人教版初中数学一次函数图文答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学一次函数图文答案
一、选择题
1.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( )
A .甲的速度为20km/h
B .甲和乙同时出发
C .甲出发1.4h 时与乙相遇
D .乙出发3.5h 时到达A 地
【答案】C
【解析】
【分析】
根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.
【详解】
解:A .甲的速度为:60÷2=30,故A 错误;
B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;
C .设1l 对应的函数解析式为111y k x b =+,
所以:111
6020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;
设2l 对应的函数解析式为222y k x b =+,
所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 22
2010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,
所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418
x y =⎧⎨=⎩ ∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意;
D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.
故选:C .
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.
2.已知过点()2?3,
-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )
A .352s -≤≤-
B .362s -<≤-
C .362s -≤≤-
D .372
s -<≤- 【答案】B
【解析】 试题分析:∵过点()2?3,
-的直线()0y ax b a =+≠不经过第一象限, ∴0
{0
23
a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.
由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32
s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-. ∴s 的取值范围是362s -<≤-
. 故选B.
考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.
3.如图,函数4y x =-和y kx b =+的图象相交于点()8A m
-,,则关于x 的不等式()40k x b ++>的解集为( )
A .2x >
B .02x <<
C .8x >-
D .2x <
【答案】A
【解析】
【分析】
直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.
【详解】
解:∵函数y =−4x 和y =kx +b 的图象相交于点A (m ,−8),
∴−8=−4m ,
解得:m =2,
故A 点坐标为(2,−8),
∵kx +b >−4x 时,(k +4)x +b >0,
则关于x 的不等式(k +4)x +b >0的解集为:x >2.
故选:A .
【点睛】
此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.
4.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( )
A .0b <
B .2b <
C .02b <<
D .0b <或2b >
【答案】D
【解析】
【分析】
根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2.
【详解】
解∵B 点坐标为(b ,-b+2),
∴点B 在直线y=-x+2上,
直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图, ∵A (2,0),
∴∠AQO=45°,
∴点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,
∴b 的取值范围为b <0或b >2.
故选D .
【点睛】
本题考查了一函数图象上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图
象是一条直线.它与x 轴的交点坐标是(b k
-
,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .
5.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )
A .123x x x <<
B .132x x x <<
C .213x x x <<
D .321x x x <<
【答案】D
【解析】
【分析】
根据一次函数的性质即可得答案.
【详解】
∵一次函数1y x =--中10k =-<,
∴y 随x 的增大而减小,
∵123y y y <<,
∴123x x x >>.
故选:D .
【点睛】
本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.
6.若一次函数32y x =-+的图象与x 轴交于点A ,与y 轴交于点,B 则AOB V (O 为坐标原点)的面积为( )