高中数学公式及知识点总结大全(精华版)

合集下载

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数。

(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数. 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦ax x a ln 1)(log '=;⑧x x 1)(ln '=5、导数的运算法则(1)'''()u v u v ±=±。

(2)'''()uv u v uv =+。

(3)'''2()(0)u u v uv v v v -=≠。

(完整word版)高中数学公式及知识点总结大全(精华版)

(完整word版)高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦x a )(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..0,1,0)a N>≠>..1,0m>,且1m≠,0N>).对数恒等式:推论log m nab常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全1.函数与方程(1)函数的概念、性质及表示方法(2)一次函数、二次函数、幂函数、指数函数、对数函数的性质和图像(3)函数的运算(4)一次方程、二次方程、一元高次方程的解法(5)多项式方程、分式方程的解法(6)不等式的解法2.数列与数学归纳法(1)数列的概念及表示方法(2)等差数列和等比数列的性质和求和公式(3)递推数列与通项公式(4)数学归纳法的原理和应用3.几何与三角函数(1)平面几何的基本概念和性质(2)三角函数的基本概念和性质(3)三角恒等式与解三角方程(4)解三角形(5)平面向量的概念和运算(6)解向量的应用问题4.数与图的关系(1)直角坐标系与平面图形的性质(2)平面图形的对称性质与判定方法(3)空间图形的投影与视图(4)立体图形的表面积与体积5.概率与统计(1)概率的基本概念(2)古典概型与几何概型(3)事件的概率与计数原理(4)随机变量的概念和分布(5)统计的基本概念和方法(6)参数估计与假设检验1.一次函数的一般式方程:y=ax+b2.一次函数的斜率公式:a=(y2-y1)/(x2-x1)3.二次函数的一般式方程:y=ax^2+bx+c4.二次函数的顶点坐标公式:x= -b/(2a),y= -(b^2-4ac)/(4a)5.二次函数的判别式公式:△=b^2-4ac6.指数函数的定义域:(-∞,+∞)7.指数函数的性质:a^m * a^n= a^(m+n),a^(-n)=1/(a^n),(a^m)^n= a^(mn)8.对数函数的性质:log⁡(xy)=log⁡(x)+log⁡(y),log⁡(x/y)=log⁡(x)-log⁡(y),log⁡(a^n)=nlog⁡(a)9.等差数列的通项公式:an=a1+(n-1)d10.等差数列的求和公式:Sn=n/2(a1+an)11.等比数列的通项公式:an=a1*r^(n-1)12.等比数列的求和公式:Sn=a1(1-r^n)/(1-r)13.三角函数的互余关系:sin⁡(π/2-θ)=cos⁡(θ),tan⁡(π/2-θ)=cot⁡(θ),sec⁡(π/2-θ)=csc⁡(θ)14.三角函数的和差化积公式:sin⁡(α±β)=sin⁡(α)cos⁡(β)±cos⁡(α)sin⁡(β),cos⁡(α±β)=cos⁡(α)cos⁡(β)∓sin⁡(α)sin⁡(β)15.立体图形的表面积和体积的公式:长方体的表面积=2(ab+bc+ac),长方体的体积=abc,球体的表面积=4πr^2,球体的体积=(4/3)πr^3。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全一、代数1.一次函数及相关知识一次函数的一般式方程为y=kx+b,其中k为斜率,b为截距。

与x轴交点:x=-b/k与y轴交点:y=b斜率的计算: k=(y2-y1)/(x2-x1)2.二次函数及相关知识二次函数的一般式方程为y=ax^2+bx+c,其中a≠0。

二次函数的顶点坐标为:(-b/2a, f(-b/2a)),其中f(x)=ax^2+bx+c。

二次函数的判别式为Δ=b^2-4ac,当Δ>0时,二次函数有两个实数解;当Δ=0时,二次函数有一个重复实数根;当Δ<0时,二次函数无实数解。

3.指数函数及对数函数指数函数的一般式方程为y=a^x,其中a>0且a≠1。

对数函数的一般式方程为y=logax,其中a>0且a≠1。

对数函数的性质:loga1=0,loga(a^x)=x,a^(logax)=x4.幂函数幂函数的一般式方程为y=x^a,其中a为常数。

5.绝对值函数绝对值函数的一般式方程为y=|x|。

6.组合函数组合函数即将一个函数的输出值作为另一个函数的输入值得到的新函数。

例如,若f(x)和g(x)均为函数,则(f∘g)(x)=f(g(x))。

7.多项式及相关知识n次多项式的一般式为:y=a_nx^n+a_(n-1)x^(n-1)+...+a1x+a0多项式的除法:对于多项式f(x)÷g(x),若g(x)≠0,则商多项式为q(x)、余式为r(x)且f(x)=g(x)q(x)+r(x)多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd8.解方程二元一次方程组求解:通过消元法、代入法、加减消去法等方法求解一元二次方程求解:可以通过配方法、公式法、因式分解等方法求解复杂方程求解:可以通过讨论函数单调性、先化为一次函数或二次函数等方法求解9.不等式一元一次不等式的解法:利用加减法、乘除法、绝对值法等方法求解一元二次不等式的解法:先将不等式化为标准形式,然后通过讨论函数的单调性、绘制函数图像、代数法等方法求解10.排列与组合排列:当n个人中取m个人,且彼此不考顺序,则排列数用P(m,n)表示,其计算公式为:P(m,n)=n!/(n-m)!组合:当n个人中取m个人,彼此不考顺序,则组合数用C(m,n)表示,其计算公式为:C(m,n)=n!/(m!(n-m)!)11.数列与数学归纳法数列的概念:数列是按一定顺序排列的一组数。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全1. 代数1.1 代数运算1.1.1 加法运算•加法运算法则:如果a、b是实数,则a + b = b + a1.1.2 减法运算•减法运算法则:如果a、b是实数,则a - b ≠ b - a1.1.3 乘法运算•乘法运算法则:如果a、b是实数,则a * b = b * a1.1.4 除法运算•除法运算法则:如果a、b是实数且b≠0,则a / b ≠ b / a1.2 一元二次方程1.2.1 一元二次方程的定义•一元二次方程的标准形式为:ax^2 + bx + c = 0,其中a、b、c是已知实数,且a≠0。

1.2.2 一元二次方程求解公式•一元二次方程的求解公式为:x = (-b ± √(b^2 - 4ac)) / 2a1.3 等差数列1.3.1 等差数列的定义•等差数列是指一个数列中,从第二项起,每一项与它的前一项的差都相等。

1.3.2 等差数列的通项公式•等差数列的通项公式为:an = a1 + (n - 1)d,其中a1是首项,d是公差,n是项数。

1.4 等比数列1.4.1 等比数列的定义•等比数列是指一个数列中,从第二项起,每一项与它的前一项的比都相等。

1.4.2 等比数列的通项公式•等比数列的通项公式为:an = a1 * r^(n - 1),其中a1是首项,r是公比,n是项数。

2. 几何2.1 平面几何2.1.1 直线与平面的位置关系•平面与直线的位置关系有三种情况:平面与直线相交、平面与直线平行、平面与直线重合。

2.1.2 平行线的性质•平行线的性质包括:平行线不相交、平行线上的任意两点到另一平行线的距离相等、平行线的斜率相等。

2.2 空间几何2.2.1 点、直线、平面的位置关系•点、直线、平面的位置关系有三种情况:点在直线上、点在平面上、直线与平面的位置关系。

2.2.2 空间几何中的立体图形•空间几何中的立体图形包括:球体、立方体、圆锥、圆柱、棱柱等。

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)
2公理4:平行于同一条直线的两条直线相互平行。
3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补
4注意点:
①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;
②两条异面直线所成的角θ∈;
③当两条异面直线所成的角是直角时,我们就说这两条异面直线相互垂直,记作a⊥b;
图象
定义域
值域
最值
当 时, ;当
时, .
当 时,
;当
时, .
既无最大值也无最小值
周期性
奇偶性
奇函数
偶函数
奇函数
单调性

上是增函数;在
上是减函数.
在 上是增函数;在
上是减函数.

上是增函数.
对称性
对称中心
对称轴
对称中心
对称轴
对称中心
无对称轴
14、辅助角公式
其中
15.正弦定理: 〔R为 外接圆的半径〕.
(A ,B ).
32、点到直线的距离
(点 ,直线 : ).
33、圆的三种方程
〔1〕圆的标准方程 .
〔2〕圆的一般方程 ( >0).
〔3〕圆的参数方程 .
*点与圆的位置关系:点 与圆 的位置关系有三种
假设 ,则 点 在圆外; 点 在圆上; 点 在圆内.
Hale Waihona Puke 34、直线与圆的位置关系直线 与圆 的位置关系有三种:
直线与平面平行的判定
1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
平面与平面平行的判定

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v-=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂 (1)m n m na a =0,,a m n N *>∈,且1n >).(2)1m nm nmnaa a-==(0,,a m n N *>∈,且1n >).根式的性质(1)当n n na a =; 当n ,0||,0nn a a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(0,1,0)a a N >≠>.1a ≠,0m >,且1m ≠, 0N >).).).0<a<1a>11y=a xoyx89α看成锐角时该函数的符号;α看成锐角时该函数的符号。

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦ax x a ln 1)(log '=;⑧x x 1)(ln '=5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v-=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值;0,那么()0f x 是极小值.).(0,1,0)a a N >≠>. 1a ≠,0m >,且1m ≠, 0N >).).).二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 9、正弦、余弦的诱导公式(奇变偶不变,符号看象限)απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦x a )(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..0,1,0)a N>≠>..1,0m>,且1m≠,0N>).对数恒等式:推论log m nab常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。

高中数学公式及知识点总结大全精华版

高中数学公式及知识点总结大全精华版

高中文科数学公式及学问点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内随意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内随意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为;(2)焦点的坐标为 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦;⑧ 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3). 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 假如在0x 旁边的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 假如在0x 旁边的左侧()0f x '<,右侧()0f x '>,那么()0f x 是微小值. 指数函数、对数函数 分数指数幂(1)m na=0,,a m n N *>∈,且1n >).(2)(0,,a m n N *>∈,且1n >). 根式的性质(1)当n a =; 当n 为偶数时,.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用..指数式及对数式的互化式: loga N (0,1,0)a a N >≠>. .对数的换底公式 : (0a >,且a 1≠, 0N >).对数恒等式:log a Na N =(0a >). 推论 (0a >,且1a ≠, 0N >).常见的函数图象8、同角三角函数的根本关系式22sin cos 1θθ+=,tan θ=.9απ±k 的正弦、余弦,等于αα看成锐角时该函数的符号; 的正弦、余弦,等于α看成锐角时该函数的符号。

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面与平面垂直的判定 1、二面⻆的概念:表示从空间一直线出发的两个半平面所组成的图形
A
梭l
β
B α
2、二面⻆的记法:二面⻆α-l-β或α-AB-β
11
3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。 直线与平面、平面与平面垂直的性质 1、定理:垂直于同一个平面的两条直线平行。 2 性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
12
共面直线
相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点。
2 公理 4:平行于同一条直线的两条直线互相平行。
3 等⻆定理:空间中如果两个⻆的两边分别对应平行,那么这两个⻆相等或互补
4 注意点:
① a'与 b'所成的⻆的大小只由 a、b 的相互位置来确定,与 O 的选择无关,为简便,点 O 一般取在两直线
八、复数 53、复数的除法运算
.
54、复数
的模 =
=
.
55、复数的相等:
.(
56、复数
的模(或绝对值) =
=
57、复数的四则运算法则
(1)
;
(2)
;
(3)
;
(4)
58、复数的乘法的运算律
对于任何
,有
交换律:
.
结合律:
分配律:
. .
) .
.
九、参数方程、极坐标化成直⻆坐标
9
55、
十、命题、充要条件
充要条件(记 表示条件, 表示结论)
(1)充分条件:若
,则 是 充分条件.
(2)必要条件:若
,则 是 必要条件.
(3)充要条件:若
,且
,则 是 充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
56.真值表
p q 非p 真真假 真假假 假真真 假假真
p或q 真 真 真 假
p且q 真 假 假 假
十一、直线与平面的位置关系
(3)两点式
(
)(

(
)).
(4)截距式
(
分别为直线的横、纵截距,
)
(5)一般式 30、两条直线的平行和垂直
(其中 A、B 不同时为 0).
6



;

.
31、平面两点间的距离公式
(A
,B
).
32、点到直线的距离
(点
,直线 :
33、 圆的三种方程
(1)圆的标准方程
.
(2)圆的一般方程
(
). >0).
空间点、直线、平面之间的位置关系
三个公理:
(1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
(2)公理 2:过不在一条直线上的三点,有且只有一个平面。
(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
空间中直线与直线之间的位置关系
1 空间的两条直线有如下三种关系:
Байду номын сангаас
圆柱侧面积=
,表面积=
圆椎侧面积= ,表面积=
( 是柱体的底面积、 是柱体的高).
( 是锥体的底面积、 是锥体的高).
球的半径是 ,则其体积
,其表面积

46、若点 A
,点 B
,则 =
47、点到平面距离的计算(定义法、等体积法) 48、直棱柱、正棱柱、⻓方体、正方体的性质:侧棱平行且相等,与底面垂直。
直线、平面平行的判定及其性质 直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。 平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。 2、判断两平面平行的方法有三种: (1)用定义; (2)判定定理; (3)垂直于同一条直线的两个平面平行。 直线与平面、平面与平面平行的性质 1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行则线线平行。 2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。 直线、平面垂直的判定及其性质
;
.
分别表示 a、b、c 边上的高). .
.
20、平面向量的坐标运算
(1)设 A
,B
,则
(2)设 =
,=
,则 =
(3)设 =
,则
21、两向量的夹⻆公式
设=
,=
,且
,则
(=
22、向量的平行与垂直
设=
,=
,且
.
*平面向量的坐标运算
(1)设 =
,=
(2)设 =
,=
(3)设 A
,B
,则 + = ,则 - = ,则
(3)转化为面面平行.
(4)转化为该直线垂直于另一个平行平面。
41.证明平面与平面平行的思考途径
44.证明平面与平面的垂直的思考途径
(1)转化为判定二平面无公共点;
(1)转化为判断二面⻆是直二面⻆;
(2)转化为线面平行;
(2)转化为线面垂直;
(3)转化为线面垂直.
45、柱体、椎体、球体的侧面积、表面积、体积计算公式
(3)圆的参数方程
.
* 点与圆的位置关系:点
与圆

,则
34、直线与圆的位置关系
直线
与圆
;
;
. 弦⻓=
点 在圆外;
的位置关系有三种 点 在圆上;
的位置关系有三种:
点 在圆内.
其中
.
35、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质
椭圆:

,离心率
<1,参数方程是
.
双曲线:
(a>0,b>0),
,离心率
(1) 如果在 附近的左侧
,右侧
,那么
是极大值;
(2) 如果在 附近的左侧
指数函数、对数函数 分数指数幂
(1)

(2)

,右侧
,那么
是极小值.
,且 ). ,且 ).
,则 为减函 ,相应的切线方
1
根式的性质 (1)当 为奇数时,
当 为偶数时,
; .
有理指数幂的运算性质
(1)
.
(2)
.
(3)
.
注: 若 a>0,p 是一个无理数,则 ap 表示一个确定的实数.上述有理指数幂的运算性质,对于无理 数指数幂都适用.
的图象;再将函数
的图象上所有点的横坐标伸⻓(缩短)到原来的 倍(纵坐标不变),得到函数
的图象;
再将函数
的图象上所有点的纵坐标伸⻓(缩短)到原来的 倍(横坐标不变),得到函数
的图象.
②数
的图象上所有点的横坐标伸⻓(缩短)到原来的 倍(纵坐标不变),得到函数
的图象;再将函数 的图象;再将函数
(横坐标不变),得到函数
28、
。必须满足一正( 都是正数)、二定( 是定值或者
是定值)、三相等(
时等号成立)才可以使用该不等式)
(1)若积 是定值 ,则当
时和
有最小值

(2)若和
是定值 ,则当
时积 有最大值 .
五、解析几何 29、直线的五种方程 (1)点斜式
(2)斜截式
(直线 过点
,且斜率为 ).
(b 为直线 在 y 轴上的截距).
.指数式与对数式的互化式:
.
.对数的换底公式 :
(
,且 ,
,且 ,
).
对数恒等式: 推论
(
,且
,
).
(
,且
,
).
常⻅的函数图象
二、三⻆函数、三⻆变换、解三⻆形、平面向量 8、同⻆三⻆函数的基本关系式
,=
.
9、正弦、余弦的诱导公式(奇变偶不变,符号看象限) 的正弦、余弦,等于 的同名函数,前面加上把 看成锐⻆时该函数的符号;
中的一条上;
② 两条异面直线所成的⻆θ∈

③ 当两条异面直线所成的⻆是直⻆时,我们就说这两条异面直线互相垂直,记作 a⊥ b;
④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤ 计算中,通常把两条异面直线所成的⻆转化为两条相交直线所成的⻆。
空间中直线与平面、平面与平面之间的位置关系
10
1、直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 (2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点
的正弦、余弦,等于 的余名函数,前面加上把 看成锐⻆时该函数的符号。









2



口诀:函数名称不变,符号看象限.




口诀:正弦与余弦互换,符号看象限.
10、和⻆与差⻆公式 ; ;
.
11、二倍⻆公式 . .
.
公式变形:
12、 函数
的图象变换
①的图象上所有点向左(右)平移 个单位⻓度,得到函数
高中文科数学公式及知识点速记
一、函数、导数
1、函数的单调性
(1)设
那么
上是增函数;
上是减函数.
(2)设函数
在某个区间内可导,若
,则 为增函数;若
数. 2、函数的奇偶性
对于定义域内任意的 ,都有
,则 是偶函数;
相关文档
最新文档