初中数学中的解方程.doc
初中数学方程与不等式的解法
初中数学方程与不等式的解法方程与不等式是初中数学中重要的概念之一,它们在实际生活中的应用广泛。
本文将介绍初中数学中常见的方程与不等式的解法,包括一元一次方程的解法、一元一次不等式的解法、一元二次方程的解法和一元二次不等式的解法。
一、一元一次方程的解法一元一次方程是形如ax + b = 0的方程,其中a、b为已知数,x为未知数。
解一元一次方程的基本思路是将方程转化为x的系数为1的方程。
具体步骤如下:1. 化简方程,消去方程中的常数项,使得系数x前的数字为1。
2. 通过逆运算,将x系数为1的方程转化为等式,得到x的解。
例如,解方程2x + 3 = 7,可以按照以下步骤进行:1. 化简方程:将方程中的常数项3移到等号右边,得到2x = 7 - 3,化简为2x = 4。
2. 转化为等式:将2x = 4转化为等式,得到x = 4 / 2,化简为x = 2。
因此,方程2x + 3 = 7的解为x = 2。
二、一元一次不等式的解法一元一次不等式是形如ax + b < c或ax + b > c的不等式,其中a、b、c为已知数,x为未知数。
解一元一次不等式的基本思路是根据不等式符号(<或>)找出合适的解集。
具体步骤如下:1. 化简不等式,消去方程中的常数项,使得系数x前的数字为1。
2. 根据不等式符号找出解集,如果是"<",找出大于等于解的最小值;如果是">",找出小于等于解的最大值。
例如,解不等式3x + 2 < 8,可以按照以下步骤进行:1. 化简不等式:将不等式中的常数项2移到不等号右边,得到3x < 8 - 2,化简为3x < 6。
2. 找出解集:由于是"<"不等式,解集为大于等于解的最小值。
将不等式除以3,得到x < 6 / 3,化简为x < 2。
因此,不等式3x + 2 < 8的解集为x < 2。
初中数学方程公式大全
初中数学方程公式大全一、方程解法公式:1. 一元一次方程求解公式:对于形如ax + b = 0的一元一次方程,其解为x = -b/a。
2. 一元二次方程求解公式:对于形如ax^2 + bx + c = 0的一元二次方程,其解为x = (-b ± √(b^2 - 4ac))/ 2a。
3.二元一次方程组求解公式:对于形如{a1x+b1y=c1{a2x+b2y=c2的二元一次方程组,其解为x=(b2c1-b1c2)/(a1b2-a2b1),y=(a1c2-a2c1)/(a1b2-a2b1)。
4.消元法求解方程组:对于形如{a1x+b1y=c1{a2x+b2y=c2先通过消去一个未知量的方式,将两个方程化为一个未知量的一元一次方程,然后通过求解一元一次方程的方法得到结果。
5.因式分解法求解方程:对于形如a(x-p)(x-q)=0的一元二次方程,通过对等式进行因式分解,得到(x-p)(x-q)=0,进而得到x=p或x=q。
二、等式变形公式:1.合并同类项公式:对于a+b+c+...的形式,将其中的同类项合并,得到合并后的表达式。
2.移项公式:对于等式a+b=c,可以通过移动项的方式将其中的其中一项移到等式的另一边,得到a=c-b。
3. 分配律公式:对于a(b + c) = ab + ac的形式,将括号中的表达式用a分别与括号内的各个项相乘,然后再将相乘得到的结果相加,得到最终结果。
4. 因式分解公式:对于ab + ac的形式,可以将其因式分解为a(b+ c)的形式。
5.平方差公式:对于(a+b)(a-b)的形式,将其用平方差公式展开,得到a^2-b^2的形式。
三、计算方法公式:1.百分数计算公式:对于a%的百分数,可以将其转化为a/100的形式,然后进行计算。
2.分数计算公式:对于分数的加减乘除运算,可以将分数化简后,按照加减乘除法的规则进行计算。
3.平均数计算公式:对于求一组数据的平均数,可以将所有数据相加,然后除以数据的个数。
初中数学 用适当的方法解方程
2
2
x1 2, x2 1
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
(3)2(5x 1)2 3(5x 1) (4)x2 5x 7 3x 11
解:(2 5x 1)2 3(5x 1) 0
解: x2 2x 4 0
(5x 1)2(5x 1) 3 0
5x 110 x 5 0
5x 1 0或10x 5 0
⑦ x2 6x
② 2x2 3x 0
④ 4x2 12x 9 0
⑥ (x 7)2 0 ⑧ 2(x2 4x) 1
把序号填在最适宜解法后的横线上:
(1)直接开方法 ①⑤⑥
(2)因式分解法 ②⑦ (3)配方法 ③ (4)公式法 ④⑧
广东省怀集县凤岗镇初级中学
黄柳燕
知识点二 观察方程 优选方法
例 用两种方法解方程:x2 6x 2 0
解法一:(配方法) x2 6x 2
x2 6x 32 2 32 (x 3)2 11
x 3 11
x1 3 11 x2 3 11
广东省怀集县凤岗镇初级中学
黄柳燕
三、研学教材
解法二:(公式法)
a 1, b 6, c 2
b2 4ac (6)2 41 (2) 44 0
黄柳燕
四、归纳小结
1、直接开平方法 适用于形如 x2 p( p 0) 或 (x a)2 b(b 0) 的方程;
配方法 适用于所有一元二次方程,尤 其适合当二次项系数为1,一次项系数 为 偶 数的一元二次方程; 公式法 适用于 所有一元二次方程;
广东省怀集县凤岗镇初级中学
黄柳燕
四、归纳小结
x1
1, 5
x2
1 2
a 1,b 2, c 4
初中数学专题: 分式方程的解法
范围是(D )
A.a>1
B.a<1
C.a<1 且 a≠-2
D.a>1 且 a≠2
4.(黑龙江中考)已知关于 x 的分式方程3xx--3a=13的解是非负数,那
么 a 的取值范围是(C)
A.a>1
B.a≥1
C.a≥1 且 a≠9
D.a≤1
5.已知关于 x 的分式方程ax++21=1 的解是非正数,则 a 的取值范围
(3)x-1 2=12- -xx-3. 解:方程两边同乘(x-2),得 1=x-1-3x+6.解得 x=2. 检验:当 x=2 时,x-2=0. 因此 x=2 不是原分式方程的解, 所以原分式方程无解.
2.解分式方程: (1)x-x 1+x2-1 1=1; 解:方程两边同乘(x+1)(x-1),得 x(x+1)+1=(x+1)(x-1).解得 x=-2. 检验:当 x=-2 时,得(x+1)(x-1)≠0, 所以原分式方程的解为 x=-2.
是(B)
A.a≤-1
B.a≤-1 且 a≠-2
C.a≤1 且 a≠-2D来自a≤16.(眉山中考)已知关于 x 的分式方程x-x 3-2=x-k 3有一个正数解,
则 k 的取值范围为 k<6且k≠3 .
【易错提示】 求得的未知数不仅要满足所给出的范围,还要使分
式的分母不为零,两个条件必须同时具备,缺一不可.
类型 2 由分式方程无解确定字母的取值
7.若关于 x 的方程3xx+-12=2+x+m1无解,则 m 的值为(A)
A.-5
B.-8
C.-2
D.5
8.【分类讨论思想】若关于 x 的方程xa-x2=x-4 2+1 无解,则 a 的
值是 1或2 .
9.【分类讨论思想】若关于 x 的方程3x--23x-m3x--x2=-1 无解,则 m 的值是1 或53 . 【易错提示】 分式方程无解可能有两种情况:(1)由分式方程去分 母后化成的整式方程有解,但这个解使最简公分母为零;(2)由分式 方程去分母后化成的整式方程无解.
初中数学解方程所有公式大全
初中数学解方程所有公式大全解一元一次方程:1. 标准形式:ax + b = 0。
解法:x = -b/a。
2. 一元一次方程的基本性质:若a ≠ 0,方程ax = b的解为x = b/a。
3. 移项:ax + b = c。
解法:x = (c - b)/a。
4.分式方程:a/(x+b)=c。
解法:x=a/c-b。
5.小数方程:0.3x-0.2=0.1、解法:x=(0.1+0.2)/0.36.左右两边乘同一个式子:0.1x=0.4、解法:x=0.4/0.17.括号消去:3(x+2)=12、解法:x=(12-2)/38.同时括号消去和移项:2(x+3)=3(2x-1)。
解法:x=(3-6)/(-4)。
解一元二次方程:1. 标准形式:ax² + bx + c = 0。
解法:x = (-b ± √(b² -4ac))/(2a)。
2.二次方程的基本性质:若a≠0,方程a(x-h)²+k=0的解为x=h±√(-k/a)。
3. 相等根条件:若b² - 4ac = 0,则二次方程ax² + bx + c = 0有相等的实根。
4.平方完成法:x²-2x-3=0。
解法:x=(-(-2)±√((-2)²-4(1)(-3)))/(2(1))。
5.移项与配方法结合:2x²+7x-3=0。
解法:x=(-7±√((7)²-4(2)(-3)))/(2(2))。
6.积零因数法:(x-1)(x+5)=0。
解法:x=1,-5解一元一次不等式:1.开区间:2x-3<5、解法:x<42.闭区间:3-2x≤7、解法:x≥-23.绝对值不等式:,2x-1,>3、解法:x<-1或x>24.一次不等式的综合运用:-4<5-2x<8、解法:-1<x<1.5解一元二次不等式:1.开区间:x²-2x-8>0。
初中数学复习解方程的常用方法总结
初中数学复习解方程的常用方法总结解方程是初中数学中的重要内容,掌握解方程的方法可以帮助我们快速解决数学问题。
本文将总结初中数学中常用的解方程方法,帮助同学们更好地复习和掌握解方程的技巧。
一、一元一次方程一元一次方程是最基础的方程形式,通常可以表示为ax+b=0。
解一元一次方程的方法有两种:移项法和等式两边乘除法。
1. 移项法移项法适用于形如ax+b=0的方程。
我们可以通过将b移到方程的另一边,得到ax=-b。
然后,用x除以a,即可求得解x=-b/a。
举例说明:解方程2x+3=7首先,将3移到方程的另一边,得到2x=7-3=4。
然后,用x除以2,得到x=4/2=2。
所以,方程2x+3=7的解为x=2。
2. 等式两边乘除法等式两边乘除法适用于形如ax=b的方程。
我们可以通过等式两边乘以倒数或除以系数,来求解方程。
举例说明:解方程3x=9首先,将等式两边除以3,得到x=9/3=3。
所以,方程3x=9的解为x=3。
二、一元二次方程一元二次方程是比较复杂的方程形式,通常可以表示为ax^2+bx+c=0。
解一元二次方程的方法有因式分解法和配方法。
1. 因式分解法因式分解法适用于一元二次方程可以因式分解为两个一次因式的情况。
我们可以通过将方程因式分解,使得每个因式等于零,从而得到解的值。
举例说明:解方程x^2-4x+3=0首先,我们需要找到方程的两个一次因式,满足(x+a)(x+b)=0,且a+b=-4,ab=3。
根据这两个条件,我们可以将3分解为1和3的组合,同时满足1+3=-4。
所以,方程x^2-4x+3=0可以化简为(x-1)(x-3)=0。
根据零乘法,得到x-1=0或x-3=0,即x=1或x=3。
所以,方程x^2-4x+3=0的解为x=1或x=3。
2. 配方法配方法适用于一元二次方程无法直接因式分解的情况。
我们可以通过配方,将方程形式转化为平方完成的形式,然后求解。
举例说明:解方程x^2-9x+14=0首先,我们需要找到一个常数k,使得方程中的二次项和常数项满足(kx-a)(kx-b)=0。
初中数学中的代数方程和解法技巧
初中数学中的代数方程和解法技巧代数方程是由字母、数字和运算符号构成的等式,其中包含未知数。
解代数方程的技巧主要有以下几种:1.移项法:当方程中有多项式相加或相减时,可以通过移动项的位置来简化方程。
例如,对于方程2x+3=7,我们可以先将3移到右边,得到2x=7-3,再将两边的常数相减,最终得到2x=4、移项法可以用于一元一次方程、一元二次方程等。
2.因式分解法:当方程中的多项式可以因式分解时,可以通过因式分解来求解方程。
例如,对于方程x^2-4=0,我们可以将其写成(x-2)(x+2)=0,然后令两个因式分别等于0,得到x-2=0和x+2=0,进而解得x=2和x=-2、因式分解法常用于一元二次方程。
3.同解合并法:当方程中的多项式可以进行同解合并时,可以通过同解合并来求解方程。
例如,对于方程2(x-1)+3(x-1)=0,我们可以将其简化为(2+3)(x-1)=0,进而得到5(x-1)=0,最终解得x=1、同解合并法常用于同底数幂的方程。
4.分式方程的通分法:当方程中存在分数时,可以通过通分来化简方程。
例如,对于方程(2/x)+(3/(x+1))=1,我们可以通过通分将其化为(2(x+1)+3x)/(x(x+1))=1,进而得到(5x+2)/(x(x+1))=1,然后根据分子等于分母的条件可以得到5x+2=x(x+1),继续求解即可。
通分法常用于分式方程的求解。
5. 二次函数方程的配方法:对于二次函数方程ax^2 + bx + c = 0,可以通过配方法将其化简为完全平方形式。
例如,对于方程x^2 + 6x +8 = 0,我们可以先将b项的系数分为两段,然后加上适当的常数使得它们平方,即x^2 + 6x + 9 - 1 = 0,再进行配方得到(x + 3)^2 - 1 = 0,最后根据完全平方公式得到(x + 3 + 1)(x + 3 - 1) = 0,解得x = -4和x = -2、配方法常用于二次函数方程的求解。
2022年初中数学精品《解一元一次方程8》word版精品教案
6.2 解一元一次方程第4课时教学目标【知识与能力】掌握分母中含有小数的一元一次方程的解法,灵活运用解方程的步骤解方程.【过程与方法】通过练习使学生灵活的解一元一次方程.【情感态度价值观】发展学生的观察、计算、思维能力.教学重难点【教学重点】使学生灵活的解一元一次方程.【教学难点】使学生灵活的解一元一次方程.课前准备课件教学过程一、情境导入,初步认识通过前面的学习,得出了解一元一次方程的一般步骤,任何一个一元一次方程都可以通过去分母、去括号、移项、合并同类项等步骤转化成x=a的形式.因此当一个方程中的分母含有小数时,应首先考虑化去分母中的小数,然后再求解这个方程.【教学说明】复习解一元一次方程的步骤,为本节课的教学作准备,并引出本节课的内容.二、思考探究,获取新知1.解方程分析:此方程的分母中含有小数,通常将分母中的小数化为整数,然后再按解方程的一般步骤求解.利用分数的基本性质,将方程化为:去分母,得6(9x+2)-14(3+2x)-21(3x+14)=42,去括号,得54x+12-42-28x-63x-294=42,移项,得 54x-28x-63x=42-12+42+294,合并同类项,得-37x=366,系数化为1得x=-366/37.【教学说明】解此方程时一定要注意区别:将分母中的小数化为整数根据的是分数的基本性质,分数的分子和分母都乘以(或除以)同一个不等于零的数,分数的值不变,所以等号右边的1不变.去分母是方程的两边都乘以各分母的最小公倍数42,所以等号右边的1也要乘以42,才能保证所得结果仍成立.2.解下列方程:(1)3(2x-1)+4=1-(2x-1);分析:我们已经学习了解方程的一般步骤,具体解题时,要观察题目的结构特征,灵活应用步骤.第(1)小题中可以把(2x-1)看成一个整体,先求出(2x-1)的值,再求x的值;第(2)小题,应注意到分子都是4x+3,且1/6+1/2+1/3=1,所以如果把4x+3看成一个整体,则无需去分母.解:(1)3(2x-1)+4=1-(2x-1) ,3(2x-1)+(2x-1)=1-4,4(2x-1)=-3,2x-1=-3/4,2x=1/4,x=1/8.(1/6+1/2+1/3)(4x+3)=1;4x+3=1;4x=-2;x=-1/2.【教学说明】解方程时,要注意观察分析题目的结构,根据具体情况合理安排解题的步骤,注意简化运算,这样可以提高解题速度,培养观察能力和决策能力.三、运用新知,深化理解【教学说明】强调学生在解题之前一定要先观察方程的特点,再选择适当的方法,是先去中括号、还是去小括号;是先去分母、还是先去括号等.【答案】1.分析:这个方程的分母含有小数,可依据分数的基本性质,先把分母化为整数再去分母后求解.解:原方程可化为去分母,得3(4x+21)-5(50-20x)= 9,去括号,得12x+63-250+100x=9,移项,得12x +100x=9-63+250,合并同类项,得112x=196,系数化为1,得x=196/112=7/4.2.解:原方程可化为去分母得40x+60=5(18-18x)-3(15-30x),去括号得40x+60=90-90x-45+90x,移项、合并得40x=-15,系数化为1得x=-3/8.3.解:去中括号得4(x-1/2)+1=5x-1,去小括号得4x-2+1=5x-1,移项、合并得x=0.4.解:去小括号得1/3(2x-1/3-2/3)=2,方程两边同乘以3得2x-1=6,移项得2x=7,系数化为1得x =7/2.5.解:依题意,得去分母得5(2k+1)=3(17-k)+45,去括号得10k+5=51-3k+45,移项得10k+3k=51+45-5,合并同类项得13k=91,系数化为1得k=7,6.分析:由方程2(2x-3)=1-2x可求出它的解为x=7/6,因为两个方程的解相同,只需把x =7/6 代入方程8-k=2(x+1)中即可求得k的值.解:由2(2x-3)=1-2x得4x-6=1-2x,4x+2x=1+6,6x=7,x=7/6.把x =7/6代入方程8-k=2(x+1),得8-k=2(7/6+1),8-k=7/3+2,-k=-11/3,k=11/3.答:当k =11/3时,方程2(2x-3)=1-2x 和8-k=2(x+1)的解相同.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业1.布置作业:教材第14页“习题6.2.2”中第1 、2 题.2.完成练习册中本课时练习.五、教学反思这几堂课我们都在探讨一元一次方程的解法,具体解题时要仔细审题,根据方程的结构特征,灵活选择解法,以简化解题步骤,提高解题速度.对于利用方程的意义解决的有关数学题,仔细领会题目中的信息,应把它转化为方程来求解.第2课时 分式的乘方[解答] 根据乘方的意义和分式乘法法则,可得分式乘方法则:分式乘方是把分子、分母各自乘方.即由于ba 表示a 除以b 的商,所以分式乘方的法则实质上就是商的乘方法则,这个法则与第六章整式的乘除中幂的运算法则组成了系统的幂的五种运算性质.即关于正整数m 、n 有: (1)m n m n a a a +=⋅(2)m n m n a a a -=÷ (a ≠0,m >n)(3)m n m n a a ⋅=)((4)n n n b a b a ⋅=⋅)(加强幂的运算性质“双向应用”的练习,有利于熟练掌握幂的运算性质,发展思维,提高灵活解决有关幂的各类问题的能力.正向应用幂的运算性质解题时,应注意以下几点.(1)“分子、分母各自乘方”是针对分子与分母的整体而言,如果分子、分母是积的形式,应接照积的乘方法则进行运算,如本例中(2)计算带有负号的分式乘方时,按照负数乘方的规律“偶次方为正,奇次方为负”,首先决定结果的符号,如本例中(3)乘方与乘除法混合运算时,应首先计算乘方,然后颠倒除式的分子与分母的位置,再与被除式相乘,进行约分化简.[例2]已知2a =5,2b =4,2c =10,求22a+b-3c 的值.分析:本题应通过逆向应用幂的运算性质,将c b a 322-+用a 2,2b 与2c 的式子表示出来,再代入求值.解:c b a 322-+ =c ba 3222+ ( m n m n a a a -=÷的逆向应用 ) =c ba 32222⋅ ( m n m n a a a +=⋅的逆向应用 )=32)2(2)2(c b a ⋅ ( m n m n a a ⋅=)(的逆向应用 ) =101104532=⨯[例3] 求(0.5)10×(-8)3的值.解:(0.5)10×(-8)3注意:把10)5.0(写成92121⎪⎭⎫ ⎝⎛⨯以及进一步把99)2(21-⨯⎪⎭⎫ ⎝⎛写成9)2(21⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛的形式,是逆向应用幂的运算性质解题的常用技巧,也是解决本题的关键。
初中数学:解一元一次方程(共4课时)
把方程的两边都除以未 知数的系数(不为0)
依据
注意事项
分数的性质 不是方程两边所有的項都乘
等式性质2
乘法分配律 去括号法则
不要漏乘不含分母的项,分子是 多项式时别忘加括号。
括号前是“-”时,去掉括号时 括号
内各项均要变号
移项法则
移项要变号
合并同类项法 系数相加,字母及字母的指数均
则
不变
(3) 2.4y+2= -2y ⑷ 8- 5x=x+2
例1 解方程:2x+6=1
只要设法将未 知数的系数化 为1 就行了。
解方程:3x+3=2x+7
每一步变形的 依据是什么?
1、一般把含有未知数 的項移到等号左边,常
数项移到等号右边。 2、移項记得要变号
解方程:
(1) x-3=-12 (2) 5-2x=9-3x (3)16x+6=-7+15x (4) 3y-2=2y-10
左边对含未知数的项合并、右边对常数项合并。并 把未知项的系数化为1,形如x=a(a为常数)。
解方程:4(x+0.5)+x=17.
此方程与上课时所学方程有何差异?
需要先去括号
去括号有什么 注意事项呢?
解方程 2 62x 1 12
解:去括号,得:
移项,得: 合并同类项,得:
系数化为1,得:
你有几种方法呢?
知识回顾:
1、我们已经学过解一元一 次方程的步骤有那些?
解一元一次方程的步骤:
• 1、去分母 • 2、去括号 • 3、移项 • 4、合并同类项 • 5、系数化为1
解方程: y 2 y 1
63
想一想 去分母时要 注意什么问题?
初中数学方程式解法整理
初中数学方程式解法整理数学方程式是初中数学中重要的一部分,解方程是培养学生逻辑思维和解决问题能力的关键内容。
在解方程时,我们需要根据不同的题型选择合适的解法,以便求得方程的解。
本文将从一元一次方程、一元二次方程和分式方程三个方面,整理解方程的方法,帮助初中生更好地理解和掌握解方程的技巧。
一、一元一次方程的解法一元一次方程是初中数学中最基础的方程类型,其形式为ax + b = 0。
解一元一次方程可通过如下步骤进行:1. 消去常数项:如果方程中有常数项b,我们可以通过减去常数项b,将方程化为ax = -b的形式。
2. 消去系数项:我们可以通过除以未知数的系数a,将方程化为x = -b/a的形式。
这样就得到了方程的解x。
3. 检验:为了确认我们的解是正确的,我们可以将求得的解代入原方程中,检验两边是否相等。
如果相等,则解正确;如果不相等,则解错误。
需要注意的是,当方程中含有分数或小数时,我们首先需要将其转化为整数形式,再进行解方程的步骤。
二、一元二次方程的解法一元二次方程是比一元一次方程复杂一些的方程类型,其一般形式为ax² + bx + c = 0。
解一元二次方程需要用到配方法、因式分解法、求根公式和完成平方等方法。
1. 配方法:当一元二次方程的系数正好可以通过配方将其化为完全平方时,我们可以使用配方法解方程。
具体步骤如下:a) 将一元二次方程按照形式“(px + q)² = 0”的方式写出;b) 移项并展开方程,得到px + q = 0;c) 求出px = -q;d) 得到方程的解x = -q/p。
2. 因式分解法:当一元二次方程可以因式分解为两个一元一次方程的乘积时,我们可以使用因式分解法解方程。
具体步骤如下:a) 将一元二次方程进行因式分解;b) 令两个一元一次方程分别等于0,并求出方程的解;c) 得到方程的解为两个一元一次方程的解的并集。
3. 求根公式:一些无法通过配方法或因式分解法解的一元二次方程,我们可以使用求根公式解方程。
初中数学《一元二次方程的解法》十大题型含解析
一元二次方程的解法【十大题型】【题型1直接开平方法解一元二次方程】【题型2配方法解一元二次方程】【题型3公式法解一元二次方程】【题型4因式分解法解一元二次方程】【题型5十字相乘法解一元二次方程】【题型6用适当方法解一元二次方程】【题型7用指定方法解一元二次方程】【题型8用换元法解一元二次方程】【题型9解含绝对值的一元二次方程】【题型10配方法的应用】知识点1:直接开平方法解一元二次方程根据平方根的意义直接开平方来解一元二次方程的方法,叫做直接开平方法.直接降次解一元二次方程的步骤:①将方程化为x2=p(p≥0)或(mx+n)2=p(p≥0,m≠0)的形式;②直接开平方化为两个一元一次方程;③解两个一元一次方程得到原方程的解.【题型1直接开平方法解一元二次方程】1(23-24九年级上·广东深圳·期中)将方程(2x-1)2=9的两边同时开平方,得2x-1=,即2x-1=或2x-1=,所以x1=,x2=.【答案】±33-32-1【分析】依照直接开平方法解一元二次方程的方法及步骤,一步步解出方程即可【详解】∵(2x-1)2=9∴2x-1=±3∴2x-1=3,2x-1=-3∴x1=2,x2=-1【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键2(23-24九年级上·贵州遵义·阶段练习)用直接开平方解下列一元二次方程,其中无解的方程为()A.x2+9=0B.-2x2=0C.x2-3=0D.(x-2)2=0【答案】A【分析】根据负数没有平方根即可求出答案.【详解】解:(A )移项可得x 2=-9,故选项A 无解;(B )-2x 2=0,即x 2=0,故选项B 有解;(C )移项可得x 2=3,故选项C 有解;(D )x -2 2=0,故选项D 有解;故选A .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.3(23-24九年级上·陕西渭南·阶段练习)如果关于x 的一元二次方程x -5 2=m -7可以用直接开平方求解,则m 的取值范围是.【答案】m ≥7【分析】根据平方的非负性得出不等式,求出不等式的解集即可.【详解】解:∵方程x -5 2=m -7可以用直接开平方求解,∴m -7≥0,解得:m ≥7,故答案为:m ≥7.【点睛】本题考查了解一元二次方程和解一元一次不等式,能得出关于m 的不程是解此题的关键.4(23-24九年级上·河南南阳·阶段练习)小明在解一元二次方程时,发现有这样一种解法:如:解方程x x +4 =6.解:原方程可变形,得:x +2 -2 x +2 +2 =6.x +2 2-22=6,x +2 2=10.直接开平方并整理,得.x 1=-2+10,x 2=-2-10.我们称小明这种解法为“平均数法”(1)下面是小明用“平均数法”解方程x +5 x +9 =5时写的解题过程.解:原方程可变形,得:x +a -b x +a +b =5.x +a 2-b 2=5,∴x +a 2=5+b 2.直接开平方并整理,得.x 1=c ,x 2=d .上述过程中的a 、b 、c 、d 表示的数分别为______,______,______,______.(2)请用“平均数法”解方程:x -5 x +7 =12.【答案】(1)7,2,-4,-10.(2)x 1=-1+43,x 2=-1-43.【分析】(1)仿照平均数法可把原方程化为x +7 -2 x +7 +2 =5,可得x +7 2=9,再解方程即可;(2)仿照平均数法可把原方程化为x +1 -6 x +1 +6 =12,可得x +1 2=48,再解方程即可;【详解】(1)解:∵x +5 x +9 =5,∴x +7 -2 x +7 +2 =5,∴x +7 2-4=5,∴x +7 2=9,∴x +7=3或x +7=-3,解得:x 1=-4,x 2=-10.∴上述过程中的a 、b 、c 、d 表示的数分别为7,2,-4,-10.(2)∵x -5 x +7 =12,∴x +1 -6 x +1 +6 =12,∴x +1 2-36=12,∴x +1 2=48,∴x +1=43,x +1=-43,解得:x 1=-1+43,x 2=-1-43.【点睛】本题考查的是一元二次方程的解法,新定义运算的含义,理解平均数法结合直接开平方法解一元二次方程是解本题的关键.知识点2配方法解一元二次方程将一元二次方程配成(x +m )2=n 的形式,再用直接开平方法求解,这种解一元二次方程的方法叫配方法.用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx +c =0(a ≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.【题型2配方法解一元二次方程】1(23-24九年级上·广东深圳·期中)用配方法解方程,补全解答过程.3x 2-52=12x .解:两边同除以3,得______________________________.移项,得x 2-16x =56.配方,得_________________________________,即x -112 2=121144.两边开平方,得__________________,即x -112=1112,或x -112=-1112.所以x 1=1,x 2=-56.【答案】x 2-56=16x x 2-16x +112 2=56+112 2 x -112=±1112【分析】方程两边除以3把二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【详解】3x 2-52=12x .解:两边同除以3,得x 2-56=16x .移项,得x 2-16x =56.配方,得x2-16x+1122=56+112 2,即x-1 122=121144.两边开平方,得x-112=±1112,即x-112=1112,或x-112=-1112.所以x1=1,x2=-5 6.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.2(23-24九年级下·广西百色·期中)用配方法解方程x2-6x-1=0时,配方结果正确的是()A.x-32=9 B.x-32=10 C.x+32=8 D.x-32=8【答案】B【分析】此题考查了配方法求解一元二次方程,解题的关键是掌握配方法求解一元二次方程的步骤.根据配方法的步骤,求解即可.【详解】解:x2-6x-1=0移项得:x2-6x=1配方得:x2-6x+9=1+9即x-32=10故选:B3(24-25九年级上·全国·假期作业)用配方法解方程:x2+2mx-m2=0.【答案】x1=-m+2m,x2=-m-2m【分析】本题考查了解一元二次方程--配方法.先移项,再进行配方,最后开方即可得.【详解】解:移项得x2+2mx=m2,配方得x2+2mx+m2=m2+m2,即x+m2=2m2,所以原方程的解为:x1=-m+2m,x2=-m-2m.4(2024·贵州黔东南·一模)下面是小明用配方法解一元二次方程2x2+4x-8=0的过程,请认真阅读并完成相应的任务.解:移项,得2x2+4x=8第一步二次项系数化为1,得x2+2x=4第二步配方,得x+22=8第三步由此可得x+2=±22第四步所以,x1=-2+22,x2=-2-22第五步①小明同学的解答过程,从第步开始出现错误;②请写出你认为正确的解答过程.【答案】①第三步;②详见解析【分析】本题主要考查了解一元二次方程,熟练掌握配方法,先将方程2x2+4x-8=0变为x2+2x=4,然后配方为x+12=8,再开平方即可.【详解】解:①小明同学的解答过程,从第三步开始出现错误;②2x2+4x-8=0,移项,得2x2+4x=8,二次项系数化为1,得x2+2x=4,配方,得x+12=5,由此可得x+1=±5,所以,x1=-1+5,x2=-1-5.知识点3公式法解一元二次方程当b2-4ac≥0时,方程ax2+bx+c=0(a≠0)通过配方,其实数根可写为x=-b±b2-4ac2a的形式,这个式子叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式,把各项系数的值直接代入这个公式,这种解一元二次方程的方法叫做公式法.【题型3公式法解一元二次方程】1(23-24九年级上·山西大同·阶段练习)用公式法解关于x的一元二次方程,得x= -6±62-4×4×12×4,则该一元二次方程是.【答案】4x2+6x+1=0【分析】根据公式法的公式x=-b±b2-4ac2a,可得方程的各项系数,即可解答.【详解】解:∵x=-b±b2-4ac2a=-6±62-4×4×12×4,∴a=4,b=6,c=1,从而得到一元二次方程为4x2+6x+1=0,故答案为:4x2+6x+1=0.【点睛】本题考查了用公式法解一元二次方程,熟记公式是解题的关键.2(23-24九年级上·广东深圳·期中)用公式法解一元二次方程:x-23x-5=0.解:方程化为3x2-11x+10=0.a=3,b=,c=10.Δ=b 2-4ac =-4×3×10=1>0.方程实数根.x ==,即x 1=,x 2=53.【答案】-11(-11)2有两个不相等的--11 ±12×311±162【分析】根据公式法解一元二次方程的解法步骤求解即.【详解】解:方程化为3x 2-11x +10=0.a =3,b =-11,c =10.Δ=b 2-4ac =-11 2-4×3×10=1>0.方程有两个不相等的实数根.x =--11 ±12×3=11±16,即x 1=2,x 2=53.故答案为:-11;(-11)2;有两个不相等的;--11 ±12×3;11±16;2.【点睛】本题考查公式法解一元二次方程,熟练掌握公式法解一元二次方程的解法步骤是解答的关键.3(23-24九年级上·河南三门峡·期中)用公式法解方程-ax 2+bx -c =0 (a ≠0),下列代入公式正确的是()A.x =-b ±b 2-4a ×(-c )2×(-a ) B.x =b ±b 2-4ac2a C.x =b ±b 2-4a ×(-c )2×(-a ) D.x =-b ±b 2-4ac2a【答案】B【分析】先将方程进行化简,然后根据一元二次方程的求根公式,即可做出判断.【详解】解:方程-ax 2+bx -c =0 (a ≠0)可化为ax 2-bx +c =0由求根公式可得:x =-(-b )±(-b )2-4ac 2a =b ±b 2-4ac 2a 故选:B【点睛】本题主要考查了一元二次方程的求根公式,准确的识记求根公式是解答本题的关键.4(23-24九年级上·广东深圳·期中)用求根公式法解得某方程ax 2+bx +c =0(a ≠0)的两个根互为相反数,则()A.b =0B.c =0C.b 2-4ac =0D.b +c =0【答案】A【分析】根据求根公式法求得一元二次方程的两个根x 1、x 2,由题意得x 1+x 2=0,可求出b =0.【详解】∵方程ax2+bx+c=0(a≠0)有两根,∴Δ=b2-4ac≥0且a≠0.求根公式得到方程的根为x=-b±b2-4ac2a,两根互为相反数,所以x1+x2=0,即-b+b2-4ac2a+-b-b2-4ac2a=0,解得b=0.故选:A.【点睛】本题考查了解一元二次方程-公式法,相反数的意义,熟练掌握用公式法解一元二次方程是解题的关键.知识点4因式分解法解一元二次方程当一个一元二次方程的一边是0,另一边能分解为两个一次因式的乘积时,就可以把解这样的一元二次方程转化为解两个一元一次方程,这种解一元二次方程的方法叫做因式分解法.【题型4因式分解法解一元二次方程】1(23-24九年级下·安徽亳州·期中)关于x的一元二次方程x x-2=2-x的根是()A.-1B.0C.1和2D.-1和2【答案】D【分析】本题主要考查了解一元二次方程,先移项,然后利用因式分解法解方程即可得到答案.【详解】解:∵x x-2=2-x,∴x x-2+x-2=0,∴x+1x-2=0,∴x+1=0或x-2=0,解得x=-1或x=2,故选:D.2(23-24九年级上·陕西榆林·阶段练习)以下是某同学解方程x2-3x=-2x+6的过程:解:方程两边因式分解,得x x-3=-2x-3,①方程两边同除以x-3,得x=-2,②∴原方程的解为x=-2.③(1)上面的运算过程第______步出现了错误.(2)请你写出正确的解答过程.【答案】(1)②(2)过程见解析【分析】(1)根据等式的性质作答即可;(2)先移项,然后用因式分解法求解.【详解】(1)解:∵x-3可能为0,∴不能除以x-3,∴第②步出现了错误故答案为②.(2)解:方程两边因式分解,得x x-3=-2x-3,移项,得x x-3+2x-3=0,∴x-3x+2=0,∴x1=3,x2=-2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.3(23-24九年级下·安徽安庆·期中)对于实数m,n,定义运算“※”:m※n=m2-2n,例如:2※3=22 -2×3=-2.若x※5x=0,则方程的根为()A.都为10B.都为0C.0或10D.5或-5【答案】C【分析】本题考查的知识点是新定义运算、解一元二次方程,解题关键是理解题意.现根据新定义运算得出一元二次方程,再求解即可.【详解】解:根据定义运算m※n=m2-2n可得,x※5x=0即为x2-5x·2=0,即x x-10=0,∴x1=0,x2=10,则方程的根为0或10.故选:C.4(13-14九年级·浙江·课后作业)利用因式分解求解方程(1)4y2=3y;(2)(2x+3)(2x-3)-x(2x+3)=0.【答案】(1)y1=0,y2=34;(2)x1=-32,x2=3【分析】(1)利用移项、提公因式法因式分解求出方程的根;(2)利用提公因式法分解因式求出方程的根.【详解】(1)4y2=3y;4y2-3y=0y(4y-3)=0y=0或4y-3=0∴y1=0,y2=34,故答案为:y1=0,y2=3 4;(2)(2x+3)(2x-3)-x(2x+3)=0(2x+3)(x-3)=02x+3=0或x-3=0 x1=-32,x2=3,故答案为:x1=-32,x2=3.【点睛】本题考查利用因式分解解方程,关键是防止丢掉方程的根.例如:解方程4y2=3y时,给方程两边同除以y,解得y=34,而丢掉y=0的情况.【题型5十字相乘法解一元二次方程】1(23-24九年级下·广西百色·期中)以下是解一元二次方程ax2+bx+c=0(a≠0)的一种方法:二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1,a2,c1,c2排列为:然后按斜线交叉相乘,再相加,得到a1c2+a2c1,若此时满足a1c2+a2c1=b,那么ax2+bx+c=0(a≠0)就可以因式分解为(a1x +c1)(a2x+c2)=0,这种方法叫做“十字相乘法”.那么6x2-11x-10=0按照“十字相乘法”可因式分解为()A.(x-2)(6x+5)=0B.(2x+2)(3x-5)=0C.(x-5)(6x+2)=0D.(2x-5)(3x+2)=0【答案】D【分析】根据“十字相乘法”分解因式得出6x2-11x-10=(2x-5)(3x+2)即可.【详解】∵∴6x2-11x-10=2x-53x+2=0.故选:D.【点睛】本题主要考查了利用因式分解法解一元二次方程以及十字相乘法分解因式,正确分解常数项是解题关键.2(23-24九年级上·江西上饶·期末)试用十字相乘法解下列方程(1)x2+5x+4=0;(2)x2+3x-10=0.【答案】(1)x1=-4,x2=-1;(2)x1=2,x2=-5.【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,进一步求解可得答案;(2)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,进一步求解可得答案.【详解】(1)解:x2+5x+4=0x+4=0x+1x+4=0或x+1=0∴x1=-4,x2=-1;(2)解:x2+3x-10=0x+5=0x-2x+5=0或x-2=0∴x1=2,x2=-5.3(23-24九年级下·广西梧州·期中)解关于x的方程x2-7mx+12m2=0得()A.x1=-3m,x2=4mB.x1=3m,x2=4mC.x1=-3m,x2=-4mD.x1=3m,x2=-4m【答案】B【分析】本题主要考查了解一元二次方程,掌握运用十字相乘法求解即可.直接运用十字相乘法解一元二次方程即可.【详解】解:x2-7mx+12m2=0,x-3mx-4m=0,x-3m=0或x-4m=0,x1=3m,x2=4m.故选B.4(23-24九年级下·重庆·期中)阅读下面材料:材料一:分解因式是将一个多项式化为若干个整式积的形式的变形,“十字相乘法”可把某些二次三项式分解为两个一次式的乘积,具体做法如下:对关于x,y的二次三项式ax2+bxy+cy2,如图1,将x2项系数a=a1⋅a2,作为第一列,y2项系数c=c1⋅c2,作为第二列,若a1c2+a2c1恰好等于xy项的系数b,那么ax2+bxy+cy2可直接分解因式为:ax2+bxy+cy2=a1x+c1ya2x+c2y示例1:分解因式:x2+5xy+6y2解:如图2,其中1=1×1,6=2×3,而5=1×3+1×2;∴x2+5xy+6y2=(x+2y)(x+3y);示例2:分解因式:x2-4xy-12y2.解:如图3,其中1=1×1,-12=-6×2,而-4=1×2+1×(-6);∴x2-4xy-12y2=(x-6y)(x+2y);材料二:关于x,y的二次多项式ax2+bxy+cy2+d x+ey+f也可以用“十字相乘法”分解为两个一次式的乘积.如图4,将a=a1a2作为一列,c=c1c2作为第二列,f=f1f2作为第三列,若a1c2+a2c1=b,a1f2+a2f1=d,c1f2+c2f1=e,即第1、2列,第1、3列和第2、3列都满足十字相乘规则,则原式分解因式的结果为:ax2+bxy+cy2+d x+ey+f=a1x+c1y+f1a2x+c2y+f2;示例3:分解因式:x2-4xy+3y2-2x+8y-3.解:如图5,其中1=1×1,3=(-1)×(-3),-3=(-3)×1;满足-4=1×(-3)+1×(-1),-2=1×(-3)+1×1,8=(-3)×(-3)+(-1)×1;∴x2-4xy+3y2-2x+8y-3=(x-y-3)(x-3y+1)请根据上述材料,完成下列问题:(1)分解因式:x2+3x+2=;x2-5xy+6y2+x+2y-20=;(2)若x,y,m均为整数,且关于x,y的二次多项式x2+xy-6y2-2x+my-120可用“十字相乘法”分解为两个一次式的乘积,求出m的值,并求出关于x,y的方程x2+xy-6y2-2x+my-120=-1的整数解.【答案】(1)(x+1)(x+2),(x-3y+5)(x-2y-4);(2)m=54m=-56,x=-1y=4和x=2y=-4【分析】(1)①直接用十字相乘法分解因式;②把某个字母看成常数用十字相乘法分解即可;(2)用十字相乘法把能分解的集中情况全部列出求出m值.【详解】解:(1)①1=1×1,2=1×2,3=1×1+1×2,∴原式=(x+1)(x+2);②1=1×1,6=(-2)×(-3),-20=5×(-4)满足(-5)=1×(-2)+1×(-3),1=1×5+1×(-4),2=(-2)×5+(-3)×(-4)∴原式=(x-3y+5)(x-2y-4);(2)①1-35a1c1f11-2-4a2c2f2{a1c2+a2c1=-5a1f22+a2f1=1c1f2+c2f1=2②1-21013-12{a1c2+a2c1=1a1f2+a2f1=-2c1f2+c2f1=m1-2-121310(x-2y+10)(x+3y-12)=x2+xy-6y2-2x+my-120∴m=54(x-2y-12)(x+3y+10)=x2+xy-6y2-2x+my-120∴m=-56当m=54时,(x-2y+10)(x+3y-12)=-1{x-2y+10=1x+3y-12=-1或{x-2y+10=-1x+3y-12=1,x=-75y=245(舍),{x=-1y=4当m=-56时,(x-2y-12)(x+3y+10)=-1{x-2y-12=1x+3y+10=-1或{x-2y=12=1x+3y+10=1,{x=2y=-4或x=695y=25(舍)综上所述,方程x2+xy-6y2-2x+my-120=-1的整数解有{x=-1y=4和{x=2y=-4;方法二:x2+xy+(-6y2)-2x+my-120=(x+3y)(x-2y)-2x+my-12y =(x+3y+a)(x-2y+b)=(x+3y)(x-2y)+(a+b)x+(3b-2a)y+ab {a+b=-2⇒{a=-123b-2a=m ab=-120 b=10或{a=10⇒m=54b=-12m=-56.【点睛】本题考查了因式分解的方法--十字相乘法,弄清题目中的十字相乘的方法是解题关键.【题型6用适当方法解一元二次方程】1(23-24九年级上·江苏宿迁·期末)用适当的方法解下列方程:(1)x2=4x;(2)x-32-4=0;(3)2x2-4x-5=0;(4)x-1x+2=2x+2.【答案】(1)x1=4,x2=0(2)x1=5,x2=1(3)x1=2+142,x2=2-142(4)x1=-2,x2=3【分析】本题考查了一元二次方程的解法,解一元二次方程-因式分解法,公式法,熟练掌握解一元二次方程的方法是解题的关键.(1)利用解一元二次方程-因式分解法进行计算,即可解答;(2)利用解一元二次方程-因式分解法进行计算,即可解答;(3)利用解一元二次方程-公式法进行计算,即可解答;(4)利用解一元二次方程-因式分解法进行计算,即可解答.【详解】(1)解:x2-4x=0x x-4=0,解得x1=4,x2=0(2)解:x-3-2x-3+2=0x-5x-1=0,解得x1=5,x2=1(3)解:∵a=2,b=-4,c=-5∴b2-4ac=-42-4×2×-5=16--40=56∴x=4±562×2=2±142解得x1=2+142,x2=2-142(4)解:x-1x+2-2x+2=0x+2x-1-2=0,x+2x-3=0,∴x+2=0,x-3=0,解得x1=-2,x2=32(23-24九年级上·山西太原·期中)用适当的方法解下列一元二次方程:(1)x2+4x-2=0;(2)x x+3=5x+15.【答案】(1)x1=6-2,x2=-6-2(2)x1=-3,x2=5【分析】本题考查的是一元二次方程的解法,掌握配方法、因式分解法解一元二次方程的一般步骤是解题的关键.(1)利用配方法解方程;(2)先移项,再利用提公因式法解方程.【详解】(1)解:移项,得x2+4x=2,配方,得x2+4x+4=2+4,x+22=6,两边开平方,得x+2=±6,所以,x1=6-2,x2=-6-2;(2)解:原方程可变形为:x x+3=5x+3,x x+3-5x+3=0,x+3x-5=0,x+3=0或x-5=0,所以,x1=-3,x2=53(23-24九年级下·山东泰安·期末)用适当的方法解下列方程(1)3x2=54;(2)x+13x-1=1;(3)4x2x+1=32x+1;(4)x2+6x=10.【答案】(1)x1=32,x2=-32(2)x1=-1+73,x2=-1-73(3)x1=-12,x2=34(4)x1=-3+19,x2=-3-19【分析】(1)方程整理后,利用直接开平方法求解即可;(2)方程整理后,利用求根公式法求解即可;(3)方程利用因式分解法求解即可;(4)方程利用配方法求解即可.【详解】(1)解:方程整理得:x2=18,开方得:x=±32,解得:x1=32,x2=-32;(2)解:方程整理得:3x2+2x-2=0,这里a=3,b=2,c=-2,∵△=22-4×3×(-2)=4+24=28>0,∴x=-2±276=-1±73,解得:x1=-1+73,x2=-1-73;(3)解:方程移项得:4x(2x+1)-3(2x+1)=0,分解因式得:(2x+1)(4x-3)=0,所以2x+1=0或4x-3=0,解得:x1=-12,x2=34;(4)解:配方得:x2+6x+9=19,即(x+3)2=19,开方得:x+3=±19,解得:x1=-3+19,x2=-3-19.【点睛】此题考查了解一元二次方程-因式分解法,公式法,直接开平方法,配方法,熟练掌握根据方程的特征选择恰当的解法是解本题的关键.4(23-24九年级上·海南省直辖县级单位·期末)用适当的方法解下列方程.(1)(x+2)2-25=0;(2)x2+4x-5=0;(3)2x2-3x+1=0.【答案】(1)x1=3,x2=-7(2)x1=1,x2=-5(3)x1=12,x2=1【分析】(1)利用平方差公式,可以解答此方程;(2)利用因式分解法解方程即可;(3)利用因式分解法解方程即可.【详解】(1)解:(x+2)2-25=0,(x+2-5)(x+2+5)=0,∴x-3=0或x+7=0,解得x1=3,x2=-7;(2)解:x2+4x-5=0,x-1x+5=0,∴x-1=0或x+5=0,解得x1=1,x2=-5;(3)解:2x2-3x+1=0,2x-1x-1=0,∴2x-1=0或x-1=0,解得x1=12,x2=1.【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).【题型7用指定方法解一元二次方程】1(23-24九年级下·山东日照·期末)用指定的方法解下列方程:(1)4(x-1)2-36=0(直接开方法)(2)x2+2x-3=0(配方法)(3)(x+1)(x-2)=4(公式法)(4)2(x+1)-x(x+1)=0(因式分解法)【答案】(1)x1=4,x2=-2;(2)x1=1,x2=-3;(3)x1=3,x2=-2;(4)x1=-1,x2=2.【分析】(1)直接利用开方法进行求解即可得到答案;(2)直接利用配方法进行求解即可得到答案;(3)直接利用公式法进行求解即可得到答案;(4)直接利用因式分解法进行求解即可得到答案;【详解】解:(1)∵4x-12-36=0∴(x-1)2=9,∴x-1=±3,∴x1=4,x2=-2;(2)∵x2+2x=3,∴x2+2x+1=4,∴(x+1)2=4,∴x+1=±2,∴x1=1,x2=-3;(3)∵x2-x-6=0,∴△=1-4×1×(-6)=25,∴x=1±252=1±52,∴x1=3,x2=-2;(4)∵2x+1-x x+1=0∴(x+1)(2-x)=0,∴x+1=0或2-x=0,∴x1=-1,x2=2.【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.2(23-24九年级下·山东烟台·期中)用指定的方法解方程:(1)x2-4x-1=0(用配方法)(2)3x2-11x=-9(用公式法)(3)5x-32=x2-9(用因式分解法)(4)2y2+4y=y+2(用适当的方法)【答案】(1)x1=5+2,x2=-5+2(2)x1=11+136,x2=11-136(3)x1=3,x2=92(4)y1=12,y2=-2【分析】本题考查了解一元二次方程,正确掌握相关性质内容是解题的关键.(1)运用配方法解方程,先移项再配方,然后开方即可作答.(2)先化为一般式,再根据Δ=b2-4ac算出,以及代入x=-b±Δ2a进行化简,即可作答.(3)先移项,再提取公因式,令每个因式为0,进行解出x的值,即可作答.(4)先移项,再提取公因式,令每个因式为0,进行解出x的值,即可作答.【详解】(1)解:x2-4x-1=0移项,得x2-4x=1配方,得x 2-4x +4=1+4,即x -2 2=5∴x -2=±5解得x 1=5+2,x 2=-5+2;(2)解:3x 2-11x =-93x 2-11x +9=0Δ=b 2-4ac =121-4×3×9=121-108=13∴x =11±136解得x 1=11+136,x 2=11-136;(3)解:5x -3 2=x 2-95x -3 2-x 2-9 =05x -3 2-x -3 x +3 =0x -3 5x -3 -x +3 =x -3 4x -18 =0则x -3=0,4x -18=0解得x 1=3,x 2=92;(4)解:2y 2+4y =y +22y 2+4y -y +2 =02y y +2 -y +2 =02y -1 y +2 =0∴2y -1=0,y +2=0解得y 1=12,y 2=-2.3(23-24九年级上·新疆乌鲁木齐·期中)用指定的方法解方程:(1)12x 2-2x -5=0(用配方法)(2)x 2=8x +20(用公式法)(3)x -3 2+4x x -3 =0(用因式分解法)(4)x +2 3x -1 =10(用适当的方法)【答案】(1)x 1=2+14,x 2=2-14(2)x 1=10,x 2=-2(3)x 1=3,x 2=0.6(4)x 1=-3,x 2=43【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)利用因式分解法解方程即可;(4)先将给出的方程进行变形,然后利用因式分解法解方程即可.【详解】(1)移项,得:12x 2-2x =5,系数化1,得:x 2-4x =10,配方,得:x 2-4x +4=14,(x -2)2=14,x -2=±14,∴x 1=2+14,x 2=2-14;(2)原方程可变形为x 2-8x -20=0,a =1,b =-8,c =-20,Δ=(-8)2-4×1×-20 =64+80=144>0,原方程有两个不相等的实数根,∴x =-b ±b 2-4ac 2a =8±1442=8±122,∴x 1=10,x 2=-2;(3)原方程可变形为:x -3 x -3+4x =0,整理得:x -3 5x -3 =0,解得x 1=3,x 2=0.6;(4)原方程可变形为:3x 2+5x -2-10=0,整理得:3x 2+5x -12=0,3x -4 x +3 =0,∴x 1=-3,x 2=43【点睛】本题主要考查的是配方法,公式法,因式分解法解一元二次方程的有关知识,掌握配方法的基本步骤,一元二次方程的求根公式是解题关键.4(23-24九年级上·河北邯郸·期中)按指定的方法解下列方程:(1)x 2=8x +9(配方法);(2)2y 2+7y +3=0(公式法);(3)x +2 2=3x +6(因式分解法).【答案】(1)x 1=9,x 2=-1.(2)x 1=-3,x 2=-12.(3)x 1=-2,x 2=1.【分析】(1)先把方程化为x 2-8x +16=25,可得x -4 2=25,再利用直接开平方法解方程即可;(2)先计算△=72-4×2×3=49-24=25>0,再利用求根公式解方程即可;(3)先移项,再把方程左边分解因式可得x +2 x -1 =0,再化为两个一次方程,再解一次方程即可.【详解】(1)解:x 2=8x +9,移项得:x 2-8x =9,∴x 2-8x +16=25,配方得:x-42=25,∴x-4=5或x-4=-5,解得:x1=9,x2=-1.(2)解:2y2+7y+3=0,∴△=72-4×2×3=49-24=25>0,∴x=-7±254=-7±54,∴x1=-3,x2=-12.(3)解:x+22=3x+6,移项得:x+22-3x+2=0,∴x+2x-1=0,∴x+2=0或x-1=0,解得:x1=-2,x2=1.【点睛】本题考查的是一元二次方程的解法,掌握“配方法,公式法,因式分解法解一元二次方程”是解本题的关键.【题型8用换元法解一元二次方程】1(23-24九年级下·浙江杭州·期中)已知a2+b2a2+b2+2-15=0,求a2+b2的值.【答案】3【分析】先用换元法令a2+b2=x(x>0),再解关于x的一元二次方程即可.【详解】解:令a2+b2=x(x>0),则原等式可化为:x(x+2)-15=0,解得:x1=3,x2=-5,∵x>0,∴x=3,即a2+b2=3.a2+b2的值为3.【点睛】本题考查了换元法、一元二次方程的解法,注意a2+b2为非负数是本题的关键.2(23-24九年级下·安徽合肥·期中)关于x的方程x2+x2+2x2+2x-3=0,则x2+x的值是()A.-3B.1C.-3或1D.3或-1【答案】B【分析】本题考查解一元二次方程,熟练掌握用换元法解方程是解题的关键.设x2+x=t,则此方程可化为t2+2t-3=0,然后用因式分解法求解即可.【详解】解:设x2+x=t,则此方程可化为t2+2t-3=0,∴t-1t+3=0,∴t-1=0或t+3=0,解得t1=1,t2=-3,∴x2+x的值是1或-3.∵x2+x=-3,即x2+x+3=0,Δ=12-4×1×3=-11<0方程无解,故x2+x=-3舍去,∴x2+x的值是1,故选:B.3(23-24九年级上·广东江门·期中)若a+5ba+5b+6=7,则a+5b=.【答案】1或-7【分析】本题主要考查解一元二次方程,设a+5b=x,则原方程可变形为x x+6=7,方程变形后运用因式分解法求出x的值即可得到结论.【详解】解:设a+5b=x,则原方程可变形为x x+6=7,整理得,x2+6x-7=0,x-1x+7=0,x-1=0,x+7=0,∴x=1,x=-7,即a+5b=1或-7,故答案为:1或-7.4(23-24九年级上·山东临沂·期中)利用换元法解下列方程:(1)2x4-3x2-2=0;(2)(x2-x)2-5(x2-x)+4=0.【答案】(1)x1=2,x2=-2(2)x1=1+172,x2=1-172,x3=1+52,x4=1-52【分析】(1)根据换元思想,设y=x2,则y=2或y=-12,由此即可求解;(2)设y=x2-x,则y=4或y=1,由此即可求解.【详解】(1)解:(1)设y=x2,则原方程化为2y2-3y-2=0,∴y=2或y=-12,当y=2时,x2=2,∴x1=2,x2=-2,当y=-12时,x2=-12,此时方程无解,∴原方程的解是x1=2,x2=-2.(2)解:设y=x2-x,则原方程化为y2-5y+4=0,∴y=4或y=1,当y=4时,x2-x=4,∴x1=1+172,x2=1-172,当y=1时,x2-x=1,∴x3=1+52,x4=1-52.∴原方程的解是x1=1+172,x2=1-172,x3=1+52,x4=1-52.【点睛】本题主要考查换元思想解高次方程,掌握我一元二次方程的解法是解题的关键.【题型9解含绝对值的一元二次方程】1(23-24九年级上·陕西榆林·阶段练习)阅读下面的材料,解答问题.材料:解含绝对值的方程:x2-3|x|-10=0.解:分两种情况:①当x≥0时,原方程化为x2-3x-10=0解得x1=5,x2=-2(舍去);②当x<0时,原方程化为x2+3x-10=0,解得x3=-5,x4=2(舍去).综上所述,原方程的解是x1=5,x2=-5.请参照上述方法解方程x2-|x+1|-1=0.【答案】x1=2,x2=-1【分析】根据题意分两种情况讨论,化简绝对值,然后解一元二次方程即可求解.【详解】解:分两种情况:①当x+1≥0,即x≥-1时,原方程化为x2-x+1-1=0,解得x1=2,x2=-1;②当x+1<0,即x<-1时,原方程化为x2+x+1-1=0,解得x3=0(舍去),x4=-1(舍去).综上所述,原方程的解是x1=2,x2=-1.【点睛】本题考查了解一元二次方程,分类讨论是解题的关键.2(23-24九年级上·内蒙古赤峰·期中)解方程x2+2|x+2|-4=0.【答案】x1=0,x2=-2【分析】对x+2进行分类讨论,先把绝对值号化简后方程变形为一般的一元二次方程,再利用因式分解法解出方程的解,最后结合x的取值范围最终确定答案即可.【详解】解:①当x+2≥0,即x≥-2时,方程变形得:x2+2(x+2)-4=0∴x2+2x=0∴x(x+2)=0∴x1=0,x2=-2;②当x+2<0,即x<-2时,方程变形得:x2-2(x+2)-4=0∴x2-2x-8=0∴(x+2)(x-4)=0∴x1=-2(舍去),x2=4(舍去)∴综上所述,原方程的解是x1=0或x2=-2.【点睛】本题考查了含绝对值的方程、一元二次方程的解法等知识,渗透了分类讨论的思想.3(23-24九年级下·安徽滁州·阶段练习)解方程x2-22x+3+9=0.【答案】x1=1,x2=3【分析】分x≥-32与x<-32,化简绝对值得到一元二次方程,解一元二次方程即可求解.【详解】当2x+1≥0,即x≥-32时,原方程可化为:x2-2(2x+3)+9=0整理得:x2-4x+3=0解得:x1=1,x2=3当2x+1<0,即x<-32时,原方程可化为:x2+2(2x+3)+9=0整理得x2+4x+15=0∵Δ=42-4×1×15=-44<0,∴此方程无实数解,综上所述,原方程的解为:x1=1,x2=3【点睛】本题考查了解一元二次方程,分类讨论化简绝对值是解题的关键.4(23-24九年级上·山西太原·阶段练习)解方程x2-|x-5|-2=0【答案】x1=-1+292,x2=-1-292【分析】根据题意分x-5≥0和x-5<0两种情况,分别解方程即可.【详解】解:①当x-5≥0时,即x≥5时,原方程化为x2-x+5-2=0,即x2-x+3=0,a=1,b=-1,c=3,∴Δ=b2-4ac=-12-4×1×3=-11<0,∴原方程无解,②当x-5<0时,即x<5时,原方程化为x2+x-5-2=0,即x2+x-7=0,a=1,b=1,c=-7,∴Δ=b2-4ac=12-4×1×-7=29>0x=-1±292×1解得:x1=-1+292,x2=-1-292.【点睛】此题考查了解含绝对值的一元二次方程,解题的关键是根据题意分两种情况讨论.【题型10配方法的应用】1(23-24九年级上·河北沧州·期中)【项目学习】配方法是数学中重要的一种思想方法.它是指将一个式子的某部分通过恒等变形化为完全平方式或几个完全平方式的和的方法,这种方法常被用到代数式的变形中,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4,∵y+22≥0,∴y+22+4≥4∴当y =-2时,y 2+4y +8的最小值是4.(1)【类比探究】求代数式x 2-6x +12的最小值;(2)【举一反三】若y =-x 2-2x 当x =________时,y 有最________值(填“大”或“小”),这个值是________;(3)【灵活运用】已知x 2-4x +y 2+2y +5=0,则x +y =________;(4)【拓展应用】如图某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为15m ),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,栅栏的总长度为24m .当BF 为多少时,矩形养殖场的总面积最大?最大值为多少?【答案】(1)3(2)-1;大;1(3)1(4)当BF =4m ,矩形养殖场的总面积最大,最大值为48m 2.【分析】本题主要考查了配方法的应用,熟练掌握配方法是解题的关键:(1)把原式利用配方法变形为x -3 2+3,再仿照题意求解即可;(2)把原式利用配方法变形为-x +1 2+1,再仿照题意求解即可;(3)把原式利用配方法变形为x -2 2+y +1 2=0,再利用非负数的性质求解即可;(4)设BF =xm ,则CF =2BF =2xm ,则BC =3xm ,进而求出AB =24-3x 3m ,则S 矩形ABCD =3x ⋅24-3x 3=-3x -4 2+48,据此可得答案.【详解】(1)解:x 2-6x +12=x 2-6x +9 +3=x -3 2+3,∵x -3 2≥0,∴x -3 2+3≥3,∴当x =3时,x 2-6x +12的最小值为3;(2)解:y =-x 2-2x=-x 2-2x -1+1=-x+12+1,∵x+12≥0,∴-x+12≤0,∴-x+12+1≤1,∴当x=-1时,y=-x2-2x有最大值,最大值为1,故答案为:-1;大;1;(3)解:∵x2-4x+y2+2y+5=0,∴x2-4x+4+y2+2y+1=0,∴x-22+y+12=0,∵x-22≥0,y+12≥0,∴x-22=y+12=0,∴x-2=0,y+1=0,∴x=2,y=-1,∴x+y=2-1=1;(4)解:设BF=xm,则CF=2BF=2xm,∴BC=3xm,∴AB=24-3x3m,∴S矩形ABCD =3x⋅24-3x3=-3x2+24x=-3x-42+48,∵x-42≥0,∴-3x-42≤0,∴-3x-42+48≤48,∵AD=BC=3x≤15,∴0<x≤5,∴当x=4时,S矩形ABCD最大,最大值为48,∴当BF=4m,矩形养殖场的总面积最大,最大值为48m2.2(2023·河北石家庄·一模)已知A=x2+6x+n2,B=2x2+4x+n2,下列结论正确的是()A.B-A的最大值是0B.B-A的最小值是-1C.当B=2A时,x为正数D.当B=2A时,x为负数【答案】B【分析】利用配方法表示出B-A,以及B=2A时,用含n的式子表示出x,确定x的符号,进行判断即可.【详解】解:∵A=x2+6x+n2,B=2x2+4x+n2,∴B-A=2x2+4x+n2-x2+6x+n2=2x2+4x+n2-x2-6x-n2=x2-2x=x-12-1;∴当x=1时,B-A有最小值-1;当B=2A时,即:2x2+4x+n2=2x2+6x+n2,∴2x2+4x+n2=2x2+12x+2n2,∴-8x=n2≥0,∴x≤0,即x是非正数;故选项A,C,D错误,选项B正确;故选B.【点睛】本题考查整式加减运算,配方法的应用.熟练掌握合并同类项,以及配方法,是解题的关键.3(23-24九年级上·四川攀枝花·期中)已知三角形的三条边为a,b,c,且满足a2-10a+b2-16b+89= 0,则这个三角形的最大边c的取值范围是()A.c>8B.5<c<8C.8<c<13D.5<c<13【答案】C【分析】先利用配方法对含a的式子和含有b的式子配方,再根据偶次方的非负性可得出a和b的值,然后根据三角形的三边关系可得答案.【详解】解:∵a2-10a+b2-16b+89=0,∴(a2-10a+25)+(b2-16b+64)=0,∴(a-5)2+(b-8)2=0,∵(a-5)2≥0,(b-8)2≥0,∴a-5=0,b-8=0,∴a=5,b=8.∵三角形的三条边为a,b,c,∴b-a<c<b+a,∴3<c<13.又∵这个三角形的最大边为c,∴8<c<13.故选:C.【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.4(23-24九年级下·浙江宁波·期中)我们已经学习了利用配方法解一元二次方程,其实配方法还有其他重要应用.例如:已知x可取任何实数,试求二次三项式x2+2x+3的最小值.解:x2+2x+3=x2+2x+1+2=(x+1)2+2;∵无论x取何实数,都有(x+1)2≥0,∴(x+1)2+2≥2,即x2+2x+3的最小值为2.【尝试应用】(1)请直接写出2x2+4x+10的最小值______;【拓展应用】(2)试说明:无论x取何实数,二次根式x2+x+2都有意义;【创新应用】(3)如图,在四边形ABCD中,AC⊥BD,若AC+BD=10,求四边形ABCD的面积最大值.【答案】(1)8;(2)见解析;(3)25 2【分析】(1)利用配方法把2x2+4x+10变形为2(x+1)2+8,然后根据非负数的性质可确定代数式的最小值;(2)利用配方法得到x2+x+2=x+122+74,则可判断x2+x+2>0,然后根据二次根式有意义的条件可判断无论x取何实数,二次根式x2+x+2都有意义;(3)利用三角形面积公式得到四边形ABCD的面积=12⋅AC⋅BD,由于BD=10-AC,则四边形ABCD的面积=12⋅AC⋅10-AC,利用配方法得到四边形ABCD的面积=-12(AC-5)2+252,然后根据非负数的性质解决问题.【详解】解:(1)2x2+4x+10=2x2+2x+10=2x2+2x+1-1+10=2(x+1)2+8,∵无论x取何实数,都有2(x+1)2≥0,∴(x+1)2+8≥8,即x2+2x+3的最小值为8;故答案为:8;(2)x2+x+2=x+122+74,∵x+122≥0,∴x2+x+2>0,∴无论x取何实数,二次根式x2+x+2都有意义;(3)∵AC⊥BD,。
初中数学解方程所有公式大全
初中数学解方程所有公式大全解方程是数学中的重要内容之一,主要是通过运用各种方法,求取未知量满足方程条件的值。
下面是初中数学解方程常用的公式:一、一次方程1.二元一次方程的解法:设方程为ax + by = c,求解x和y-当a=0,b=0时,方程无解;-当a=0,b≠0时,方程只有一个解x=c/b,y为任意实数;- 当a≠0,b≠0时,方程有唯一解x=(bc-ad)/(ae-bd),y=(ce-af)/(ae-bd)2.关于一次方程的常用等价变形:-去括号法则:将等式两边的括号去掉-合并同类项:将等式两边的同类项合并-移项法则:将含有未知量的项移到一个方程的一边,常数项移到另一边-约去常数法则:若方程两边有相同的因数,则可以约去-整理法则:对方程进行化简二、二次方程1. 二次方程的求根公式:对于一元二次方程ax² + bx + c = 0,它的解为:- 当Δ = b² - 4ac > 0,解为x₁ = (-b + √Δ) / (2a) 和 x₂ = (-b - √Δ) / (2a)- 当Δ = b² - 4ac = 0,解为x₁ = x₂ = -b / (2a)- 当Δ = b² - 4ac < 0,无实数解,解为以√(-Δ) / (2a)为半径的圆的方程2.求解一元二次方程的方法:-因式分解法:将方程变形为二元一次方程,然后利用一次方程的解法求解-完全平方式:将方程变形为(a±b)²=c,然后开方求解三、分式方程1.积和商之和的分式方程:- a/x + b/y = (ax + by) / (xy)- a/x - b/y = (ay - bx) / (xy)- a/x + b/(x+y) = (ax + bx + ay) / (xy)- a/x - b/(x-y) = (ax - bx + ay) / (xy)2.积和商之商的分式方程:- (a/x + b) / (c/x + d) = (ad + bc) / (cd)- (a/x - b) / (c/x - d) = (ad - bc) / (cd)四、根式方程1.求解一元含有根式的方程:-第一步,去除方程中的根式,即将含根式的项移到方程的一边;-第二步,对方程进行整理,使方程中只含有根式的项;-第三步,分别平方得到一个二次方程;-第四步,求解二次方程,得到解;-第五步,验证解是否满足原方程。
初中解方程格式
初中解方程格式解方程:方程的概念:1. 方程是一个数学表达式,它通常表示形式为:ax+b=0或ax2+bx+c=0,其中a,b,c是常数,x是未知量,可以用来表示一个或者多个未知量。
2. 方程可以用来帮助描述物理或数学中感兴趣的问题,一般常见的问题比如说:一个小题在某个时刻的位置、空气密度或是匀变速运动中物体的位置。
解方程的方法:1. 零点法:零点法通过求方程的根来解决方程,可以用来求一元一次方程、一元二次方程和各类不定的多项式的根,即求x的值。
2. 移项法:通常将方程的变量x移到等号的另一边,即等式另一端的其他项移到变量x的令一边,然后求解x的值,可以用来解决一元一次或一元二次方程,这种方法效率比较高。
3. 相减法:将方程的两边同时减去相同的项,从而化简求解的复杂度,这种方法可以用来求解一元一次方程。
4. 因式分解法:将一元二次方程按照系数进行分解,将多项式拆分成一元一次的多项式的乘积,再把这些一元一次的方程分别求解,从而解方程。
5. 平方根法:将一元二次方程以x2或x+n2的形式改写,最后求解出x的值,可以用来解一元二次方程。
6. 三角函数法:当一元二次方程中含有三角函数时,可以使用此方法,由于方程中包含不同的变量,需要转化为求解变量所需要的三角等式,从而求出x的值求解方程。
7. 分析法:通过一元二次方程图像和表决在图形空间中分析,通过取点验证空间图形的性质,从而解出方程的解来解决方程。
8. 图像法:通过把方程写成曲线图像,利用图形推断法来认识函数性质,从而求出方程的根。
以上就是初中解方程的八种不同的方法,如果你遇到比较复杂的方程,可以尝试使用以上的方法来解决,也许可以让你解出当下无法解出的方程!。
初中数学 如何使用乘除法解一元一次方程
初中数学如何使用乘除法解一元一次方程使用乘法和除法是解一元一次方程的常用方法之一。
通过乘法和除法,我们可以改变方程中项的系数和分母,从而使方程更容易解决。
下面将介绍如何使用乘法和除法解一元一次方程。
一、方程中只有单一项如果一元一次方程中只有单一项,可以直接使用乘除法解决。
1. 对于形如ax = b 的方程,可以将等式两边同时除以系数a,即可得到未知数x 的值。
例如,对于方程3x = 9,我们可以将等式两边同时除以系数3,即可得到x = 3。
2. 对于形如x/a = b 的方程,可以将等式两边同时乘以系数a,即可得到未知数x 的值。
例如,对于方程x/4 = 5,我们可以将等式两边同时乘以系数4,即可得到x = 20。
二、方程中有多项式如果一元一次方程中有多项式,我们可以利用乘法将系数移到等式的另一边,从而简化方程的形式。
1. 对于形如ax + b = c 的方程,可以将常数项b 移到等式的另一侧,得到ax =c - b。
然后,将c - b 除以系数a,即可得到未知数x 的值。
例如,对于方程2x + 5 = 11,我们可以将常数项 5 移到等式的另一侧,得到2x = 11 - 5 = 6。
然后将6 除以系数2,即可得到x = 3。
2. 对于形如bx + c = a 的方程,可以将常数项c 移到等式的另一侧,得到bx =a - c。
然后,将a - c 除以系数b,即可得到未知数x 的值。
例如,对于方程3x + 4 = 10,我们可以将常数项 4 移到等式的另一侧,得到3x = 10 - 4 = 6。
然后将6 除以系数3,即可得到x = 2。
三、方程中有分式如果一元一次方程中有分式,我们可以通过通分的方式将分式转化为整数,然后再使用第一种或第二种方法解决。
例如,对于方程(x+1)/2 = 3,我们可以先将分式通分,得到(x+1) = 3*2,即x+1 = 6。
然后将等式两边同时减去常数项1,即可得到x = 5。
初中数学 二次方程的解如何计算
初中数学二次方程的解如何计算解二次方程的方法有多种,下面将详细介绍如何计算二次方程的解。
一、因式分解法对于一些特殊的二次方程,可以使用因式分解法来求解。
具体步骤如下:1. 将二次方程写成标准形式:ax^2 + bx + c = 0。
2. 尝试将方程进行因式分解,将其转化为两个一次方程的乘积形式。
3. 解这两个一次方程,得到两个解。
4. 将解代入原方程中验证是否成立。
二、求根公式法对于一般的二次方程,可以使用求根公式来求解。
求根公式为x = (-b ± √(b^2 - 4ac)) / (2a)。
具体步骤如下:1. 将二次方程写成标准形式:ax^2 + bx + c = 0。
2. 计算判别式Δ = b^2 - 4ac。
3. 判断判别式Δ的值:a) 当Δ > 0时,方程有两个不同的实根。
根据求根公式计算出两个根。
b) 当Δ = 0时,方程有一个重根。
根据求根公式计算出一个根。
c) 当Δ < 0时,方程没有实根,但有两个共轭复根。
根据求根公式计算出两个复根。
4. 将求得的根代入原方程中验证是否成立。
三、配方法对于一些特殊的二次方程,可以使用配方法来求解。
具体步骤如下:1. 将二次方程写成标准形式:ax^2 + bx + c = 0。
2. 如果a不等于1,可以通过提取公因式将方程化为a(x^2 + (b/a)x) + c = 0。
3. 将x^2 + (b/a)x这一项配方,得到(x + b/(2a))^2 - (b^2/(4a^2))。
4. 方程变为a(x + b/(2a))^2 - (b^2/(4a)) + c = 0。
5. 化简方程,得到a(x + b/(2a))^2 = (b^2 - 4ac)/(4a)。
6. 将方程两边开根号,得到x + b/(2a) = ±√((b^2 - 4ac)/(4a))。
7. 移项化简,得到x = (-b ± √(b^2 - 4ac))/(2a)。
初中数学 多元一次方程的解如何计算
初中数学多元一次方程的解如何计算
多元一次方程是指方程中含有多个未知数的方程,每个未知数的次数都为1。
解多元一次方程的方法有很多种,下面将介绍几种常用的方法。
1. 消元法:
消元法是解多元一次方程的常用方法之一。
通过将方程组中的某些未知数相互消去,最终得到只含有一个未知数的方程,然后通过反复代入的方式求解未知数的值。
2. 代入法:
代入法是指将一个方程的解代入到其他方程中,从而得到新的方程,进而求解其他未知数的值。
这种方法适用于方程组中的某个方程比较简单,可以很方便地求解出其中一个未知数的情况。
3. 矩阵法:
矩阵法是一种利用矩阵运算求解多元一次方程组的方法。
将方程组的系数矩阵与常数矩阵合并成增广矩阵,然后通过一系列的行变换将其化为简化行阶梯形矩阵,最后通过回代的方式求解未知数的值。
4. 克莱姆法:
克莱姆法是一种利用行列式求解多元一次方程组的方法。
将方程组的系数矩阵表示成一个行列式,然后通过求解行列式的值来得到解。
这种方法在方程组的系数比较简单时比较适用,但需要注意方程个数与未知数个数相等,且行列式的值不为0。
以上是解多元一次方程的几种常用方法,每种方法都有其适用的场景和特点。
在实际运用中,可以根据具体的方程组特点选择合适的方法来求解。
同时,通过多做练习题和实际问题的应用,可以提高对多元一次方程解法的理解和运用能力。
解方程公式法初中
解方程公式法初中本文将以解方程公式法作为主题,介绍其在初中数学教学中的重要性,并介绍相关方法和例子。
首先,解方程公式法是一种重要的数学方法,旨在解决方程系统的一般性函数。
它既可以用于解决简单的数学问题,也可以用于深入的数学分析。
解方程公式法的基本思想是,根据给定的关系构成一组方程,并且使用这些方程表达式来找出解决方案。
因此,解方程公式法在求解函数问题方面具有极大的优势,是学习数学的必备技能之一。
然后,解方程公式法在初中数学教学中有着重要的地位。
这一方法是分析几何形状特征,求解一元函数等问题的基础,也是中学生学习数学知识最重要的基础。
在教学中,老师可以使用这一方法来让学生掌握分析几何形状特征,求解一元函数等数学概念。
此外,学生们可以使用解方程公式法解决实际问题,从而加深对知识的理解。
最后,以一元二次方程为例,谈谈如何使用解方程法解决问题的方法。
一元二次方程是常见的二次曲线函数。
要解决一元二次方程,首先要将方程化为一般形式:ax + bx + c = 0。
然后,可以使用解方程公式法解决这个方程。
其方法是:将方程的左边用求平方根法展开,右边用-c/a展开,然后求左右两边的和,得到x的值。
例如:若求解方程x+3x-4=0,则首先将方程变为一般形式:x+3x+4=0,再将此方程拆分为(x+2)=4,即x=-2±√4,故x=-2±2,即x=-4,x=2,即原方程的根为-4,2。
综上所述,解方程公式法是学习和理解数学的有效方法,也是在初中数学教学中一种重要的方式。
不仅如此,解方程公式法也能帮助学生解决实际问题,及时深入了解数学知识。
初中解方程公式
初中解方程公式初中阶段是学习解方程公式的重要阶段,通过掌握解方程的方法,可以帮助我们解决实际生活中的问题。
解方程公式是数学中的一种基本工具,它可以帮助我们找到未知数的值。
下面我们来看一下初中解方程公式的一些基本知识和解题方法。
一、一元一次方程一元一次方程是指只包含一个未知数和一次幂的方程。
它的一般形式为:ax + b = 0,其中a和b是已知数,x是未知数。
解一元一次方程的基本步骤是:1.将方程中的项按照未知数的次数和系数进行整理;2.将方程两边进行等式的转化,使得方程变为a'x = b'的形式;3.将方程两边除以a',得到x = b'/a'的形式;4.计算出x的值,即为方程的解。
二、一元二次方程一元二次方程是指只包含一个未知数和二次幂的方程。
它的一般形式为:ax^2 + bx + c = 0,其中a、b、c是已知数,x是未知数。
解一元二次方程的基本步骤是:1.将方程中的项按照未知数的次数和系数进行整理;2.使用配方法、因式分解、求根公式等方法将方程变为(a'x + b')^2 = c'的形式;3.对方程两边开方,得到a'x + b' = ±√c'的形式;4.根据方程的形式,分别解得x的值。
三、一元三次方程一元三次方程是指只包含一个未知数和三次幂的方程。
它的一般形式为:ax^3 + bx^2 + cx + d = 0,其中a、b、c、d是已知数,x 是未知数。
解一元三次方程的基本步骤是:1.将方程中的项按照未知数的次数和系数进行整理;2.使用因式分解、求根公式等方法将方程变为(x - r1)(x - r2)(x - r3) = 0的形式;3.根据方程的形式,分别解得x的值。
四、一元高次方程一元高次方程是指次数大于三的方程。
解一元高次方程的方法比较复杂,一般需要使用数值方法、近似解法等来求得方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数部分第三章:方程和方程组基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元方程 1、一元一次方程( 1)一元一次方程的标准形式: ax+b=0 (其中 x 是未知数, a 、b 是已知数, a ≠ 0)( 2)一元一次方程的最简形式: ax=b (其中 x 是未知数, a 、 b 是已知数, a ≠ 0)( 3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
( 4)一元一次方程有唯一的一个解。
例题 :.解方程: ( 1)1 x 1 x2 x 1xx3 3( 2)32 2解:解:( 3)【05 湘潭】 关于 x 的方程 mx+4=3x+5 的解是 x=1 ,则 m=。
2、一元二次方程( ) 一般形式: 2bx c 0a1ax( 2) 解法:直接开平方法、因式分解法、配方法、公式法求根公式 ax 2bxc 0 a 0xbb 24ac b 24ac 02a错误 !未找到引用源。
、 解下列方程:( 1) x 2-2x = 0; (2)45-x 2=0;( 3) (1-3x)2=1; ( 4) (2x + 3)2-25=0. ( 5)(t -2)(t+1) =0;(6)x 2+8x -2=0(7 )2x 2-6x -3=0;(8)3(x - 5) 2=2(5-x )解:错误 !未找到引用源。
填空:( 1) x 2 +6x +( )=( x + )2 ;( 2) x 2 -8x +( )=( x - )2 ;( 3) x 2 + 3x +( )=( + )2x 2( 3) 判别式△= b2-4ac 的三种情况与根的关系当 0 时 有两个不相等的实数根 , 当 0 时 有两个相等的实数根当0 时 没有实数根。
当△≥0时有两个实数根例题. 一、一元二次方程的解法例 1、解下列方程:( 1) 1( x 3)22 ;( 2) 2x 2 3x 1;(3) 4(x 3) 225( x 2) 22例 2、解下列方程:(1) x 2a(3x 2a b) 0( x 为未知数 ) ;( 2)x 22ax 82a(.无锡市)若关于 x 的方程 x 2+2x + k = 0 有两个相等的实数根,则 k 满足 ()3A.k >1B.k≥1C.k=1D.k <14.(常州市)关于 x 的一元二次方程 x 2(2k 1)x k1 0 根的情况是( )( A )有两个不相等实数根( B )有两个相等实数根( C )没有实数根( D )根的情况无法判定5.(浙江) 已知方程x 22 pxq有两个不相等的实数根, 则p、q满足的关系式( )A 、p 24q 0B 、p 2q 0C 、p 24q 0D 、p 2q 06.根与系数的关系: x 1+x 2=b,x 1x 2=ca a例题:(浙江富阳市)已知方程 3x 2 2x 11 0 的两根分别为 x 1 、x 2 ,则11x 1x 2的值是( )A 、 2B 、 11C 、2D 、 11112112例 3、求作一个一元二次方程,使它的两个根分别比方程x2x 5的两个根小 3根的判别式及根与系数的关系例 4、已知关于 x 的方程: ( p 1)x 22 px p3 0 有两个相等的实数根,求p 的值。
x 22x 10(1)a2 b 2;(2)11a b分式方程的解法步骤:(1)一般方法:选择最简公分母、去分母、解整式方程,检验(2)换元法例题:错误! 未找到引用源。
、解方程: 4 1 1 的解为x 2 x4 2x 2 40 根为x2 5x 6错误 ! 未找到引用源。
、【北京市海淀区】当使用换元法解方程( x )2 2( x ) 3 0 时,若设yx,则原方程可变形为()A.y2+xx 1 x 1 y+=.y 1 . y2- y-=y+=. y2-2+y-=2 30B 2 30C 2 30D 23 0( 3)、用换元法解方程x2 3xx2 3 4 时,设y x2 3x ,则原方程可化为()3x( A)34 03 1 1y () 4 0 () 4 0 ()y 4 0 y y 3y 3y例、解下列方程:(2) 2 11 1;(2)x22 6x 51 x2 x x x 2 26、应用:(1)分式方程(行程、工作问题、顺逆流问题)(2)一元二次方程(增长率、面积问题)( 3)方程组实际中的运用例题:错误 ! 未找到引用源。
轮船在顺水中航行 80 千米所需的时间和逆水航行60 千米所需的时间相同 .已知水流的速度是 3 千米 /时,求轮船在静水中的速度 . (提示:顺水速度 =静水速度 +水流速度,逆水速度 =静水速度 -水流速度)解:错误 !未找到引用源。
乙两辆汽车同时分别从A、B 两城沿同一条高速公路驶向 C 城 .已知 A、C 两城的距离为 450 千米, B、 C 两城的距离为 400 千米,甲车比乙车的速度快 10千米 /时,结果两辆车同时到达 C 城 .求两车的速度解错误 !未找到引用源。
某药品经两次降价,零售价降为原来的一半 .已知两次降价的百分率一样,求每次降价的百分率 .(精确到 0.1%)解错误 !未找到引用源。
【 05 绵阳】 已知等式(2A- 7B) x+(3 A- 8B)=8 x+10 对一切实数 x 都成立,求 A 、 B 的值解错误 !未找到引用源。
【 05 南通】某校初三(2)班 40 名同学为“希望工程”捐款 ,共捐款100 元 .捐款情况如下表:捐款(元) 1 234 人数67表格中捐款 2 元和 3 元的人数不小心被墨水污染已看不清楚.若设捐款 2 元的有 x 名同学 ,捐款 3 元的有 y 名同学 ,根据题意 ,可得方程组x y 27 x y 27 x y 27x y 27A 、3yB 、2 x3 y 100C 、2y66 D 、2 y 1002x 663x 3x解错误 !未找到引用源。
已知三个连续奇数的平方和是 371,求这三个奇数 .错误 !未找到引用源。
一块长和宽分别为 60 厘米和 40 厘米的长方形铁皮,要在它的四角截去四个相等的小正方形, 折成一个无盖的长方体水槽, 使它的底面积为 800 平方米 .求截去正方形的边长 .解:四、方程组代入消元 4、 方程组 : 三元一次方程组二元一次方程组加减消元二元 (三元 )一次方程组的解法:代入消元、加减消元xy7, x 2 y 0例题:解方程组y8.3x 2 y 82 x 例 7、解下列方程组:2x 3y 3 x y 2z 1 ( 2) 2x y z 5(1)2 y;x 5x y3z 4例 8、解下列方程组:代入消元 加减消元 一元一次方程x y 112 33x 2 y 10x y 7 3x 2 xy 4 y 2 3x 4 y 0(1); ( 2)2 y 225xy 12x列方程(组)解应用题知识点:一、列方程(组)解应用题的一般步骤 1、审题: 2、设未知数;3、找出相等关系,列方程(组) ;4、解方程(组) ;5、检验,作答;二、列方程(组)解应用题常见类型题及其等量关系; 1、工程问题( 1)基本工作量的关系:工作量 =工作效率×工作时间( 2)常见的等量关系:甲的工作量 +乙的工作量 =甲、乙合作的工作总量( 3)注意:工程问题常把总工程看作“1”,水池注水问题属于工程问题 2、行程问题( 1)基本量之间的关系:路程 =速度×时间( 2)常见等量关系: 相遇问题:甲走的路程+乙走的路程 =全路程追及问题(设甲速度快):同时不同地:甲的时间 =乙的时间;甲走的路程–乙走的路程 =原来甲、乙相距路程同地不同时:甲的时间 =乙的时间–时间差;甲的路程 =乙的路程3、水中航行问题:顺流速度 =船在静水中的速度+水流速度;逆流速度 =船在静水中的速度–水流速度4、增长率问题:常见等量关系:增长后的量=原来的量 +增长的量;增长的量=原来的量×( 1+增长率);5、数字问题:基本量之间的关系:三位数 =个位上的数 +十位上的数× 10+ 百位上的数× 100 三、列方程解应用题的常用方法1、译式法:就是将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根据代数之间的内在联系找出等量关系。
2、线示法:就是用同一直线上的线段表示应用题中的数量关系,然后根据线段长度的内在联系,找出等量关系。
3、列表法:就是把已知条件和所求的未知量纳入表格,从而找出各种量之间的关系。
4、图示法:就是利用图表示题中的数量关系,它可以使量与量之间的关系更为直观,这种方法能帮助我们更好地理解题意。
例题:例 1、甲、乙两组工人合作完成一项工程,合作 5 天后,甲组另有任务,由乙组再单独工作 1 天就可完成,若单独完成这项工程乙组比甲组多用 2 天,求甲、乙两组单独完成这项工程各需几天?例 2、某部队奉命派甲连跑步前往90 千米外的 A 地, 1 小时 45 分后,因任务需要,又增派乙连乘车前往支援,已知乙连比甲连每小时快28 千米,恰好在全程的1处追上甲连。
3求乙连的行进速度及追上甲连的时间例 3、某工厂原计划在规定期限内生产通讯设备60 台支援抗洪,由于改进了操作技术;每天生产的台数比原计划多 50%,结果提前 2 天完成任务,求改进操作技术后每天生产通讯设备多少台?例 4、某商厦今年一月份销售额为60 万元,二月份由于种种原因,经营不善,销售额下降 10%,以后经加强管理,又使月销售额上升,到四月份销售额增加到96 万元,求三、四月份平均每月增长的百分率是多少?例 5、一年期定期储蓄年利率为 2.25%,所得利息要交纳 20%的利息税,例如存入一年期100 元,到期储户纳税后所得到利息的计算公式为:税后利息 = 100 2.25% 100 2.25% 20% 100 2.25%(1 20%)已知某储户存下一笔一年期定期储蓄到期纳税后得到利息是450 元,问该储户存入了多少本金?例 6、某商场销售一批名牌衬衫,平均每天售出20 件,每件盈利 40 元,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降低成本措施,经调查发现,如果每件衬衫每降价 1 元,商场平均每天可多售出 2 件。
若商场平均每天要盈利1200 元,每件衬衫应降价多少元?。