高中数学全套资料

合集下载

高中数学知识点总复习资料

高中数学知识点总复习资料
9.求函数的定义域有哪些常见类型?
10.如何求复合函数的定义域?
义域是_____________。
11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?
12.反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)
13.反函数的性质有哪些?
③计算大小(解直角三角形,或用余弦定理)。
[练习]
(1)如图,OA为α的斜线OB为其在α射影,OC为α过O点任一直线。
(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。
①求BD1和底面ABCD所成的角;
②求异面直线BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。
(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第
表示)
52.你对随机事件之间的关系熟悉吗?
的和(并)。
(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。
(6)对立事件(互逆事件):
(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;
14.如何用定义证明函数的单调性?
(取值、作差、判正负)
如何判断复合函数的单调性?
∴……)
15.如何利用导数判断函数的单调性?
值是()
0B.1C. 2D. 3
∴a的最大值为3)
16.函数f(x)具有奇偶性的必要(非充分)条件是什么?
46.你熟悉求数列通项公式的常用方法吗?
例如:(1)求差(商)法

“人教a版高中数学选择性必修”资料汇整

“人教a版高中数学选择性必修”资料汇整

“人教a版高中数学选择性必修”资料汇整目录一、人教A版高中数学选择性必修第一册第1章1 4 1第3课时空间中直线、平面的垂直课件二、人教A版高中数学选择性必修第一册第2章2 5 1第1课时直线与圆的位置关系课件三、人教A版高中数学选择性必修第一册第2章2 3 3点到直线的距离公式2 3 4两条平行直线间的距离课件四、人教A版高中数学选择性必修第一册第1章1 4 2第1课时用空间向量研究距离问题课件五、人教A版高中数学选择性必修第一册第2章2 2 1直线的点斜式方程课件六、人教A版高中数学选择性必修第一册第3章3 2 2第1课时双曲线的简单几何性质课件人教A版高中数学选择性必修第一册第1章1 4 1第3课时空间中直线、平面的垂直课件本节课的主要目标是让学生理解空间中直线和平面的垂直关系,掌握垂直的定义和性质,能够判断直线与平面是否垂直,以及通过直线或平面的一个方向向量求得它们的法向量。

通过本节课的学习,培养学生的空间想象能力和逻辑推理能力,为后续的学习打下坚实的基础。

本节课将通过以下几个部分来讲解空间中直线和平面的垂直关系:重点:垂直的定义和性质,直线与平面垂直的判定定理。

难点:如何通过直线或平面的一个方向向量求得它们的法向量。

引入:通过实际例子引出垂直的概念,让学生感受垂直在实际生活中的应用。

讲解:详细讲解垂直的定义和性质,让学生理解垂直的基本概念。

推导:通过推导得出直线与平面垂直的判定定理,让学生掌握判断直线与平面是否垂直的方法。

练习:通过具体的例题让学生进行练习,加深对垂直的理解和掌握。

总结:对本节课的内容进行总结,强调重点和难点,为后续的学习打下基础。

通过本节课的学习,学生基本掌握了空间中直线和平面的垂直关系,能够正确判断直线与平面是否垂直。

但在应用方面还存在一些问题,需要在后续的学习中加强练习和提高。

教师也需要不断反思自己的教学方法和策略,提高教学效果和质量。

人教A版高中数学选择性必修第一册第2章2 5 1第1课时直线与圆的位置关系课件本课时旨在让学生了解直线与圆的位置关系,包括相交、相切和相离三种情况。

高中数学复习资料

高中数学复习资料

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件. 考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集. ④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅) 4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩ U A =φ A ∪ U A =U U U =φ U φ=U U U ( U A )=A 反演律: U (A ∩B)= ( U A )∪( U B ) U (A ∪B)= ( U A )∩( U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.+-+-x 1x 2x 3x m-3x m-2xm-1x mx(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论. 0>∆ 0=∆ 0<∆二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根abx x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互2.分式不等式的解法(1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学必修一集合与函数的概念复习资料

高中数学必修一集合与函数的概念复习资料

必修1 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算名称记号意义性质示意图交集A B I{|,x x A ∈且}x B ∈ (1)A A A =I (2)A ∅=∅I (3)A B A ⊆I A B B ⊆I BA并集A B U{|,x x A ∈或}x B ∈(1)A A A =U (2)A A ∅=U (3)A B A ⊇U A B B ⊇U BA补集U A ð{|,}x x U x A ∈∉且(1)()U A A =∅I ð(2)()U A A U =U ð(3)()()()U U U A B A B =I U 痧? (4)()()()U U U A B A B =U I 痧?【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应关系.③只有定义域相同,且对应关系也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:(求函数的定义域之前,尽量不要对函数的解析式进行变形,以免引起定义域的变化)①()f x 是整式型或奇次方根式型函数,定义域为全体实数。

高中数学考试复习资料归纳

高中数学考试复习资料归纳

高中数学考试复习资料归纳高中学习方法其实很简单,但是这个方法要一直保持下去,才能在最终考试时看到成效。

下面是小编为大家整理的关于高中数学考试复习资料,希望对您有所帮助!高中复习资料1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn二.【命题走向】的直观性,注意运用Venn预测2010题的表达之中,相对独立。

具体题型估计为:(1)题型是1个选择题或1(2三.【要点精讲】1(1a的元素,记作a∈A;若b不是集合A的元素,记作b∉A;(2确定性:设x是某一个具体对象,则或者是A的元素,或者不是A指属于这个集合的互不相同的个体(对象),因此,无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(4)常用数集及其记法:非负整数集(或自然数集),记作N;正整数集,记作N_或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R。

2.集合的包含关系:(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作A⊆B(或A⊂B);集合相等:构成两个集合的元素完全一样。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

新人教A版高中数学教材目录(必修+选修)

新人教A版高中数学教材目录(必修+选修)

新人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎证明阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰思考题二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-5不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6初等数论初步第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7优选法与试验设计初步第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告选修4-9风险与决策第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告。

高中数学必修一整册全套课件(共40个课件) 人教课标版32

高中数学必修一整册全套课件(共40个课件) 人教课标版32

3
让学生复述本节课的历程:从实际背景 出发,通过实例的探究归纳出二分法的思想, 进而建构出具体的算法程序,并经过操作加 以巩固,对本节课学习的内容、知识的生长 过程,研究问题的方法与思想进行反思与总 结。 这是一个知识技能内化的过程,能逐步 促进学生形成正确的数学观,培养学生严谨 的学习作风,进一步树立科学的人生观、价 值观。
【教学目标】 1.能够借助计算器用二分法求 方程的近似解 2.理解二分法求方程近似解 的实质。 3、了解逼近思想,体验并理解函 数方程的相互转化的数学思想方法。
【教学重点】用二分法求方程近似解的 一般步骤;能够借助计算器用二分法求 方程的近似解。 【教学难点】对用二分法求方程近似解 的实质的理解。
教材首先以学生熟悉的一元二次方程 为例对用二分法求方程的近似解作了详细 的介绍,并进一步拓展到其它简单方程, 使学生体会函数与方程之间的关系,初步 形成用函数观点处理问题的能力和意识。
本节课内容属于高中数学新增内容, 既是函数与方程联系的桥梁;也是中等数 学与高等数学联系的一根纽带;同时是学 习一种思维方式,其中渗透了逼近思想和 算法思想,以及从具体到抽象的认识规律, 体现了新课程的理念。也是今后高考的重 要内容,值得关注!
让学生试着归纳、猜想得到
求方程近似解的大体思路为:
第一步:确定根的大致范围即求隔离区间; 第二步 :以根的隔离区间的端点作为根的初 始近似值; 然后,逐步改善根的近似值的精度,直至求 得满足精确度要求的近似解。
1.
因此, 给定精确度 ,用 二分法求方程 解近似值 f (x) 0 的步骤如下: f( a ) f( b ) 0
教学中,我创设情境,充分激发学生探 索新知的欲望,此过程中充分发挥他们的自 主探索能力。

高中数学第十章-排列组合

高中数学第十章-排列组合

高三数学总复习................................................................高考复习科目:数学 高中数学总复习(九)复习内容:高中数学第十章-排列组合 复习范围:第十章 编写时间:2004-7修订时间:总计第三次 2005-4 一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种) 二、排列.1. ⑪对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑫相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑬排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n个不同元素中取出m 个元素的一个排列数,用符号m n A 表示.⑭排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n=.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑪组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑫组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m n mmmn m n -=+--==⑬两个公式:①;m n n m n C C -= ②mn m n m n C C C 11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C m n 种,依分类原理有mn m n m n C C C 11+-=+.⑭排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑮①几个常用组合数公式n n n n n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n kn m n m m n m m m m m m n n n n n n n n C n C k nCkC C C C C C C C C C C C②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C .vi. 构造二项式. 如:n nn n n n C C C C 222120)()()(=+++ 证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中nx 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而mm A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-.②有n 件不同商品,若其中A 、B 排在一起有2211A A nn ⋅--. ③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?mm n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则. ⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法? 解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)mm n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? (!2/102022818C C C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有mmm m n m n m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义. ⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某rx 1x 2x 3x 4个指定位置则有rk r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有m n A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。

高中数学知识点总结大全(最新版复习资料,经典,全面)

高中数学知识点总结大全(最新版复习资料,经典,全面)
高中数学知识点总结
引言
1.课程内容:
必修课程由 5 个模块组成: 必修 1:集合、函数概念与基本初等函数(指、对、幂函数) 必修 2:立体几何初步、平面解析几何初步。 必修 3:算法初步、统计、概率。 必修 4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修 5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、 数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时, 进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有 4 个系列: 系列 1:由 2 个模块组成。 选修 1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修 1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列 2:由 3 个模块组成。 选修 2—1:常用逻辑用语、圆锥曲线与方程、
第 - 7 - 页 共 147 页
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小 (大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度 不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或 最值.
③ f (x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
⑤ y tan x 中, x k (k Z ) . 2

高中数学会考必备资料

高中数学会考必备资料

高一内容梳理一、集合1、集合的中元素的三个特性:确定性、互异性、无序性2、3、空集是任何集合的子集,空集是任何非空集合的真子集。

4、⑴C U (C U A)=A ⑵(C U A)∩A=Φ⑶(C U A)∪A=U(4)(C U A)∩(C U B)=C U (A ∪B)(5)(C U A)∪(C U B)=C U (A∩B)5、充要条件口诀:小充大必(范围小的是充分条件,范围大的是必要条件)6、复合命题的真假判断(利用真值表):非二、不等式1、若R b a ∈,,ab b a 222≥+,222b a ab +≤,2)2(222b a b a +≤+(当且仅当b a =时取“=”)2、若*,R b a ∈,则ab b a ≥+2,ab b a 2≥+,22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”)3、若0x >,12x x +≥(当且仅当1x =取“=”);0x <,则12x x+≤-(当且仅当1x =-取“=”)若0x ≠,则11122-2x x x xxx+≥+≥+≤即或(当且仅当b a =时取“=”)4、若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或(当且仅当b a =时取“=”)三、函数1、定义域:分母不等于零;偶次方根的被开方数不小于零;对数式的真数必须大于零;指数、对数式的底必须大于零且不等于1;2、抽象函数定义域:定义域是指x 的取值范围,对应法则的作用范围相同。

3、求函数值域:根式型(换元法);一次分式型(无限制:系数比,取不到;有限制;带端点,内外反);二次分式型(换元,转化为一次;判别式法;捺撇方程法)4、函数单调性:在定义域范围内,取21x x ,,比较()()21,x f x f :同增异减5、函数奇偶性:()()x f x f =-偶函数;()()x f x f -=-为奇函数,若奇函数定义域有0,则必有()00=f 。

高中数学基本资料完整版

高中数学基本资料完整版

高中数学基本资料完整版
1.数与式:整数,有理数,分数,根号,绝对值,复数,函数表达式,方程,不等式,无理数,单项式,多项式,等比数列,等差数列。

2.几何:空间直角坐标系,几何图形,直线,圆,椭圆及其相关算法,三角形,平行
四边形,正多边形,网格,边,面积,体积,空间图形,立体几何,视图,正反投影等。

3.代数:代数方程,一元一次方程,一元二次方程,无穷级数,指数公式,指数函数,对数公式,对数函数,可分解因式表达式,相似形式及其运算,几何运算,有理多项式因
子分解,分子分母化简,代数恒等式,代数性质等。

4.概率统计:定义,简单概率,条件概率,独立性,乘法定理,随机变量,期望,方差,正态分布,估计,卡方,分类数据等。

5.数学分析:点,直线,直线方程,函数,极限,微分,定积分,曲线的曲率,速度
的定义,定义域,单调性及其证明,微积分的应用等。

6.数论:有限群,互质,最大公约数,同余,线性同余方程,素数的定义,质数的埃
拉托色尼定理,积性函数,莫比乌斯函数等。

人教版高中数学选修2-3讲义资料,复习补习资料(含知识讲解,巩固练习):全册资料合集

人教版高中数学选修2-3讲义资料,复习补习资料(含知识讲解,巩固练习):全册资料合集

第一章计数原理1.1 分类加法计数原理与分步乘法计数原理知识一、分类加法计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N= 种不同的方法.2.分类加法计数原理的推广完成一件事有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,……在第n类方案中有m n种不同的方法,那么完成这件事共有N= 种不同的方法.【注】分类加法计数原理的特点是各类中的每一个方法都可以完成要做的事情.二、分步乘法计数原理1.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N= 种不同的方法.2.分步乘法计数原理的推广完成一件事需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有m n种不同的方法,那么完成这件事共有N= 种不同的方法.【注】分步乘法计数原理的特点是每一步中都要使用一个方法才能完成该步要做的事情.可以用下图表示分步乘法计数原理的原理:3.两个计数原理的联系与区别三、两个计数原理的应用1.用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析——需要分类还是需要分步.应用分类加法计数原理时,要注意“类”与“类”之间的独立性和并列性,各类中的每个方法都能独立的将这件事情完成;应用分步乘法原理时,要注意“步”与“步”之间是连续的,做一件事需分成若干个互相联系的步骤,所有步骤依次相继完成,这件事才算完成.2.分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.3.分步要做到“步骤完整”,步与步之间要相互独立,最后根据分步乘法计数原理,把完成每一步的方法数相乘得到总数.知识参考答案:一、1.m+n2.m1+m2+···+m n二、1.m×n2.m1×m2×···×m n重点1.分类加法计数原理的应用对分类加法计数原理的理解注意点:(1)明确问题中所指的“完成一件事”是指什么,怎样才算是完成这件事,然后根据问题的特点确定一个分类标准,在这个标准下进行分类.(2)“完成一件事有n类不同方案”是指完成这件事的所有方法可分为n类,即任何一类中的任何一种方法都可以完成任务,而不需要再用到其他方法;每一类没有相同的方法,且完成这件事的任何一种方法都在某一类中.简单地说,就是应用分类加法计数原理时要做到“不重不漏”.【例1】从甲地到乙地一天之中有三次航班、两趟火车,某人利用这两种交通工具在当天从甲地赶往乙地的方法有A.2种B.3种C.5种D.6种【答案】C【例2】把3枚相同的纪念邮票和4枚相同的纪念币作为礼品送给甲、乙两名学生,要求全部分完且每人至少有一件礼品,则不同的分法共有种.【答案】18【解析】以甲分得的礼品数为标准分类(用(a,b)表示甲分得纪念邮票a枚,纪念币b枚),可分为6类:第1类,甲分得1件礼品有2种分法:(1,0),(0,1);第2类,甲分得2件礼品有3种分法:(2,0),(1,1),(0,2);第3类,甲分得3件礼品有4种分法:(3,0),(2,1),(1,2),(0,3);第4类,甲分得4件礼品有4种分法:(3,1),(2,2),(1,3),(0,4);第5类,甲分得5件礼品有3种分法:(3,2),(2,3),(1,4);第6类,甲分得6件礼品有2种分法:(3,3),(2,4).根据分类加法计数原理,不同的分法共有2+3+4+4+3+2=18种.【名师点睛】本题的分类标准并不明显,根据题意,这些礼品要全部分完且每人至少有一件礼品,因此可以将甲、乙这两人中一人分得的礼品数作为分类标准,本题从甲分得的礼品数考虑,也可以从两类礼品的角度考虑,分两个步骤完成,应用分步乘法计数原理解决.2.分步乘法计数原理的应用对分步乘法计数原理的理解注意点:(1)明确问题中所指的“完成一件事”是指什么,怎样才算是完成这件事,然后根据问题的特点确定分步标准,标准不同,分步的步骤也会不同.(2)“完成一件事需要n个步骤”是指完成这件事的任何一种方法,都要分成n个步骤,在每一个步骤中任取一种方法,然后相继完成所有这些步骤就能完成这件事.即各步骤是相互依存的,只有每个步骤都完成才能完成这件事.简单地说,就是应用分步乘法计数原理时要做到“步骤完整”.【例3】某市汽车牌照号码(由4个数字和1个字母组成)可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),某车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码所有可能的情况有A.180种B.360种C.720种D.960种【答案】D【解析】分五步完成,第i步取第i个号码由分步乘法计数原理,可得车牌号码共有种.【例4】(1)用数字1,2,3可以组成多少个三位数?(2)用数字1,2,3可以组成多少个没有重复数字的三位数?【答案】(1)27;(2)6.【解析】(1)要完成“组成三位数”这件事,需分以下3步:第一步:确定个位数字,1,2,3三个数字都可以选择,有3种选法;第二步:确定十位数字,1,2,3三个数字都可以选择,有3种选法;第三步:确定百位数字,1,2,3三个数字都可以选择,有3种选法.根据分步乘法计数原理,可以组成的三位数有3×3×3=27个.(2)要完成“组成没有重复数字的三位数”这件事,需分以下3步:第一步:确定个位数字,1,2,3三个数字都可以选择,有3种选法;第二步:确定十位数字,第一步选过的数字不能选择,因此有2种选法;第三步:确定百位数字,只有1种选法.根据分步乘法计数原理,知可以组成的三位数有3×2×1=6个.【规律总结】(1)应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.(2)利用分步乘法计数原理解题的一般思路.①分步:将完成这件事的过程分成若干步;②计数:求出每一步中的方法数;③结论:将每一步中的方法数相乘得最终结果.3.两个计数原理的综合应用应用两个计数原理解题时的策略:(1)确定计数原理:要分清涉及的问题从大的方面看是利用分类加法计数原理还是分步乘法计数原理,还是两种原理综合应用解题.(2)处理好类与步的关系:对于较为复杂的题目,在某一类中需要分步计算所用的方法,而在某一步中又可能分类计算所用的方法,两者要有机结合.(3)注意不重不漏:做到分类类不重,分步步不漏.【例5】编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,求不同的放法有多少种?【例6】集合A={1,2,-3},B={-1,-2,3,4}.现从A,B中各取一个元素作为点P(x,y)的坐标.(1)可以得到多少个不同的点?(2)在这些点中,位于第一象限的有几个?【解析】(1)一个点的坐标由x,y两个元素确定,若它们有一个不同,则表示不同的点,可分为两类:第一类:选A中的元素为x,B中的元素为y,有3×4=12(个)不同的点;第二类:选A中的元素为y,B中的元素为x,有4×3=12(个)不同的点.由分类加法计数原理得不同点的个数为12+12=24(个).(2)第一象限内的点,即x,y必须为正数,从而只能取A,B中的正数,同样可分为两类.由分类加法计数原理得适合题意的不同点的个数为2×2+2×2=8(个).4.分类或分步时考虑不全致误【例7】有红、黄、蓝旗各3面,每次升1面、2面、3面在某一旗杆上纵向排列,表示不同的信号,顺序不同也表示不同的信号,共可以组成多少种不同的信号?【错解】每次升一面旗可组成3种不同的信号;每次升2面旗可组成3×2=6种不同信号;每次升3面旗可组成3×2×1=6种不同的信号,根据分类加法计数原理知,共有不同信号3+6+6=15种.【错因分析】每次升起2面或3面旗时,颜色可以相同.【正解】每次升1面旗可组成3种不同的信号;每次升2面旗可组成3×3=9种不同的信号;每次升3面旗可组成3×3×3=27种不同的信号.根据分类加法计数原理得,共可组成:3+9+27=39种不同的信号.【易错警示】审题时要细致,把题意弄清楚.本题中没有规定升起旗子的颜色不同,故既要考虑升起旗子的面数,又要考虑其颜色,不可偏废遗漏.【例8】甲、乙、丙、丁4名同学争夺数学、物理、化学3门学科知识竞赛的冠军,且每门学科只有1名冠军产生,则不同的冠军获得情况有种.【错解】错解1:分四步完成这件事.第1步,第1名同学去夺3门学科的冠军,有可能1个也没获得,也可能获得1个或2个或全部,因此,共有4种不同情况;同理,第2,3,4步分别由其他3名同学去夺这3门学科的冠军,都各自有4种不同情况.由分步乘法计数原理知,共有4×4×4×4=44=256种不同的冠军获得情况.错解2:分四步完成这件事.第1步,第1名同学去夺3门学科的冠军,有3种不同情况;同理,第2,3,4步分别由其他3名同学去夺这3门学科的冠军,都各自有3种不同情况.由分步乘法计数原理知,共有3×3×3×3=34=81种不同的冠军获得情况.【错因分析】要完成的“一件事”是“争夺3门学科知识竞赛的冠军,且每门学科只有1名冠军产生”.但错解1、2中都有可能出现某一学科冠军被2人、3人,甚至4人获得的情形,另外还可能出现某一学科没有冠军产生的情况.【正解】可先举例说出其中的一种情况,如数学、物理、化学3门学科知识竞赛的冠军分别是甲、甲、丙,可见研究的对象是“3门学科”,只有3门学科各产生1名冠军,才完成了这件事,而4名同学不一定每人都能获得冠军,故完成这件事分三步.第1步,产生第1个学科冠军,它一定被其中1名同学获得,有4种不同的获得情况;第2步,产生第2个学科冠军,因为夺得第1个学科冠军的同学还可以去争夺第2个学科的冠军,所以第2个学科冠军也是由4名同学去争夺,有4种不同的获得情况;第3步,同理,产生第3个学科冠军,也有4种不同的获得情况.由分步乘法计数原理知,共有4×4×4=43=64种不同的冠军获得情况.【答案】64【易错警示】此类问题是一类元素允许重复选取的计数问题,可以用分步乘法计数原理来解决,关键是明确要完成的一件事是什么.也就是说,用分步乘法计数原理求解元素可重复选取的问题时,哪类元素必须“用完”就以哪类元素作为分步的依据.基础训练1.某学生去书店,发现2本不同的好书,决定至少买其中一本,则购买方式共有A.1种B.2种C.3种D.4种2.设某班有男生30名,女生24名.现要从中选出男、女生各一名代表班级参加比赛,则不同的选法共有A.24种B.30种C.54种D.720种3.体育场南侧有4个大门,北侧有3个大门,某人到该体育场晨练,则他进、出门的方案有A.12种B.7种C.14种D.49种4.在一次才艺展示活动中,甲、乙、丙三位同学欲报名“朗诵比赛”、“歌唱比赛”,但学校规定每位同学限报其中的一个,且乙知道自己唱歌不如甲,若甲报唱歌比赛乙就报朗诵比赛,则他们三人不同的报名方法有A.3种B.6种C.7种D.8种5.从1,2,3,4,5五个数中任取3个,可组成不同的等差数列的个数为A.2 B.4C.6 D.86.在所有的两位数中,个位数字大于十位数字的两位数共有A.12 B.24C.36 D.407.若4名学生报名参加数学、计算机、航模兴趣小组,每人选报1项,则不同的报名方式有_______种. 8.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,则共有________种不同的推选方法.9.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续....固定相邻的2个螺栓,则不同的固定螺栓方式的种数是________.10.现从高一四个班的学生中选取34人,其中一、二、三、四班分别选取7人、8人、9人、10人,他们自愿组成数学课外小组.(1)每班选一名组长,有多少种不同的选法?(2)推选两人做中心发言,这两人需来自不同的班级,有多少种不同的选法?能力提升11.把4张同样的参观券分给5个代表,每人最多分一张,参观券全部分完,则不同的分法共有A.120种B.1024种C.625种D.5种12.如图,某电子器件是由三个电阻组成的回路,其中共有6个焊接点A、B、C、D、E、F,如果某个焊接点脱落,整个电路就会不通,现在电路不通了,那么焊接点脱落的可能性共有A.6种B.36种C.63种D.64种13.设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有A.50 种B.49 种C.48 种D.47 种14.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这5个数字中任取2个不同的数字,则方程所表示的不同直线有A .5条B .7条C .12条D .14条15.如图所示给五个区域涂色,现有四种颜色可供选择.要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同涂色方法种数为A .24种B .48种C .72种D .96种16.已知a ∈{3,4,6},b ∈{2,5,7,8},则方程x 2a +y 2b=1可表示________个不同的椭圆.17.将黑白2个小球随机放入编号为1,2,3的三个盒子中,则黑白两球均不在1号盒子的概率为______ 18.我们把个位数比十位数小的两位数称为“和谐两位数”,则1,2,3,4四个数组成的两位数中,“和谐两位数”有________个.19.用n 种不同的颜色为下列两块广告牌(如图甲、乙)着色,要求A ,B ,C ,D 四个区域中相邻(有公共边界)的区域用不同的颜色.(1)若n =6,求为甲图着色时共有多少种不同的方法; (2)若为乙图着色时共有120种不同方法,求n .真题练习20.(新课标全国Ⅱ)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A .24B .18C .12D .921.(2019新课标全国Ⅱ)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意,中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有A .18个B .16个C .14个D .12个22.(2019福建模拟)满足a ,b ∈{−1,0,1,2},且关于x 的方程有实数解的有序数对的个数为 A .14 B .13 C .12D .1023.(2019山东模拟)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为A .243B .252C .261D .27924.(2019安徽模拟)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有A .24对B .30对C .48对D .60对参考答案2k m ≤12,,,k a a a 220ax x b ++=(,)a b1.【答案】C【解析】分两类:买1本书、买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3种.2.【答案】D【解析】第一步,从30名男生中选出1人,有30种不同的选法;第二步,从24名女生中选出1人,有24种不同的选法.根据分步乘法计数原理得,共有30×24=720种不同的选法.3.【答案】D【解析】要完成进、出门这件事,需要分两步,第一步进体育场,第二步出体育场,第一步进门有4+3=7种方法,第二步出门也有4+3=7种方法,由分步乘法计数原理知,进、出的方案有7×7=49种.4.【答案】B【解析】从甲着手分析,分两类:若甲报唱歌比赛,则乙报朗诵比赛,丙可任选,有2种报名方法;若甲报朗诵比赛,则乙、丙均可任选,有2×2=4种报名方法.所以共有2+4=6种不同的报名方法.5.【答案】D【解析】分两类:第1类,公差大于0,有①1,2,3,②2,3,4,③3,4,5,④1,3,5,共4个等差数列;第二类,公差小于0,也有4个.根据分类加法计数原理可知,共有4+4=8个不同的等差数列.【名师点睛】完成这件事,只要两位数的个位、十位确定了,这件事就算完成了,因此可考虑按十位上的数字情况或按个位上的数字情况进行分类.应用分类加法计数原理解题时要注意以下三点:(1)明确题目中所指的“完成一件事”指的是什么事,怎样才算是完成这件事.(2)完成这件事的n类办法中的各种方法是互不相同的,无论哪类办法中的哪种方法都可以单独完成这件事.(3)确立恰当的分类标准,这个“标准”必须满足:①完成这件事情的任何一种方法必须属于其中的一个类;②分别在不同两类中的两种方法不能相同.即不重复,无遗漏.7.【答案】81【解析】4名学生报名参加数学、计算机、航模兴趣小组,每人选报1项,则每人有3种报名方法,则4人共有3×3×3×3=81种方法.8.【答案】31【解析】分为三类:第一类,甲班选一名,乙班选一名,根据分步乘法计数原理有3×5=15种选法;第二类,甲班选一名,丙班选一名,根据分步乘法计数原理有3×2=6种选法;第三类,乙班选一名,丙班选一名,根据分步乘法计数原理有5×2=10种选法.综合以上三类,根据分类加法计数原理,共有15+6+10=31种不同选法.9.【答案】60【解析】第一步任意选取一个螺栓,有6种方法;第二步,按照要求以此固定,不妨第一次固定螺栓1,则有如下的固定方法:1,3,5,2,4,6;1,3,5,2,6,4;1,3,6,4,2,5;1,5,2,4,6,3;1,5,3,6,2,4;1,5,3,6,4,2;1,4,2,6,3,5;1,4,2,5,3,6;1,4,6,3,5,2;1,4,6,2,5,3,共有10种方法,所以总共有种方法,故答案是60.10.【解析】(1)分四步:第一、二、三、四步分别从一、二、三、四班学生中选一人任组长.所以共有不同的选法N=7×8×9×10=5040(种).(2)分六类,每类又分两步:从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以,共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).11.【答案】D【解析】由于4张同样的参观券分给5个代表,每人最多分一张,每次分完只有一个代表队得不到,所以共有5种不同的分法.故选D.12.【答案】C【解析】每个焊接点都有正常与脱落两种情况,只要有一个脱落电路即不通,∴共有26-1=63种.故选C.13.【答案】B【解析】按分类加法计数原理做如下讨论:①当A中最大的数为1时,B可以是{2,3,4,5}的非空子集,即有24-1=15种方法;②当A中最大的数为2时,A可以是{2}或{1,2},B可以是{3,4,5}的非空子集,即有2×(23-1)=14种方法;③当A中最大的数为3时,A可以是{3},{1,3},{2,3},{1,2,3},B可以是{4,5}的非空子集,即有4×(22-1)=12种方法;④当A中最大的数为4时,A可以是{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4},B可以是{5},即有8×1=8种方法.故共有15+14+12+8=49种方法.14.【答案】D【解析】方法一(直接法):本题中有特殊数字0,所以,以A,B中是否有数字0为标准进行分类,可分两类:第1类,当A,B中有一个为0时,表示直线x=0或y=0,共2条不同直线.第2类,当A,B都不为0时,确定直线Ax+By=0需要分两步完成:第1步,确定A的值,有4种不同的方法;第2步,确定B的值,有3种不同的方法.由分步乘法计数原理知,共可确定4×3=12条不同直线.由分类加法计数原理知,方程所表示的不同直线共有2+12=14条.方法二(间接法):分两步:第1步,确定A的值,有5种不同的方法;第2步,确定B的值,有4种不同的方法.由分步乘法计数原理知,可以确定5×4=20条直线.在这20条直线中,A=0,B=1,2,3,5,以及B=0,A=1,2,3,5各表示一条直线,即有6条直线是重复计数的,因此,符合条件的不同直线共有20−6=14条.【名师点睛】间接法体现了“正难则反”的思想.若问题从正面考虑的话情况比较多,而问题的反面情况较少,且容易计数,则宜采用间接法,即先求出方法总数,再减去不符合条件的方法数或重复计数的方法数. 15.【答案】C【解析】解法1:分两种情况:①A、C不同色,先涂A有4种,C有3种,E有2种,B、D有1种,由分步乘法计数原理知有4×3×2=24种.②A、C同色,先涂A有4种,E有3种,E有2种,B、D各有2种,由分步乘法计数原理知有4×3×2×2=48种.由分类加法计数原理知,共有72种,故选C.解法2:先涂A,有4种涂法,再涂B、D,①若B 与D 同色,则B 有3种,E 有2种,C 有2种,共有4×3×2×2=48种;②若B 与D 不同色,则B 有3种,D 有2种,E 有1种,C 有1种,共有4×3×2×1×1=24种, 由分类加法计数原理知,共有不同涂法48+24=72种. 故选C .【名师点睛】这是一个有限制条件的计数问题,解决方法是:特殊位置、特殊元素优先安排的原则.本题是先分类再分步,而分类的标准是两个特殊位置,这样,在分类时才能做到“不重不漏”.应用两个计数原理解题时的策略:(1)确定计数原理:要分清涉及的问题从大的方面看是利用分类加法计数原理还是分步乘法计数原理,还是两种原理综合应用解题.(2)处理好类与步的关系:对于较为复杂的题目,在某一类中需要分步计算所用的方法,而在某一步中又可能分类计算所用的方法,两者要有机结合. (3)注意不重不漏:做到分类类不重,分步步不漏. 16.【答案】12【解析】∵a ∈{3,4,6},b ∈{2,5,7,8},∴x 2a +y 2b =1可表示不同的椭圆个数为3×4=12个.17.【答案】【解析】黑白两个球随机放入编号为的三个盒子中,每个球都有三种放法,故共有种放法,黑白两球均不在一号盒,都有两种放法,共有,所以黑白两球均不在一号盒的概率为,故答案为. 【名师点睛】计数原理与其他知识交汇命题,常以“个数”或“概率”形式出现,计数常采用列举数数、树状图、表格等方法.解答时,先依据其他知识转化,将所求问题归结为计数问题,再按计数原理进行计算.49494919.【解析】(1)对区域A ,B ,C ,D 按顺序着色,共有6×5×4×4=480种不同的方法.(2)对区域A ,B ,C ,D 按顺序着色,依次有n 种、n −1种、n −2种和n −3种, 由分步乘法计数原理,不同的着色方法共有n (n −1)(n −2)(n −3)=120,整理得(n 2−3n )(n 2−3n +2)=120,(n 2−3n )2+2(n 2−3n )−120=0,n 2−3n −10=0或n 2−3n +12=0(舍去), 解得n =5.【名师点睛】(1)由题意知本题考查的是分步乘法计数原理,对区域A ,B ,C ,D 按顺序着色,第一块有6种方法,第二块就不能选第一块的颜色,有5种结果,以此类推,根据分步计数原理得到结果. (2)利用分步乘法计数原理得到不同的染色方法有n (n −1)(n −2)(n −3)种,再根据共有120种结果,列出等式,解关于n 的方程,即可得到结果. 对于着色问题的两种典型现象:一是平面图涂颜色:先涂接触区域最多的一块;二是立体图涂颜色:先涂具有同一顶点的几个平面,其他平面每步涂法分类列举. 20.【答案】B【解析】由题意可知E →F 共有6种走法,F →G 共有3种走法,由乘法计数原理知,则共有6×3=18种走法,故选B.【名师点睛】分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的. 21.【答案】C【解析】由题意,得必有,,则具体的排法列表如下:10a =81a =由上表知,不同的“规范01数列”共有14个,故选C.【方法点拨】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树状图将其所有可能一一列举出来,常常会达到岀奇制胜的效果. 22.【答案】B【解析】当时,关于x 的方程为,此时有序数对均满足要求;当时,,所以,此时满足要求的有序数对为 .综上,共有13个满足要求的有序数对. 23.【答案】B【解析】十个数排成不重复数字的三位数的求解方法是: 第1步,排百位数字,有9种方法(0不能作首位); 第2步,排十位数字,有9种方法; 第3步,排个位数字,有8种方法,根据乘法原理,共有9×9×8=648个没有重复数字的三位数. 可以组成所有三位数的个数有9×10×10=900(个), 所以可以组成有重复数字的三位数的个数为900−648=252.0a =20x b +=()()()0,10,00,102),(-,,,0a ≠440ab ∆=-≥1ab ≤()()(1,11,01,11,2)()-----,,,,()()()111,01,1212,0()()--,,,,,,24.【答案】C【解析】如图,在上底面中选,四个侧面中的面对角线都与它成60°,共8对,同样对应的也有8对,下底面也有16对,共有32对;左右侧面与前后侧面中共有16对.所以全部共有48对.1.2 排列与组合知识一、排列 1.排列的定义一般地,从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成 ,叫做从n 个不同元素中取出m 个元素的一个排列(arrangement).【注】(1)排列的定义包含两方面的含义:一是“取出元素”;二是“按照一定的顺序”.(2)定义中规定给出的n 个元素各不相同,并且只研究被取出的元素也各不相同的情况.也就是说,如果某个元素已被取出,则这个元素就不能再取了.(3)定义中的“一定的顺序”与位置有关.如取出数字1,2,3组成一个三位数,就与位置有关,因为123和321是不同的三位数. 2.排列数、排列数公式 (1)排列数从n 个不同元素中取出个元素的所有 的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号表示.11B D 11AC ()m m n A mn。

适合中等生的高中数学资料

适合中等生的高中数学资料

适合中等生的高中数学资料一、5年高考3年模拟。

这个系列的教辅从初中到大学考研全方位覆盖,而且几乎是人手一本,足以说明它的效果。

这套教辅是刷题解析二合一的,既有考点归纳,也有题型的剖析,还有命题预测。

而且书中的题型来自全国各地近几年来的考卷,是所有教辅书中最全的。

五三系列一般分为AB版,A版是比较基础的,B版是拓展拔高的。

二、高考必刷题。

这个系列的教辅比较适合高三学生使用,尤其是假期刷题,题量非常充足,最好是有充分的时间完全刷一遍,千万别半途而废。

答案的条理清晰,解析很多很详细,不过题型有点难,对于学生的基础知识有一定的要求,适合学习成绩中等或中等以上的使用。

三、龙门专题。

龙门专题共分为四个系列,专题、专练、考点WIFI和考点狂练,而且龙门系列也是涵盖了全部学科的教辅。

每个知识点、不同的题型都有单独出书,划分细致,重点针对。

也是许多老师和参加过考高的学生极力推荐的教辅书,不过和高考必刷题一样,适用于基础较好的学生。

选择教辅前一定要有个大前提就是你确定自己能抽出时间来做,一定不能有攀比心理,所谓看着别的同学买了自己不买好像会吃亏一样。

如果自己一旦做不完,这些书和题目的存在会在无形当中给自己造成一些心理压力,反而得不偿失。

首先,选择教辅的时候,一定要注意是否符合自己现阶段的学习情况。

有的同学学习基础较薄弱,所以比较适合一些侧重基础、题目难度不大的教辅资料,目的在于巩固老师课堂上讲的内容,加强理解。

而有的同学可能在现阶段学习成绩较好,则需要选择一些有一定难度的教辅资料,给自己扩展一下眼界和答题思路。

其次,选择教辅的时候一定要注意是否符合自己的阶段。

高一和高二的孩子还是选择一些本阶段的教辅比较好,稳扎稳打才能为高三实现飞跃打好基础。

李永乐高中数学100讲讲义

李永乐高中数学100讲讲义

李永乐高中数学100讲讲义(原创版)目录一、李永乐高中数学 100 讲讲义概述二、李永乐高中数学 100 讲的特点三、李永乐高中数学 100 讲的优势四、如何获取李永乐高中数学 100 讲讲义五、总结正文一、李永乐高中数学 100 讲讲义概述李永乐高中数学 100 讲讲义是一套针对高中数学的教学资料,由著名数学教育专家李永乐老师精心编写。

这套讲义涵盖了高中数学的各个方面,旨在帮助学生全面掌握高中数学知识,提高学生的数学素养和解题能力。

二、李永乐高中数学 100 讲的特点1.系统性:李永乐高中数学 100 讲讲义从基础到进阶,涵盖了高中数学的各个知识点,使学生能够系统地学习高中数学。

2.实用性:讲义中的例题和习题密切结合教学内容,有利于学生深入理解知识点,提高解题能力。

3.条理性:李永乐高中数学 100 讲讲义内容条理清晰,便于学生学习和查阅。

4.举一反三:讲义中的例题解析详尽,且注重举一反三,使学生能够触类旁通,掌握解题方法。

三、李永乐高中数学 100 讲的优势1.名师编写:李永乐老师是著名的数学教育专家,具有丰富的教学经验和教育理念,为学生提供高质量的教学资料。

2.适用范围广泛:李永乐高中数学 100 讲讲义适用于各个版本的高中数学教材,有助于学生全面掌握高中数学知识。

3.助力高考:讲义中的知识点和解题方法与高考紧密结合,有助于学生在高考中取得优异成绩。

四、如何获取李永乐高中数学 100 讲讲义1.在线搜索:学生可以通过搜索引擎(如百度、谷歌等)搜索“李永乐高中数学 100 讲讲义”,找到相关资源。

2.淘宝购买:学生可以在淘宝等电商平台上购买李永乐高中数学 100 讲讲义的电子版或纸质版。

3.论坛求助:学生可以在相关论坛或学习交流群组中寻求帮助,可能有好心的同学或老师愿意分享讲义。

五、总结李永乐高中数学 100 讲讲义是一套优秀的高中数学教学资料,其系统性、实用性、条理性和举一反三的特点,使学生能够更好地掌握高中数学知识,提高解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学二轮复习全套资料高中数学第一章-集合考试容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件. 考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾: (一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅) 4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小围推出大围;大围推不出小围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A ==分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩ U A =φ A ∪ U A =U U U =φ U φ=U U U ( U A )=A 反演律: U (A ∩B)= ( U A )∪( U B ) U (A ∪B)= ( U A )∩( U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.x(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;2二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根ab x x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x x x <<∅∅2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

2、逻辑联结词、简单命题与复合命题: “或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。

构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。

3、“或”、 “且”、 “非”的真值判断 (1)“非p ”形式复合命题的真假与F 的真假相反; (2)“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假; (3)“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真.原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互4、四种命题的形式:原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。

(1)交换原命题的条件和结论,所得的命题是逆命题; (2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题. 5、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题⇔逆否命题) ①、原命题为真,它的逆命题不一定为真。

②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。

6、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。

若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p ⇔q.7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。

高中数学第二章-函数考试容:映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 考试要求:(1)了解映射的概念,理解函数的概念.(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.§02. 函数 知识要点一、本章知识网络结构:F:A →B对数函数指数函数二次函数二、知识回顾: (一) 映射与函数 1. 映射与一一映射 2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数反函数的定义设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=(二)函数的性质 ⒈函数的单调性定义:对于函数f(x)的定义域I 某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性正确理解奇、偶函数的定义。

相关文档
最新文档