n n-︒ B.360n ︒ C.180n ︒ D.以上都不对 2. 一个多边形的内角和比它的外角的3倍少180°,则这个多边形的边数是( ) A.5 B.6 C.7 D.83. 过n 边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是( )A.8 B.9 C.10 D.114. 若一个多边形的对角线的条数恰好为边数的3倍,则这个多边形的边数为( ) A.6 B.7 C.8 D.95. 一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的内角和为 度.6. 图中是三种将多边形(3)n ≥分成三角形的不同方法. .7. 乙是 边形.8.9. 已知如图,四边形ABCD 中,B ∠和C ∠的平分线交于点O .求证:1()2BOC A D ∠=∠+∠. 10. 已知,如图,在四边形ABCD 中,12∠=∠,34∠=∠则____E F ∠+∠=.11. 多边形的每一个内角都是150°,则此多边形的一个顶点引出的对角线的条数是 1A2A 3A 4 5A n 1A 2A 3A 4A 5A n A1A 2A 3A 4 5An A ABD O( )A.7 B.8 C.9 D.1012. 在一次数学活动课上,小明将正方形的桌面截去一个角,那么你能帮助小明计算余下多边形的内角和度数吗?13. 一个多边形的内角和等于它的外角和,那么这个多边形是 .14. 如果五边形的五个外角的比是1:3:2:4:5,则五边形中最大的内角与最小的内角的比是 .15. 认真观察下列图形,利用图形中的信息,写出你从中得到的启示而获取的知识点.16.17. 三角形,图4个小三角形.试把这一结论推广至n 边形. 18. (1)n + (A)180 180 360 360⋅19. 若一个多边形的内角和为外角和的3倍,则这个多边形为 ( ) A.八边形 C.十边形D.十二边形20. 如图,一块试验田的形状是三角形(设其为ABC △),管理员从BC 边上的一点D 出发,沿DC CA AB BD →→→的方向走了一圈回到D 处,则管理员从出发到回到原处在途中身体 A.转过90 B.转过180 C.转过270D.转过360 21. 正六边形的一个内角的度数是22、一个多边形截去一个角后,形成另一个多边形的内角和为1800°,你知道原多边形的边数为( )A BC DA B C D E A B C D E F A B CD E F G ① ② ③C(第20题图) DA、11B、12C、13D、11或12或1323、一个多边形除了一个内角外,其余各内角的和为2000°,则这个内角是()A、20°B、160°C、200°D、140°。

(完整版)初中数学专项训练:多边形及其内角和

(完整版)初中数学专项训练:多边形及其内角和

初中数学专项训练:多边形及其内角和一、选择题1.一个多边形的每个外角都等于72°,则这个多边形的边数为【】A.5 B.6 C.7 D.82.五边形的内角和为【】A.720° B.540° C.360° D.180°3.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为【】A.5 B.5或6 C.5或7 D.5或6或74.已知一个多边形的内角和是0540,则这个多边形是【】A. 四边形B. 五边形 C . 六边形 D. 七边形5.四边形的内角和的度数为A.180° B.270° C.360° D.540°6.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为A.30°B.36°C.38°D.45°7.(2013年四川资阳3分)一个正多边形的每个外角都等于36°,那么它是【】A.正六边形 B.正八边形 C.正十边形 D.正十二边形8.(2013年四川眉山3分)一个正多边形的每个外角都是36°,这个正多边形的边数是【】A.9 B.10 C.11 D.129.(2013年广东梅州3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是【】A.3 B.4 C.5 D.610.正多边形的一边所对的中心角与该正多边形一个内角的关系是().两角互余(B)两角互补(C)两角互余或互补(D)不能确定11.正五边形、正六边形、正八边形的每个内角的度数分别是_______.12.若一个多边形的内角和等于1080°,则这个多边形的边数是 ( )A.9B.8C.7D.613.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形14.四边形中,如果有一组对角都是直角,那么另一组对角可能( )A.都是钝角;B.都是锐角C.是一个锐角、一个钝角D.是一个锐角、一个直角15.一个多边形的内角中,锐角的个数最多有( )A.3个B.4个C.5个D.6个16.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( ) A.2:1 B.1:1 C.5:2 D.5:417.不能作为正多边形的内角的度数的是( )A.120°B.(12847)° C.144° D.145°18.一个多边形的外角中,钝角的个数不可能是( )19.一个多边形恰有三个内角是钝角,那么这个多边形的边数最多为( ) A.5 B.6 C.7 D.820.如图,若90A B C D E F n +++++=o g ∠∠∠∠∠∠,那么n 等于( )A.2 B.3 C.4 D.521.如果一个多边形的每个外角,都是与它相邻内角的三分之一,则这样的多边形有( )A.无穷多个,它的边数为8B.一个,它的边数为8C.无穷多个,它的边数为6D.无穷多个,它的边数不可能确定22.如果一个正多边形的一个内角等于135o ,则这个正多边形是( )A.正八边形 B.正九边形 C.正七边形 D.正十边形二、填空题23.一个六边形的内角和是 .24.如图,在四边形ABCD 中,∠A=450,直线l 与边AB 、AD 分别相交于点M 、N 。

多边形及其内角和练习题(含答案)

多边形及其内角和练习题(含答案)

多边形及其内角和练习题(含答案)1.如果四边形ABCD中∠A+∠C+∠D=280°,那么∠B的角度是多少?选项:A.80° B.90° C.170° D.20°2.如果一个多边形的内角和为1080°,那么这个多边形有多少条边?选项:A.9 B.8 C.7 D.63.内角和等于外角和的两倍的多边形是什么形状?选项:A.五边形B.六边形C.七边形D.八边形4.六边形的内角和是多少度?5.正十边形的每个内角的度数是多少?每个外角的度数是多少?6.图中有多少种不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?为什么?8.求下列图形中x的值:9.在四边形ABCD中,已知∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC。

BE与DF有什么位置关系?为什么?10.有10个城市进行篮球比赛,每个城市派出3个代表队参加比赛,规定同一城市间的代表队不进行比赛,其他代表队都要比赛一场。

按照这个规定,所有代表队需要打多少场比赛?11.在一个五边形的每个顶点处以1为半径画圆,求圆与五边形重合的面积。

12.(1) 已知一个多边形的内角和为540°,那么这个多边形是什么形状?选项:A.三角形 B.四边形 C.五边形 D.六边形 (2) 五边形的内角和是多少度?13.一个多边形的每个顶点处取一个外角,这些外角中最多有几个钝角?选项:A.1个 B.2个 C.3个 D.4个14.(1) 四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?猜想并探索:n边形有几条对角线?(2) 一个n边形的边数增加1,对角线增加多少条?15.如果一个多边形的边数增加1,那么这个多边形的内角和会增加多少度?如果将n边形的边数增加1倍,那么它的内角和会增加多少度?16.壁虎想捕捉一只害虫,它在油罐下底边A处,害虫在油罐上边缘B处。

初中数学《多边形及其内角和》培优练习试卷及解析

初中数学《多边形及其内角和》培优练习试卷及解析

八年级数学《多边形及其内角和》培优练习一、选择题(12×3=36分)1. 如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是( B)A.6 B.9 C.14 D.202. 如果一个正多边形的一个内角和它相邻外角的比是3∶1,那么这个多边形是( B)A.正六边形B.正八边形C.正十边形D.正十二边形3. 某商场营业厅准备装修地面,现有正三角形,正方形,正六边形这三种规格的花岗石板料(所有边长相等)若从其中选择两种不同的板料铺设地面,则不同的方案有( C )A. 1种B. 2种C. 3种D. 4种4. 如图,△ABC中,AD平分∠BAC,DE平分∠ADC,∠B=45°,∠C=35°,则∠AED=(B)A. 80°B. 82.5°C. 90°D. 85°5. 小聪从点P出发向前走20m,接着向左转30°,然后他继续再向前走20m,又向左转30°,他以同样的方法继续走下去,当他走回点P时共走的路程是( C)A. 120米B. 200米C. 240米D. 300米6. 如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG的大小关系为( C)A. ∠AHE>∠CHGB. ∠AHE<∠CHGC. ∠AHE=∠CHGD. 不一定7. 如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是( A)A. 59°B. 60°C. 56°D. 31°8. 有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为(B)A. 144°B. 84°C. 74°D. 54°9. 如图,在五边形ABCDE中,∠A+∠B+∠E=∠EDC+∠BCD+140°,DF,CF分别平分∠EDC和∠BCD,则∠F的度数为(C)A. 100°B. 90°C. 80°D. 70°10. 如图∠1,∠2,∠3是正五边形ABCDE的三个外角,若∠A+∠B=230°,则∠1+∠2+∠3=( C )A. 140°B. 180°C. 230°D. 320°11. 如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°…照这样走下去,他第一次回到出发地A点时,一共走了(B)米.A .100B .120C .140D .6012. 如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则∠A 与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( B )A. ∠A=∠1-∠2B. 2∠A=∠1-∠2C. 3∠A=2∠1-∠2D. 3∠A=2(∠1-∠2) 二、填空题(5×3=15分)13. 一个多边形截去一个角后,形成的多边形的内角和是2520°,那么原多边形的边数是15,16,17 14. 如图,五边形ABCDE 中,AE ∥CD ,∠A =147°,∠B =121°,则∠C =__92°__.15. 如图,△ABC 中,∠B =∠C ,FD ⊥BC ,DE ⊥AB ,∠AFD =152°, 则∠A 的度数为56°.16. 如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC =40°,则∠CABB的度数为80°.17. 如图,已知BE和CF是△ABC的两条高,∠ABC=48°,∠ACB=75°,则∠FDE=__123°__.三、解答题(8+9+10+10+10+10+12)18. 某同学采用把多边形内角逐个相加的方法计算多边形的内角和,求得一个多边形的内角和为1520°,当他发现错了以后,重新检查,发现少加了一个内角.问:这个内角是多少度?他求的这个多边形的边数是多少?解:设此多边形的内角和为x°,则有1520<x<1520+180,即180×8+80<x<180×9+80,因为x°为多边形的内角和,所以它是180°的倍数,所以x=180×9=1620.所以9+2=11,1620°-1520°=100°.因此,漏加的这个内角是100°,这个多边形是11边形.19. 如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CF A=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.PB CD20. (1)如图①②,试研究其中∠1、∠2与∠3、∠4之间的数量关系;(2)如果我们把∠1、∠2称为四边形的外角,那么请你用文字描述上述的关系式; (3)用你发现的结论解决下列问题:如图,AE 、DE 分别是四边形ABCD 的外角∠NAD 、∠MDA 的平分线,∠B +∠C =240°,求∠E 的度数. 解:(1)∵∠3、∠4、∠5、∠6是四边形的四个内角, ∴∠3+∠4+∠5+∠6=360°. ∴∠3+∠4=360°-(∠5+∠6). ∵∠1+∠5=180°,∠2+∠6=180°, ∴∠1+∠2=360°-(∠5+∠6). ∴∠1+∠2=∠3+∠4.(2)四边形的任意两个外角的和等于与它们不相邻的两个内角的和. (3)∵∠B +∠C =240°,∴∠MDA +∠NAD =240°. ∵AE 、DE 分别是∠NAD 、∠MDA 的平分线, ∴∠ADE =12∠MDA ,∠DAE =12∠NAD .∴∠ADE +∠DAE =12(∠MDA +∠NAD )=120°.∴∠E =180°-(∠ADE +∠DAE )=60°.21. (1)如图①,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,∠ACD 与∠B 有什么关系?为什么? (2)如图②,在Rt △ABC 中,∠C =90°,D 、E 分别在AC ,AB 上,且∠ADE =∠B ,判断△ADE 的形状是什么?为什么?(3)如图③,在Rt △ABC 和Rt △DBE 中,∠C =90°,∠E =90°,AB ⊥BD ,点C ,B ,E 在同一直线上,∠A 与∠D 有什么关系?为什么?解:(1)∠ACD =∠B ,理由如下: ∵在Rt △ABC 中,∠ACB =90°,CD ⊥AB , ∴∠ACD +∠A =∠B +∠DCB =90°, ∴∠ACD =∠B ;(2)△ADE 是直角三角形.∵在Rt △ABC 中,∠C =90°,D 、E 分别在AC ,AB 上,且∠ADE =∠B ,∠A 为公共角, ∴∠AED =∠ACB =90°, ∴△ADE 是直角三角新; (3)∠A +∠D =90°.∵在Rt △ABC 和Rt △DBE 中,∠C =90°,∠E =90°,AB ⊥BD , ∴∠ABC +∠A =∠ABC +∠DBE =∠DBE +∠D =90°, ∴∠A +∠D =90°.22. 如图,已知BD 是△ABC 的角平分线,CD 是△ABC 的外角∠ACE 的外角平分线,CD 与BD 交于点D . (1)若∠A =50°,则∠D = ; (2)若∠A =80°,则∠D = ; (3)若∠A =130°,则∠D = ; (4)若∠D =36°,则∠A = ;(5)综上所述,你会得到什么结论?证明你的结论的准确性.解:如图,∵BD 是△ABC 的角平分线,CD 是△ABC 的外角∠ACE 的平分线, ∴∠ACE =2∠2,∠ABC =2∠1, ∵∠ACE =∠ABC +∠A , ∴2∠2=2∠1+∠A , 而∠2=∠1+∠D ,BE∴2∠2=2∠1+2∠D , ∴∠A =2∠D , 即∠D =12∠A ,(1)当若∠A =50°,则∠D =25°; (2)若∠A =80°,则∠D =40°; (3)若∠A =130°,则∠D =65°. (4)若∠D =36°,则∠A =72°, 故答案为25°,40°,65°,72°; (5)综上所述,∠D =12∠A ;23. 如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,则我们把形如这 样的图形称为“8字型”.(1)求证:∠A +∠C =∠B +∠D ;(2)如图2,若∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,且与CD 、AB 分别相交于点M 、N . ①以线段AC 为边的“8字型”有 个,以点O 为交点的“8字型”有 个; ②若∠B =100°,∠C =120°,求∠P 的度数;③若角平分线中角的关系改为“∠CAP=∠CAB ,∠CDP=∠CDB ”,试探究∠P 与∠B 、∠C 之间存在的数量关系,并证明理由.(1)证明:在图1中,有∠A +∠C =180°﹣∠AOC ,∠B +∠D =180°﹣∠BOD , ∵∠AOC =∠BOD ,∴∠A +∠C =∠B +∠D ; (2)解:①3;4;故答案为:3,4;②以M 为交点“8字型”中,有∠P +∠CDP =∠C +∠CAP , 以N 为交点“8字型”中,有∠P +∠BAP =∠B +∠BDP ∴2∠P +∠BAP +∠CDP =∠B +∠C +∠CAP +∠BDP ,3131AAP∵AP 、DP 分别平分∠CAB 和∠BDC , ∴∠BAP =∠CAP ,∠CDP =∠BDP ,∴2∠P =∠B +∠C ,∵∠B =100°,∠C =120°, ∴∠P =12(∠B +∠C )=12(100°+120°)=110°; ③3∠P =∠B +2∠C ,其理由是: ∵∠CAP =13∠CAB ,∠CDP =13∠CDB ,∴∠BAP =23∠CAB ,∠BDP =23∠CDB ,以M 为交点“8字型”中,有∠P +∠CDP =∠C +∠CAP , 以N 为交点“8字型”中,有∠P +∠BAP =∠B +∠BDP ∴∠C ﹣∠P =∠CDP ﹣∠CAP =13(∠CDB ﹣∠CAB ), ∠P ﹣∠B =∠BDP ﹣∠BAP =23(∠CDB ﹣∠CAB ).∴2(∠C ﹣∠P )=∠P ﹣∠B , ∴3∠P =∠B +2∠C .24. 已知:点D 是△ABC 所在平面内一点,连接AD 、CD . (1)如图1,若∠A =28°,∠B =72°,∠C =11°,求∠ADC ;(2)如图2,若存在一点P ,使得PB 平分∠ABC ,同时PD 平分∠ADC ,探究∠A ,∠P ,∠C 的关系并证明;(3)如图3,在 (2)的条件下,将点D 移至∠ABC 的外部,其它条件不变,探究∠A ,∠P ,∠C 的关系并证明.解:(1)如图1,延长AD 交BC 于E .BBP4321图3A B CDPA在△ABE 中,∠AEC =∠A +∠B =28°+72°=100°, 在△DEC 中,∠ADC =∠AEC +∠C =100°+11°=111°.(2)∠A ﹣∠C =2∠P ,理由如下:如图2,∠5=∠A +∠1,∠5=∠P +∠3, ∴∠A +∠1=∠P +∠3,∵PB 平分∠ABC ,PD 平分∠ADC , ∴∠1=∠2,∠3=∠4, ∴∠A +∠2=∠P +∠4, 由(1)知∠4=∠2+∠P +∠C , ∴∠A +∠2=∠P +∠2+∠P +∠C , ∴∠A ﹣∠C =2∠P .(3)∠A +∠C =2∠P ,理由如下:同(2)理知∠A +∠1=∠P +∠3,∠C +∠4∴∠A +∠C +∠1+∠4=2∠P +∠2+∠3, ∵PB 平分∠ABC ,PD 平分∠ADC , ∴∠1=∠2,∠3=∠4, ∴∠1+∠4=∠2+∠3, ∴∠A +∠C =2∠P .BDP54321图2AB CD P。

专题04 多边形及其多边形内角和(专题测试)(解析版)

专题04 多边形及其多边形内角和(专题测试)(解析版)

专题04 多边形及其多边形内角和专题测试学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每题4分,共计48分)1.(2018春黄浦区期中)如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°【答案】D【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【名师点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.2.(2017春东源县期中)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°【答案】C【解析】解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.3.(2018春正定县期末)如图,将边长相等的正方形、正五边形和正六边形摆放在平面上,则为A.B.C.D.【答案】D【解析】试题解析:正方形的内角为,正五边形的内角为,正六边形的内角为,,故选D.4.(2018春二道区期末)如图,将四边形ABCD去掉一个60°的角得到一个五边形BCDEF,则∠1与∠2的和为()A.60°B.108°C.120°D.240°【详解】∵四边形的内角和为(4−2)×180°=360°,∴∠B+∠C+∠D=360°−60°=300°,∵五边形的内角和为(5−2)×180°=540°,∴∠1+∠2=540°−300°=240°,故选:D.【名师点睛】本题考查多边形的内角和知识,求得∠B+∠C+∠D的度数是解决本题的突破点.5.(2018春呼兰区期末)若一个多边形的内角和为540°,那么这个多边形对角线的条数为()A.5 B.6 C.7 D.8【答案】A【解析】分析: 先根据多边形的内角和公式求出多边形的边数,再根据多边形的对角线的条数与边数的关系求解.详解: 设所求正n边形边数为n,则(n-2)•180°=540°,解得n=5,∴这个多边形的对角线的条数==5.故选:A.6.(2018春官渡区期末)如图,∠1,∠2,∠3,∠4,∠5是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,则∠AED的度数是()A.120°B.110°C.115°D.100°【答案】A【解析】详解:∵∠1=∠2=∠3=∠4=75°,∴∠5=360°﹣75°×4=360°﹣300°=60°,∴∠AED=180°﹣∠5=180°﹣60°=120°.7.(2017春南山区期末)过某个多边形一点顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】C【详解】解:由规律可知,如此操作后得到的三角形数量比该多边形的边数少2,则该多边形的边数为5+2=7,为七边形,故选择C.【名师点睛】本题考查了几何图形中的找规律.8.(2018春金安区期末)如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )A.30°B.15°C.18°D.20°【答案】C【详解】∵正五边形的内角的度数是15×(5-2)×180°=108°,正方形的内角是90°,∴∠1=108°-90°=18°.故选:C【名师点睛】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.9.(2018春雨花台区期末)一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C【详解】180°-144°=36°,360°÷36°=10,则这个多边形的边数是10.【名师点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.10.(2018春武清区期末)一个多边形的内角和等于1260°,则从此多边形一个顶点引出的对角线有()A.4条B.5条C.6条D.7条【答案】C【详解】根据题意,得(n-2)•180=1260,解得n=9,∴从此多边形一个顶点引出的对角线有9-3=6条,故选C.【名师点睛】本题考查了多边形的内角和定理:n边形的内角和为(n-2)×180°.11.(2018春白云区期末)小明在计算一个多边形的内角和时,漏掉了一个内角,结果得1000°,则这个多边形是( )A.六边形B.七边形C.八边形D.十边形【答案】C【详解】解:设多边形的边数是n.依题意有(n-2)•180°>1000°,解得:n>759,则多边形的边数n=8;故选:C.【名师点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.12.(2018春泰兴市期中)若一个边形的每一个外角都是36°,则这个边形对角线的条数是()A.30 B.32 C.35 D.38【答案】C【解析】分析:多边形的外角和是固定的360°,依此可以求出多边形的边数,进而求得对角线的条数.详解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.∴对角线的条数是×10×(10-3)=35(条).故选C.【名师点睛】本题主要考查了多边形的外角和定理:多边形的外角和是360°,正确理解n边形的对角线条数是n(n-3)是关键.二、填空题(共5小题,每小题4分,共计20分)13.(2018春新华区期末)如图,小亮从点O出发,前进5m后向右转30°,再前进5m后又向右转30°,这样走n次后恰好回到点O处,小亮走出的这个n边形的每个内角是__________°,周长是___________________m.【答案】150, 60【解析】分析:回到出发点O点时,所经过的路线正好构成一个外角是30°的正多边形,根据正多边形的性质即可解答.详解:由题意可知小亮的路径是一个正多边形,∵每个外角等于30°,∴每个内角等于150°.∵正多边形的外角和为360°,∴正多边形的边数为360°÷30°=12(边).∴小亮走的周长为5×12=60.14.(2019春南明区期末)如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.【答案】40︒.÷=,【详解】连续左转后形成的正多边形边数为:4559︒÷=︒.则左转的角度是360940故答案是:40︒.【名师点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.15.(2018春三元区期末)小明同学在计算一个多边形(每个内角小于180°)的内角和时,由于粗心少算了一个内角,结果得到的总和是2018°,则少算了这个内角的度数为________.【答案】142°【解析】分析:n边形的内角和是(n−2)•180°,少计算了一个内角,结果得2018°,则内角和是(n−2)•180°与2018°的差一定小于180度,并且大于0度.因而可以解方程(n−2)•180°≥2018°,多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.详解:设多边形的边数是n,依题意有(n−2)•180°≥2018°,解得:n≥,则多边形的边数n=14;多边形的内角和是(14−2)•180=2160°;则未计算的内角的大小为2160°−2018°=142°.故答案为:142°16.(2018春莲都区期末)定义:有三个内角相等的四边形叫三等角四边形三等角四边形ABCD中,,则的取值范围______.【答案】【详解】解:四边形的内角和是,,,又,.故答案是:.【名师点睛】本题考查了多边形的内角和,注意到∠D的范围是解题的关键.17.(2018春长春市期中)如图,一束平行太阳光线照射到正五边形上,则∠1= ______.【答案】30°【解析】∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°.三、解答题(共4小题,每小题8分,共计32分)18.(2018春武义县期中)如图,在六边形ABCDEF中,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠C=124°,∠E=80°,求∠F的度数.【答案】∠F=134°.【详解】如图,连接AC,∵CD∥AF,∴∠DCA+∠CAF=180°,∵AB⊥BC,∴∠BCA+∠BAC=90°,∴∠BCD+∠BAF=∠BCA+∠DCA+∠BAC+∠CAF=270°,∴∠BAF=270°-∠BCD=270°-124°=146°,∵六边形的内角和=(6-2)×180°=720°.∴∠F=720°-2×146°-90°-124°-80°=134°.【名师点睛】本题是考查多边形的内角和、平行线的性质、直角三角形两锐角互余的性质的综合题,运用整体思想把∠BCD与∠BAF,∠CAF与∠DCA,∠BCA与∠BAC分别看成一个整体是解题的关键. 19.(2018春吴兴区期中)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180.②新多边形的内角和与原多边形的内角和相等.③新多边形的内角和比原多边形的内角和减少了180.()2将多边形只截去一个角,截后形成的多边形的内角和为2520,求原多边形的边数.【答案】(1)作图见解析;(2)15,16或17.【详解】()1如图所示:()2设新多边形的边数为n,n-⋅=,则()21802520n=,解得16①若截去一个角后边数增加1,则原多边形边数为15,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为17,故原多边形的边数可以为15,16或17.【名师点睛】本题主要考查了多边形的内角和公式,注意要分情况进行讨论,避免漏解.20.(2018春桃城区期中)(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.【答案】(1)150°、120°、90°.(2)12.【详解】(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.【名师点睛】本题考查的知识点是多边形内角和,解题的关键是熟练的掌握多边形内角和.21.(2019春盘龙区期末)如图,在五边形ABCDE中满足AB∥CD,求图形中的x的值.【答案】x=85°解:∵AB∥CD,∠C=60°,∴∠B=180°﹣60°=120°,∴(5﹣2)×180°=x+150°+125°+60°+120°,∴x=85°.【名师点睛】本题主要考查了平行线的性质和多边形的内角和知识点,属于基础题.。

初二多边形及其内角和的练习题

初二多边形及其内角和的练习题

初二多边形及其内角和的练习题多边形是初中数学中的重要概念,它是指由三条或者更多条线段组成的图形。

而多边形的内角和是指该多边形内所有角的度数之和。

在初二数学学习中,学生需要掌握多边形及其内角和的相关概念和计算方法。

下面就是一些关于初二多边形及其内角和的练习题,供同学们参考和练习。

练习题一:1.一个四边形的两个内角分别为90°和75°,其余两个内角的度数之和是多少?2.一个五边形的两个内角分别为120°和130°,其余三个内角的度数之和是多少?3.一个七边形的一个内角为135°,其余六个内角的度数之和是多少?练习题二:1.一个六边形的每个内角的度数分别是110°、120°、135°、100°、90°,求其内角和。

2.一个八边形的每个内角的度数都相等,求每个内角度数以及内角和。

3.一个五边形的内角和与一个四边形的内角和之比是2:3,求该五边形的最大内角的度数。

练习题三:1.一个六边形的内角和是新课标中一次函数中函数关系图形翻转180°的内角和,求这个内角和。

2.一个n边形的内角和是(n-2)×180°,n是一个整数且大于3,当n=15时,这个多边形的内角和是多少?3.一个六边形的两个顶角的度数之差为30°,这两个顶角的度数分别是多少?练习题四:1.一个五边形的一个内角与一个六边形的一个内角是对顶角,这两个内角的度数之比是2:3,求这个五边形内所有角的度数之和。

2.一个五边形内角和与一个六边形内角和之比是1:4,这个五边形的最小内角为60°,求这个五边形内所有角的度数之和。

3.一个六边形的内角和是一个七边形的一半,这个六边形的最大内角为120°,求这个六边形的所有内角的度数之和。

以上是关于初二多边形及其内角和的一些练习题。

通过做题可以帮助同学们巩固对多边形及其内角和的理解,并提高解决相关问题的能力。

多边形及其内角和练习题

多边形及其内角和练习题

多边形及其内⾓和练习题11.3多边形及其内⾓和⼀、选择题:1.⼀个多边形的内⾓和是720°,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形2.⼀个多边形的内⾓和⽐它的外⾓和的3倍少180°,这个多边形的边数是( )A.5B.6C.7D.83.若正n 边形的⼀个外⾓为60°,则n 的值是( )A.4B.5C.6D.84.下列⾓度中,不能成为多边形内⾓和的是( )A.600°B.720°C.900°D.1080°5.若⼀个多边形的内⾓和与外⾓和之和是1800°,则此多边形是( )A.⼋边形B.⼗边形C.⼗⼆边形D.⼗四边形6.下列命题:①多边形的外⾓和⼩于内⾓和,②三⾓形的内⾓和等于外⾓和,③多边形的外⾓和是指这个多边形所有外⾓之和,④四边形的内⾓和等于它的外⾓和.其中正确的有( )A.0个B.1个C.2个D.3个7.⼀个多边形的边数增加2条,则它的内⾓和增加( )A.180° B .90° C. 360°D.540°8.过多边形的⼀个顶点可以作7条对⾓线,则此多边形的内⾓和是外⾓和的( )A.4倍B.5倍C.6倍D.3倍9.在四边形ABCD 中,A ∠、B ∠、C ∠、D ∠的度数之⽐为2∶3∶4∶3,则D ∠的外⾓等于( )A.60° B .75° C .90° D .10.在各个内⾓都相等的多边形中,⼀个内⾓是与它相邻的⼀个外⾓的3倍,那么这个多边形的边数是( )A. 4 B. 6 C. 8 D. 1011.如图,AB ∥CD ∥EF,则下列各式中正确的是( )A.∠1+∠2+∠3=180°B .∠1+∠2-∠3=90°C.∠1-∠2+∠3=90°D .∠2+∠3-∠1=180°12.在下列条件中:①C B A ∠=∠+∠②321::C :B :A =∠∠∠③B A ∠-?=∠90④C B A ∠=∠=∠中,能确定ABC ?是直⾓三⾓形的条件有( )A.①②B.③④C.①③④D.①②③⼆、填空题1.五边形的内⾓和等于______度.2.若⼀凸多边形的内⾓和等于它的外⾓和,则它的边数是______.3.正⼗五边形的每⼀个内⾓等于_______度.4.⼗边形的对⾓线有_____条.5.内⾓和是1620°的多边形的边数是________.6.⼀个多边形的每⼀个外⾓都等于36°,那么这个多边形的内⾓和是 °.7.⼀个多边形的内⾓和是外⾓和的4倍,则这个多边形是边形.8.已知等腰梯形ABCD 中,AD ∥BC,若∠B=31∠D ,则∠A 的外⾓是°. 5题图9.如图在△ABC 中,D 是∠ACB 与∠ABC 的⾓平分线的交点,BD 的延长线交AC 于E ,且∠EDC=50°,则∠A 的度数为.10.如图,在六边形ABCDEF 中,AF ∥CD ,AB ∥DE ,且∠A=120°,∠B=80°,则∠C 的度数是,∠D 的度数是. 10题图三、计算题1.⼀个多边形的每⼀个外⾓都等于45°,求这个多边形的内⾓和.2.⼀个多边形的每⼀个内⾓都等于144°,求它的边数.3.如果四边形有⼀个⾓是直⾓,另外三个⾓的度数之⽐为2∶3∶4,那么这三个内⾓的度数分别是多少?4.⼀个正多边形的⼀个内⾓⽐相邻外⾓⼤36°,求这个正多边形的边数.5.已知多边形的内⾓和等于1440°,求(1)这个多边形的边数,(2)过⼀个顶点有⼏条对⾓线,(3)总对⾓线条数.6.⼀个多边形的外⾓和是内⾓和的72,求这个多边形的边数;7.已知⼀多边形的每⼀个内⾓都相等,它的外⾓等于内⾓的32,求这个多边形的边数;8.⼀多边形内⾓和为2340°,若每⼀个内⾓都相等,求每个外⾓的度数.9.已知四边形ABCD 中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内⾓的度数.10.⼀个多边形,除⼀个内⾓外,其余各内⾓之和等于1000°,求这个内⾓及多边形的边数.11.如图,⼀个六边形的六个内⾓都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.四、拓展练习1. 探究:(1)如图①21∠+∠与C B ∠+∠有什么关系?为什么?(2)把图①ABC ?沿DE 折叠,得到图②,填空:∠1+∠2_______C B ∠+∠ (填“>”“<”“=”),当?=∠40A 时,=∠+∠+∠+∠21B A ______.(3)如图③,是由图①的ABC ?沿DE 折叠得到的,如果?=∠30A ,则-=+360y x (=∠+∠+∠+∠21B A )-?=360=,从⽽猜想y x +与A ∠的关系为.图①图②图③2. 如图1、图2、图3中,点E 、D 分别是正ABC ?、正四边形ABCM 、正五边形ABCMN 中以C 点为顶点的⼀边延长线和另⼀边反向延长线上的点,且ABE ?与BCD ?能互相重合,BD 延长线交AE 于点F .(1)求图1中,AFB ∠的度数;(2)图2中,AFB ∠的度数为_______,图3中,AFB ∠的度数为_______;3.(1)如图1,有⼀块直⾓三⾓板XYZ 放置在△ABC 上,恰好三⾓板XYZ 的两条直⾓边XY 、XZ 分别经过点B 、C .△ABC 中,∠A=30°,则∠ABC+∠ACB=________,∠XBC+∠XCB=_______.图1 图2 图3E F D B C A(2)如图2,改变直⾓三⾓板XYZ的位置,使三⾓板XYZ的两条直⾓边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的⼤⼩是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的⼤⼩.4.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负⽅向运动,点B以每秒y个单位长度沿y轴的正⽅向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补⾓和∠ABO的邻补⾓的平分线相交于点P,问:点A、B在运动的过程中,∠P的⼤⼩是否会发⽣变化?若不发⽣变化,请求出其值;若发⽣变化,请说明理由;(3)如图,延长BA⾄E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂⾜为H,试问∠AGH和∠BGC的⼤⼩关系如何?请写出你的结论并说明理由.。

多边形及其内角和(精选精练)(专项练习)(教师版) 2024-2025学年八年级数学上册基础知识专项

多边形及其内角和(精选精练)(专项练习)(教师版) 2024-2025学年八年级数学上册基础知识专项

专题11.8多边形及其内角和(精选精练)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.(23-24六年级下·山东烟台·期中)过多边形一个顶点的所有对角线将这个多边形分成3个三角形,这个多边形是()A .五边形B .六边形C .七边形D .八边形2.(23-24八年级下·安徽阜阳·阶段练习)一个正多边形的内角和为1080︒.则这个正多边形的边数为()A .9B .8C .7D .63.(2024·福建福州·模拟预测)如图1是颐和园小长廊五角加膛窗,其轮廓是一个正五边形,如图2是它的示意图,它的一个外角α的度数为()A .70︒B .72︒C .60︒D .108︒4.(2020·辽宁葫芦岛·三模)如图,多边形ABCDEFG 中,108E F G ∠=∠=∠=︒,72C D ∠=∠=︒,则A B ∠∠+的值为()A .108︒B .72︒C .54︒D .36︒5.(2024·内蒙古赤峰·三模)如果一个正多边形的一个外角是45︒,则这个正多边形是正()边形A .六B .八C .十D .十二6.(2024·湖北荆门·模拟预测)小聪利用所学的数学知识,给同桌出了这样一道题:假如从点A 出发,沿直线走9米后向左转θ,接着沿直线前进9米后,再向左转θ,…,如此下去,当他第一次回到点A 时,发现自己一共走了72米,则θ的度数为()A.60︒B.75︒C.30︒D.45︒7.(2024·云南玉溪·三模)若一个正多边形的每一个外角都是36︒,则该正多边形的内角和的度数是().A.1440︒B.360︒C.1800︒D.2160︒∠=︒,则1∠的度数为8.(2024·河北石家庄·三模)如图,五边形ABCDE是正五边形,AF DG∥,若226()A.86︒B.64︒C.62︒D.52︒9.(23-24九年级下·河北邯郸·期中)综合实践课上,嘉嘉用八个大小相等的含45°角的直角三角板拼成了一个环状图案,如图1,若淇淇尝试用含60°角的直角三角板拼成类似的环状图案,如图2,除了图上3个还需要含60°角的直角三角板的数量为()A.3个B.6个C.9个D.12个10.(2024·河北沧州·二模)用“筝形”和“镖形”两种不同的瓷砖铺设成如图所示的地面,则“筝形”瓷砖中的∠的度数为()内角BCDA.120︒B.135︒C.144︒D.150︒二、填空题(本大题共8小题,每小题4分,共32分)11.(2024八年级下·全国·专题练习)一个八边形的内角和是.12.(23-24六年级下·山东济南·期中)若从n边形的一个顶点最多能引出2条对角线,则n是.13.(2024·湖北咸宁·一模)一个多边形的内角和为540︒,这个多边形的边数是.14.(2024·陕西宝鸡·模拟预测)一个正多边形的内角比外角大90︒,则这个多边形的内角和为.15.(23-24八年级上·辽宁营口·期中)如果把一个多边形剪去一个内角,剩余部分的内角和为1440︒,那么原多边形有条边.16.(19-20七年级下·江苏扬州·期末)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=.17.(2024·陕西西安·模拟预测)一个正多边形的外角和与内角和的比为1:3,则这个多边形是正边形.18.(2024·云南昆明·二模)如图,一个正n边形被树叶遮掩了一部分,若直线a,b所夹锐角为36︒,则n的值是.三、解答题(本大题共6小题,共58分)19.(8分)(21-22八年级下·广西桂林·期中)列式计算:求图中x的值.20.(8分)(23-24八年级上·江西南昌·期末)如果多边形的每个内角都比与它相邻的外角的4倍多30︒.(1)这个多边形的内角和是多少度?(2)求这个多边形的对角线的总条数.21.(10分)(23-24八年级上·新疆昌吉·期中)如图,在五边形ABCDE 中,100120AE CD A B �靶=,,∥(1)若110D ∠=︒,请求E ∠的度数;(2)试求出C ∠及五边形外角和的度数.22.(10分)(23-24七年级下·湖南衡阳·阶段练习)如图,阅读佳佳与明明的对话,解决下列问题:(1)多边形内角和为什么不可能为2020︒?(2)明明求的是几边形的内角和?(3)错当成内角的那个外角为多少度?23.(10分)(2024·浙江杭州·一模)问题情境:在探索多边形的内角与外角关系的活动中,同学们经历了观察、猜想、实验、计算、推理、验证等过程,提出了问题,请解答.(1)若四边形的一个内角的度数是α.①求和它相邻的外角的度数(用含α的代数式表示);②求其他三个内角的和(用含α的代数式表示).n>,除了一个内角,其余内角的和为920︒,求n的值.(2)若一个n边形(3)深入探究:n>的一个外角与和它不相邻的(n)1-个内角的和之间满足的等量关系,说明理由.(3)探索n边形(3)24.(12分)(1)已知图①中的三角形ABC,分别作AB,BC,CA的延长线BD,CE,AF,测量∠CBD,∠ACE,∠BAF的度数,并计算∠CBD+∠ACE+∠BAF.由此你有什么发现?请利用所学知识解释说明;(2)类似地,已知图②中的四边形PQRS,分别作PQ,QR,RS,SP的延长线QG,RH,SM,PN,测量∠RQG,∠SRH,∠PSM,∠QPN的度数,并计算∠RQG+∠SRH+∠PSM+∠QPN.由此你又有什么发现?(3)综合(1)(2)的发现,你还能进一步得到什么猜想?参考答案:1.A【分析】本题考查了多边形的对角线数量问题,根据n 边形从一个顶点出发可引出()3n -条对角线,可组成()2n -个三角形,依此可求出n 的值,得到答案.【详解】解:设这个多边形是n 边形,由题意得:23n -=,解得:5n =,即这个多边形是五边形,故选:A .2.B【分析】本题多边形内角和公式,解题关键是理解并熟记多边形内角和公式.根据多边形内角和定理:可得方程()18021080x ︒⨯-=︒,再解方程即可.【详解】解:设多边形边数有x 条,由题意得:()18021080x ︒⨯-=︒解得:8x =故选B3.B【分析】本题主要考查多边形的内角和外角,熟练掌握正多边形的外角和为360︒是解题的关键.根据多边形的外角和为360︒即可作答.【详解】解:360572÷=︒.故选:B .4.B【分析】连接CD ,设AD 与BC 交于点O ,根据多边形的内角和公式即可求出∠E +∠F +∠G +∠EDC +∠GCD ,根据各角的关系即可求出∠ODC +∠OCD ,然后根据对顶角的相等和三角形的内角和定义即可求出结论.【详解】解:连接CD ,设AD 与BC 交于点O∵∠E +∠F +∠G +∠EDC +∠GCD=180°×(5-2)=540°,108E F G ∠=∠=∠=︒,72∠=∠=︒GCB EDA ,∴108°+108°+108°+72°+∠ODC +72°+∠OCD=540°∴∠ODC +∠OCD=72°∵∠AOB=∠COD∴∠A +∠B=180°-∠AOB=180°-∠COD=∠ODC +∠OCD=72°故选B .【点拨】此题考查的是多边形的内角和公式和对顶角的性质,掌握多边形的内角和公式和对顶角相等是解决此题的关键.5.B【分析】本题考查了正多边形的外角性质,根据正多边形的外角都相等以及外角和为360︒,列式36045︒÷︒进行计算,即可作答.【详解】解:∵一个正多边形的一个外角是45︒,∴360458︒÷︒=,∴这个正多边形是正八边形,故选:B .6.D【分析】本题考查了多边形的内角与外角,解决本题的关键是明确第一次回到出发点A 时,所经过的路线正好构成一个正多边形.第一次回到出发点A 时,所经过的路线正好构成一个正多边形,用8972=÷,求得边数,再根据多边形的外角和为360︒,即可求解.【详解】解:∵第一次回到出发点A 时,所经过的路线正好构成一个正多边形,∴正多边形的边数为:8972=÷,根据多边形的外角和为360︒,∴则他每次转动θ的角度为:360845︒÷=︒,故选:D .7.A【分析】本题主要考查了多边形的内角和与外角和,掌握内角和公式是解题的关键.根据任何多边形的外角和都是360︒,可以求出多边形的边数,再根据多边形的内角和公式,就得到多边形的内角和.【详解】解:根据题意得:该多边形的边数为:3601036︒=︒,∴该正多边形的内角和为:()1021801440-⨯︒=︒.故选:A .8.C【分析】此题考查了多边形的内角和外角及平行线的性质,熟记多边形内角和公式及平行线的性质是解题的关键.连接AD ,根据多边形的内角和及平行线的性质求解即可.【详解】如图,连接AD ,∵五边形ABCDE 是正五边形,()521801085E BAE -⨯︒∴∠=∠==︒,EA ED =,()34180108236∴∠=∠=︒-︒÷=︒,5108472∴∠=︒-∠=︒,226∠=︒ ,2598,DAF ∴∠=∠+∠=︒,AF DG 98,ADG ∴∠=︒1362.ADG ∴∠=∠-∠=︒故选:C .9.C【分析】本题主要考查了正多边形的外角和.多边形由拼图方法可知:环状图案的外围是正多边形,根据正多边形外角和等于360︒即可求出正多边形的边数.【详解】解:依题意可知:用含60°角的直角三角板按图示拼成类似的环状图案是正多边形,正多边形的外角180(9060)30=︒-︒+︒=︒,故正多边形的边数为3603012︒÷︒=(条)∴除了图上3个还需要含60°角的直角三角板的数量为1239-=(个)故选C .10.C【分析】本题主要考查了多边形内角和定理,根据5个“筝形”组成一个正十边形,结合多边形内角和定理求解即可【详解】解;由图可知,5个“筝形”组成一个正十边形,∴()180********BCD ︒⨯-∠==︒,故选:C11.1080︒/1080度【分析】本题考查了多边形内角和定理,直接套用多边形的内角和()2180n -⋅︒进行计算可求八边形的内角和,【详解】解:内角和:()8218061801080-⨯︒=⨯︒=︒.故答案为:1080︒12.5【分析】本题考查了多边形的对角线,牢记n 边形从一个顶点出发可引出(3)n -条对角线是解题的关键.据此求解即可.【详解】解:∵从n 边形的一个顶点最多能引出2条对角线,∴32n -=,∴5n =.故答案为:5.13.5【分析】本题考查多边形的内角和公式,n 边形的内角和公式为()2180n -⨯︒,由此列方程即可得到答案.【详解】解:设这个多边形的边数为n ,则()2180540n -⨯︒=︒,解得5n =,故答案为:5.14.1080︒/1080度【分析】本题考查了多边形外角和与内角和,掌握其计算公式是解题的关键.多边形的内角和公式为:()2180n -⨯︒(其中n 为多边形的边数),多边形的外角和是360︒.因为多边形的外角和是360︒,且正多边形的每个内角都相等,每个外角也都相等,设这个正多边形的一个外角为x ,则内角为90x +︒,根据内角与外角的和为180︒可列出方程.【详解】设外角是x ,则内角是180x ︒-,则18090x x ︒--=︒,解得45x =︒.则多边形的边数是:360458︒÷︒=.∴内角和是:()821801080-⨯︒=︒.故答案为:1080︒.15.11或10或9【分析】本题考查了多边形的内角和度数,熟记相关结论是解题关键.【详解】解:以五边形为例,如图所示:剪去一个内角后,多边形的边数可能加1,可能不变,也可能减1设新多边形的边数为n ,则()21801440n -⨯︒=︒,解得:10n =∴原多边形可能有11或10或9条边.故答案为:11或10或9.16.540°【分析】连接ED ,由三角形内角和可得∠A+∠B=∠BED+∠ADE ,再由五边形的内角和定理得出结论.【详解】连接ED ,∵∠A+∠B=180°-∠AOB ,∠BED+∠ADE=180°-∠DOE ,∠AOB=∠DOE ,∴∠A+∠B=∠BED+∠ADE ,∵∠CDE+∠DEF+∠C+∠F+∠G=(5-2)×180°=540°,即∠CDO+∠ADE+BED+∠BEF+∠C+∠F+∠G=540°,∴∠A+∠B+∠C+∠CDO+∠BEF+∠F+∠G=540°.故答案为:540°.【点拨】本题考查了三角形的内角和公式,以及多边形的内角和公式,熟记多边形的内角和公式为(n -2)×180°是解答本题的关键.17.八【分析】本题主要考查了多边形的内角和,熟练掌握多边形的内角和公式,是解决问题的关键设这个正多边形的边数为n ,根据正多边形的外角和与内角和的比为1:3,利用多边形内角和公式与外角和列方程解答并检验,即得【详解】设这是个正n 边形,∵这个正多边形的外角和与内角和的比为1:3,∴()360121803n =-⨯,解得,8n =,经体验8n =是所列方程的解,且符合题意,∴这是个正八边形,故答案为:八18.5【分析】本题主要考查了多边形的内角和外角,解题关键是熟练掌握正多边形的定义及性质和外角和.先根据题意画出图形,再根据已知条件求出2∠和3∠的度数,然后根据正多边形的性质和外角和,求出正多边形的边数即可.【详解】解:如图所示:由题意得:136∠=︒,123180∠+∠+∠=︒ ,2318036144∴∠+∠=︒-︒=︒,正多边形每个外角都相等,23144272∴∠=∠=︒÷=︒,正多边形的外角和为360︒,∴它的边数为:360725÷=,n ∴的值为5,故答案为:5.19.100【分析】本题考查了四边形的内角和定理,根据题意,列式109060360x x +++︒+︒=︒计算即可.【详解】根据题意,列式109060360x x +++︒+︒=︒,解得100x =,故图中x 的值为100.20.(1)1800︒(2)54【分析】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式寻求等量关系,构建方程求解即可.另外还要注意从n 边形一个顶点可以引3n -()条对角线.(2)求出多边形的边数,利用多边形内角和公式即可得到答案;(3)根据n 边形有()32n n -条对角线,即可解答.【详解】(1)解:设这个正多边形的一个外角为x ︒,依题意有430180x x ++=,解得30x =,3603012︒÷︒=∴这个正多边形是十二边形.∴这个正多边形的内角和为(122)1801800-⨯︒=︒(2)解:对角线的总条数为4(1231)252-=⨯(条).21.(1)70E ∠=︒(2)140C ∠=︒,五边形外角和的度数是360︒【分析】本题主要考查多边形内角和、外角和及平行线的性质,熟练掌握多边形内角和及平行线的性质是解题的关键.(1)根据平行线的性质可进行求解;(2)根据多边形内角和、外角和及平行线的性质可进行求解.【详解】(1)解:∵AE CD ∥,∴180D E ∠+∠=︒,∴180********E D ∠∠=︒-=︒-︒=︒;(2)解:五边形ABCDE 中,()52180540A B C D E ∠+∠+∠+∠+∠=-⨯︒=︒,∵180D E ∠+∠=︒,100A ∠=︒,120B ∠=︒,∴()540C D E A B∠∠∠∠∠=︒-+--140=︒;五边形外角和的度数是360︒.22.(1)见解析(2)十三边形或十四边形(3)110︒或20︒【分析】本题主要考查了多边形内角和定理,多边形内角和外角的关系以及二元一次方程组的应用.(1)根据多边形内角和定理公式计算判断即可.(2)设应加的内角为x ,多加的外角为y ,依题意可列方程为()21802020n y x -=-+ ,结合角的属性建立不等式求整数解即可.(3)分别计算十三边形的内角和以及十四边形的内角和,分别列出关于x ,y 的二元一次方程组求解即可.【详解】(1)设多边形的边数为n ,由题意得()18022020n -= ,解得2139n =,∵n 为正整数,∴多边形的内角和不可能为2020︒.(2)设应加的内角为x ,多加的外角为y ,依题意可列方程为()21802020n y x -=-+ ,∵180180x y -<-< ,∴()202018018022020180n -<-<+ ,解得22121499n <<,又∵n 为正整数,∴n 13=或14n =.故明明求的是十三边形或十四边形的内角和.(3)十三边形的内角和为()1801321980⨯-= ,∴2020198040y x -=-= ,又180x y += ,∴70x = ,110y = .十四边形的内角和为()1801422160⨯-= ,∴21602020140x y -=-= ,又180x y += ,∴160x = ,20y = .所以错当成内角的那个外角为110︒或20︒.23.(1)①180α︒-,②360α︒-(2)8n =;(3)(3)180n βα-=-⨯︒,理由见解析【分析】(1)①根据一个内角与它相邻的外角的和是180︒进行计算即可;②四边形的内角和是360︒进行计算即可;(2)根据多边形的内角和的计算方法进行计算即可;(3)表示出和它不相邻的(n )1-个内角的和即可.【详解】解:(1)①四边形的一个内角的度数是α,则与它相邻的外角的度数180α︒-;②由于四边形的内角和是360︒其中一个内角为α,则其它三个内角的和为360α︒-;(2)由题意得,(2)180920n α-⨯︒-=︒,3n > 的正整数,0180α︒<<︒,8n ∴=,即这个多边形为八边形;(3)设n 边形(3)n >的一个外角为α,它不相邻的(n )1-个内角的和为β,则有180(2)180n αβ︒-+=-⨯︒,即(3)180n βα-=-⨯︒.24.(1)见解析,∠CBD +∠ACE +∠BAF =360°,三角形中的外角和为360°,见解析;(2)∠RQG +∠SRH +∠PSM +∠QPN =360°,见解析;(3)多边形的外角和和都是360°,见解析【分析】(1)经测量得出∠CBD =138°,∠ACE =117°,∠BAF =105°,∠CBD +∠ACE +∠BAF =360°,则据此得出结论三角形中的外角和为360°,根据平角是180°和多边形内角和证明即可;(2)分别测量出几个角并求出这几个角的和,得出结论:在四边形的外角和是360°;根据(1)中证明方法证明即可;(3)猜想:多边形的外角和和都是360°.根据(1),(2)方法证明即可;【详解】解:(1)经测量知∠CBD =138°,∠ACE =117°,∠BAF =105°,∴∠CBD +∠ACE +∠BAF =360°,发现:三角形中的外角和为360°,理由:∵∠CBD+∠ABC=180°,∠ACE+∠ACB=180°,∠BAC+∠BAF=180°,∴∠CBD+∠ACE+∠BAF+∠ABC+∠ACB+∠BAC=540°,又∵∠ABC+∠ACB+∠BAC=180°,∴∠CBD+∠ACE+∠BAF=360°;(2)∠RQG=125°,∠SRH=113°,∠PSM=48°,∠QPN=74°,所以∠RQG+∠SRH+∠PSM+∠QPN=360°;发现:在四边形的外角和是360°;∵∠RQG+∠PQR=180°,∠SRH+∠QRS=180°,∠PSM+∠RSP=180°,∠QPN+∠QPS=180°,∵∠RQG+∠PQR+∠SRH+∠QRS+∠PSM+∠RSP+∠QPN+∠QPS=720°,∵∠PQR+∠QRS+∠RSP+∠QPS=360°,∴∠RQG+∠SRH+∠PSM+∠QPN=360°.(3)猜想:多边形的外角和都是360°.设多边形为n边形,则n边形的每一个内角与它相邻的外角的和为180°,∴n边形的外角和=180°n﹣(n﹣2)×180°=180°n﹣180°n+360°=360°.【点拨】此题考查多边形外角和的知识,利用平角是180°结合多边形内角和证明即可.。

多边形及其内角和

多边形及其内角和

专题36:多边形及其内角和一、选择题1. (2012北京市4分)正十边形的每个外角等于【】A.18︒B.36︒C.45︒D.60︒【答案】B。

【考点】多边形外角性质。

【分析】根据外角和等于3600的性质,得正十边形的每个外角等于3600÷10=360。

故选B。

2. (2012广东湛江4分)一个多边形的内角和是720°,这个多边形的边数是【】A.4 B.5 C.6 D.7【答案】C。

【考点】多边形内角和定理。

【分析】∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6。

∴这个多边形的边数是6.故选C。

3. (2012广东肇庆3分)一个多边形的内角和与外角和相等,则这个多边形是【】A.四边形 B.五边形 C.六边形 D.八边形【答案】A。

【考点】多边形的内角和外角性质。

【分析】设此多边形是n边形,∵多边形的外角和为360°,内角和为(n-2)180°,∴(n-2)180=360,解得:n=4。

∴这个多边形是四边形。

故选A。

4. (2012江苏无锡3分)若一个多边形的内角和为1080°,则这个多边形的边数为【】A. 6 B.7 C.8 D.9【答案】C。

【考点】多边形内角和定理。

【分析】设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案:n=8。

故选C。

5. (2012福建南平4分)正多边形的一个外角等于30°.则这个多边形的边数为【 】A .6B .9C .12D .15 【答案】C 。

【考点】多边形的外角性质。

【分析】正多边形的一个外角等于30°,而多边形的外角和为360°,则:多边形边数=多边形外角和÷一个外角度数=360°÷30°=12。

八年级数学同步练习-多边形及其内角和

八年级数学同步练习-多边形及其内角和

11.3多边形及其内角和1、若一个凸多边形的内角和为720°,则这个多边形的边数为().A. 4B. 5C. 6D. 72、若多边形的边数由3增加到n(n为大于3的整数),则其外角和的度数().A. 增加B. 减少C. 不变D. 不能确定3、如果一个多边形的内角和等于它的外角和的2倍,则这个多边形是().A. 三角形B. 四边形C. 五边形D. 六边形4、正十边形的每一个内角的度数为().A. 120°B. 135°C. 140°D. 144°5、一个多边形的每一个外角都是45°,则这个多边形的边数为().A. 6B. 7C. 8D. 96、如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前12米,又向左转36°⋯照这样走下去,他第一次回到出发地A点时,一共走了米.7、若一个正多边形的内角和为720°,则这个正多边形的每一个内角是().A. 60°B. 90°C. 108°D. 120°8、如果过一个多边形的一个顶点的对角线有6条,则该多边形是().A. 九边形B. 八边形C. 七边形D. 六边形9、从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是().A. n个B. (n−1)个C. (n−2)个D. (n−3)个10、下面的平面图形中,不能镶嵌平面的图形是().A. 正三角形B. 正六边形C. 正四边形D. 正五边形11、如图,将一个长方形剪去一个角,则剩下的多边形为().A. 五边形B. 四边形或五边形C. 三角形或五边形D. 三角形或四边形或五边形12、一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为().A. 5B. 5或6C. 5或7D. 5或6或713、如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=°.14、如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是.15、若正多边形的内角和是1080°,则该正多边形的边数是.16、一个多边形的每一个外角都等于40°,则它的边数为.17、如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是().A. 8B. 9C. 10D. 1118、某多边形的内角和加上其外角和等于1080°,则此多边形的边数是().A. 4B. 5C. 6D. 719、一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为().A. 8B. 9C. 10D. 1220、如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,⋅⋅⋅,照这样走下去,他第一次回到出发地A点时,一共走的路程是().A. 140米B. 150米C. 160米D. 240米21、经过多边形一个顶点的所有对角线把多边形分成10个三角形,多边形的边数是().A. 8条B. 9条C. 12条D. 11条22、如果一个多边形的每个外角是40°,那么从这个多边形的一个顶点出发,可以引出条对角线.23、如果限于用一种正多边形镶嵌,下列正多边形不能镶嵌成一个平面图形的是().A. 正三角形B. 正方形C. 正五边形D. 正六边形24、如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.25、一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是().A. 17B. 16C. 15D. 16或15或1726、如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P=().A. 50°B. 55°C. 60°D. 65°27、如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=°.28、如图,∠A+∠B+∠C+∠D+∠E+∠F=°.1 、【答案】 C;【解析】设这个多边形的边数为n,则(n−2)×180°=720°,解得n=6,故这个多边形为六边形.故选C.2 、【答案】 C;【解析】因为多边形外角和固定为360°,所以外角和的度数是不变的.故选:C.3 、【答案】 D;【解析】设多边形为n边形,由题意,得(n−2)⋅180=360×2,解得n=6.故选D.4 、【答案】 D;【解析】方法一 : ∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°−36°=144°;故选:D.方法二 : 由多边形的内角和公式可知,正十边形的内角和为180°×(10−2)=1440°.所以每个内角的度数为1440°÷10=144°.故选D.5 、【答案】 C;【解析】由多边形外角和为360°,=8,则边数:360°45°所以多边形为8边形.故选C.6 、【答案】120;【解析】由题意得:360°÷36°=10,则他第一次回到出发地A点时,一共走了12×10=120(米).7 、【答案】 D;【解析】(n−2)×180°=720°,∴n−2=4,∴n=6.则这个正多边形的每一个内角为720°÷6=120°.故选:D.8 、【答案】 A;【解析】∵过一个多边形的一个顶点的对角线有6条,∴多边形的边数为6+3=9,∴这个多边形是九边形.9 、【答案】 C;【解析】从n边形的一个顶点作对角线,把这个n边形分成(n−2)个三角形.10 、【答案】 D;【解析】 A选项 : 正三角形的一个内角度数为180°−360°÷3=60°,是360°的约数,能镶嵌平面,不符合题意,故A错误;B选项: 正六边形的一个内角度数为180°−360°÷6=120°,是360°的约数,能镶嵌平面,不符合题意,故B错误;C选项 : 正四边形的一个内角度数为180°−360°÷4=90°,是360°的约数,能镶嵌平面,不符合题意,故C错误;D选项 : 正五边形的一个内角度数为180°−360°÷5=108°,不是360°的约数,不能镶嵌平面,符合题意,故D正确;11 、【答案】 D;【解析】沿对角线剪则剩下三角形.剪痕过一个顶点,并与一面相交得四边形.剪痕与相邻的两边相交,得五边形.12 、【答案】 D;【解析】如图:剪切的三种情况:①不经过顶点剪,则比原来边数多1,②只过一个顶点剪,则和原来边数相等,③按照顶点连线剪,则比原来的边数少1,设内角和为720°的多边形的边数是n,则(n−2)⋅180°=720°,解得:n=6,则原多边形的边数为5或6或7,故选:D.13 、【答案】425;【解析】∠A+∠B+∠C+∠D+∠AED=180°×(5−2)=540°,∵∠1+∠AED=180°,∠1=65°,∴∠AED=180°−65°=115°,∴∠A+∠B+∠C+∠D=540°−∠AED=540°−115°=425°.14 、【答案】100°;【解析】如图:∵五边形ABCDE的外角和是360°,∴∠5=360°−70°×4=80°,∴∠AED=180°−80°=100°.15 、【答案】8;【解析】根据n边形的内角和公式,得:(n−2)⋅180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.16 、【答案】9;【解析】解法一:360°÷40°=9.多边形外角和是360°,边数=外角数=内角数.解法二:∵外角都是40°,∴内角都是140°,设它为n边形则度数总和为140n°,又∵n边形的度数和是(n−2)×180°,所以140n=(n−2)×180,解得n=9.17 、【答案】 A;【解析】设该多边形边数为n,则内角和为180°(n−2),外角和为360°,∴180°⋅(n−2)=3×360°,解得n=8,故选A.18 、【答案】 C;【解析】多边形外角和为360°,则此多边形内角和为720°,+2=6.∴边数为=720°180°19 、【答案】 C;【解析】由外角与它相邻的内角是邻补角可得:x+4x=180°,一个外角度数x=36°,∴正多边形的边数为360°÷36°=10.20 、【答案】 B;【解析】∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选:B.21 、【答案】 C;【解析】从n边形的一个顶点出发可引出(n−3)条对角线,可组成(n−2)个三角形,即可得n−2=10,解得n=12.故选C.22 、【答案】6;【解析】多边形的边数:360°÷40°=9,从一个顶点出发可以引对角线的条数:9−3=6(条).23 、【答案】 C;【解析】 A选项 : 正三角形每个内角是60°,能整除360°,能镶嵌.B选项 : 正方形每个内角是180°−360°÷4=90°,能整除360°,能镶嵌.C选项 : 正五边形每个内角为180°−360°÷5=108°,不能整除360°,不能镶嵌.D选项 : 正六边形每个内角为180°−360°÷6=120°,能整除360°,能镶嵌.24 、【答案】540°或360°或180°;【解析】n边形的内角和是(n−2)⋅180°,所得新的多边形的边数增加1,则新的多边形的内角和是(4+1−2)×180°=540°,所得新的多边形的边数不变,则新的多边形的内角和是(4−2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4−1−2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.25 、【答案】 D;【解析】一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或者减少了一条,根据(n−2)×180°=2520°,解得n=16.∴多边形的边数为15,16或17.故选D.26 、【答案】 C;【解析】方法一 : ∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°−(∠PDC+∠PCD)=180°−120°=60°.方法二 : 五边形的内角和为(5−2)×180°=540°∵∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°.∵DP、CP分别平分∠EDC,∠BCD,∴∠PDC=12∠EDC,∠PCD=12∠BCD,∴∠PDC+∠PCD=12(∠EDC+∠BCD)=12×240°=120°∴∠P=60°.故选C.27 、【答案】360;【解析】∠1+∠2+∠3+∠4+∠5=(180°−∠BAE)+(180°−∠ABC)+(180°−∠BCD)+(180°−∠CDE)+(180°−∠DEA)=180°×5−(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°−(5−2)×180°=900°−540°=360°.故答案为:360°.28 、【答案】360;【解析】如下图所示∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360.。

11.3多边形及其内角和练习题 ?(含答案)八年级数学

11.3多边形及其内角和练习题    ?(含答案)八年级数学

11.3多边形及其内角和练习题一.选择题(共16小题)1.(2013•湛江)已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形2.(2013•梅州)若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.63.(2014•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α4.(2004•陕西)如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于一点P,若∠A=50°,则∠BPC=()A.150°B.130°C.120°D.100°5.(2015•丽水)一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形6.(2015•葫芦岛)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°7.(2015•莱芜)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.548.(2015•南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°9.(2014•临沂)将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°10.(2016•凉山州)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或911.(2015•北仑区一模)一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为()A.8 B.9 C.10 D.1212.(2014•大丰市模拟)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°13.(2015•无锡模拟)如果一个多边形的内角和等于1260°,那么这个多边形的边数为()A.7 B.8 C.9 D.1014.(2015•重庆)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形15.(2014•莱芜)若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.1616.(2012秋•渝中区校级期末)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6 B.5 C.8 D.7二.填空题(共8小题)17.(2015•资阳)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.18.(2014•巴中)若一个正多边形的一个内角等于135°,那么这个多边形是正边形.19.(2014•遵义)正多边形的一个外角等于20°,则这个正多边形的边数是.20.(2013•巴中)若一个多边形外角和与内角和相等,则这个多边形是边形.21.(2013•乐山)如图,在四边形ABCD中,∠A=45°.直线l与边AB,AD分别相交于点M,N,则∠1+∠2= .22.(2015•盘锦二模)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2= .23.(2016•太原一模)如图,已知正五边形ABCDE,AF∥CD,交DB 的延长线于点F,则∠DFA= 度.24.(2015•崇安区二模)正n边形的一个内角比一个外角大100°,则n 为.三.解答题(共1小题)25.(2015春•沙河市期末)在△ABC中,如果∠A、∠B、∠C的外角的度数之比是4:3:2,求∠A的度数.11.3多边形及其内角和练习题参考答案与试题解析一.选择题(共16小题)1.(2013•湛江)已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【解答】解:根据多边形的内角和可得:(n﹣2)180°=540°,解得:n=5,则这个多边形是五边形.故选B.【点评】本题比较容易,主要考查多边形的内角和公式.2.(2013•梅州)若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.6【解答】解:设边数为n,根据题意得(n﹣2)•180°<360°解之得n<4.∵n为正整数,且n≥3,∴n=3.故选A.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题既可用整式方程求解,也可用不等式确定范围后求解.3.(2014•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.【点评】本题考查了多边形的内角和外角以及三角形的内角和定理,属于基础题.4.(2004•陕西)如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于一点P,若∠A=50°,则∠BPC=()A.150°B.130°C.120°D.100°【解答】解:∵BE⊥AC,CD⊥AB,∴∠ADC=∠AEB=90°,∴∠BPC=∠DPE=180°﹣50°=130°.故选B.【点评】主要考查了垂直的定义以及四边形内角和是360度.注意∠BPC与∠DPE互为对顶角.5.(2015•丽水)一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【解答】解:外角是180°﹣120°=60°,360÷60=6,则这个多边形是六边形.故选:C.【点评】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.6.(2015•葫芦岛)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60° B.65° C.55°D.50°【解答】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【点评】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.7.(2015•莱芜)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.54【解答】解:设这个内角度数为x,边数为n,∴(n﹣2)×180°﹣x=1510,∵n为正整数,∴n=11,∴=44,故选:C.【点评】此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.8.(2015•南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选B.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.9.(2014•临沂)将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°【解答】解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n﹣1)•180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.故选:C.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容.10.(2016•凉山州)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)解得:n=8.则原多边形的边数为7或8或9.故选:D.【点评】本题考查了多边形的内角和定理,一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变.11.(2015•北仑区一模)一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为()A.8 B.9 C.10 D.12【解答】解:设正多边形的每个外角的度数为x,与它相邻的内角的度数为4x,依题意有x+4x=180°,解得x=36°,这个多边形的边数=360°÷36°=10.故选:C.【点评】本题考查了多边形的外角定理:多边形的外角和为360°.也考查了邻补角的定义.12.(2014•大丰市模拟)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°【解答】解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.【点评】本题考查了直角三角形的性质和四边形的内角和定理.知道剪去直角三角形的这个直角后得到一个四边形,根据四边形的内角和定理求解是解题的关键.13.(2015•无锡模拟)如果一个多边形的内角和等于1260°,那么这个多边形的边数为()A.7 B.8 C.9 D.10【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9,故选C.【点评】本题考查了多边形的内角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.14.(2015•重庆)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.15.(2014•莱芜)若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.16【解答】解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选:C.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的外角和定理是关键.16.(2012秋•渝中区校级期末)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6 B.5 C.8 D.7【解答】解:从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7﹣2=5个三角形.故选:B.【点评】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n﹣2)个三角形.二.填空题(共8小题)17.(2015•资阳)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8 .【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.18.(2014•巴中)若一个正多边形的一个内角等于135°,那么这个多边形是正八边形.【解答】解:∵内角与外角互为邻补角,∴正多边形的一个外角是180°﹣135°=45°,∵多边形外角和为360°,∴360°÷45°=8,则这个多边形是八边形.故答案为:八.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.19.(2014•遵义)正多边形的一个外角等于20°,则这个正多边形的边数是18 .【解答】解:因为外角是20度,360÷20=18,则这个多边形是18边形.故答案为:18【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.20.(2013•巴中)若一个多边形外角和与内角和相等,则这个多边形是四边形.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=360°,解得n=4.故答案为:四.【点评】本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.21.(2013•乐山)如图,在四边形ABCD中,∠A=45°.直线l与边AB,AD分别相交于点M,N,则∠1+∠2= 225°.【解答】解:∵∠A=45°,∴∠B+∠C+∠D=360°﹣∠A=360°﹣45°=315°,∴∠1+∠2+∠B+∠C+∠D=(5﹣2)•180°,解得∠1+∠2=225°.故答案为:225°.【点评】本题考查了多边形的内角和公式,熟记多边形的内角和为(n ﹣2)•180°是解题的关键,整体思想的利用也很重要.22.(2015•盘锦二模)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2= 240°.【解答】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点评】主要考查了三角形及四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.23.(2016•太原一模)如图,已知正五边形ABCDE,AF∥CD,交DB 的延长线于点F,则∠DFA= 36 度.【解答】解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°,故答案为:36.【点评】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.24.(2015•崇安区二模)正n边形的一个内角比一个外角大100°,则n 为9 .【解答】解:设内角为x°,则外角为(x﹣100)°,根据题意得:x+x﹣100=180,解得:x=140,所以外角为40°,∴360°÷40°=9,故答案为:9.【点评】本题考查了多边形的内角与外角,解题的关键是知道多边形的外角和为360°.三.解答题(共1小题)25.(2015春•沙河市期末)在△ABC中,如果∠A、∠B、∠C的外角的度数之比是4:3:2,求∠A的度数.【解答】解:设∠A、∠B、∠C的外角分别为∠1=4x度、∠2=3x度、∠3=2x度.(1分)因为∠1、∠2、∠3是△ABC的三个外角,所以4x+3x+2x=360,解得x=40.(2分)所以∠1=160°、∠2=120°、∠3=80°.(1分)因为∠A+∠1=180°,(1分)所以∠A=20°.(1分)【点评】本题主要考查三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角形的外角性质定理,即三角形的一个外角等于与它不相邻的两个内角之和.。

多边形及其内角和练习题及答案

多边形及其内角和练习题及答案

7.3 多边形及其内角和(检测时间50分钟满分100分)一、选择题:(每小题3分,共24分)1.一个多边形的外角中,钝角的个数不可能是( ) A.1个 B.2个 C.3个 D.4个2.不能作为正多边形的内角的度数的是( ) A.120 B.(12847)°C.144 D.145°3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( )A.2:1B.1:1C.5:2D.5:44.一个多边形的内角中,锐角的个数最多有( )A.3个 B.4个 C.5个 D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角可能( )A.都是钝角;B.都是锐角C.是一个锐角、一个钝角D.是一个锐角、一个直角6.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )A.十三边形B.十二边形C.十一边形D.十边形7.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形8.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( ) A.90° B.105° C.130° D.120°二、填空题:(每小题3分,共15分)1.多边形的内角中,最多有________个直角.2.从n边形的一个顶点出发,最多可以引______条对角线, 这些对角线可以将这个多边形分成________个三角形.3.如果一个多边形的每一个内角都相等,且每一个内角都大于135°, 那么这个多边形的边数最少为________.4.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为_________.5.每个内角都为144°的多边形为_________边形.三、基础训练:(每小题12分,共24分)1.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(n=20)时,需要多少根火柴? 2.一个多边形的每一个外角都等于24°,求这个多边形的边数.四、提高训练:(共15分)一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.五、探索发现:(共18分)从n边形的一个顶点出发,最多可以引多少条条对角线?请你总结一下n边形共有多少条对角线.六、中考题与竞赛题:(共4分)(2002·湖南)若一个多边形的内角和等于1080°,则这个多边形的边数是( ) A.9 B.8 C.7 D.6n=3n=2n=17.4 课题学习镶嵌(检测时间50分钟满分100分)一、选择题:(每小题3分,共18分)1.用形状、大小完全相同的图形不能镶嵌成平面图案的是( )A.等腰三角形B.正方形C.正五边形D.正六边形2.下列图形中,能镶嵌成平面图案的是( )A.正六边形B.正七边形C.正八边形D.正九边形3.不能镶嵌成平面图案的正多边形组合为( )A.正八边形和正方形B.正五边形和正十边形C.正六边形和正三角形D.正六边形和正八边形4.如图所示,各边相等的五边形ABCDE中,若∠ABC=2∠DBE,则∠ABC等于( )A.60°B.120°C.90°D.45°5.用正三角形和正十二边形镶嵌,可能情况有( )A.1种B.2种C.3种 C.4种6.用正三角形和正六边形镶嵌,若每一个顶点周围有m个正三角形、n 个正六边形,则m,n满足的关系式是( )A.2m+3n=12B.m+n=8C.2m+n=6D.m+2n=6二、填空题:(每小题4分,共12分)1.用正三角形和正六边形镶嵌,在每个顶点处有_______个正三角形和_____ 个正六边形,或在每个顶点处有______个正三角形和________个正六边形.2.用正多边形镶嵌,设在一个顶点周围有m个正方形、n个正八边形,则m=_____,n=______.3.用一种正五边形或正八边形的瓷砖_______铺满地面.(填“能”或“不能”)三、基础训练:(每小题15分,共30分)1.计算用一种正多边形拼成平整、无隙的图案,你能设计出几种方案?画出草图.2.用一个正方形、一个正五边形、一个正二十边形能否镶嵌成平面图案? 说明理由.四、提高训练:(共15分)请你设计在每一个顶点处由四个正多边形拼成的平面图案, 你能设计出多少种不同的方案?五、探索发现:(共15分)如图2所示的地面全是用正三角形的材料铺设而成的.(1)用这种形状的材料为什么能铺成平整、无隙的地面?(2)像上面那样铺地砖,能否全用正十边形的材料?为什么?(3)你能不能另外想出一种用多边形(不一定是正多边形)的材料铺地面的方案?把你想到的方案画成草图.六、中考题竞赛题:(共10分)用黑、白两种颜色的正六边形地砖按如图3所示的规律,拼成若干个图案.(1)第四个图案中有白色地砖_______块;(2)第n个图案中有白色地砖________块.EBA答案:一、1.C 2.A 3.C 4.A 5.A 6.D二、1.2 2 4 1 2.1 2 3.不能三、略四、略五、(1)每个顶点周围有6个正三角形的内角,恰好组成一个周角.(2)不能,因为正十边形的内角不能组成360°.(3)能(图略)六、(1)18 (2)4n+2.答案:一、1.D 2.D 3.D 4.A 5.C 6.A 7.B 8.C二、1.4 2.(n-3) (n-2) 3.9 4.11 5.十三、1.630根 2.15四、边数为2()m nn+,n=1或2.五、(n-3)(3)2n n-条六、B.。

11.3 多边形及其内角和(基础训练)(解析版)

11.3 多边形及其内角和(基础训练)(解析版)

11.3 多边形及其内角和【基础训练】一、单选题1.若一个正多边形的每个内角为144︒,则这个正多边形的边数是()A.7B.10C.12D.14【答案】B【分析】根据多边形的内角和公式,可得答案.【详解】解:设正多边形是n边形,由内角和公式得(n-2)180°=144°×n,解得n=10,故选:B.【点睛】本题考查了多边形内角与外角,由内角和得出方程是解题关键.2.一个正多边形的一个内角是150︒,则这个正多边形的边数为()A.2B.3C.9D.12【答案】D【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:外角是:180°-150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:D.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数是解题关键.3.一个n边形的各内角都等于120 ,则n等于()A.5B.6C.7D.8【答案】B【分析】首先求出外角度数,再用360°除以外角度数可得答案.【详解】解:∵n边形的各内角都等于120°,∵每一个外角都等于180°-120°=60°,∵边数n=360°÷60°=6.故选:B.【点睛】此题主要考查了多边形的外角和定理,外角与相邻的内角的关系,关键是掌握各知识点的计算公式.4.如图,在∵ABC中,∵A=90°,若沿图中虚线截去∵A,则∵1+∵2的度数为()A.90°B.180°C.270°D.300°【答案】C【分析】在∵ABC中,利用三角形内角和定理可求出∵B+∵C的度数,再利用四边形内角和为360°,即可求出∵1+∵2的度数.【详解】解:在∵ABC中,∵A=90°,∵A+∵B+∵C=180°,∵∵B+∵C=180°﹣90°=90°,又∵∵1+∵2+∵B+∵C=360°,∵∵1+∵2=360°﹣90°=270°.故选:C.【点睛】本题考查三角形和四边形内角和的性质,熟知:“三角形内角和为180°,四边形内角和为360°”是解答本题的关键.5.下列多边形中,内角和为360°的图形是()A.B.C.D.【答案】B【分析】若多边形的边数是n,则其内角和计算公式为(n﹣2)•180°,据此进行解答即可.【详解】解:由多边形内角和公式可得,(n﹣2)•180°=360°,解得n=4,是四边形,故选择B.【点睛】本题考查了多边形的内角和计算,牢记其公式是解题关键.6.若一个正多边形的内角和等于其外角和的3倍,则这个正多边形是()A.5边形B.6边形C.7边形D.8边形【答案】D【分析】设多边形的边数是n,根据多边形的外角和是360°,以及多边形的内角和公式列出方程即可求解.【详解】解:设多边形的边数是n,则180(n﹣2)=3×360,解得:n=8.故选:D.【点睛】本题考查了多边形的内角和公式以及外角和定理,根据多边形的内角和公式以及外角和定理列出方程是解题关键.7.某校初一数学兴趣小组对教材《多边形的内角和与外角和》的内容进行热烈的讨论,甲说:“∵∵∵∵∵∵∵∵∵1,则内角和增加180°”;乙说:“∵∵∵∵∵∵∵∵∵1,则外角和增加180°”;丙说:“∵∵∵∵∵∵∵∵∵∵∵∵∵∵”;丁说:“∵∵∵∵∵∵,外角和都是360°”∵∵∵∵∵∵∵∵( )A .甲和丁B .乙和丙C .丙和丁D .以上都不对【答案】A【分析】根据多边形的内角和与外角和逐个判断即可.【详解】多边形的内角和公式为180(2)n ︒-,n 为多边形的边数当n 增加1,则内角和增加180︒,甲说法正确任意多边形的外角和都等于360︒,则乙说法错误,丁说法正确当3n =时,多边形的内角和为180︒,外角和为360︒,则丙说法错误综上,说法正确的是甲和丁故选:A .【点睛】本题考查了多边形的内角和与外角和,熟记多边形的内角和与外角和是解题关键.8.如图,七边形ABCDEFG 中,AB 、ED 的延长线交于点O ,若1∠,2∠,3∠,4∠相邻的外角的和等于210,则BOD ∠的度数是( )A .30B .35C .40D .45【答案】A【分析】 由外角和内角的关系可求得∵1、∵2、∵3、∵4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∵BOD .【详解】解:∵∵1、∵2、∵3、∵4的外角的角度和为210°,∵∵1+∵2+∵3+∵4+210°=4×180°,∵∵1+∵2+∵3+∵4=510°,∵五边形OAGFE 内角和=(5−2)×180°=540°,∵∵1+∵2+∵3+∵4+∵BOD=540°,∵∵BOD=540°−510°=30°,故选A.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∵1、∵2、∵3、∵4的和是解题的关键.9.若一个多边形的内角和为外角和的3倍,则这个多边形为()A.八边形B.九边形C.十边形D.十二边形【答案】C【分析】设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4,解方程可得.【详解】解:设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4n-2=8解得:n=10所以,这是个十边形故选C.【点睛】本题考核知识点,多边形的内角和外角.解题关键点,熟记多边形内角和计算公式.10.五边形的外角和等于()A.180°B.360°C.540°D.720°【答案】B【详解】根据多边形的外角和等于360°解答.解:五边形的外角和是360°.故选B.本题考查了多边形的外角和定理,多边形的外角和与边数无关,任意多边形的外角和都是360°.11.在某广场整修工程中,计划采用同一种正多边形地板砖铺设地面.则下列满足要求的地板砖是()A.正五边形B.正六边形C.正七边形D.正八边形【答案】B【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.【详解】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∵用同一种正多边形铺满地面,则可供选择的正多边形是正六边形.故选:B.【点睛】此题主要考查了平面镶嵌,用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.12.一个多边形的内角和是外角和的2倍,这个多边形是()A.三角形B.四边形C.五边形D.六边形【答案】D【分析】根据多边形的内角和公式(n-2)•180°和外角和定理列出方程,然后求解即可.【详解】解:设多边形的边数为n,由题意得,(n-2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选:D.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.13.一个五边形截去个角后剩下的多边形内角和是()A.360︒B.540︒C.720︒D.360︒或540︒或720︒【答案】D【分析】一个五边形剪去一个角后,分三种情况:∵边数可能减少1,∵边数可能增加1,∵边数可能不变;然后分别求出每一种情况下的多边形的内角和.【详解】解:一个五边形剪去一个角后,分三种情况:∵边数可能减少1,∵边数可能增加1,∵边数可能不变;∵四边形的内角和为:360°;∵六边形的内角和为:(6-2)×180°=720°;∵五边形的内角和为:(5-2)×180°=540°;故选D.【点睛】此题主要考查了多边形内角和公式,解题的关键是:根据题意,讨论出剪去一个角后的各种情况.∠+∠=()14.如图三角形纸片,剪去60︒角后,得到一个四边形,则12A.120︒B.180︒C.240︒D.300︒【答案】C【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∵1+∵2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∵1,∵2后的两角的度数为180°-60°=120°,则根据四边形的内角和定理得:∵1+∵2=360°-120°=240°.故选:C.【点睛】本题主要考查四边形的内角和,解题的关键是掌握四边形的内角和为360°及三角形的内角和为180°.15.一个多边形的每一个外角都等于36°,则该多边形的内角和等于()A .360°B .1080°C .1260°D .1440°【答案】D【分析】 根据外角和以及每一个外角确定出多边形的边数,即可求出内角和.【详解】解:根据题意得:360°÷36°=10,(10-2)×180°=1440°,则该多边形的内角和等于1440°,故选:D .【点睛】此题考查了多边形的内角与外角,熟练掌握各自的性质是解本题的关键.16.如图,B E F ∠+∠+∠等于( )A .360°B .335°C .385°D .405°【答案】C【分析】根据多边形的内角和公式解答即可.【详解】解:由多边形的内角和公式可得:()62180720-⨯︒=︒,∵72012012590385B E F ∠+∠+∠=︒-︒-︒-︒=︒,【点睛】本题考查多边形的内角和,掌握多边形的内角和公式是解题的关键.17.下列说法中,正确的个数有()∵若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;∵一个三角形中,至少有一个角不小于60°;∵三角形的外角大于与它不相邻的任意一个内角;∵一个多边形的边数每增加一条,这个多边形的内角和就增加180°;A.1个B.2个C.3个D.4【答案】C【分析】分别根据三角形的三边关系,三角形的内角和定理,三角形的外角性质以及多边形的内角和公式逐一判断即可.【详解】解:∵若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形,说法错误;改正为:若任意两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;∵一个三角形中,至少有一个角不小于60°,说法正确;∵三角形的外角大于与它不相邻的任意一个内角,说法正确;∵一个多边形的边数每增加一条,这个多边形的内角和就增加180°,说法正确.所以正确的个数有3个.故选:C.【点睛】本题主要考查了三角形的三边关系,三角形的内角和定理,多边形的内角与外角以及三角形的外角性质,熟记相关知识是解答本题的关键.18.一个多边形的每个内角都相等,已知它的一个外角为20°,那么这个多边形是一个()A.正十八边形B.正十六边形C.正十四边形D.正十二边形【答案】A【分析】根据多边形的外角和为360°,而多边形每个外角都等于20°,可求多边形外角的个数,确定多边形的边数.解:∵多边形的外角和为360°,360°÷20°=18,∵这个多边形是正十八边形,故选:A.【点睛】本题考查了多边形内角与外角.关键是利用多边形的外角和为360°的性质,求多边形的边数.19.科技馆为某机器人编制了一个程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为()A.12米B.16米C.18米D.20米【答案】C【分析】先判断出机器人所走过的路线是正多边形,然后用多边形的外角和除以每一个外角的度数求出多边形的边数,再根据周长公式列式进行计算即可得解.【详解】解:根据题意得,机器人所走过的路线是正多边形,∵每一次都是左转20°,∵多边形的边数=360°÷20°=18,周长=18×1=18(米),故选:C.【点睛】本题考查了多边形的内角与外角,判断出走过的路线是正多边形是解题的关键.20.如图,有一个正五边形木框,若要保证它不变形,需要再钉的木条根数至少是()A.1B.2C.3D.4【答案】B【分析】根据三角形具有稳定性,钉上木条后把五边形分成三角形即可.【详解】解:如图,要保证它不变形,至少还要再钉上2根木条.故选:B.【点睛】本题考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.21.内角和为720°的多边形是().A.三角形B.四边形C.五边形D.六边形【答案】D【分析】根据多边形内角和的计算方法(n-2)•180°,即可求出边数.【详解】解:依题意有(n-2)•180°=720°,解得n=6.该多边形为六边形,【点睛】本题考查了多边形的内角和,利用多边形的内角和计算公式正确计算是解题关键.22.若一个多边形的每个内角都等于160°,则这个多边形的边数是()A.18B.19C.20D.21【答案】A【分析】设多边形的边数为n,然后根据多边形的内角和公式(n−2)•180°列方程求解即可.【详解】设多边形的边数为n,由题意得,(n−2)•180=160•n,解得:n=18,故选:A.【点睛】本题考查了多边形内角和公式,熟记多边形的内角和公式是解题的关键.23.如图,在五边形ABCDE中,AB∵CD,∵A=135°,∵C=60°,∵D=150°,则∵E的大小为()A.60°B.65°C.70°D.75°【答案】D【分析】先根据多边形的内角和公式求出五边形的内角和,根据AB∵CD得到∵B+∵C=180°,即可求出∵E的大小.【详解】解:由五边形的内角和公式得(5-2)×180°=540°,∵AB∵CD,∵∵B+∵C=180°,∵∵E=540°-∵A-∵B-∵C-∵D=540°-135°-180°-150°=75°.【点睛】本题考查了多边形的内角和公式,平行线的性质,熟练掌握多边形的内角和公式是解题关键.24.如图,四边形ABCF ≅四边形EDCF ,若150AFC DCF ∠+∠=︒,则A B D E ∠+∠+∠+∠的大小是( )A .240︒B .300︒C .420︒D .460︒【答案】C【分析】 根据全等的性质得到300AFE BCD ∠+∠=,再根据六边形的内角和即可求解.【详解】解:∵四边形ABCF ≅四边形EDCF ,150AFC DCF ∠+∠=,∵150EFC DCF ∠+∠=,∵300AFE BCD ∠+∠=.又∵六边形的内角和为()62180720-⨯=,∵720300420A B D E ∠+∠+∠+∠=-=.故选C .【点睛】此题主要考查多边形的角度求解,解题的关键是熟知多边形的内角和的求解公式.25.如图的七边形ABCDEFG 中,AB 、ED 的延长线相交于O 点.若图中1∠、2∠、3∠、4∠的外角的角度和为220︒,则BOD ∠的度数为( )A .40︒B .35︒C .80︒D .20︒【答案】A【分析】 根据外角和内角的关系可求得∵1、∵2、∵3、∵4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∵BOD .【详解】解:∵∵1、∵2、∵3、∵4的外角的角度和为220°,∵∵1+∵2+∵3+∵4+220°=4×180°,∵∵1+∵2+∵3+∵4=500°,∵五边形OAGFE 内角和=(5﹣2)×180°=540°,∵∵1+∵2+∵3+∵4+∵BOD =540°,∵∵BOD =540°﹣500°=40°.故选:A.【点睛】本题主要考查的是多边形内角与外角的知识点,熟练掌握多边形内角与外角的关系是本题的解题关键. 26.一副三角板如图所示摆放,则α∠与β∠的数量关系为( )A .180αβ∠+∠=︒B .225αβ∠+∠=︒C .270αβ∠+∠=︒D .αβ∠=∠【答案】B【分析】先根据对顶角相等得出1α∠=∠,2β∠=∠,再根据四边形的内角和即可得出结论【详解】解: ∵219045360∠+∠++=︒︒︒;∵21225∠+∠=︒;∵1α∠=∠,2β∠=∠;∵225αβ∠+∠=︒故选:B【点睛】本题考查了四边形的内角和定理,和对顶角的性质,熟练掌握相关的知识是解题的关键27.如图,已知∵ABC 为直角三角形,90B ∠=︒,若沿图中虚线剪去∵B ,则∵1+∵2等于( )A .315°.B .180°C .270°D .135°.【答案】C【分析】 根据三角形的内角和定理及四边形的内角和定理进行计算即可得解.【详解】∵90B ∠=︒,180A B C ∠+∠+∠=︒,∵90A C ∠+∠=︒,∵12360A C ∠+∠+∠+∠=︒,∵1236090270∠+∠=︒-︒=︒,故选:C.【点睛】本题主要考查了三角形的内角和定理及四边形的内角和定理,熟练掌握相关角的计算是解决本题的关键. 28.如图,∵1,∵2,∵3是五边形ABCDE 的3个外角,若∵A+∵B =220°,则∵1+∵2+∵3=( )A.140°B.180°C.220°D.320°【答案】C【分析】根据∵A+∵B=220°,可求∵A、∵B的外角和,再根据多边形外角和360°,可求∵1+∵2+∵3的值.【详解】解:根据∵A+∵B=220°,可知∵A的一个邻补角与∵B的一个邻补角的和为360°﹣220°=140°.根据多边形外角和为360°,可知∵1+∵2+∵3=360°﹣140°=220°.故选C.【点睛】本题主要考查多边形的外角和公式,内外角的转化是解题的关键.29.如图,五边形ABCDE中,AB∵CD,∵1、∵2、∵3分别是∵BAE、∵AED、∵EDC的外角,则∵1+∵2+∵3等于A.90°B.180°C.210°D.270°【答案】B【详解】试题分析:如图,如图,过点E作EF∵AB,∵AB∵CD ,∵EF∵AB∵CD ,∵∵1=∵4,∵3=∵5,∵∵1+∵2+∵3=∵2+∵4+∵5=180°,故选B30.已知一个多边形的内角和等于900º,则这个多边形是( ∵A .五边形B .六边形C .七边形D .八边形【答案】C【详解】试题分析:多边形的内角和公式为(n -2)×180°,根据题意可得:(n -2)×180°=900°,解得:n=7. 考点:多边形的内角和定理.二、填空题31.如图:在六边形ABCDEF 中,//,//,//,150AB DE BC EF CD AF A ∠=︒,则C E ∠+∠=__________.【答案】210°【分析】连接DE ,利用平行线的性质证明∵ABC =∵DEF ,∵A =∵D ,∵C =∵F ,再计算出六边形内角和,结合∵A 的度数可得结果.【详解】解:如图,连接DE,∵AB∵DE,BC∵EF,∵∵1=∵2,∵3=∵4,∵∵1+∵4=∵2+∵3,即∵ABC=∵DEF,同理:∵A=∵D,∵C=∵F,∵∵A+∵C+∵D+∵F+∵ABC+∵DEF=(6-2)×180°=720°,∵∵A+∵C+∵DEF=360°,∵∵A=150°,∵∵C+∵DEF=210°,故答案为:210°.【点睛】本题考查了平行线的性质,多边形内角和,作出辅助线,证明∵ABC=∵DEF是解题的关键.∠+∠+∠+∠+∠+∠=______.32.一个不规则的图形如右图所示,那么A B C D E F【答案】360°【分析】根据三角形外角的性质,可得∵1与∵E、∵AFE的关系,∵1、∵2、∵D的关系,根据多边形的内角和公式,可得答案.【详解】解:如图延长AF交DC于G点,由三角形的外角等于与它不相邻的两个内角的和,得∵1=∵E+∵AFE,∵2=∵1+∵D,等量代换,得∵2=∵E+∵F+∵D,∵A+∵B+∵C+∵D+∵E+∵AFE=∵A+∵B+∵2+∵C=(4﹣2)×180°=360°.故答案为:360°.【点睛】本题考查的是三角形外角的性质及四边形的内角和,熟知三角形外角的性质和多边形内角和公式是解答此题的关键.33.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∵1、∵2、∵3、∵4的外角的角度和为220°,则∵BOD的度数为__________.【答案】40【分析】由外角和内角的关系可求得∵1、∵2、∵3、∵4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∵BOD.【详解】解:∵∵1、∵2、∵3、∵4的外角的角度和为220°,∵∵1+∵2+∵3+∵4+220°=4×180°,∵∵1+∵2+∵3+∵4=500°,∵五边形OAGFE内角和=(5-2)×180°=540°,∵∵1+∵2+∵3+∵4+∵BOD =540°,∵∵BOD =540°-500°=40°,故答案为:40°.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∵1、∵2、∵3、∵4的和是解题的关键. 34.一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的内角和是______.【答案】1260°【分析】设这个正多边形的外角为x ,则内角为5x ﹣60,根据内角和外角互补可得x +5x ﹣60=180,解可得x 的值,再利用外角和360°÷外角度数可得边数,根据内角和公式:(n ﹣2)×180°计算内角和即可.【详解】解:设这个正多边形的外角为x ,则内角为5x ﹣60°,由题意得:x +5x ﹣60=180,解得:x =40,360°÷40°=9.(9﹣2)×180°=1260°故答案为:1260°.【点睛】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.35.如图,一个直角三角形纸板的直角边,AC BC 分别经过正八边形的两个顶点,则图中12∠+∠=____【答案】180º【分析】利用∵C=90︒,求得∵3+∵4=90︒,利用公式求出正八边形的每个内角的度数=(82)1801358-⨯︒=︒,即可求出答案.【详解】解:如图,∵∵C=90︒,∵∵3+∵4=90︒,∵正八边形的每个内角的度数=(82)1801358-⨯︒=︒,∵∵1+∵2=135290︒⨯-︒=180︒,故答案为:180︒.【点睛】此题考查直角三角形两锐角互余的性质,正多边形内角和公式,熟记正多边形内角和公式是解题的关键.三、解答题36.一个正多边形的一个外角的度数等于它的一个内角度数的13,求这个正多边形的边数.【答案】8【分析】首先设正多边形的一个外角等于x°,则内角为3x°,即可得方程:x+3x=180,解此方程得到外角度数,再根据外角和求边数即可.【详解】解:设正多边形的一个外角等于x°,∵外角等于它的一个内角的13,∵这个正多边形的一个内角为:3x°,∵x+3x=180,解得:x=45,∵这个多边形的边数是:360°÷45°=8.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用.37.一个多边形的内角和比外角和的13多780︒,它是几边形?【答案】它是七边形【分析】根据多边形的内角和公式(n-2)•180°和外角和等于360°列方程求解即可.【详解】解:设这个多边形边数为n,依题意得:()121803607803n-⋅︒=︒⨯+︒,解得:7n=,答:它是七边形.【点睛】本题考查了多边形的内角和与外角和,只要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.38.(1)计算:()2 031220183-⎛⎫+---⎪⎝⎭(2)若一个多边形的内角和与它的外角和相等,求这个多边形边数.【答案】(1)0;(2)4.【分析】(1)先分别计算乘方,再计算加减法.(2)多边形内角和公式为(2)180n-⨯,外角和为360,由此设边数列方程解答即可.【详解】(1)()2031220183-⎛⎫+--- ⎪⎝⎭ =8+1-9=0;(2)设这个多边形的边数为n ,(2)180360n -⨯=,n=4,.【点睛】此题(1)考查实数的运算,正确理解正指数幂、零次幂、负指数幂的计算方法是解题的关键;(2)考查多边形的内角和公式与外角和,熟记公式即可正确列式计算.39.已知n 边形的内角和()2180n θ=-⨯︒.(1)当900θ=︒时,求出边数n ;(2)小明说,θ能取800︒,这种说法对吗?若对,求出边数n ;若不对,说明理由.【答案】(1)7n =;(2)不能取800︒.∵∵∵∵∵.【分析】(1)将900θ=︒代入内角和公式计算即可得;(2)将800θ=︒代入内角和公式计算n 的值,如果n 是正整数,则说法对;如果n 不是整数,则说法不对.【详解】(1)()9002180n ︒=-⨯︒,整理得25n -=,解得7n =;(2)小明的说法不对,理由如下:当θ取800︒时,()8002180n ︒=-⨯︒,解得589n = n 为正整数,θ∴不能取800︒.【点睛】本题考查了多边形的内角和公式,依据题意正确求解是解题关键.40.如图,已知四边形ABCD 中,∵A=∵D ,∵B=∵C ,试判断AD 与BC 的关系,并说明理由.【答案】AD∵BC ,理由见解析【分析】根据四边形的内角和是360°,结合已知条件得到∵A+∵B=180°,根据同旁内角互补,两直线平行得AD∵BC .【详解】解:AD 与BC 的关系是:AD∵BC .理由:∵四边形ABCD 的内角和是360°,∵∵A+∵B+∵C+∵D=360°,∵∵A=∵D ,∵B=∵C ,∵∵A+∵B+∵B+∵A=360°,∵∵A+∵B=180°,∵AD∵BC (同旁内角互补,两直线平行).【点睛】本题考查四边形的内角和,平行线的判定,解题的关键是熟记四边形的内角和是360°.41.如图,在∵ABC 中,AB =AC ,BD 、CE 是高,BD 与CE 相交于点O .(1)求证:OB =OC ;(2)若∵BAC =80°,求∵BOC 的度数.【答案】(1)见解析;(2)∵BOC =100°.【分析】(1)证明∵ABD∵∵ACE (AAS ),即可得出BD =CE ;(2)利用四边形内角和定理即可解决问题;【详解】(1)证明:∵BD 、CE 是高,∵∵ADB =∵AEC =90°,在∵ABD 和∵ACE 中,ADB AEC BAD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∵∵ABD∵∵ACE(AAS),∵BD=CE.(2)解:∵∵A=80°,∵ADB=∵AEC=90°,∵∵BOC=360°﹣∵BAC﹣∵AEC﹣∵ADB,=360°﹣80°﹣90°﹣90°=100°.【点睛】本题考查全等三角形的判定和性质、四边形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题.42.画出图中多边形的所有对角线。

2023-2024学年人教版数学八年级上册 11.3多边形及其内角和同步练习(含答案)

2023-2024学年人教版数学八年级上册  11.3多边形及其内角和同步练习(含答案)

2023-2024学年人教版数学八年级上册11.3多边形及其内角和同步练习(含答案)2023-2024学年人教版数学八年级上册11.3 多边形及其内角和同步练习一、单选题1.五边形的内角和为()A.720° B.540° C.360° D.180°2.下列角度中,不能成为多边形内角和的是()A.600° B.720° C.900° D.1080°3.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形4.若从一个正多边形的一个顶点出发,最多可以引5条对角线,则它的一个内角为()A.B.C.D.5.如果一个四边形的面积正好等于它的两条对角线乘积的一半,那么这个四边形一定是()A.菱形B.矩形C.正方形D.对角线互相垂直的四边形6.在一个凸n边形的纸板上切下一个三角形后,剩下一个内角和为1080°的多边形,则n的值为()A.7 B.8C.9 D.以上都有可能7.一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.14或15或16 B.15或16或17 C.15或16 D.16或178.下列说法中,正确的个数有()①若一个多边形的外角和等于360°,则这个多边形的边数为4;②三角形的高相交于三角形的内部;③三角形的一个外角大于任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加;⑤对角线共有5条的多边形是五边形.A.1个B.2个C.3个D.4个二、填空题9.若一个正多边形的一个外角等于18°,则这个正多边形的边数是.10.一个多边形的内角和与外角和的比是4:1,则它的边数是.11.如图,点O是正五边形ABCDE的中心,连接BD、OD,则∠BDO =°.12.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.13.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=度.三、解答题14.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.15.如图,是四边形的一个外角,且.那么与互补吗?为什么?16.如图,CD∠AF,∠CDE=∠BAF,AB∠BC,∠C=120°,∠E=80°,试求∠F的度数.17.如图,四边形ABCD中,BA丄DA,CD丄BC,BE、DF分别是∠ABC、∠ADC的平分线.(1)∠1与∠2有什么数量关系,为什么?(2)BE与DF有什么位置关系?请说明理由.18.如图,将六边形纸片ABCDEF沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=460°.(1)求六边形ABCDEF的内角和;(2)求∠BGD的度数.19.如图,五边形中,.(1)求的度数;(2)直接写出五边形的外角和.参考答案1.B 2.A 3.C 4.D 5.D 6.D 7.A 8.B 9.2010.1011.1812.24°13.360 °14.解:根据题意,得(n﹣2)180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.15.解:与互补,理由如下:∠ ,∠ABC+=180∠∠ABC+∠D=180 ,∠四边形内角和等于360 ,∠ + =360°-(∠ABC+∠D)=180°∠ 与互补.解:如图,连结AD在四边形ABCD中,∠BAD+∠ADC+∠B+∠C=360°.∠AB∠BC,∠∠B=90°.又∠∠C=120°,∠∠BAD+∠ADC=150°.∠CD∠AF,∠∠CDA=∠DAF.又∠∠CDE =∠BAF,∠∠EDA=∠BAD.在四边形ADEF∠DAF+∠EDA+∠F+∠E=360°,∠∠F+∠E=360°(∠ADC+∠BAD)=210°.又∠∠E=80°,∠∠F=130°17.(1)解:∠1+∠2=90°;理由如下:∠BE,DF分别是∠ABC,∠ADC的平分线,∠∠ABC=2∠1,∠ADC=2∠2,∠BA丄DA,CD丄BC,∠∠A=∠C=90°,∠∠ABC+∠ADC=180°,∠2(∠1+∠2)=180°,∠∠1+∠2=90°;(2)解:BE∠DF;理由如下:在∠FCD中,∠∠C=90°,∠∠DFC+∠2=90°,∠∠1+∠2=90°,∠∠1=∠DFC,∠BE∠DF.18.(1)解:六边形ABCDEF的内角和为:180°×(6-2)=720°;(2)解:∠∠1+∠2+∠3+∠4+∠5=460°,∠∠GBC+∠C+∠CDG=720°-460°=260°,∠∠G=360°-(∠GBC+∠C+∠CDG)=100°.19.(1)解:∠AE∠CD,∠∠D+∠E=180°,∠五边形ABCDE中,∠A=100°,∠B=120°,∠.(2)解:根据多边形的外角和定理:五边形的外角和是:°。

11.3多边形及其内角和练习题(含答案)

11.3多边形及其内角和练习题(含答案)

11.3多边形及其内角和练习题姓名:_______________班级:_______________考号:_______________一、选择题1、n边形所有对角线的条数有()A. B. C. D.2、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270°C.180° D.135°3、一个多边形的内角和与它的一个外角的和为,那么这个多边形的边数为()A.5 B.6C.7D.84、如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,则∠COD的度数是()A.80°B.90°C.100°D.110°5、一个四边形,截一刀后得到的新多边形的内角和将()A.增加180°B.减少180° C.不变 D.以上三种情况都有可能6、如果一个多边形的边数变为原来的2倍后,其内角和增加了1260°,则这个多边形的边数为()A.7 B.8 C.9 D.107、一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A. 5 B. 5或6 C. 5或7 D. 5或6或78、多边形的每个内角都等于150°,则从此多边形的一个顶点出发可引的对角线有A.8条B.9条C.10条D.11条9、一个多边形有14条对角线,那么这个多边形有()条边A.6B.7C.8D.910、一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为--()A.8 B.9 C.10 D.1211、如图,国旗上的五角星的五个角的度数是相同的,每一个角的度数都是()A.30° B.35° C.36° D.42°12、一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.813、一个正多边形每个外角都是30°,则这个多边形边数为()A.10 B.11 C.12 D.1314、正多边形的一个内角的度数为108°,则这个正多边形的边数为A. 4B. 5C. 6D. 715、多边形的边数增加1,则它的外角和()A.不变 B.增加180° C.增加360° D.无法确定二、填空题16、一块四边形绿化园地,四角都做有半径为R的圆形喷水池,则这四个喷水池占去的绿化园地的面积为.17、如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= _________ .18、如图,正方形ABCD中,截去∠B、∠D后,∠1、∠2、∠3、∠4的和为19、一个多边形的内角和与外角和之比为9:2,则从这个多边形的个顶点可以引_______条对角线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形及其内角和
一、选择题:
1.一个多边形的内角和是720°,则这个多边形是( )
A.四边形
B.五边形
C.六边形
D.七边形
2.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( )
3.若正n 边形的一个外角为60°,则n 的值是( )
4.下列角度中,不能成为多边形内角和的是( )
° ° ° °
5.若一个多边形的内角和与外角和之和是1800°,则此多边形是( )
A.八边形
B.十边形
C.十二边形
D.十四边形
6.下列命题:① 多边形的外角和小于内角和,② 三角形的内角和等于外角和,③ 多边形的外角和是指这个多边形所有外角之和,④四边形的内角和等于它的外角和.其中正确的有( )
个 个 个 个
7.一个多边形的边数增加2条,则它的内角和增加 ( )
° ° C. 360° °
8.过多边形的一个顶点可以作7条对角线,则此多边形的内角和是外角和的( )
倍 倍 倍 倍
9.在四边形ABCD 中,A ∠、B ∠、C ∠、D ∠的度数之比为2∶3∶4∶3,则D ∠的外角等于( ) ° ° ° °
10.在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3倍,那么这个多边形的边数是
( ) A. 4 B. 6 C. 8 D. 10
11.如图,AB ∥CD ∥EF,则下列各式中正确的是 ( )
A.∠1+∠2+∠3=180°
B.∠1+∠2-∠3=90°
C.∠1-∠2+∠3=90°
D.∠2+∠3-∠1=180°
12.在下列条件中:①C B A ∠=∠+∠②321::C :B :A =∠∠∠③B A ∠-︒=∠90
④C B A ∠=∠=∠中,能确定ABC ∆是直角三角形的条件有( )
A.①② B.③④ C.①③④ D.①②③
二、填空题
1.五边形的内角和等于______度.
2.若一凸多边形的内角和等于它的外角和,则它的边数是______.
3.正十五边形的每一个内角等于_______度.
4.十边形的对角线有_____条.
5.内角和是1620°的多边形的边数是________.
6.一个多边形的每一个外角都等于36°,那么这个多边形的内角和是 °.
7.一个多边形的内角和是外角和的4倍,则这个多边形是 边形.
8.已知等腰梯形ABCD 中,AD ∥BC,若∠B=3
1∠D ,则∠A 的外角是 °. 9题图 9.如图在△ABC 中,D 是∠ACB 与∠ABC 的角平分线的交点,BD 的延长线交AC 于E ,
且∠EDC=50°,则∠A 的度数为 .
10.如图,在六边形ABCDEF 中,AF ∥CD ,AB ∥DE ,且∠A =120°,∠B=80°,
则∠C 的度数是 ,∠D 的度数是 . 10题图
三、计算题
1.一个多边形的每一个外角都等于45°,求这个多边形的内角和.
2.一个多边形的每一个内角都等于144°,求它的边数.
3.如果四边形有一个角是直角,另外三个角的度数之比为2∶3∶4,那么这三个内角的度数分别是多少
4.一个正多边形的一个内角比相邻外角大36°,求这个正多边形的边数.
5. 已知多边形的内角和等于1440°,求(1)这个多边形的边数,(2)过一个顶点有几条对角线,(3)总对角线条数.
6.一个多边形的外角和是内角和的
72,求这个多边形的边数;
7.已知一多边形的每一个内角都相等,它的外角等于内角的32,求这个多边形的边数;
8.一多边形内角和为2340°,若每一个内角都相等,求每个外角的度数.
9.已知四边形ABCD 中,∠A:∠B=7:5,∠A -∠C=∠B,∠C=∠D -40°, 求各内角的度数.
10.一个多边形,除一个内角外,其余各内角之和等于1000°,求这个内角及多边形的边数.
11.如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.
四、拓展练习
1. 探究:(1)如图①21∠+∠与C B ∠+∠有什么关系为什么
(2)把图①ABC ∆沿DE 折叠,得到图②,填空:∠1+∠2_______C B ∠+∠ (填“>”“<”“=”),
当︒=∠40A 时,C B ∠+∠+21∠+∠=______.
(3)如图③,是由图①的ABC ∆沿DE 折叠得到的,如果︒=∠30A , E F D
B C A
则-
=
+360
y
x(C
B∠
+
∠+2
1∠
+
∠)-

=360
= ,
从而猜想y
x+与A
∠的关系为 .
图① 图② 图③
2. 如图1、图2、图3中,点E、D分别是正ABC
∆、正四边形ABCM、正五边形ABCMN中以C点为顶点的一边延长线和另一边反向延长线上的点,且ABE
∆与BCD
∆能互相重合,BD延长线交AE于点F.
(1)求图1中,AFB
∠的度数;
(2)图2中,AFB
∠的度数为_______,图3中,AFB
∠的度数为_______;
3.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点
B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=________,∠XBC+∠XCB=_______.
(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.
4.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.
图1图2
图3
(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;
(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,
问:点A、B在运动的过程中,∠P的大小是否会发生变化若不发生变化,请求出其值;若发生变化,请说明理由;
(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何请写出你的结论并说明理由.。

相关文档
最新文档