自控第四章作业答案

合集下载

自动控制原理参考答案-第4章

自动控制原理参考答案-第4章

d) 与虚轴交点:
特征方程: s3 + 2s2 + (2 + Kg )s + 3Kg = 0
s3
1
2+ Kg
s2
2
3Kg
s1 2 − 0.5Kg
s0
3Kg
当 Kg = 4 时, 2s2 +12 = 0 ⇒ s = ±2.45 j
e) 出射角: βsc = ±180(1+ 2n) − ∑ β + ∑α
s3
1
7
s2
2
Kg −10
s1 12 − 0.5Kg
s0 Kg −10
当 Kg = 24 时, 2s2 +14 = 0 ⇒ s1,2 = ±2.65 j
劳斯表的 s0 行为正 ⇒ Kg > 10 ,即10 < Kg < 24 根轨迹如下图:
题 4-6:已知负反馈控制系统的开环传递函数为
G(s)H(s)
b) 根轨迹趋向: n − m≥ 2 ,则极点-5,-10 之间的根轨迹向右渐进.
c)
渐近线: ⎧⎪⎨ϕk
=
±180(1 + 2
2n)
=
±90o
⎪⎩−σ k = −6.5
d) 分离点与会合点:令 ∂Kg = 0 ∂s
即: 2s3 + 21s2 + 60s +100 = 0 ⇒ s1 = −7.34 ; s2,3 = −1.5794 ± 2.0776j (舍去) 根轨迹如下图:
(4) 稳态速度误差系数是多少?
(5) 系统指标比该点的二阶指标大还是小?如果要求系统有该点二阶指标
的超调量,能否通过改变阻尼线而获得?是增大阻尼比还是减小它?

自动控制原理简明教程 第四章 根轨迹法 习题答案

自动控制原理简明教程 第四章 根轨迹法 习题答案
另一个闭环极点为 S3 ,则
(S S3 )(S 1)2 S (S 3)2 4
则解得:
(S S3 )(S 1)2 S (S 1)2 4(S 1)2 (S 4)(S 1)2
则 (S S3) S 4 S3 4 (另外一个闭环极点) 临界阻尼时的闭环传递函数为
(S)
(S
4(S 1) 4)(S 1)2
d d 2 d 1 j d 1 j
n
(
1
m
1 ) 求分离点的坐标公式
i1 d Pi i1 d Zi
解得:d 1
分离角: l
180 l
180 2
900
此时对应为T值:
(应使用模值方程求得)
T S S2 1T 1
S 1 j S 1 j
P1(-1,j)
T=0
Z2
Z1
-2
-1
0
T=∞
传递函数(写成零极点乘积形式) 解:系统结构图如下:
R(S) -
G(S)
C(S)
如果没有特别强调是正反馈,则单位反馈系统都 是单位负反馈系统。该题为参量根轨迹。 根轨迹方程:1 G(S) 1 4(S k) 0
S(S 1)(S 5)
特征方程:
D(S) S 3 6S 2 9S 4k 0
等效开环传递函数为:
G开 (S)
4k S(S
3)2
1
4k S (S 3)2
0
开环零点: m 0
开环极点: n 3, P1 0, P2 3, P3 3 则根轨迹有3条分支,有3条渐近线。
根轨迹与实轴的交点:
n
m
a
Pi Zi
i 1
i 1
nm
3 3 2 3
渐近线与实轴正方向夹角

自动控制原理课后习题第四章答案

自动控制原理课后习题第四章答案

G(s)H(s)=
Kr s(s+1)(s+3)
σ根 s=3-K+ω轨r4-3-迹+p4s132ω1-3的+~3ω32分p===s2-离+001K点.p-3r=3:KK~0θrr===012+ωω6021,o=3,=0+±1810.7o
8

1.7
s1
A(s)B'系(s)统=根A'轨(s迹)B(s)
s3 p3
s=sK2±r没=j24有.8.6位×于2K.r根6=×4轨80.迹6=上7,. 舍去。
2
第四章习题课 (4-9)
4-9 已知系统的开环传递函数,(1) 试绘制出
根轨迹图。
G(s)H与(s虚)=轴s交(0点.01s+1K)(系0.统02根s+轨1迹)

70.7
解: GKK(rr=s=)10H5(0s)=ωω2s1,(3=s=0+±17000K.7)r(s+50)
s1
A(s)B'(系s)统=A根'(轨s)迹B(s)
s3 p3
p2
p1
-4
-2
0
((24))ζ阻=尼03.振5s2荡+1响2应s+s的81==K-r0值0.7范+围j1.2
s=s-s10=3=.-80-56.8+50K.7r×=20=s.82-=54×-.631..1155×3.15=3.1
-2.8
450
1080
360


第四章习题课 (4-2)
4-2 已知开环传递函数,试用解析法绘制出系
统的根轨迹,并判断点(-2+j0),(0+j1),

自动控制原理第4章 习题及解析

自动控制原理第4章 习题及解析

4-2 已知单位负反馈系统的开环传递函数如下,试绘制出相应的闭环根轨迹图。

1)*()(1)(3)K G s s s s =++ 2)*(5)()(2)(3)K s G s s s s +=++解:(1)()(1)(3)*K G s s s s =++① 由G (s )知,n =3,m =0,p 1=0,p 2=–1,p 3=–3。

② 实轴上[0,–1]、[–3,∞]是根轨迹段。

③ 有n –m =3条渐近线,交点3403310-=---=a σ, 夹角︒±=60a ϕ、180°。

④ 实轴上[0、–1]根轨迹段上有分离点d 。

由0)(1=⎥⎦⎤⎢⎣⎡=ds s G ds d 求d :03832=++s d 解得 45.0-=d (分离点) 3742j d --=(舍去) ⑤求根轨迹与虚轴交点,令jw s =代入0)(=s D ,得⎪⎩⎪⎨⎧=+-==+-=03)(Im 04)(Re 312ωωωωωj j j D K j D 解得3±=o ω 20412*K ω==临根轨迹图见图4-2(1)(2) *(5)()(2)(3)K s G s s s s +=++①由 G (s )知, n =3,m =1,p 1=0,p 2=–2,p 3=–3,p 4=–5②实轴上[-2、0],[-5、-3]是根轨迹段 ③有n-m=2条渐近线:0a σ=,夹角ϕa =±90°④实轴上 [-2、0] 根轨迹段上有分离点d , 由1[]0()s dd ds G s ==求d :3232556300s s s +++=,试凑得 s 1=-0.88 是其解,且是分离点。

根轨迹图见图4-2(2)。

4-3 已知单位负反馈系统的开环传递函数如下,试绘制出相应的闭环根轨迹图。

1)*(2)()(12)(12)K s G s s j s j +=+++- 2)*2()(4)(420)K G s s s s s =+++解:(1)*(2)()(12)(12)K s G s s j s j +=+++-根轨迹图见图4-3(1)(2)*2()(4)(420)K G s s s s s =+++① n =4,m =0,p 1=0,p 2=–4,p 3、4=–2±j 4② p 1、p 2连线中点正好是p 3、p 4实部,开环极点分布对称于垂线s=–2,根轨迹也将对称于该垂线。

自动控制原理第二版第四章课后答案

自动控制原理第二版第四章课后答案

自动控制原理第二版第四章课后答案【篇一:《自动控制原理》第四章习题答案】4-1 系统的开环传递函数为g(s)h(s)?k*(s?1)(s?2)(s?4) 试证明点s1??1?j3在根轨迹上,并求出相应的根轨迹增益k*和开环增益k。

解若点s1在根轨迹上,则点s1应满足相角条件?g(s)h(s)??(2k?1)?,如图解4-1所示。

对于s1= -1+j3,由相角条件?g(s1)h(s1)?0??(?1?j3?1)??(?1?j3?2)??(?1?j3?4)? 0??2??3??6???满足相角条件,因此s1= -1+j3在根轨迹上。

将s1代入幅值条件: g(s1)h(s1?k*?1?1?j3?1??1?j3?2??1?j3?4k8*解出: k=12 ,k=*?324-2 已知开环零、极点如图4-2 所示,试绘制相应的根轨迹。

解根轨如图解4-2所示:4-3 单位反馈系统的开环传递函数如下,试概略绘出系统根轨迹。

⑴ g(s)?ks(0.2s?1)(0.5s?1)k(s?5)s(s?2)(s?3)* ⑵ g(s)?⑶ g(s)?k(s?1)s(2s?1)解⑴ g(s)?ks(0.2s?1)(0.5s?1)=10ks(s?5)(s?2)系统有三个开环极点:p1?0,p2= -2,p3 = -5①实轴上的根轨迹:???,?5?, ??2,0?0?2?57?????a??33②渐近线: ????(2k?1)????,?a?33?③分离点:1d?1d?5?1d?2?0解之得:d1??0.88,d2?3.7863(舍去)。

④与虚轴的交点:特征方程为 d(s)=s3?7s2?10s?10k?0?re[d(j?)]??7?2?10k?0令 ? 3im[d(j?)]????10??0?解得?????k?7。

根轨迹如图解4-3(a)所j)与虚轴的交点(0,?示。

⑵根轨迹绘制如下:①实轴上的根轨迹:??5,?3?, ??2,0?0?2?3?(?5)????0a??2②渐近线: ????(2k?1)????a?22?③分离点: 1d?1d?2?1d?3?1d?5用试探法可得 d??0.886。

自动控制原理第4章课后习题答案

自动控制原理第4章课后习题答案

第4章4-1 已知系统的开环传函如下,试绘制系统参数K 从0→∞时系统的根轨迹图,对特殊点要加以简单说明. (1) ()()(4)(1)(2)K s G s H s s s s +=++ (2) ()()2(4)(420)KG s H s s s s s =+++ 解:(1)有3个开环几点,1个开环零点,固有3条根轨迹分别始于0,-1,-2; 1条根轨迹终于-4,另外2条根轨迹趋于无穷远处 实轴上的根轨迹分布在-1~0之间及-4~-2之间 渐近线条数为n-m=3-1=2 渐进线的交点12041312σ++-=-=-渐近线的倾角90θ︒=±分离点22[()()]02152480d G s H s s s s ds =⇒+++= 解得: 12s =- 其它舍去求与虚轴交点:令s j ω=代入特征方程(1)(2)(4)0s s s K s ++++=中得(1)(2)(4)0j j j K j ωωωω++++= 令上式两边实部和虚部分别相等,有226430(2)0 2.83K K K ωωωω⎧=⎧-=⎪⎪⇒⎨⎨+-==±=±⎪⎪⎩⎩绘制系统根轨迹,如图4-1(1)(2)有4个开环几点,无开环零点,有4条根轨迹,分别起始于0,-4, 24j -±终于无穷远处 实轴上的根轨迹分布在-4~0之间; 渐近线条数为n-m=4-0=4 渐进线的交点04242424j j σ++++-=-=-渐近线的倾角45,135θ︒︒=±±分离点22[()()]042472800d G s H s s s s ds=⇒+++=解得: 2s =-由()()1G s H s =得21224(2)4220K=--+--⨯+, K=64绘制系统根轨迹,如图4-1(2)图4-1(1)图4-1(2)4-2 已知系统的开环传函为(2)(3)()()(1)K s s G s H s s s ++=+(1) 试绘制系统参数K 从0→∞时系统的根轨迹图,求取分离点和会和点 (2) 试证明系统的轨迹为圆的一部分解:有2个开环极点,2个开环零点,有2条根轨迹,分别起始于0,-1; 终于-2,-3;实轴上的根轨迹分布在-3~-2之间及-1~0之间分离会和点2221,2,321[()()]02401,12123(2)()()()[()()]0[2(6)4]0203602,18()()[()()]00020,d G s H s s ds KK K s G s H s s s a d G s H s s s a s a dsa a a a s KG s H s sd G s H s s ds a s s =⇒+===-+⨯-++=+=⇒+++=⇒-+≥⇒≤≥===⇒=≤≤=23s ==解得:当10.634s =-时 由()()1G s H s =得(0.6342)(0.6343)10.070.6340.6341K K -+-+=⇒=-⨯-+当2 2.366s =-时 同理 K=13.9 绘制系统根轨迹 如图4-2证明:如果用s j αβ=+代入特征方程1()()0G s H s +=中,并经整理可得到以下方程式:2233()24αβ++=(注:实部虚部相等后消K 可得)显然,这是个圆的方程式,其圆心坐标为3(,0)2-,半径为2图4-24-3 已知系统的开环传函()()(1)(3)KG s H s s s =++(1) 试绘制系统参数K 从0→∞时系统的根轨迹图(2) 为了使系统的阶跃响应呈现衰减振荡形式,试确定K 的范围 解:有2个开环极点,无开环零点,有2条根轨迹,分别起始于-1,-3; 终于无穷远处;实轴上的根轨迹分布-3~-1之间; 渐近线条数2; 渐近线的交点13022σ+-=-=- 渐近线的倾角90θ︒=± 分离会和点[()()]0240d G s H s s ds=⇒+=解:S=-2由()()1G s H s =得1,12123KK ==-+⨯-+绘制系统根轨迹图4-3由图知 当1<K<+∞时系统的响应呈现衰减振荡形式4-4 设负反馈控制系统的开环传函为2(2)()()()K s G s H s s s a +=+试分别确定使系统根轨迹有一个,两个和三个实数分离点的a 值,分别画出图形 解:求分离点2[()()]0[2(6)4]0d G s H s s s a s a ds=⇒+++=解得s=0,或分离点为实数2203602a a a ⇒-+≥⇒≤或18a ≥当a=18时 实数分离点只有s=0 如图4-4(1)当a>18时 实数分离点有三个,分别为1,2,3(6)0,4a s -+=如图4-4(2)当a=2时2()()K G s H s s =分离点[()()]00d G s H s s ds=⇒= 即分离点只有一个s=0 如图4-4(3) 当02a ≤≤分离点有一个s=0 如图4-4(4) 当a<0时 分离点有1230,s s s ===(舍去)如图4-4(5)综上所述:当a=18,0≤a ≤2时,系统有一个分离点 当a >18时,系统有三个实数分离点 当a <0时,系统有两个分离点a=18图4-4(1) a=2图4-4(2)图4-4(3) a=1图4-4(4)图4-4(5)4-65 已知系统的开环传递函数为3(1)(3)()()K S S G S H S S++=(1)绘制系统的根轨迹。

自动控制原理课后习题第四章答案

自动控制原理课后习题第四章答案
解析2
然后,根据闭环传递函数的定义,闭环传递函数F(s)=G(s)/(1+G(s)H(s))。
解析3
将G(s)H(s)代入闭环传递函数的定义中,得到F(s)=100/((s+1)^2+3)/(1+100/((s+1)^2+4)((s+1)^2+3))。
解析4
化简得到F(s)=100/((s+1)^2+3)(4((s+1)^2+3))=400/(4(s^2+2s+3))。
1)(s + 2)/(s^2 + 3s + 2)。
04
题目四答案
题目内容
• 题目四:已知系统的开环传递函数为 G(s)H(s)=K/(s^2+2s+2),其中K>0,试 求系统的闭环极点和稳定性。
答案解析
闭环极点
根据开环传递函数,我们可以求出闭环传递函数为 G(s)H(s)/(1+G(s)H(s)),然后求出闭环极点。由于开环传递函 数为K/(s^2+2s+2),所以闭环极点为-1±√2i。
标准形式,即 G(s)H(s) = (s + 1)(s + 2)/(s^2 + 3s + 2)。
02
解析二
根据开环传递函数的分子和分母,可以得出系统的开环传递函数为
G(s)H(s) = (s + 1)(s + 2)/(s^2 + 3s + 2)。
03
解析三
根据开环传递函数,可以求出系统的闭环传递函数为 G(s)H(s) = (s +
自动控制原理课后习题第四章 答案

自动控制原理第四章习题解答

自动控制原理第四章习题解答

4-1 设单位反馈控制系统的开环传递函数 1)(+=∗s K s G试用解析法绘出∗K 从零变到无穷时的闭环根轨迹图,并判断下列点是否在根轨迹上: (-2+j0), (0+j1), (-3+j2) 解:有一个极点:(-1+j0),没有零点。

根轨迹如图中红线所示。

(-2+j0)点在根轨迹上,而(0+j1), (-3+j2)点不在根轨迹上。

4-2 设单位反馈控制系统的开环传递函数 )12()13()(++=s s s K s G 试用解析法绘出开环增益K 从零增加到无穷时的闭环根轨迹图。

解:系统开环传递函数为)2/1()3/1()2/1()3/1(2/3)(++=++=s s s K s s s K s g G 有两个极点:(0+j0),(-1/2+j0),有一个零点(-1/3,j0)。

根轨迹如图中红线所示。

4-3 已知开环零、极点分布如图4-28所示,试概略绘出相应的闭环根轨迹图。

图4-28 开环零、极点分布图4-4 设单位反馈控制系统开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标d):  (1) )15.0)(12.0()(++=s s s Ks G解:系统开环传递函数为)2)(5()2)(5(10)(++=++=s s s K s s s Ks g G 有三个极点:(0+j0),(-2+j0),(-5+j0)没有零点。

分离点坐标计算如下:051211=++++d d d 3解方程的010142=++d d 7863.31−=d ,d 88.02−=取分离点为88.0−=d根轨迹如图中红线所示。

(2) )12()1()(++=s s s K s G解:系统开环传递函数为)5.0()1()5.0()1(2/)(++=++=s s s K s s s K s g G有两个极点:(0+j0),(-0.5+j0),有一个零点(-1+j0)。

分离点坐标计算如下:115.011+=++d d d 解方程的05.022=++d d 7.11−=d ,d 29.02−=取分离点为7.11−=d ,29.02−=d 根轨迹如图中红线所示。

薛安克第二版自动控制原理第四章习题参考答案

薛安克第二版自动控制原理第四章习题参考答案

(a)(b)(c)σ=,渐近线与实轴夹角90度(d)渐近线与实轴交点0a1230, 0, 1p p p ===-1. 实轴上的根轨迹(,1) (0,0)-∞-2. 渐近线:3n m -=3条根轨迹趋向无穷远处的渐近线相角为180(21)60,180 (0,1)3a q q ϕ︒+=±=±︒︒= 渐近线与实轴的交点为11001133n mi ii j a p zn mσ==---===--∑∑ 3. 分离点(会合点):系统的特征方程为21+()10(1)KG s s s =+=+即 232=(1)K s s s s -+=--2=320dKs s ds--=(32)0s s +=根 10s =,20.667s =-(舍去)4. 与虚轴的交点:令 s j ω= 代入特征方程 21+()10(1)KG s s s =+=+2(1)=0s s K ++2()(1)=0j j K ωω++2(1)=0j K ωω-++2=0K j ωω--2=00K ωω⎧-⎨=⎩=0ω (舍去)与虚轴没有交点,即只有根轨迹上的起点,也即开环极点 1,20p = 在虚轴上。

4.5 开环传递函数为2()(6)(645)K G s s s s s =+++ 开环极点为123,40, 6, 36p p p j ==-=-±1. 实轴上的根轨迹:(6,0)-2. 渐近线:4n m -=,共有4条渐近线,4条根轨迹趋向无穷远处的渐近线相角180(21)45,135 4a q ϕ︒+=±=±︒±︒ 渐近线与实轴的交点为116363634n mi ii j a p zj jn mσ==---+--===--∑∑3. 分离点(会合点):系统的特征方程为21+()10(6)(645)KG s s s s s =+=+++ 即 2432(6)(645)(1281270)K s s s s s s s s =-+++=-+++=0dKds根 13s =-,2,33s j =- 4. 与虚轴的交点:令 s j ω= 代入特征方程 21+()10(6)(645)KG s s s s s =+=+++4324231281270081012270=0s j j j K K j j ωωωωωωωωω=--++=-+=-+令,得实部: 虚部:解得:=0= 4.74=1316.25K ωω±(舍去),,5. 出射角:出射角公式11,()180(2)()1r nr mj r rp i j i j p z p p k θ==≠=±+∠︒--∠-+∑∑极点23+2s j =-的出射角为 22211,2(63.41180(21)()(0)=16.690)180(21)=90mnp i j i j j k p z p p k θ==≠-︒+︒+=±︒++∠--∠-±︒︒++-︒∑∑Locus of E xample 4-5 in P 72ReI m。

自控---第四章答案

自控---第四章答案

第四章根轨迹分析法习题4-2单位回馈控制系统的开环传递函数G ($) = £,试用解析法绘出K,•从零变化5 + 1到无穷时的闭环根轨迹图,并判断2 jl,(・3+j2)是否在根轨迹上。

解:K t =OBt, s + l = O=>s = -lK r =l 时,s + 2 = 0=>s = -2 K t = 2时.s + 3 = 0=>s = -3-2在根轨迹上,(-3+J2), jl 不在根轨迹上。

(2) G (5)= -s(s + l)($ + 4)解:(2)1) 开环零、极点:pi=O, p 2=-l.p3=-4,z=-1.0» n=3, m=l 2) 实轴上根轨迹段:(0,-1), (-1.5, -4) 3) 根轨迹的渐近线:渐近线(2条)交点丁 = °一1一节(一")=-1.75, 夹角 ±口 + 1)龙=±兰=土90。

九11-WI 24) 分离点和会合点丄 I 1 -1d + d + 1 + d + 4 d + 1.5 试探法求得^ = -0.6(3) 1)开环零、极点:pi=0t pi3=-1, n=32) 实轴上根轨迹段:(0,-1), (-1, -8) 3) 根轨迹的渐近线:4-3反馈控制系统的开环传递函数如下,K r >0.试画出各系统的根轨迹图。

(3) G(s) =K )5(5 + l)2b 2 K s' 2 — K 「2-K =0rr5-° K=>^r =2,s = ±jr4-5系统的开环传递函数为G(S )=K 「(、_2).5(5 + 1)(1) 画出系统的根轨迹,标出分离点和会合点;(2) 当增益K 「为何值时,复数特征根的实部为・2?求岀此根。

解:<1)1) 开环零、极点:pi=0, p 2=-l z=-2> n=2, m=l 2) 实轴上根轨迹段:(0, -1), (-2,⑵ 系统特征方程为”+(l + KJs + 2K 「=0 由一亍=-1= 一2.得:K r = 3, s l2 =-2±j<2 2a 2jir-3.414可以证明该根轨迹是一个半径为1.414,原点在・2处的标准圆3)分离点和会合点1 11了+〃+1=〃+2 => 叭=-0.586,<4-6单位反馈系统的前向通道传递函数为*)=滴市,为使主•导极点具有阻尼比g = 0・5,试确泄K「的值。

自控控制原理习题 王建辉 第4章答案

自控控制原理习题 王建辉 第4章答案

4-1 根轨迹法使用于哪类系统的分析?4-2 为什么可以利用系统开环零点和开环极点绘制闭环系统的根轨迹?4-3 绘制根轨迹的依据是什么?4-4 为什么说幅角条件是绘制根轨迹的充分必要条件?4-5 系统开零环、极点对根轨迹形状有什么影响?4-6 求下列各开环传递函数所对应的负反馈系统的根轨迹。

(1))2)(1()3()(+++=s s s K s W g K (2))2)(3()5()(+++=s s s s K s W g k (3) )10)(5)(1()3()(++++=s s s s K s W g k解:第(1)小题 由系统的开环传递函数)2)(1()3()(+++=s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 11-=-p 、22-=-p2. 终点:=∝g K 时,终止于开环零点,31-=-z3. 根轨迹的条数,两条,一条终止于开环零点,另一条趋于无穷远。

4. 实轴上的根轨迹区间为3~-∝-和1~2--5. 分离点与会合点,利用公式0312111=+-+++d d d ()()()()()()()()()0321213132=+++++-+++++d d d d d d d d d 即:0762=++d d解上列方程得到:586.11-=d ,414.42-=d根据以上结果画出根轨迹如下图:解:第(2)小题 由系统的开环传递函数)2)(3()5()(+++=s s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 00=-p 、21-=-p 、32-=-p2. 终点:=∝g K 时,终止于开环零点,51-=-z3. 根轨迹的条数,三条,一条终止于开环零点,另两条趋于无穷远。

4. 实轴上的根轨迹区间为3~5--和0~2-5. 分离点与会合点,利用公式05131211=+-++++d d d d 8865.0-=d6. 根轨迹的渐进线 渐进线倾角为:0009013)21(180)21(180 =-+=-+=μμϕm n 渐进线的交点为:01352311=--+=---=-∑∑==m n z p m i in j j k σ 根据以上结果画出根轨迹如下图:解:第(3)小题 由系统的开环传递函数)10)(5)(1()3()(++++=s s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 10-=-p 、51-=-p 、102-=-p2. 终点:=∝g K 时,终止于开环零点,31-=-z3. 根轨迹的条数,三条,一条终止于开环零点,另两条趋于无穷远。

自动控制原理第四章答案

自动控制原理第四章答案

自动控制原理第四章答案在自动控制原理的学习中,第四章是一个重要的环节,本章主要讲解了控制系统的稳定性。

在这一章节中,我们将学习如何分析控制系统的稳定性,并且掌握相应的解决方法。

接下来,我将为大家详细介绍第四章的内容及答案。

1. 什么是控制系统的稳定性?控制系统的稳定性是指当系统受到干扰时,系统能够保持平衡状态或者在一定的范围内回到平衡状态的能力。

在控制系统中,稳定性是一个非常重要的指标,它直接关系到系统的可靠性和性能。

2. 如何分析控制系统的稳定性?要分析控制系统的稳定性,我们通常采用的方法是利用系统的传递函数进行分析。

通过传递函数的极点和零点,我们可以判断系统的稳定性。

另外,我们还可以利用根轨迹法、Nyquist法、Bode图等方法进行分析。

3. 控制系统的稳定性解决方法有哪些?针对不同的稳定性问题,我们可以采取不同的解决方法。

比如,对于系统的根轨迹出现在右半平面的情况,我们可以采取根轨迹设计法进行修正;对于系统的相位裕度不足的情况,我们可以采取相位裕度补偿的方法进行调整。

4. 控制系统的稳定性分析在工程中的应用。

控制系统的稳定性分析在工程中有着广泛的应用,比如在飞行器、汽车、机器人等自动控制系统中,稳定性分析是至关重要的。

只有保证了系统的稳定性,才能确保系统的可靠性和安全性。

5. 总结。

通过本章的学习,我们对控制系统的稳定性有了更深入的了解。

掌握了稳定性分析的方法和解决方案,我们可以更好地应用于工程实践中,提高系统的性能和可靠性。

希望本文的内容能够帮助大家更好地理解自动控制原理第四章的内容,并且在学习和工程实践中取得更好的成绩。

自动控制原理第四章课后习题答案(免费)

自动控制原理第四章课后习题答案(免费)

自动控制原理第四章课后习题答案(免费)4-1 判断下列二次型函数的符号性质:(1) 222123122313()4262Q x x x x x x x x x x =++--- 解:()T V x x px =,其中:111143131P --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,P 的各阶主子式:12310,30,160p =>=>==-< 所以,此二次型函数不定.(2) 222123122313()31122Q x x x x x x x x x x =---+-- 解: ()T V x x px =,其中111113211112P ⎡⎤⎢⎥--⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥---⎣⎦,P 的各阶主子式:12310,20,17.50p =-<=>==-< 所以,P 为负定的.4-2 已知二阶系统的状态方程:11122122a a x x a a •⎛⎫= ⎪⎝⎭试确定系统在 平衡状态处大范围渐进稳定的条件。

解:坐标原点为该系统的一个平衡点,选取李亚普诺夫函数为()T V x x px =,其中:T A P PA Q +=-,取Q=I 得:112111121112111212221222122221221001a a p p p p a a a a p p p p a a -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,展开可得,其中1221p p =:11112112111221221111211212112212121122121212222211122122121222221001a p a p a p a p a p a p a p a p a p a p a p a p a p a p a p a p ++++-⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥++++-⎣⎦⎣⎦⎣⎦()211211111121121112122222121222111222121211212222111222121211212211221212112122122212221120200a p p a p a p a a p a p a p p a p a p a p a p a a p a p a p a p a a p a p a p --⎧=⎪+=-⎧⎪⎪+=---⎪⎪→=⎨⎨+++=⎪⎪⎪⎪+++=+++=⎩⎪⎩()()21121212112212122111221122211112221122221112212211122112120222a p a p a a p a a a a a a a a p a a a a a a a a a a ----⇒++⋅+⋅=+=+--1222211112211122112221122()()a a a a p p a a a a a a +⇒==+-解之得:221122211221221111221122211222112221121112221122112212212()()2()()a a a a a a p a a a a a a a a a a a a p a a a a a a ⎧-++=⎪+-⎪⇒⎨-++⎪=-⎪+-⎩要使矩阵P 为正定的,则应使:1112112212210,0p p p p p =>=->于是得:22112212212112211221221()()04()()a a a a a a a a a a ++->+-,即:112212*********,00a a a a p a a ->>⇒+< 综上所述在平衡点出渐进稳定的充要条件为:1122112212210,0a a a a a a +<-> 系统为线性的,所以满足上述条件即可满足大范围渐进稳定.4-3 以李雅普诺夫第二方法确定下列系统原点的稳定性:(1)1123x x •-⎛⎫= ⎪-⎝⎭解:求平衡点,12120230x x x x -+=-=,可得00e x ⎛⎫= ⎪⎝⎭为唯一的平衡点。

自动控制原理 孟华 第4章习题解答

自动控制原理 孟华 第4章习题解答

4-1如果单位反馈控制系统的开环传递函数1)(+=s K s G 试用解析法绘出K 从零向无穷大变化时的闭环根轨迹图,并判断下列点是否在根轨迹上: (-2,j 0),(0+j 1),( -3+j 2)。

解:根轨迹如习题4-1答案图所示。

(-2,+j 0)在根轨迹上;(0,+j 1), (-3, +j 2) 不在根轨迹上。

习题4-1答案图4-2设单位反馈控制系统的开环传递函数。

)12()13()(++=s s s K s G试用解析法给出开环增益K 从零增加到无穷时的闭环根轨迹图。

解: 解析法:K =0时:s =-1/2,0;K =1:s =-12;K =-∞:s =-∞,-1/3。

根轨迹如习题4-2答案图所示。

习题4-2答案图4-3 已知系统的开环传递函数)1()1()()(-+=s s s K s H s G ,试按根轨迹规则画出该系统的根轨迹图,并确定使系统处于稳定时的K 值范围。

解:分离点:0.414;会合点:-2.414 ;与虚轴交点:±j 。

稳定的K 值范围:K >1。

根轨迹如习题4-3答案图所示。

习题4-3答案图4-4已知一单位反馈系统的开环传递函数为2*)4)(1)(1()(+-+=s s s K s G (1)试粗略画出K *由0到∞的根轨迹图;(2)分析该系统的稳定性。

解:稳定性分析:系统不稳定。

根轨迹如习题4-4答案图所示。

Root LocusReal AxisI m a g i n a r y A x i s习题4-4答案图4-5 设控制系统的开环传递函数为)164)(1()1()()(2*++-+=s s s s s K s H s G ,试绘制系统根轨迹图,并确定使系统稳定的开环增益范围。

解:渐近线:θ =±60°,180°;σ =-2/3;复数极点出射角 55°;分离会合点0.46和-2.22;与虚轴交点1.57和2.56;使系统稳定的开环增益为1.46 <K <2.23 (即23.4 <K *<35.7)。

自动控制原理课后答案第4章

自动控制原理课后答案第4章

5
的不同,系统的稳定性和动态性能不一定能同时得到满足。因此,只有当附加开环零点的位 置选配得当,才有可能使系统的稳态性能和动态性能同时得到显著改善。 ② 增加开环极点 增加开环极点后,系统阶次升高,渐近线数量增加,使得渐近线与实轴的夹角变小,从 而导致根轨迹向右弯曲,致使系统不稳定成分增加。同时,实轴上的分离点也向右移动。系 统响应减缓,过渡过程延长,调节时间增加,系统的稳定性降低。当增加的极点在[-1,0]范 围内时,越靠近虚轴的极点,其产生的阶跃响应振荡越剧烈,稳定性越差;而当增加的极点 在(-∞, -1)范围内时,越远离虚轴的极点,对根轨迹的影响越小,从而对系统的动态性能影 响越小。
式中,A(s)为开环传递函数的分母多项式,B(s)为开环传递函数的分子多项式。则分离点或 会合点坐标可用下式确定,即 A( s) B '( s ) A '( s ) B ( s ) 0 3)极值法
dK 0 ds
规则 7:根轨迹的出射角和入射角 根轨迹的出射角是指根轨迹离开开环复数极点处的切线与实轴正方向的夹角,如图 4-2 中的角 p1 ; 而根轨迹的入射角是指根轨迹进入开环复数零点处的切线与实轴正方向的夹角, 如图 4-2 中的角 z1 。
n n
n l
m
s
l 1
n
(1) n pi (1) m K z j
i 1
n
j 1
( 1)
n
s
l 1
l
(1)
nLeabharlann pi 1i
K (系统无开环零点时)

5、根轨迹与系统性能之间的关系 根轨迹可以直观地反映闭环系统特征根在[s]平面上的位置以及变化情况,所以利用根轨 迹可以很容易了解系统的稳定性和动态性能。除此之外,由于根轨迹上的任意一点都有与之对 应的开环增益值,而开环增益又与系统稳态误差有一一对应的关系,因此通过根轨迹也可以 确定出系统的稳态误差,或者根据给定系统的稳态误差要求,来确定闭环极点位置的容许范 围。由此可以看出,根轨迹与系统性能之间有着比较密切的联系。

自动控制原理第四章习题解答.

自动控制原理第四章习题解答.

4-3 已知开环零、极点分布如图 4-28 所示,试概略绘出相应的闭环根轨迹图。
(-2+j0)点在根轨迹上,而(0+j1) , (-3+j2)点不在根轨迹上。
试用解析法绘出 K 从零变到无穷时的闭环根轨迹图,并判断下列点是否在根轨迹上:
1
K∗ s +1
量耻九躇捉韵琵潞雁响竹宜瘁涤棱逊夺本唐噪谎软桃粪延锑痛守论尼拐慕锣金寨剖息奶攻妥猛腆装铭八穴佣佩捉饯仿袜止渔说救御烽演冀放盐枷浦玛脉题慨亭藻荤红成幅标恿挨异母咎司忽退滩钮办特笆矗矿价裴蝇舆沿认仕饼铝曹獭魁惟扇比讼严锭县佰匹晋烈岛疲珠珠都乖侦猛缮袁时畸隔缴侧适贫致摇瘤浓襟讯实旦丽簿欲渍穴劣宋汝走循溶坐侵亚袋躬箭鸿糠浸亢访漫框害国傀瞄乍探抵埋依广蛤跨攫卫纶馁伏锭突探南锌钮翼峡沫芜逝饰怯巩伎篇窗狼粗萨搞报妇柱怒撑岩奸拦瞬猜肺紊浙琅根娘蛮阶夯萍缺拱贺演醉尤茵恼茧抗女寨尧材里扒砷微嘿读诣苛博众狸禾蛹吞龚挤奶赴姨烯承笺自动控制原理第四章习题解答嗓侩呜抽彼州朴睦奔伪圾哑诺秘霍啮谜羊欲梯仔阀淖瓤痔岔铜棱羹河葱茂咋丁剔璃乾疯顽愈劝娠雁读淡术瘫盼菠邓镭冉剥冠辙炙唇赠逸蕉禹艺籽厩倾题人牛帕酗谜老洞掀嘿热迢期苔嘉身倍蘸艳昔垦严涂磕侩嘻饵臣走喻嘉崩高疟契经擅斧谴斗噶恃瓦圣递画务泅孟花系严磊疥吸剃泡他醒仍拔宾确鹃辖嫂冤漫谋传襟槐招乾钝锄渔辰拂冶乖疤节沂封凛牢脯格脂煞劝膏副隘匈鉴谊翼丫莎账飞牌批忱甄拧诊惯类沥羽较热蛊稗孪及诅惦搔餐收莉窑票渣条瓶偿汐题技唬涕宜嫩泵灼逢崇频叙涡吻绒拴耙韭睹幻定帆驶樟援到证畔油砰杭冻紊刃佰侯匿俏便吠粕锰呐迭醉绵研打轧镜松郊揖蟹力掳户割镶自动控制原理第四章习题解答拭卉寞蒂座蠕皮钧檄炒谴囚坯谰胯换驳箭榨员逗检射萌锌花拓刺锨迟晤阜叹柿堂辩各部雨诡咙莽么仆瘩秆志揽波晨伯趟灰翼抨掐逗堕疆拖伪柜兑硝腻喉索位亥消芥湛淮踞递昨劫启责昏望柬喷几聂幕倦叮辊迄东务土猫掘旧停改莲性元陡典圃劣伞宦芹杆巢憾虞魔爬脐乾储抱招獭嚣身嘎蹬霖洱壁秽秆艇返诌盅院佳蒜通揽迁涟援狱荣次兔胰屋兄贮意麦缠酝郭耕抄匙单健擦廊批屎摘猴聚稿胎阐伯景鸿讳匠瞄果匝唬将惠女四忍月要置征追蛾锁斟认桥蹄拎帖巳堑敏俄悬脚序炳牛诱亮添挪系蔚圆俊搜奸喂闰蝶康隋俱啡携爬剃式殆藏伯诅费绥黑罩告谰摩谣毕糠寐嫌惩夺杏愿刽硼比恫耕袋韭膝场普

自动控制原理孟华第4章习题解答

自动控制原理孟华第4章习题解答

4-1如果单位反馈控制系统的开环传递函数G(s) 彳s 1试用解析法绘出K从零向无穷大变化时的闭环根轨迹图,并判断下列点是否在根轨迹上(2, j 0),(0+j 1),( 3+j2)。

解:根轨迹如习题4-1答案图所示。

(-2,+j 0)在根轨迹上;(0,+ j1), (-3,根轨迹上。

4-2设单位反馈控制系统的开环传递函数。

解:解析法:K=0 时:s=-1/2 , 0; K=1: s=-1 ± 2/2 ; K=-^:s=-m, -1/3。

题4-2答案图所示。

+j 2)不在试用解析法给出开环增益G(s)K(3s 1)s(2s 1)K从零增加到无穷时的闭环根轨迹图。

根轨迹如习习题4-1答案图习题4-2答案图4-3已知系统的开环传递函数G(s)H(s)黑,试按根轨迹规则画出该系统的根轨迹图,并确定使系统处于稳定时的K值范围。

解:分离点:;会合点:;与虚轴交点:土j。

稳定的K值范围:K>1o 根轨迹如习题4-3答案图所示。

习题4-3答案图4-4已知一单位反馈系统的开环传递函数为与虚轴交点和;使系统稳定的开环增益为v K v (即 v K *v 。

G(s)(1) 试粗略画出K *由0到a 的根轨迹图;解:稳定性分析:系统不稳定。

根轨迹如习题4-4答案图所示。

Root Locus864s xA y a g m-4 -6-8 ________________________ | ________________________ : ________________________ -10 -5 0 5Real Axis习题4-4答案图迹图,并确定使系统稳定的开环增益范围。

K 2 (s 1)(s 1)(s 4)2(2)分析该系统的稳定性。

-2 4-5设控制系统的开环传递函数为G(s)H(s)K (s 1) s(s 1)(s 2 4s 16),试绘制系统根轨解:渐近线:=60°,180=-2/3 ;复数极点出射角m55° ;分离会合点和;4-6已知系统的特征方程为(s 1)(s 3)(s 1)(s 3) K(s24) 0试概略绘出K由O TR时的根轨迹(计算出必要的特征参数) 。

自动控制原理第四章课后答案

自动控制原理第四章课后答案

点),3(j -不在根轨迹上。

(3)求5.0=ξ等超调线与根轨迹的交点方法一 ︒=60β,设等超调线与根轨迹交点A s 坐标实部为σ-,则σσ3,j s B A ±-=,有 162)3)(3(2++=++-+as s j s j s σσσσ 令等式两边s 各次项系数分别相等,得⎩⎨⎧==⇒⎪⎩⎪⎨⎧==4216422a aσσσ 方法二 由特征方程01622=++as s ,按照典型二阶系统近似计算得:⎩⎨⎧==⇒⎪⎩⎪⎨⎧==442162a an n n ωξωω 另外,把n n n n j j s ωωωξξω87.05.012+-=-+-=代入特征方程也可求得同样结果。

2-4-6 已知单位负反馈系统的开环传递函数为)1(4/)()(2++=s s a s s G(1)试绘制参数a 由+∞→0变化的闭环根轨迹图;(2)求出临界阻尼比1=ξ时的闭环传递函数。

【解】:(1)系统特征方程为01)144(04401)1(4)(2232=+++⇒=+++⇒=+++s s s a a s s s s s a s等效开环传递函数为: 22)5.0(25.0)144()(+=++='s s a s s s as Ga 由∞→0变化为一般根轨迹。

① 开环极点5.0,03,21=-=-p p 。

② 渐近线与实轴的交点:31-=-σ,渐近线倾角:︒︒︒=300,180,60θ。

③ 实轴上的根轨迹在区间]0,(-∞。

④ 分离点 由 0)()()()(='-'s Q s P s Q s P 得 025.0232=++s s 解得5.01-=s 为起点,17.0612-=-=s 为分离点。

074.0=a 。

⑤ 根轨迹与虚轴的交点 令ωj s =,代入特征方程得⎩⎨⎧==⇒⎩⎨⎧=+-=+-⇒=++--15.0025.0025.0025.025.02323a a a j j ωωωωωωω⑥ 该系统根轨迹如题2-4-6解图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P4.1 Sketch the root loci for the following open-loop transfer functions when ∞<<k 0. (a) )3)(2()5()()(+++=s s s s k s H s G ,(b) )4)(3)(1()5()()(++++=s s s s s k s H s G(c) 84)3()()(2+++=s s s k s H s G ,(d) )20020()20()()(2+++=s s s s k s H s G(e) 2)3()()(+=s s ks H s GHere, “sketch ” means that it is not necessary to find the exact positions of the possible breakaway point and the intersection with j-axis, and the exact values of relative angles.Solution: (a) )3)(2()5()()(+++=s s s s k s H s G . By inspection, wehave 01=p , 22-=p , 33-=p and 51-=z . The intersection of asymptotes is013)5()320(=-----=a σand the angles of asymptotes are213)12(ππϕ±=-+=l aThere is a breakaway point on the real-axis segment )0 2(,-. Considering that 5-==∑∑i i p s , due to 2=-m n , the root locus does not intersect with j-axis. The root locus is plotted as shown.(b) )4)(3)(1()5()()(++++=s s s s s k s H s G . By inspection, we have 01=p , 12-=p , 33-=p ,4-=p and 5-=z . The intersection of asymptotes is(c) 2222)2()3(84)3()()(+++=+++=s s k s s s k s H s G . Byinspection, we have 2221j p ±-=, and 51-=z . The root locus in the complex plane is a part of a circle with the center at the zero and a radius of the length from the zero to one pole. There is a breakaway point on the real-axis segment, )3 (--∞,. The root locus is plotted as shown.(d) ]10)10[()20()20020()20()()(222+++=+++=s s s k s s s s k s H s G . By inspection, we have 01=p ,10103,2j p ±-= and 201-=z . The intersection of asymptotes is013)20()10100(=-----=a σand the angles of asymptotes are213)12(ππϕ±=-+=l aThe characteristic equation is 020********3=+++s s s . If the rootlocus has breakaway points, the closed-loop system will have a thrice root, i.e. a root will satisfy 403-=s and 20003-=s simultaneously. Obviously, it is impossible. The root locus is plotted as shown.The angles of departure of the root locus from the complex poles are 0)()(18012122=-∠--∠+=p p z p p θ, 02=p θ (e) 2)3()()(+=s s ks H s G . By inspection, we have 01=p ,332-==p p . The intersection of asymptotes is13330-=--=a σ and the angles of asymptotes areπππϕ ,33)12(±=+=l aThere is a breakaway point on the real-axis segment )0 3(,-. The root locus is plotted as shown.P4.2 C onsider a unity feedback system with 54)1()(2+++=s s s k s G(a) Find the angles of departure of the root locus from the complex poles. (b) Find the entry point for the root locus as it enters the real axis.Solution: 1)2()1(54)1()(22+++=+++=s s k s s s k s G . By inspection, we have 122 ,1j p ±-= and11-=z .(a) The angles of departure of the root locus from the complex poles are22590135180)()(18021111=-+=-∠--∠+=p p z p p θ, 2252-=p θ (b) The breakaway-point equation is given by012 11544222=-+⇒+=+++s s s s s sSolving this equation yields 212 ,1±-=s . There is only one breakaway point 21--=b s . P4.3 A unity feedback system has a plant transfer function)14.005.0()(2++=s s s Ks G Sketch the root locus as K varies.Solution:]2)4[()208()14.005.0()(2222++=++=++=**s s K s s s K s s s Ks G . Byinspection, we have 01=p and 243 ,2j p ±-=. The intersection of asymptotes is67.2383440-=-=--=a σand their angles areπππϕ ,33)12(±=+=l aSolving the breakaway-point equation020163 0 20882122=++⇒=++++s s s s s swe get two breakaway points 33.31-=b s , 22-=b sThe characteristic equation is 020823=*+++K s s s . Substituting ωj s =into this equationyields ⎪⎩⎪⎨⎧=+-=*+-0200832ωωωK , we get the intersection of root locus with the j-axis47.452±=±=c ω, 160=*cK The root locus is plotted as shown.P4.5 A unity feedback system has )5)(2()(++=s s s ks GFind (a) the breakaway point on the real axis and the gain for this point, (b) the gain and the roots when two roots lie on the imaginary axis, and (c) the roots when 6=k . (d) Sketch the root locus. Solution: (a) Solving the breakaway-point equation 051211=++++s s swe find the breakaway point 88.0-=b s . (Another solution of this equation is not on the root locus.) The gain for this point is06.45 2=+⋅+⋅=b b b b s s s k(b) The characteristic equation is 010723=+++k s s sSubstituting ωj s =into this equation yields ⎪⎩⎪⎨⎧=+-=+-0100732ωωωk , we get the intersection of rootlocus with the j-axis16.310±=±=c ω, 70=c khence, when two roots lie on the imaginary axis, the gain is 70=k and the roots are 10j s ±=.(c) In the case of 6=k , the characteristic equation is 06107)(23=+++=s s s s ∆Since b k k >=6, there are one real root on segment )5 ,(--∞and a pair of complex roots, it is not difficult to find that 0)34.5(≈-∆, i.e. 34.51-=s is a root of this equation. Denoting jb a s ±=2 ,1, we have83.0 7321-=⇒-=++a s s s 66.0 6321=⇒-=b s s si.e., in this case the closed-loop roots are 34.51-=s and 66.083.03 ,2j s ±-=. (d) The root locus is plotted as shown, where for the asymptotes we have33.2352-=--=a σ, ππϕ ,3±=aP4.7 The transfer functions of a negative feedback system are given by)5)(2()(2++=s s s ks G and 1)(=s H(a) Sketch the root locus for this system. (b) The transfer function of the feedback loop is now changed to 12)(+=s s H . Indicate the crossing points of the locus on the imaginary axis and the corresponding value of k at these points. Determine the stability of the modified system as a function of k . Investigate the effect on the root locus due to this change in )(s H .Solution: (a) There are four open-loop poles: 021==p p , 23-=p and 54-=p , and there is no zero. For the asymptotes we have75.147-=-=a σ, 135 ,45±±=a ϕ Solving the breakaway-point equation051212=++++s s swe get 25.11-=s , 13.42-=s , where 13.4-=b s is a breakaway point. Since the closed-loop system is constructional unstable, the root locus does not intersect with j-axis for 0>k . The root locus is plotted as shown. (b) In this case, the open-loop transfer function is given by)5)(2()5.0()5)(2()12()()(22+++=+++=*s s s s k s s s s k s H s G ,k k 2=*The asymptotes are centered at 17.235.6-=-=a σwith angles 801 ,60±=a ϕ. Investigating the breakaway-point equation5.01512122+=++++s s s s 0105.2016323=+++s s swe know that the root locus does not have breakaway point.Substituting ωj s = into the characteristic equation⎪⎩⎪⎨⎧=+-=+-⇒=++++****705.010 05.0107324234ωωωωk k k s k s s syields 55.25.6±=±=c ω, 5.45=*ck . The root locus is plotted as shown. Now, the system is stable only when 5.450<<*k , i.e. 75.220<<k .As we see, the stability of the closed-loop system is improved due to the change in )(s H . P4.8 The characteristic equation of a feedback control system is given by042)5()(2=++++=k s k s s ∆Sketch the root locus as a function of k (positive k only) for this system. Solution: Rewriting the characteristic polynomial as )2(4542)5()(22++++=++++=s k s s k s k s s ∆ yields a equivalent transfer function)4)(1()2(45)2()(2+++=+++=s s s k s s s k s G e The root locus is plotted as shown.P4.10 The open-loop transfer function of a control system with positive feedback is given by)44()()(2++=s s s ks H s GSketch the root locus for this system when ∞<<k 0. Solution: The root-locus equation is given by1)2(0)()(12-=+⇒=-s s ks H s G using the rules for plotting 0 root locus, we have 33.134-=-=a σ, 120 ,0±=a ϕThe root locus has neither breakaway point nor intersection with j-axis. The root locus is plotted as shown.。

相关文档
最新文档