文科数学高考压轴题

合集下载

2020-2021学年最新高考总复习数学(文)高考压轴卷及答案解析

2020-2021学年最新高考总复习数学(文)高考压轴卷及答案解析

2. y '
(sin x)'
cos x ,则 k
cos
1 ,即切线方程为 y
3 1 (x ) ,整理得 x 2 y
3 0.
32
22 3
3
故选 B.
3.
a
b
2( x
2)
6( x
1)
8x
10
0
,则
x
5
,又
a,b
不共线,所以
26
(x
1)(x
2)
0
,则
4
x
5

x
2
,所以实数
x
y2 a2
x2 b2
1(a 0,b 0) .渐进线方程 x 3y 0 变形为
y
1 x ,所以 3
a 1 ,即 b 3a ,即 c a2 b2 10a .所以 e c 10a 10 .故选 B.
b3
aa
6. 由三角形的边长全为 2,即底面三角形的高为 3 ,所以左视图的面积为 s 3 2 2 3 .故选 C.
xa xc
32
b x b 0 的解集为(

xa xc
A. (1,1)
B. (1, 1) (1 ,1) 23
C. (, 1) (1 ,1) 23
D. (, 1) (1 ,) 23
本卷包括必 考生都必须 二、(本大题
13. 已 知 函
14. 已知一 则循环体的
第Ⅱ卷 考题和选考题两部分.第 13 题~第 21 题为必考题,每个试题 做答.第 22 题~第 24 题为选考题,考生根据要求做答. 共 4 小题,每小题 5 分)
(m 2)(m 2) 3m(m 2) 0 ,得 m 2 或 1 ;④抛物线的标准方程为 x 2 2 1 y ,由准线方

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

全国卷Ⅲ2020届高三高考压轴卷数学试题(文科)(含解析)

全国卷Ⅲ2020届高三高考压轴卷数学试题(文科)(含解析)

又 a2 = 3 ,所以 an = a2qn−2 = 3 3n−2 = 3n−1
所以 bn = log3 an = log3 3n−1 = n − 1
所以T9 = b1 + b2 +
+ b9
=
9(b1 + b9 )
2
=
9(1−1+ 9 −1)
2
=
36
故选:A
9、【答案】D
【解析】由 f (x) = a ln x + bx2 可得: f (x) = a + 2bx , x
18.(12 分)
已知数列 an
满足
1 2a1 −
5
+
2 2a2 −
5
+
3 2a3 −
5
+
(1)求数列an 的通项公式;
+ n =n 2an − 5 3
(2)设数列
an
1 an+1
的前
n
项和为
Tn
,求
Tn
.
19 .(12 分) 将棱长为 2 的正方体 ABCD − A1B1C1D1 截去三棱锥 D1 − ACD 后得到如图所示几何体,
23.已知函数 f (x) = x − 2 . (1)解不等式: f (x) 4 − f (x +1) (2)若函数 g(x) = x − 3, (x 4) 与函数 y = m − f (x) − 2 f (x − 2) 的图象恒有公共点,求 实数 m 的取值范围.
5 / 16
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
标值进行统计分析,得到表格如表:
质量指标值
等级
频数

高考文科数学压轴题

高考文科数学压轴题

1.已知关于x 的不等式)0(022≠>++a b x ax 的解集是},1|{R x ax x ∈-≠,且a>b,则ba b a -+22的最小值是A .22B .2C .2D .12.在△ABC 中,∠B=6π,,6||,33||==BC AB 设D 是AB 的中点,O 是△ABC 所在平面内一点,且023=++OC OB OA ,则||DO 的值是A .21B .1C .3D .2 3.设集合}1)(|),{(},4|),{(2+-==-==b x k y y x B x y y x A ,若对任意10≤≤k 都有φ≠B A ,则实数b 的取值范围是 A .]221,221[+- B .]221,3[+-C .]3,221[-D .]3,3[-4.设函数)()(x f x f '的导函数为,对任意)()(x f x f R x >'∈都有成立,则 A .)3(ln 2)2(ln 3f f > B .)3(ln 2)2(ln 3f f =C .)3(ln 2)2(ln 3f f <D .)3(ln 2)2(ln 3f f 与的大小不确定5.若函数32()|1|f x x a x a R =+-∈,则对于不同的实数a ,则函数()f x 的单调区间个数不可能是( )A.1个B. 2个C.3个D.5个6.八个一样的小球按顺序排成一排,涂上红、白两种颜色,5个涂红色,三个涂白色,求恰好有个三个的连续的小球涂红色,则涂法共有 ( )A 24种B 30种C 20种D 36种7.若不等式)(2222y x a xy x +≤+对于一切正数x 、y 恒成立,则实数a 的最小值为 ( )A 2 B212+ C 23D215+ 8.若25(21)x +=24100125a a x a x a x +++,则135a a a ++的值为( )(A) 121 (B)122 (C)124 (D)1209.如图,直角梯形ABCD 中,AD ⊥AB, AB//DC , AB=4,AD=DC=2,设点N 是DC 边的中点,点M 是梯形ABCD 内或边界上的一个动点,则AM AN ⋅的最大值是( )(A )4(B ) 6 (C ) 8 (D )1010.把已知正整数n 表示为若干个正整数(至少3个,且可以相等)之和的形式,若这几个正整数可以按一定顺序构成等差数列,则称这些数为n 的一个等差分拆.将这些正整数的不同排列视为相同的分拆.如:(1,4,7)与(7,4,1)为12的相同等差分拆.问正整数36的不同等差分拆的个数是( ).(A )20 (B )18 (C )19 (D )2111.双曲线12222=-by a x 的左右焦点为21,F F ,P 是双曲线上一点,满足||||211→→=F F PF ,直线PF 1与圆222a y x =+相切,则双曲线的离心率e 为 ( ) (A )3 (B )332 (C ) 35 (D )4512.集合}5,4,3,2,1,0{=S ,A 是S 的一个子集,当A x ∈时,若有且,1A x ∉-A ∉+1x ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的非空子集有( )个(A )16 (B )17 (C )18 (D )19 13.如图,直线l ⊥平面α,垂足为O ,正四面体ABCD 的棱长为4,C 在平面α内,B 是直线l 上的动点,则当O 到AD 的距离为最大时,正四面体在平面α上的射影面积为 ( ) A .422+ B .222+ C .4 D .43 14.已知函数(),()f x g x ''分别是二次函数()f x 和三次函数()g x 的导函数,它们在同一坐标系下的图象如图所示,设函数()()()h x f x g x =-,则( )A .(1)(0)(1)h h h <<-B .(1)(1)(0)h h h <-<C .(0)(1)(1)h h h <-<D .(0)(1)(1)h h h <<-15.数列{}n a 的各项均为正数,n S 为其前n 项和,对于任意n N *∈,总有2,,n n n a S a 成等差数列。

2019-2020年高考压轴卷文科数学含解析

2019-2020年高考压轴卷文科数学含解析

∴ f( a) +2a=f (b) +3b >f (b) +2b , 即 g( a)> g( b), ∵ g( x) =f ( x) +2x 为递增函数, ∴ a> b, 故选: A. 11. 【 KS5U答案】 30.
【 KS5U解析】落在 [80 ,100] 上的频率为 (0.005 0.025) 10 0.3 ,所以落在 [80 ,100] 上的 人数为 0.3 100 30 .
所以 V= Sh= ×6×4=8
故选 B
6. 【 KS5U答案】 A. 【 KS5U解析】解:模拟程序框图执行过程,如下; 开始,
输入 x:2014,
a=x=2014 ,
i=1 ,
b=
=
=﹣

b≠x? 是, i=1+1=2 ,
a=b=﹣

b=
=

b≠x? 是,
i=2+1=3 ,
a=b=

b=
=2014 ;
3. 【 KS5U答案】 A.
【 KS5U解析】当 / / 时,由 l 平面 得,l
,又直线 m ∥平面 ,所以 l m 。若 l m ,
则推不出 / / ,所以“ / / ”是“ l m ”的充分不必要条件,选 A.
4. 【 KS5U答案】 A
【 KS5U解析】当 / / 时,由 l 平面 得,l
【 KS5U解析】解:∵
是公差为 1 的等差数列,





∴数列 {lga n} 的前 9 项和为: S9=( lg2﹣ lg1 ) +( lg3﹣ lg2 ) +…+( lg10 ﹣lg9 ) =lg10=1 . 故答案为: 1. 14. 【 KS5U答案】(﹣ ∞,﹣ 5] . 【 KS5U解析】 解:∵当 x≥0 时, f( x) =x 2, ∴此时函数 f( x)单调递增, ∵ f( x)是定义在 R 上的奇函数, ∴函数 f ( x)在 R 上单调递增, 若对任意 x∈[a, a+2],不等式 f( x+a) ≥f(3x+1 )恒成立,

天津市202X年高考压轴卷数学(文)试题(含解析)

天津市202X年高考压轴卷数学(文)试题(含解析)

202X 天津市高考压轴卷文科数学一、选择题(每小题5分,共40分)1.若复数iia 213++(a ∈R,i 是虚数单位)是纯虚数,则a 的值为 ( ) A.6B.-6C.23 D. 23- 2.命题“若4πα=,则tan 1α=”的逆否命题是( ) A .若4πα≠,则tan 1α≠ B . 若4πα=,则tan 1α≠C .若tan 1α≠,则4πα≠ D . 若tan 1α≠,则4πα=3.将)63cos(2π+=xy 图像按向量)2,4(--=πa 平移,则平移后所得函数的周期及图象的一个对称中心分别为( )A.π3 ,⎪⎭⎫⎝⎛-2,4π B. π6 ,⎪⎭⎫ ⎝⎛2,43π C. π6 ,⎪⎭⎫⎝⎛-2,43π D. π3 ,⎪⎭⎫⎝⎛2,4π 4.某三棱锥的三视图如图所示,该三棱锥的表面积是( ) A .2865+ B .3065+ C .56125+ D . 60125+5.设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .4π B . 22π- C . 6π D . 44π-6.如右图的流程图,若输出的结果132=s ,则判断框中应填 A .?10≥i B .?11≥i C .?11≤iD .?12≥i7.直线12+=x y 的参数方程是( )A ⎩⎨⎧+==1222t y t x (t 为参数) B ⎩⎨⎧+=-=1412t y t x (t 为参数)C ⎩⎨⎧-=-=121t y t x (t 为参数) D ⎩⎨⎧+==1sin 2sin θθy x (θ为参数) 8.已知双曲线2221(0)x y a a-=>,过点C (0,1)且斜率为1的直线交双曲线的两渐近线于A 、B 两点,若2AC CB =,则双曲线的离心率为A52510310二、填空题:本大题共6小题,每小题5分,共30分.9.如果不等式组0210x y x kx y ≥⎧⎪≥⎨⎪-+≥⎩表示的平面区域是一个直角三角形,则k =_______________.10.由正整数组成的一组数据1234,,,x x x x ,其平均数和中位数都是2,且标准差等于1,则这组数据为__________。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

高考数学高三模拟试卷试题压轴押题中学文科数学高考冲刺试题5

高考数学高三模拟试卷试题压轴押题中学文科数学高考冲刺试题5

高考数学高三模拟试卷试题压轴押题中学文科数学高考冲刺试题选择题1.“x <1”是“log2(x+1)<1”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 2.设352log 2,log 2,log 3a b c ===,则A.a c b >>B. b c a >>C. c b a >>D. c a b >> 3.设n S 为等比数列{}n a 的前n 项和,若2380a a +=,则12S S 的值为( ) A.3 B .3 C .5 D .1/7 4.1tan 751tan 75+-等于( )A .3B .3-C .3 D .3- 5.已知平面向量(1,2)=a ,(2,)y =b ,且//a b ,则2+a b =( ) A .(5,6)-B .(3,6)C .(5,4)D .(5,10)6.在平面区域002x y x y ⎧≥⎪≥⎨⎪+≤⎩内随机取一点,则所取的点恰好落在圆221x y +=内的概率是( ) A .2π B .4π C .8πD .16π7.下面图形中,属正方体表面展开图的是( )8.若直线1l :280ax y +-=与直线2l :(1)40x a y +++=平行,则实数a 的值为( ) A. 1 B. 1 或 2 C. 2- D. 1 或 2-9.已知函数的导函数的图象如图所示,那么函数的图象最有可能的是( )A B C D10.四个小动物换座位,开始是鼠、猴、兔、猫分别坐1、2、3、4号位上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,这样交替进行下去,那么第202次互换座位后,小兔坐在第号座位上A.1B.2C.3D.4 填空题 11.命题p :“”的否定是_________.12.已知y =f(x)+x2是奇函数,且f(1)=1.若g(x)=f(x)+2,则g(-1)=_____ 13.已知正数,a b 满足2a b ab +=,则2a b +的最小值为_____ 选做题14.在极坐标系中,直线(sin cos )2ρθθ-=被圆4sin ρθ=截得的弦长为▲ 15.如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC 于点M .若3OC =,1OM =,则MN 的长为___________.OM N解答题16.(本题满分12分)已知函数(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间上的最大值和最小值.17.(12分)某中学将100名高一新生分成水平相同的甲,乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为“成绩优秀”.(1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;(2)由以上统计数据填写下面2x2列联表,并判断是否有90%的把握认为“成绩优秀”与教学方式有关.附:K2=甲班(A方式)乙班(B方式)总计成绩优秀成绩不优秀总计P(K2≥k)0.250.150.100.050.025 k 1.323 2.072 2.706 3.841 5.02418.(本小题满分14分)如图,AB 是圆O 的直径,点C 在圆O 上,矩形DCBE 所在的平面垂直于圆O 所在的平面,4=AB ,1=BE .(1)证明:平面⊥ADE 平面ACD ;(2)当三棱锥ADE C -的体积最大时,求点C 到平面ADE 的距离.19.(本题满分14分)已知椭圆的左焦点F1(-1,0),长轴长与短轴长的比是23(1)求椭圆的方程;(2)过F1作两直线m,n交椭圆于A,B,C,D四点,若m⊥n,求证:为定值.20.(本小题满分14分)已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,n *∈N ).()1求证:数列{}n a 为等差数列,并求{}n a 的通项公式; ()2设2n n n b a =⋅,求数列{}n b 的前n 项和n T ; ()3设()1C 412n n a n n λ-=+-⋅(λ为非零整数,n *∈N ),是否存在确定λ的值,使得对任意n *∈N ,有1C C n n +>恒成立?若存在,求出λ的值;若不存在,说明理由.21.(本题满分14分) 已知函数f(x)=ln x +kex (k 为常数,e =2.718 28…是自然对数的底数),曲线y =f(x)在点(1,f(1))处的切线与x 轴平行. (1)求k 的值;(2)求f(x)的单调区间;(3)设g(x)=(x2+x)/()f x ,其中f ′(x)为f(x)的导函数, 证明:对任意x>0,g(x)<1+e2.参考答案1.B2.D3.D4.B5.D6.B7.A8.A9.A 10.B 11.2,10x R x ∀∈+≥12.1 13.914.4 15.1 16.17. 解:(1)设“抽出的两个均“成绩优秀”“为事件A .从不低于86分的成绩中随机抽取2个的基本事件为(86,93),(86,96),(86,97),(86,99)(86,99),(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共15个,(4分)而事件A 包含基本事件:(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共10个. (6分) 所以所求概率为P (A )== (7分)(2)由已知数据得: 甲班(A 方式) 乙班(B 方式) 总计 成绩优秀 1 5 6 成绩不优秀 19 15 34 总计202040(9分)根据2×2列联表中数据,K2=≈3.137>2.706所以有90%的把握认为“成绩优秀”与教学方式有关. (12分) 18.(1)证明:∵AB 是直径,∴AC BC ⊥…………………1分, 又四边形DCBE 为矩形,DE CD ⊥,DE BC //,∴AC DE ⊥ ∵C AC CD = ,∴⊥DE 平面ACD …………4分又⊂DE 平面ADE ,∴平面⊥ADE 平面ACD ………………6分 (2)由⑴知DE S V V ACD ACD E ADE C ⨯⨯==∆--31DE CD AC ⨯⨯⨯⨯=2131 BC AC ⨯⨯=6134121)(121222=⨯=+⨯≤AB BC AC , ………………………8分, 当且仅当22==BC AC 时等号成立 ……………………9分, ∴当22==BC AC 三棱锥ADE C -体积最大为34……………………10分, 此时,3)22(122=+=AD ,2321=⨯⨯=∆DE AD S ADE 设点C 到平面ADE 的距离为h ,则3431=⨯⨯=∆-h S V ADE ADE C 322=h ………………………14分 19.20.(1)证明:由已知,*11()()1(2,)n n n n S S S S n n N +----=≥∈, 即11n n a a +-=(n≥2,n ∈N*),且211a a -=.…………………1分 ∴数列{}n a 是以12a =为首项,公差为1的等差数列, ∴1n a n =+. …………………3分(2)解:由(1)知2(1)n n b n =⋅+, …………………4分 设它的前n 项和为n T ∴123123412232422(1)2,22232422(1)2,n n n nn n T n n T n n -+=⨯+⨯+⨯++⨯++⨯=⨯+⨯+⨯++⨯++⨯两式相减可得:123111222222(1)22n n n n n T n n -++-=⨯+++++-+⨯=-⋅所以12n n T n +=⋅…………………7分(3)解:∵1n a n =+,∴114(1)2n n n n C λ-+=+-⋅⋅, …………………8分要使1n n C C +>恒成立,则1211144(1)2(1)20n n n n n n n n C C λλ++-++-=-+-⋅⋅--⋅⋅>恒成立 ∴11343(1)20nn n λ-+⋅-⋅-⋅>恒成立,∴11(1)2n n λ---⋅<恒成立. …………………10分(ⅰ)当n 为奇数时,即λ<12n -恒成立,当且仅当n=1时,12n -有最小值为1,∴λ<1.…………………11分 (ⅱ)当n 为偶数时,即λ>﹣12n -恒成立, 当且仅当n=2时,﹣12n -有最大值﹣2,∴λ>﹣2.即﹣2<λ<1,又λ为非零整数,则λ=﹣1.…………………12分 综上所述,存在λ=﹣1,使得对任意n ∈N*,都有1n n C C +>.…………………14分21.(1)解 由得: x ∈(0,+∞).由于曲线y =f(x)在(1,f(1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.………(3分)(2)解 由(1)得f ′(x)=1x xe(1-x -xln x),x ∈(0,+∞).令h(x)=1-x -xln x ,x ∈(0,+∞),当x ∈(0,1)时,h(x)>0;当x ∈(1,+∞)时,h(x)<0.又ex>0,所以当x ∈(0,1)时,f ′(x)>0;当x ∈(1,+∞)时,f ′(x)<0.因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).……(7分)(3)证明 因为g(x)=(x2+x) /()f x ,所以g(x)=1x x e+ (1-x -xln x),x ∈(0,+∞).因此,对任意x>0,g(x)<1+e -2等价于1-x -xln x<1xe x + (1+e -2).由(2)知h(x)=1-x -xln x ,x ∈(0,+∞),所以h ′(x)=-ln x -2=-(ln x -ln e -2),x ∈(0,+∞).因此,当x ∈(0,e -2)时,h ′(x)>0,h(x)单调递增;当x ∈(e -2,+∞)时,h ′(x)<0,h(x)单调递减.所以h(x)的最大值为h(e -2)=1+e -2.故1-x -xln x ≤1+e -2.……(10分) 设φ(x)=ex -(x +1).因为φ′(x)=ex -1=ex -e0,所以当x ∈(0,+∞)时,φ′(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故当x ∈(0,+∞)时,φ(x)=ex -(x +1)>0,即1x e x +>1.所以1-x -xln x ≤1+e -2<1xe x + (1+e -2).因此对任意x>0,g(x)<1+e -2.………………(14分)高考数学高三模拟试卷试题压轴押题重庆市高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<03.(5分)(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.4.(5分)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,85.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.2406.(5分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x ﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内7.(5分)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N 分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2D.8.(5分)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6B.k≤7C.k≤8D.k≤99.(5分)4cos50°﹣tan40°=()A.B.C.D.2﹣110.(5分)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,] B.(,] C.(,] D.(,]二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)已知复数z=(i是虚数单位),则|z|=.12.(5分)已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=.13.(5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:14.(5分)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为.15.(5分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=.16.若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(13分)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.18.(13分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).19.(13分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B﹣AF﹣D的正弦值.20.(12分)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+ab=c2.(1)求C;(2)设cosAcosB=,=,求tanα的值.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.22.(12分)对正整数n,记In={1,2,3…,n},Pn={|m∈In,k∈In}.(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}【分析】根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.【解答】解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选:D.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<0【分析】直接利用全称命题的否定是特称命题,写出命题的否定命题即可.【解答】解:因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选:D.【点评】本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.3.(5分)(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.【分析】令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,利用二次函数的性质求得函数f(a)的最大值,即可得到所求式子的最大值.【解答】解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得当a=﹣时,函数f(a)取得最大值为,故(﹣6≤a≤3)的最大值为=,故选:B.【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.4.(5分)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8【分析】求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.【解答】解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.【点评】本题考查了中位数和平均数的计算.平均数是指在一组数据中所有数据之和再除以数据的个数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.240【分析】如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,据此即可计算出体积.【解答】解:如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,由图知V==200.故选:C.【点评】由三视图正确恢复原几何体是解题的关键.6.(5分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x ﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内【分析】由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,即可判断出.【解答】解:∵a<b<c,∴f(a)=(a﹣b)(a﹣c)>0,f(b)=(b﹣c)(b﹣a)<0,f(c)=(c﹣a)(c﹣b)>0,由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内.故选:A.【点评】熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键.7.(5分)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N 分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2D.【分析】求出圆C1关于x轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆C2的圆心距减去两个圆的半径和,即可求出|PM|+|PN|的最小值.【解答】解:如图圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,由图象可知当P,M,N,三点共线时,|PM|+|PN|取得最小值,|PM|+|PN|的最小值为圆C3与圆C2的圆心距减去两个圆的半径和,即:|AC2|﹣3﹣1=﹣4=﹣4=5﹣4.故选:B.【点评】本题考查圆的对称圆的方程的求法,两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力.8.(5分)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6B.k≤7C.k≤8D.k≤9【分析】根据程序框图,写出运行结果,根据程序输出的结果是S=3,可得判断框内应填入的条件.【解答】解:根据程序框图,运行结果如下:S k第一次循环 log23 3第二次循环log23•log34 4第三次循环log23•log34•log45 5第四次循环log23•log34•log45•log56 6第五次循环log23•log34•log45•log56•log67 7第六次循环log23•log34•log45•log56•log67•log78=log28=3 8故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是k≤7.故选:B.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题.9.(5分)4cos50°﹣tan40°=()A.B.C.D.2﹣1【分析】原式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果.【解答】解:4cos50°﹣tan40°=4sin40°﹣tan40°======.故选:C.【点评】此题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.10.(5分)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,] B.(,] C.(,] D.(,]【分析】建立坐标系,将向量条件用等式与不等式表示,利用向量模的计算公式,即可得到结论.【解答】解:根据条件知A,B1,P,B2构成一个矩形AB1PB2,以AB1,AB2所在直线为坐标轴建立直角坐标系,设|AB1|=a,|AB2|=b,点O的坐标为(x,y),则点P的坐标为(a,b),由=1,得,则∵||<,∴∴∴∵(x﹣a)2+y2=1,∴y2=1﹣(x﹣a)2≤1,∴y2≤1同理x2≤1∴x2+y2≤2②由①②知,∵||=,∴<||≤故选:D.【点评】本题考查向量知识的运用,考查学生转化问题的能力,考查学生的计算能力,属于难题.二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)已知复数z=(i是虚数单位),则|z|=.【分析】通过复数的分子与分母同时求模即可得到结果.【解答】解:|z|===.故答案为:.【点评】本题考查复数的模的求法,考查计算能力.12.(5分)已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=64.【分析】依题意,a1=1,=a1•(a1+4d),可解得d,从而利用等差数列的前n项和公式即可求得答案.【解答】解:∵{an}是等差数列,a1,a2,a5成等比数列,∴=a1•(a1+4d),又a1=1,∴d2﹣2d=0,公差d≠0,∴d=2.∴其前8项和S8=8a1+×d=8+56=64.故答案为:64.【点评】本题考查等差数列的前n项和,考查方程思想与运算能力,属于基础题.13.(5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是590(用数字作答).【分析】不同的组队方案:选5名医生组成一个医疗小组,要求其中骨科、脑外科和内科医生都至少有1人,方法共有6类,他们分别是:3名骨科、1名脑外科和1名内科医生;1名骨科、3名脑外科和1名内科医生,…,在每一类中都用分步计数原理解答.【解答】解:直接法:3名骨科、1名脑外科和1名内科医生,有C33C41C51=20种,1名骨科、3名脑外科和1名内科医生,有C31C43C51=60种,1名骨科、1名脑外科和3名内科医生,有C31C41C53=120种,2名骨科、2名脑外科和1名内科医生,有C32C42C51=90种,1名骨科、2名脑外科和2名内科医生,有C31C42C52=180种,2名骨科、1名脑外科和2名内科医生,有C32C41C52=120种,共计20+60+120+90+180+120=590种间接法:﹣﹣﹣+1=590故答案为:590.【点评】本题主要考查了排列、组合及简单计数问题,解答关键是利用直接法:先分类后分步.14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:14.(5分)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为5.【分析】利用直角△ABC的边角关系即可得出BC,利用弦切角定理可得∠BCD=∠A=60°.利用直角△BCD的边角关系即可得出CD,BD.再利用切割线定理可得CD2=DE•DB,即可得出DE.【解答】解:在△ABC中,∠C=90°,∠A=60°,AB=20,∴BC=AB•sin60°=.∵CD是此圆的切线,∴∠BCD=∠A=60°.在Rt△BCD中,CD=BC•cos60°=,BD=BC•sin60°=15.由切割线定理可得CD2=DE•DB,∴,解得DE=5.故答案为5.【点评】熟练掌握直角三角形的边角关系、弦切角定理、切割线定理是解题的关键.15.(5分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=16.【分析】先将直线极坐标方程ρcosθ=4化成直角坐标方程,再代入曲线(t为参数)中得A,B两点的直角坐标,最后利用两点间的距离公式即可得出|AB|.【解答】解:将直线极坐标方程ρcosθ=4化成直角坐标方程为x=4,代入曲线(t为参数)中得A,B两点的直角坐标为(4,8),(4,﹣8),则|AB|=16.故答案为:16.【点评】本题考查参数方程、极坐标方程、直角坐标方程间的转化,两点间的距离公式,考查转化、计算能力.16.若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是(﹣∞,8].【分析】利用绝对值的意义求得|x﹣5|+|x+3|最小值为8,由此可得实数a的取值范围.【解答】解:由于|x﹣5|+|x+3|表示数轴上的x对应点到5和﹣3对应点的距离之和,其最小值为8,再由关于实数x的不等式|x﹣5|+|x+3|<a无解,可得a≤8,故答案为:(﹣∞,8].【点评】本题主要考查绝对值的意义,绝对值不等式的解法,求得|x﹣5|+|x+3|最小值为8,是解题的关键,属于中档题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(13分)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.【分析】(1)先由所给函数的表达式,求导数fˊ(x),再根据导数的几何意义求出切线的斜率,最后由曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6)列出方程求a的值即可;(2)由(1)求出的原函数及其导函数,求出导函数的零点,把函数的定义域分段,判断导函数在各段内的符号,从而得到原函数的单调区间,根据在各区间内的单调性求出极值点,把极值点的横坐标代入函数解析式求得函数的极值.【解答】解:(1)因f(x)=a(x﹣5)2+6lnx,故f′(x)=2a(x﹣5)+,(x>0),令x=1,得f(1)=16a,f′(1)=6﹣8a,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣16a=(6﹣8a)(x﹣1),由切线与y轴相交于点(0,6).∴6﹣16a=8a﹣6,∴a=.(2)由(I)得f(x)=(x﹣5)2+6lnx,(x>0),f′(x)=(x﹣5)+=,令f′(x)=0,得x=2或x=3,当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数,故f(x)在x=2时取得极大值f(2)=+6ln2,在x=3时取得极小值f(3)=2+6ln3.【点评】本小题主要考查利用导数研究曲线上某点切线方程、利用导数研究函数的单调性、函数的极值及其几何意义等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.属于中档题.18.(13分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).【分析】(1)从7个小球中取3的取法为,若取一个红球,则说明第一次取到一红2白,根据组合知识可求取球的种数,然后代入古典概率计算公式可求(2)先判断随机变量X的所有可能取值为200,50,10,0根据题意求出随机变量的各个取值的概率,即可求解分布列及期望值【解答】解:(1)设Ai表示摸到i个红球,Bi表示摸到i个蓝球,则Ai与Bi相互独立(i=0,1,2,3)∴P(A1)==(2)X的所有可能取值为0,10,50,200P(X=200)=P(A3B1)=P(A3)P(B1)=P(X=50)=P(A3)P(B0)==P(X=10)=P(A2)P(B1)==P(X=0)=1﹣=∴X的分布列为x 0 10 50 200PEX==4元【点评】本题主要考查了古典概型及计算公式,互斥事件、离散型随机变量的分布列及期望值的求解,考查了运用概率知识解决实际问题的能力.19.(13分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B﹣AF﹣D的正弦值.【分析】(I)连接BD交AC于点O,等腰三角形BCD中利用“三线合一”证出AC⊥BD,因此分别以OB、OC分别为x轴、y轴建立空间直角坐标系如图所示.结合题意算出A、B、C、D各点的坐标,设P(0,﹣3,z),根据F为PC边的中点且AF⊥PB,算出z=2,从而得到=(0,0,﹣2),可得PA的长为2;(II)由(I)的计算,得=(﹣,3,0),=(,3,0),=(0,2,).利用垂直向量数量积为零的方法建立方程组,解出=(3,,﹣2)和=(3,﹣,2)分别为平面FAD、平面FAB的法向量,利用空间向量的夹角公式算出、夹角的余弦,结合同角三角函数的平方关系即可算出二面角B﹣AF﹣D的正弦值..【解答】解:(I)如图,连接BD交AC于点O∵BC=CD,AC平分角BCD,∴AC⊥BD以O为坐标原点,OB、OC所在直线分别为x轴、y轴,建立空间直角坐标系O﹣xyz,则OC=CDcos=1,而AC=4,可得AO=AC﹣OC=3.又∵OD=CDsin=,∴可得A(0,﹣3,0),B(,0,0),C(0,1,0),D(﹣,0,0)由于PA⊥底面ABCD,可设P(0,﹣3,z)∵F为PC边的中点,∴F(0,﹣1,),由此可得=(0,2,),∵=(,3,﹣z),且AF⊥PB,∴•=6﹣=0,解之得z=2(舍负)因此,=(0,0,﹣2),可得PA的长为2;(II)由(I)知=(﹣,3,0),=(,3,0),=(0,2,),设平面FAD的法向量为=(x1,y1,z1),平面FAB的法向量为=(x2,y2,z2),∵•=0且•=0,∴,取y1=得=(3,,﹣2),同理,由•=0且•=0,解出=(3,﹣,2),∴向量、的夹角余弦值为cos<,>===因此,二面角B﹣AF﹣D的正弦值等于=【点评】本题在三棱锥中求线段PA的长度,并求平面与平面所成角的正弦值.着重考查了空间线面垂直的判定与性质,考查了利用空间向量研究平面与平面所成角等知识,属于中档题.20.(12分)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+ab=c2.(1)求C;(2)设cosAcosB=,=,求tanα的值.【分析】(1)利用余弦定理表示出cosC,将已知等式变形后代入求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数;(2)已知第二个等式分子两项利用两角和与差的余弦函数公式化简,再利用同角三角函数间的基本关系弦化切,利用多项式乘多项式法则计算,由A+B的度数求出sin(A+B)的值,进而求出cos(A+B)的值,利用两角和与差的余弦函数公式化简cos(A+B),将cosAcosB的值代入求出sinAsinB的值,将各自的值代入得到tanα的方程,求出方程的解即可得到tanα的值.【解答】解:(1)∵a2+b2+ab=c2,即a2+b2﹣c2=﹣ab,∴由余弦定理得:cosC===﹣,又C为三角形的内角,则C=;(2)由题意==,∴(cosA﹣ta nαsinA)(cosB﹣tanαsinB)=,即tan2αsinAsinB﹣tanα(sinAcosB+cosAsinB)+cosAcosB=tan2αsinAsinB﹣tanαsin(A+B)+cosAcosB=,∵C=,A+B=,cosAcosB=,∴sin(A+B)=,cos(A+B)=cosAcosB﹣sinAsinB=﹣sinAsinB=,即sinAsinB=,∴tan2α﹣tanα+=,即tan2α﹣5tanα+4=0,解得:tanα=1或tanα=4.【点评】此题考查了余弦定理,两角和与差的余弦函数公式,同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.【分析】(Ⅰ)利用点A(﹣c,2)在椭圆上,结合椭圆的离心率,求出几何量,即可求得椭圆的标准方程;(Ⅱ)设出圆Q的圆心坐标及半径,由PQ⊥P'Q得到P的坐标,写出圆的方程后和椭圆联立,化为关于x的二次方程后由判别式等于0得到关于t与r的方程,把P点坐标代入椭圆方程得到关于t与r的另一方程,联立可求出t与r的值,经验证满足椭圆上的其余点均在圆Q外,结合对称性即可求得圆Q的标准方程.【解答】解:(Ⅰ)由题意知点A(﹣c,2)在椭圆上,则,即①∵离心率,∴②联立①②得:,所以b2=8.把b2=8代入②得,a2=16.∴椭圆的标准方程为;(Ⅱ)设Q(t,0),圆Q的半径为r,则圆Q的方程为(x﹣t)2+y2=r2,不妨取P为第一象限的点,因为PQ⊥P'Q,则P()(t>0).联立,得x2﹣4tx+2t2+16﹣2r2=0.由△=(﹣4t)2﹣4(2t2+16﹣2r2)=0,得t2+r2=8又P()在椭圆上,所以.整理得,.代入t2+r2=8,得.解得:.所以,.此时.满足椭圆上的其余点均在圆Q外.由对称性可知,当t<0时,t=﹣,.故所求圆Q的标准方程为.【点评】本题考查椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的计算能力,属于中档题.22.(12分)对正整数n,记In={1,2,3…,n},Pn={|m∈In,k∈In}.(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.【分析】(1)对于集合P7 ,有n=7.当k=4时,根据Pn中有3个数与In={1,2,3…,n}中的数重复,由此求得集合P7中元素的个数.(2)先用反证法证明证当n≥15时,Pn不能分成两个不相交的稀疏集的并集,再证P14满足要求,从而求得n的最大值.【解答】解:(1)对于集合P7 ,有n=7.当k=1时,m=1,2,3…,7,Pn={1,2,3…,7},7个数,当k=2时,m=1,2,3…,7,Pn对应有7个数,当k=3时,m=1,2,3…,7,Pn对应有7个数,当k=4时,Pn={|m∈In,k∈In}=Pn={,1,,2,,3,}中有3个数(1,2,3)与k=1时Pn中的数重复,当k=5时,m=1,2,3…,7,Pn对应有7个数,当k=6时,m=1,2,3…,7,Pn对应有7个数,当k=7时,m=1,2,3…,7,Pn对应有7个数,由此求得集合P7中元素的个数为 7×7﹣3=46.(2)先证当n≥15时,Pn不能分成两个不相交的稀疏集的并集.假设当n≥15时,Pn可以分成两个不相交的稀疏集的并集,设A和B为两个不相交的稀疏集,使A∪B=Pn⊇In .不妨设1∈A,则由于1+3=22,∴3∉A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42,这与A为稀疏集相矛盾.再证P14满足要求.当k=1时,P14={|m∈I14,k∈I14}=I14,可以分成2个稀疏集的并集.事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},。

高中数学函数压轴题(精制)

高中数学函数压轴题(精制)

高考数学函数压轴题:1. 已知函数 f (x)1 x 3 ax b(a, b R) 在 x2 处取得的极小值是4 . 33(1) 求 f (x) 的单调递增区间;(2) 若 x[ 4,3] 时,有 f ( x) m 2m10恒成立,求实数m 的取值范围 .32. 某造船公司年最高造船量是20 艘 . 已知造船 x 艘的产值函数 R (x)=3700x + 45x2– 10x 3( 单位:万元 ), 成本函数为 C (x) = 460x + 5000 ( 单位:万元 ). 又在经济学中,函数 f(x) 的边际函数 Mf (x) 定义为 : Mf (x) = f (x+1)– f(x). 求 : (提示:利润 = 产值 – 成本)(1) 利润函数 P(x) 及边际利润函数 MP(x);(2) 年造船量安排多少艘时 , 可使公司造船的年利润最大 ?(3)边际利润函数 MP(x) 的单调递减区间 , 并说明单调递减在本题中的实际意义是什么?3. 已知函数(x) 5x 25x 1 ( x R) ,函数 yf ( x) 的图象与 (x) 的图象关于点 (0, 1) 中心对称。

2( 1)求函数 yf ( x) 的解析式;( 2)如果( )( ) , ,试求出使( ) 0 成 g 1 xf xg n (x) f [ g n 1 ( x)]( n N ,n 2) g 2 x立的 x 取值范围;( 3)是否存在区间E ,使 Ex f ( x) 0对于区间内的任意实数x ,只要 nN ,且 n2 时,都有g n (x) 0 恒成立?4.已知函数: f ( x)x 1 a(a R 且 x a)a x(Ⅰ)证明: f(x)+2+f(2a- x)=0 对定义域内的所有x 都成立 .(Ⅱ)当 f(x) 的定义域为 [a+1,a+1] 时,求证: f(x) 的值域为 [ - 3,- 2] ;2(Ⅲ)设函数 g(x)=x 2+|(x - a)f(x)| , 求 g(x) 的最小值 .5. 设 f (x) 是定义在 [0,1] 上的函数,若存在 x *(0,1) ,使得 f ( x) 在 [0, x * ] 上单调递增,在 [ x * ,1] 上单调递减,则称 f ( x)为 [0,1] 上的单峰函数, x *为峰点,包含峰点的区间为含峰区间.对任意的 [0,1] 上的单峰函数f ( x) ,下面研究缩短其含峰区间长度的方法 .( 1)证明:对任意的 x 1 ,x 2 (0,1) , x 1 x 2 ,若 f ( x 1 ) f ( x 2 ) ,则 (0, x 2 ) 为含峰区间;若 f ( x 1 ) f ( x 2 ) ,则 ( x 1 ,1)为含峰区间;( 2)对给定的 r ( 0 r 0.5) ,证明:存在x 1 , x 2 (0,1) ,满足 x 2 x 1 2r ,使得由( 1)所确定的含峰区间的长度不大于 0.5 r ;6. 设关于x的方程2x2ax 20 的两根分别为、,函数 f (x) 4 x ax 21( 1)证明f ( x)在区间,上是增函数;( 2)当a为何值时, f (x) 在区间, 上的最大值与最小值之差最小7.甲乙两公司生产同一种新产品,经测算,对于函数 f x x 8 , g x x 12 ,及任意的x 0,当甲公司投入 x 万元作宣传时,乙公司投入的宣传费若小于 f x 万元,则乙公司有失败的危险,否则无失败的危险;当乙公司投入 x 万元作宣传时,甲公司投入的宣传费若小于g x 万元,则甲公司有失败的危险,否则无失败的危险.设甲公司投入宣传费 x 万元,乙公司投入宣传费y 万元,建立如图直角坐标系,试回答以下问题:(1)请解释 f 0 , g 0 ;w.w.w.k.s.5.u.c.o.m(2)甲、乙两公司在均无失败危险的情况下尽可能少地投入宣传费用,问此时各应投入多少宣传费?(3)若甲、乙分别在上述策略下,为确保无失败的危险,根据对方所投入的宣传费,按最少投入费用原则,投入自己的宣传费:若甲先投入a112 万元,乙在上述策略下,投入最少费用b1;而甲根据乙的情况,调整宣传费为a2;同样,乙再根据甲的情况,调整宣传费为b2 , , 如此得当甲调整宣传费为a n时,乙调整宣传费为b n;试问是否存在lima n,lim b n的值,若存在写出此极限值(不必证明),若不存在,说明理由.n n8.设 f ( x)是定义域在[1, 1] 上的奇函数,且其图象上任意两点连线的斜率均小于零.( l )求证 f (x)在[1,1] 上是减函数;( ll )如果 f ( x c) , f ( x c2 ) 的定义域的交集为空集,求实数 c 的取值范围;( lll)证明若 1 c 2 ,则 f ( x c) , f ( x c2 ) 存在公共的定义域,并求这个公共的空义域.9.已知函数 f ( x)= ax2+bx+ c,其中 a∈ N*,b∈ N, c∈Z。

2020-2021学年数学文科高三考前压轴卷及答案解析

2020-2021学年数学文科高三考前压轴卷及答案解析

最新高考数学压轴卷(文科)(五)一、选择题(每题5分)1.已知集合A={1,x},B={1,2},且A∪B={1,2,3},则x=()A.3 B.2 C.1 D.02.设复数z满足(2z﹣i)(2﹣i)=5,则复数z在复平面内对应点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知双曲线﹣=1(a>0,b>0)经过点(2,3),且离心率为2,则它的焦距为()A.2 B.4 C.6 D.84.已知a=2,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a5.已知单位向量与的夹角为α,且cosα=﹣,若=2﹣,=+3,则=()A.﹣2 B.2 C.﹣D.6.若x,y满足不等式组,z=x﹣y的最大值为()A.1 B.2 C.3 D.47.已知命题p:若x>0,则函数y=x+的最小值为1,命题q:若x>1,则x2+2x﹣3>0,则下列命题是真命题的是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)8.某几何体三视图如图所示,则该几何体的体积为(俯视图中弧线是圆弧)()A.4﹣πB.π﹣2 C.1﹣D.1﹣9.设各项都是正数的等差数列{a n}的公差为d,前n项和为S n,若a2,S3,a2+S5成等比数列,则=()A.0 B.C.D.110.将函数y=sin(2x﹣)的图象向左平移个单位长度,所得图象对应的函数()A.在区间[﹣,]上单调递减 B.在区间[﹣,]上单调递增C.在区间[﹣,]上单调递减 D.在区间[﹣,]上单调递增11.已知四棱锥P﹣ABCD的外接球的表面积为12π,ABCD是边长为2的正方形,PA=PB,平面PAB⊥平面ABCD,则△PCD的面积为()A.B.C.D.412.已知函数f(x)=ax3+2x2﹣1有且只有两个零点,则实数a的取值集合()A.{﹣1,0,1} B.{0,} C.{0,} D.{﹣,0,}二、填空题(每题5分)13.如图是一批学生的体重情况的直方图,若从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为24,则这批学生中的总人数为______.14.已知数列{a n}是公比为2的等比数列,且a2=﹣1,则a6=______.15.执行如图所示的程序框图,输出的n值为______.16.已知偶函数f(x)在[0,+∞)是增函数,则满足f(2x﹣3)<f(x2)的实数x的取值范围是______.三、解答题17.在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c,已知=﹣3,cosB=﹣,b=2,求:(1)a和c的值;(2)sin(A﹣B)的值.18.在一个不透明的盒子中,放有标号分别为1,2,3,4的四个大小相同的小球,现从这个盒子中,有放回地先后取得两个小球,其标号分别为x,y(1)求事件x+y=5的概率;(2)求事件2x+|x﹣y|=6的概率.19.如图正四棱住ABCD﹣A1B1C1D1中,点E是A1A上的点,M是AC、BD的交点.(1)若A1C∥平面EBD,求证:点E是AA1中点;(2)若AB=1,△EBD的面积S=,点F在CC1上,且FM⊥EM,求三棱锥体积V F﹣EBD的大小.20.已知函数f(x)=(1)若f(x)>0对其定义域内任意x成立,求a的值;(2)当a=0时,求f(x)在区间[e,e]上最值.21.已知椭圆C:+=1(a>b>0)经过点A(2,1),且直线l:x﹣2y﹣=0过椭圆C的一个焦点.(1)求椭圆C的方程;(2)已知直线l′平行于直线l,且与椭圆C交于不同的两点M,N,记直线AM的倾斜角为θ1,直线AN的倾斜角为θ2,试探究θ1+θ2是否为定值,并说明理由.[选修4-1几何证明选讲]|22.如图,AB是⊙O的直径,BE为⊙O的切线,点C为⊙O上不同于A,B的一点,AD为∠BAC的平分线,且分别与BC交于H,与⊙O交于D,与BE交于E,连接BD,CD.(1)求证:BD平分∠CBE;(2)求证:AH•BH=AE•HC.[选修4-4坐标系与参数方程]|23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos(θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.[选修4-5不等式选讲]|24.设函数f(x)=|x﹣2a|,a∈R.(1)若不等式f(x)<1的解集为{x|1<x<3},求a的值;(2)若存在x0∈R,使f(x0)+x0<3,求a的取值范围.参考答案与试题解析一、选择题(每题5分)1.已知集合A={1,x},B={1,2},且A∪B={1,2,3},则x=()A.3 B.2 C.1 D.0【考点】并集及其运算.【分析】根据题意,由A与B及A∪B,易得x=3.【解答】解:∵集合A={1,x},B={1,2},且A∪B={1,2,3},∴x=3,故选:A.2.设复数z满足(2z﹣i)(2﹣i)=5,则复数z在复平面内对应点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】直接由(2z﹣i)(2﹣i)=5,求得2z﹣i,进一步求出复数z在复平面内对应点的坐标得答案.【解答】解:由(2z﹣i)(2﹣i)=5,得2z﹣i=,∴2z=2+2i,即z=1+i.则复数z在复平面内对应点的坐标为(1,1),位于第一象限.故选:A.3.已知双曲线﹣=1(a>0,b>0)经过点(2,3),且离心率为2,则它的焦距为()A.2 B.4 C.6 D.8【考点】双曲线的简单性质.【分析】将点(2,3)代入双曲线的方程,结合离心率公式和a,b,c的关系,解方程可得a=1,c=2,进而得到焦距.【解答】解:双曲线﹣=1(a>0,b>0)经过点(2,3),可得﹣=1,又离心率为2,即e==2,即有c=2a,b==a,可得﹣=1,解得a=1,则c=2.即焦距2c=4.故选:B.4.已知a=2,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a【考点】对数值大小的比较.【分析】利用对数函数和指数函数的单调性求解.【解答】解:∵0<a=2<20=1,b=log2<=0,c=log>=1,∴c>a>b.故选:C.5.已知单位向量与的夹角为α,且cosα=﹣,若=2﹣,=+3,则=()A.﹣2 B.2 C.﹣D.【考点】平面向量数量积的运算.【分析】由题意可得||=||=1,•=1•1•cosα=﹣,由此求得的值.【解答】解:由题意可得||=||=1,•=1•1•cosα=﹣,∴=(2﹣)•(+3)=2+5•﹣3=2﹣1﹣3=﹣2,故选:A.6.若x,y满足不等式组,z=x﹣y的最大值为()A.1 B.2 C.3 D.4【考点】简单线性规划.【分析】作出不等式组表示的可行域,作出直线y=x,由z的几何意义:直线在y轴上截距的相反数.平移直线y=x,观察即可得到所求最大值.【解答】解:作出不等式组表示的可行域,如右图.作出直线y=x,z=x﹣y的几何意义是直线在y轴上的截距的相反数.平移直线y=x,由x=代入直线x+y﹣3=0,可得y=﹣.将(,﹣)代入z=x﹣y,可得z的最大值为4.故选:D.7.已知命题p:若x>0,则函数y=x+的最小值为1,命题q:若x>1,则x2+2x﹣3>0,则下列命题是真命题的是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)【考点】复合命题的真假.【分析】根据级别不等式的性质判断p,根据二次函数的性质判断q,从而判断复合命题的真假即可.【解答】解:x>0时,y=x+≥2=,故命题p是假命题,∵y=x2+2x﹣3=(x+1)2﹣4,对称轴x=﹣1,函数在(1,+∞)递增,∴x2+2x﹣3>0,∴命题q是真命题,∴p∨q是真命题,故选:A.8.某几何体三视图如图所示,则该几何体的体积为(俯视图中弧线是圆弧)()A.4﹣πB.π﹣2 C.1﹣D.1﹣【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为一个正方体挖去一个圆柱的而剩下的几何体.【解答】解:由三视图可知:该几何体为一个正方体挖去一个圆柱的而剩下的几何体.∴该几何体的体积V=13﹣×π×12×1=1﹣.故选:D.9.设各项都是正数的等差数列{a n}的公差为d,前n项和为S n,若a2,S3,a2+S5成等比数列,则=()A.0 B.C.D.1【考点】等差数列的前n项和.【分析】a2,S3,a2+S5成等比数列,可得:(a1+d)(6a1+11d)=,解出即可得出.【解答】解:∵a2,S3,a2+S5成等比数列,∴a2•(a2+S5)=,∴(a1+d)(6a1+11d)=,化为:2d2﹣a1d﹣3=0,d,a1>0.∴(2d﹣3a1)(d+a1)=0,∴2d﹣3a1=0,则=,故选:B.10.将函数y=sin(2x﹣)的图象向左平移个单位长度,所得图象对应的函数()A.在区间[﹣,]上单调递减 B.在区间[﹣,]上单调递增C.在区间[﹣,]上单调递减 D.在区间[﹣,]上单调递增【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,求得所得函数的图象对应的函数解析式,再根据正弦函数的单调性,得出结论.【解答】解:将函数y=sin(2x﹣)的图象向左平移个单位长度,所得图象对应的函数为y=sin[2(x+)﹣]=﹣sin(2x﹣),在区间[﹣,]上,2x﹣∈[﹣,],函数y=﹣sin(2x﹣)没有单调性,故排除A、B.在区间[﹣,]上,2x﹣∈[﹣,],函数y=﹣sin(2x﹣)单调递减,故排除D,故选:C.11.已知四棱锥P﹣ABCD的外接球的表面积为12π,ABCD是边长为2的正方形,PA=PB,平面PAB⊥平面ABCD,则△PCD的面积为()A.B.C.D.4【考点】棱锥的结构特征.【分析】由题意画出图形,设P到AB的距离为d,由球的半径相等列式求得d,进一步求得△PCD的边CD上的高,代入三角形面积公式得答案.【解答】解:如图,设四棱锥P﹣ABCD的外接球的半径为r,由四棱锥P﹣ABCD的外接球的表面积为12π,得4πr2=12π,r=.∵ABCD是边长为2的正方形,设其中心为M,则MC=,∴OM=1,又PA=PB,平面PAB⊥平面ABCD,设P到AB的距离为d,则,解得:d=1+.∴△PCD的边CD上的高h=,则△PCD的面积为S=.故选:A.12.已知函数f(x)=ax3+2x2﹣1有且只有两个零点,则实数a的取值集合()A.{﹣1,0,1} B.{0,} C.{0,} D.{﹣,0,}【考点】函数零点的判定定理.【分析】当a=0时,函数f(x)=2x2﹣1有且只有两个零点,满足条件;当a≠0时,函数的极值为0,进而得到答案.【解答】解:当a=0时,函数f(x)=2x2﹣1有且只有两个零点,满足条件;当a≠0时,令f′(x)=3ax2+4x=0,解得:x=0,或x=﹣,∵f(0)=1≠0,∴f(﹣)=,解得:a=,故a∈{﹣,0,},故选:D二、填空题(每题5分)13.如图是一批学生的体重情况的直方图,若从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为24,则这批学生中的总人数为96 .【考点】频率分布直方图.【分析】根据频率和为1,求出前3个小组的频率和,再求出第2小组的频率以及样本容量.【解答】解:根据频率和为1,得:从左到右的前3个小组的频率和为1﹣(0.037+0.013)×5=0.75;根据这3个小组的频率之比为1:2:3,得:第2小组的频率为0.75×=0.25,又频数为24,所以这批学生的总人数为:=96.故答案为:96.14.已知数列{a n}是公比为2的等比数列,且a2=﹣1,则a6= ﹣16 .【考点】等比数列的通项公式.【分析】由等比数列通项公式先求出首项,由此能求出第6项.【解答】解:∵数列{a n}是公比为2的等比数列,且a2=﹣1,∴a1=,∴=﹣16.故答案为:﹣16.15.执行如图所示的程序框图,输出的n值为7 .【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出不满足条件S=0+1+2+8+…<100时,k+1的值.【解答】解:由框图知,第一次循环的结果为:S=98,n=2;第二次循环的结果为:S=94,n=3;第三次循环的结果为:S=86,n=4;第四次循环的结果为:S=70,n=5;第五次循环的结果为:S=38,n=6;第六次循环的结果为:S=﹣26,n=7;满足判断框中的条件,结束循环,输出n的值.故答案为7.16.已知偶函数f(x)在[0,+∞)是增函数,则满足f(2x﹣3)<f(x2)的实数x的取值范围是(﹣∞,﹣3)∪(1,+∞).【考点】函数单调性的性质.【分析】首先利用单调性建立不等式组,直接求出结果.【解答】解:偶函数f(x)在[0,+∞)是增函数,所以:满足f(2x﹣3)<f(x2)的条件为:|2x﹣3|<|x2|,解得:x<﹣3或x>1,所以x的取值范围为:(﹣∞,﹣3)∪(1,+∞),故答案为:(﹣∞,﹣3)∪(1,+∞)三、解答题17.在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c,已知=﹣3,cosB=﹣,b=2,求:(1)a和c的值;(2)sin(A﹣B)的值.【考点】三角函数中的恒等变换应用;平面向量数量积的运算.【分析】(1)由平面向量的数量积和余弦定理,列出方程组解方程组即可;(2)根据三角恒等变换和由正弦定理,计算sin(A﹣B)的值即可.【解答】解:(1)△ABC中,由=﹣3得ca•cosB=﹣3,又cosB=﹣,所以ac=7;由余弦定理得b2=a2+c2﹣2ac•cosB,又b=2,所以a2+c2=50;解方程组,因为a>c,所以解得a=7,c=1;(2)△ABC中,sinB==,由正弦定理,得sinA=sinB=,因为cosB<0,所以A为锐角,所以cosA==;所以sin(A﹣B)=sinAcosB﹣cosAsinB=﹣.18.在一个不透明的盒子中,放有标号分别为1,2,3,4的四个大小相同的小球,现从这个盒子中,有放回地先后取得两个小球,其标号分别为x,y(1)求事件x+y=5的概率;(2)求事件2x+|x﹣y|=6的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)本题是一个等可能事件的概率,试验发生包含的事件是从盒子中有放回地先后抽取两张卡片列举出来共包含基本事件16个,满足条件的事件根据前面列举出的事件,得到有4个结果,根据概率公式得到概率.(2)本题是一个等可能事件的概率,试验发生包含的事件是从盒子中有放回地先后抽取两张卡片列举出来共包含基本事件16个,满足条件的事件数可以通过前面的列举得到,根据等可能事件的概率得到结果.【解答】解:(1)由题意知,本题是一个等可能事件的概率,试验发生包含的事件是从盒子中有放回地先后抽取两张卡片共包含基本事件16个,分别为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4);∴满足x+y=5有4种,∴事件x+y=5的概率为=;(2)2x+|x﹣y|=,∴2x+|x﹣y|=6时,有(2,4),(3,3)两种,∴事件2x+|x﹣y|=6的概率为=.19.如图正四棱住ABCD﹣A1B1C1D1中,点E是A1A上的点,M是AC、BD的交点.(1)若A1C∥平面EBD,求证:点E是AA1中点;(2)若AB=1,△EBD的面积S=,点F在CC1上,且FM⊥EM,求三棱锥体积V F﹣EBD的大小.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的性质.【分析】(1)连结EM,由线面平行的性质可得A1C∥EM,故E为A1A中点;(2)由正四棱柱的性质可知BD⊥平面ACC1A1,故BD⊥MF,结合EM⊥MF可得MF⊥平面BDE,由面积公式可求得EM,进而计算出AE,由Rt△EAM∽Rt△MCF可得MF的长,即棱锥的高.【解答】解:(1)连结EM,∵四边形ABCD是正方形,∴M是AC的中点,∵A1C∥平面EBD,A1C⊂平面A1AC,平面A1AC∩平面EBD=EM,∴AC1∥EM,∴.∴点E是AA1中点.(2)∵四边形ABCD是正方形,∴BD⊥AC,∵CC1⊥平面ABCD,BD⊂平面ABCD,∴BD⊥平面ACC1A1,∵MF⊂平面ACC1A1,∴BD⊥MF,又MF⊥EM,EM⊂平面BDE,BD⊂平面BDE,EM∩BD=M,∴MF⊥平面BDE.∵AB=1,∴BD=,AM=MC=.∵S△BDE=,∴EM=2,∴EA==.∵EM⊥MF,∴∠AME+∠CMF=90°,∵EA⊥AC,∴∠AME+∠AEM=90°,∴∠AEM=∠CMF,∴Rt△EAM∽Rt△MCF,∴,即,解得MF=.∴V F﹣EBD===.20.已知函数f(x)=(1)若f(x)>0对其定义域内任意x成立,求a的值;(2)当a=0时,求f(x)在区间[e,e]上最值.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)先求出函数的定义域,由题意得到不等式组,结合图象从而得到答案;(2)将a=0代入求出函数的表达式,得到f(x)的导函数,从而求出函数的单调区间,进而求出最值.【解答】解:(1)∵函数f(x)=,∴函数f(x)的定义域是(0,1)∪(1,+∞),若f(x)>0对其定义域内的任意x成立,需满足①则0<x<1时,,②x>1时,,画出函数的图象,如图示:显然a=1时符合题意,故a=1;(2)a=0时,f(x)=,f′(x)=,令f′(x)>0,解得:x>,令f′(x)<0,解得:0<x<且x≠1,∴f(x)在[,]递减,在[,e]递增,∴f(x)最小值=f()=e,而f()=4<f(e)=e2,∴f(x)在区间[e,e]上的最大值是e2,最小值是e.21.已知椭圆C:+=1(a>b>0)经过点A(2,1),且直线l:x﹣2y﹣=0过椭圆C的一个焦点.(1)求椭圆C的方程;(2)已知直线l′平行于直线l,且与椭圆C交于不同的两点M,N,记直线AM的倾斜角为θ1,直线AN的倾斜角为θ2,试探究θ1+θ2是否为定值,并说明理由.【考点】椭圆的简单性质.【分析】(1)由题意知c=,+=1,求出a,b,由此能求出椭圆方程.(2)θ1+θ2=π.理由如下:设直线l′的方程为x﹣2y+m=0,与+=1联立,可得8y2﹣4my+m2﹣8=0,利用韦达定理,由此得到k AM=﹣k AN,即可得出结论.【解答】解:(1)由题意,c=,+=1,∴a=2,b=,∴椭圆C的方程为+=1;(2)直线l′的方程为x﹣2y+m=0,与+=1联立,可得8y2﹣4my+m2﹣8=0,设M(x1,y1),N(x2,y2),∴y1+y2=,y1y2=﹣1,∴x1+x2=﹣m,x1x2=﹣4,∴k AM+k AN=+==0,∴tanθ1+tanθ2=0,∴θ1+θ2=π[选修4-1几何证明选讲]|22.如图,AB是⊙O的直径,BE为⊙O的切线,点C为⊙O上不同于A,B的一点,AD为∠BAC的平分线,且分别与BC交于H,与⊙O交于D,与BE交于E,连接BD,CD.(1)求证:BD平分∠CBE;(2)求证:AH•BH=AE•HC.【考点】与圆有关的比例线段.【分析】(1)由AD为∠BAC的平分线得=,得出∠DBC=∠BCD,再由弦切角定理得到∠DBE=∠BCD,可得∠DBE=∠DBC;(2)证明△ABE∽△ACH,得出AH•BE=AE•HC即可.【解答】证明:(1)∵AD为∠BAC的平分线,即∠DAB=∠DAC,∴=,可得∠DBC=∠BCD,又∵BE与圆O相切于点B,∴∠DBE=∠BCD,可得∠DBE=∠DBC,∴BD平分∠CBE;(2)由(1)可知BE=BH,所以AH•BH=AH•BE因为∠DAB=∠DAC,∠ACB=∠ABE,所以△ABE∽△ACH,所以,即AH•BE=AE•HC,即:AH•BH=AE•HC.[选修4-4坐标系与参数方程]|23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos(θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.【考点】圆的参数方程;简单曲线的极坐标方程.【分析】(Ⅰ)设动点A的直角坐标为(x,y),则,利用同角三角函数的基本关系消去参数α可得直角坐标方程,从而得到点A的轨迹.(Ⅱ)把直线C方程为直角坐标方程,由题意可得直线C与圆相切,故有圆心到直线的距离等于半径,由此解得a 的值.【解答】解:(Ⅰ)设动点A的直角坐标为(x,y),则,利用同角三角函数的基本关系消去参数α可得,(x﹣2)2+(y+2)2=9,点A的轨迹为半径等于3的圆.(Ⅱ)把直线C方程为ρcos(θ﹣)=a化为直角坐标方程为+=2a,由题意可得直线C与圆相切,故有=3,解得a=3 或a=﹣3.[选修4-5不等式选讲]|24.设函数f(x)=|x﹣2a|,a∈R.(1)若不等式f(x)<1的解集为{x|1<x<3},求a的值;(2)若存在x0∈R,使f(x0)+x0<3,求a的取值范围.【考点】绝对值不等式的解法.【分析】(1)由不等式f(x)<1求得2a﹣1<x<2a+1,再根据不等式f(x)<1的解集为{x|1<x<3},可得2a﹣1=1,且2a+1=3,求得a的值.(2)令g(x)=f(x)+x=|x﹣2a|+x=,可得g(x)的最小值为2a,根据题意可得2a<3,由此求得a的范围.【解答】解:(1)∵函数f(x)=|x﹣2a|,a∈R,∴不等式f(x)<1 即|x﹣2a|<1,求得2a ﹣1<x<2a+1.再根据不等式f(x)<1的解集为{x|1<x<3},可得2a﹣1=1,且2a+1=3,求得a=1.(2)令g(x)=f(x)+x=|x﹣2a|+x=,故g(x)=f(x)+x的最小值为2a,根据题意可得2a<3,a<,故a的范围是(﹣∞,).2016年9月29日。

安徽省高考压轴卷数学文试题含解析

安徽省高考压轴卷数学文试题含解析

安徽省高考压轴卷 数学文 科本试卷分第I 卷(选择题)和第 II 卷(非选择题)两部分。

考试时间120分钟。

满分:150分。

第Ⅰ卷(选择题 共50分)一、选择题(本大题包括10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设i 是虚数单位,a R ∈,若21a ii-+是一个实数,则该实数是( ). A .12-B .1-C .12D .12.平面区域22,,y x y x y ⎧⎪⎨⎪+⎩≥≥≤2的面积是( ).A.512π B.56π C.712π D. 76π 3. 如果执行右面的程序框图,那么输出的20132014S =,那么判断框内是( ).A.2013?k ≤ B.2014?k ≤ C.2013?k ≥D.2014?k ≥ 4.为得到函数cos y x =的图象,只需将函数sin y x =的图象按照向量a 平移,则a 可以为( ). A .(,0)2πB .(,0)2π-C .(0,)2π-D .(0,)2π5. 向量(cos ,sin )a αα=,(cos ,sin )b x x =,若函数()f x a b =⋅是奇函数,则α可以是A.0 B.4π C.3π D.2π6.一个盒子里装有标号为1,2,3,4,5的5张标签,随机地选取两张标签,若标签的选取是有放回的,则两张标签上的数字为相邻整数的概率是( ).A.25 B.35 C.825 D.17257. 直线10x y -+=被圆2220x y my ++=所截得的弦长等于圆的半径,则实数m =22 C.18. 使函数(31)4,1,()log ,1a a x a x f x x x -+⎧=⎨>⎩≤ 在(,)-∞+∞上是减函数的一个充分不必要条件是( ).A.1173a <≤ B.103a << C.1173a << D.107a << 9. 已知向量,ab 满足||2||b a =,b a -与2a b +的夹角为3π,则,a b 的夹角是A.6πB.3π C.23π D.56π 10. 若,P Q 分别是直线1y x =-和曲线xy e =-上的点,则||PQ 的最小值是( ).B.2C.D.第Ⅱ卷 (100分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上) 11.若集合1{|1}A x x=<,{|||2}B x x =<,则A B = . 12.双曲线221x ay +=的一条渐近线的方程为230x y +=,则a = .13. 数列{}n a 的前n 项和为n S ,若21n n S a =-,则数列{}n S 的前6项和是 . 14.函数()cos22cos f x x x =-的最小值是 .15. 在正方体1111ABCD A B C D -中,点,E F 分别是11,BC A B 的中点,则异面直线1AD 与EF 所成角的余弦值是 .三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)在ABC △中,内角,,A B C 所对边长分别为,,a b c ,4tan 3B =,5sin 13A =. (Ⅰ)求cos C ;(Ⅱ)若ABC △的面积是1,求AB AC ⋅.C D 1C1BB1DE FA1A17.(本小题满分12分)设()ln x af x b x e=+. (Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线方程为1y x =+,求,a b 的值; (Ⅱ)当,1a e b ==时,求()f x 的单调区间与极值.18.(本小题满分12分)在数学趣味知识培训活动中,甲、乙两名学生的5次培训成绩如下茎叶图所示:(Ⅰ)从甲、乙两人中选择1人参加数学趣味知识竞赛,你会选哪位?请运用统计学的知识说明理由;(Ⅱ) 从乙的5次培训成绩中随机选择2个,试求选到121分的概率.19.(本小题满分13分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,45BAD ∠=︒,1AD =,AB =,PAD △是正三角形,平面PAD ⊥平面PBD .(Ⅰ)求证:PA BD ⊥;(Ⅱ)求三棱锥P BCD -的体积.20.(本小题满分13分)已知数列{}n a 满足奇数项135,,,a a a 成等差数列{}21()n a n N -+∈,而偶数项246,,,a a a 成等比数列{}2()n a n N +∈,且121,2a a ==,2345,,,a a a a 成等差数列,数列{}n a 的前n 项和为n S .(Ⅰ)求通项n a ; (Ⅱ)求n S .甲89698 乙9101112 2241121.(本小题满分13分)已知椭圆2212x y +=,O 为坐标原点,椭圆的右准线与x 轴的交点是A . (Ⅰ)点P 在已知椭圆上,动点Q 满足OQ OA OP =+u u u r u u r u u u r,求动点Q 的轨迹方程;(Ⅱ)过椭圆右焦点F 的直线与椭圆交于点,M N ,求AMN !的面积的最大值.2014安徽省高考压轴卷数学(文科)参考答案1.【答案】B. 【解析】2(21)(21)12a i a a i i ---+=+,当12a =-时,所得实数是1-. 2.【答案】A . 【解析】区域是圆心角是512π是扇形,故面积是5522412πππ⨯⨯=. 3.【答案】A .【解析】当判断框内是?k n ≤时,111111223(1)1S n n n =+++=-⨯⨯⨯++,若20132014S =,则2013n =.4.【答案】B.【解析】验证可得,或者利用sin cos()2x x π=-.5.【答案】D .【解析】()cos cos sin sin cos()f x x x x ααα=+=-是奇函数,则,2k k Z παπ=+∈.6.【答案】C .【解析】所有的取法有25种,其中两张标签上的数字为相邻整数的取法有8种. 7.【答案】B.【解析】圆的方程即222()x y mm ++=,圆心(0,)m -到已知直线的距离|2m d ==,解得2m =+ 8.【答案】C .【解析】可得310,01,710a a a -<<<-≥,即1173a <≤,所求应该是11[,)73的真子集.解答本题易忽视连接点,认为两段都是递减就可以了;或者以为是求的充要条件.9.【答案】B. 【解析】b a -与2a b+的夹角为3π,且||2b a =则有2221cos 32()(2)(5b a a b a π===-+,得2a a b =,设,a b 的夹角为θ,则1cos 2||||a b a b θ==,则3πθ=.10.【答案】A .【解析】求导1xy e '=-=-,得切点为(0,1)-,切点到直线1y x =-的距离即为||PQ 的最小值.11.【答案】(2,0)(1,2)-.【解析】{|0,1}A x x x =<>或,(2,2)B =-,故A B =(2,0)(1,2)-.12.【答案】94-.【解析】双曲线221x ay +=的渐近线是x =,可知94x =-. 13.【答案】120.【解析】可求得21nn S =-,26126(222)6120S S S +++=+++-=.14.【答案】32-. 【解析】213()2(cos )22f x x =--,故当1cos 2x =时,()f x 有最小值32-.15.【答案】6. 【解析】设1CC 的中点是G ,棱长为2,连接EG ,则1//EG AD ,cos FEG ∠为所求,在EFG △中,EG =,EF FG ==cos FEG ∠=16.【答案】解:(Ⅰ)由4tan 3B =,0B π<<,可得4sin 5B =,3cos 5B =;…………2分5sin 13A =4sin 5B <=,由正弦定理,a b <,则A B <,故02A π<<,12cos 13A =. (4)分由A B C π++=,cos cos()sin sin cos cos C A B A B A B =-+=-541231613513556=⨯-⨯=-.…………6分 (Ⅱ)由ABC △的面积是1,可得15sin 1226bc A bc ==,得265bc =.…………9分 122624cos 1355AB AC bc A ⋅==⨯=.…………12分 17.【答案】解:求导可得()x b af x x e '=-.…………2分(Ⅰ)由(1)1a f b e '=-=,(1)11af e==+,…………4分 解得2a e =,3b =.…………5分 (Ⅱ)函数()f x 的定义域是(0,)+∞.当,1a e b ==时,()ln x ef x x e=+,1()x x xe e exf x x e xe -'=-=.…………7分 令()xg x e ex =-,求导可得()xg x e e '=-.…………8分当(0,1)x ∈时,()0g x '<,则()0f x '<,()f x 是减函数;…………9分 当(1,)x ∈+∞时,()0g x '>,则()0f x '>,()f x 是增函数.…………10分故()f x 的单调增区间是(1,)+∞,减区间是(0,1),当1x =时,()f x 有极小值(1)1f =.…12分18.【答案】解:甲、乙两人的平均成绩分别是981061091181191105x ++++==甲,1021021111141211105x ++++==乙.……………2分甲、乙两人成绩的方差分别是2222221306=[(98110)(106110)(109110)(118110)(119110)]55s -+-+-+-+-=甲, 2222221266=[(102110)(102110)(111110)(114110)(121110)]55s -+-+-+-+-=乙.4分由x x =乙甲,22s s >乙甲,可知甲和乙成绩的平均水平一样,乙的方差小,乙发挥比甲稳定,故选择乙.……………6分(Ⅱ)从乙的5次培训成绩中随机选择2个,共有10个基本事件,分别是{111,114},{111,121},{114,121},{102,102},{102,111},{102,114},{102,121},{102,111},{102,114},{102,121},其中选到121分的基本事件有4个,故选到121分的概率是42105=.……………12分19.【答案】证明:由45BAD ∠=︒,1AD =,AB =,利用余弦定理,可得1BD ===,…2分故AD BD ⊥,又由平面PAD ⊥平面PBD ,可得BD ⊥平面PAD ,又PA ⊂平面PAD ,故PA BD ⊥.……………5分(Ⅱ)解:由(Ⅰ)知BD ⊥平面PAD ,又BD ⊂平面ABCD ,故平面PAD ⊥平面ABCD .取AD 的中点E ,连结PE ,由于PAD △是正三角形,故PE AD ⊥. 可知PE ⊥平面ABCD ,即PE 为三棱锥P BCD -的高.……………8分在正PAD △中,1AD =,故PE =.……………10分 三棱锥P BCD -的体积11111332212BCD V S PE =⨯⨯=⨯⨯⨯⨯=△.……………13分 20.【答案】解:(Ⅰ)设等差数列{}21()n a n N -+∈的公差为d ,等比数列{}2()n a n N +∈的公比为q ,则2(1)22d q +=+,4(1)(12)q d d =+++,解得2q d ==.………3分于是2121n a n -=-,22nn a =,即数列的通项2,2,.n n n n a n ⎧⎪=⎨⎪⎩为奇数;为偶数………6分(Ⅱ)于是当n 为偶数时,数列奇数项的和为21(21)2[]224nn n +⨯-⨯=, 偶数项的和为2122(12)2212nn +-=--,故212224n n n S +=+-.………10分 当n 为奇数时, 1122221(1)2722244n n n n n n n n S S a n ++--+-=+=+-+=+. 于是122212272,;422,.4n n n n n n S n n ++⎧+-+⎪⎪=⎨⎪+-⎪⎩为奇数为偶数………13分21.【答案】解:(Ⅰ)可得点(2,0)A .设11(,),(,)Q x y P x y ,则11(2,)(,)OP OA OQ x y x y =-=--=uu u r uu r uuu r ,又因为点P 在已知椭圆上,故22(2)12x y -+=为动点Q 的轨迹方程.………………………5分(Ⅱ)椭圆的右焦点(1,0)F ,设直线MN 的方程是1x my =+,与2212x y +=联立,可得22(2)210m y my ++-=,设1122(,),(,)M x y N x y ,则111x my =+,221x my =+,于是12|||MN y y ==-221)2m m +=+.……7分点(2,0)A 到直线MN 的距离d =,于是AMN!的面积1||2S MN d ==.………………………10分S ==,当且仅当22111m m +=+,即0m =时取到等号.故AMN!的面积的最大值是2.……13分。

高考压轴高等数学试卷

高考压轴高等数学试卷

一、选择题(每题5分,共50分)1. 下列函数中,定义域为实数集R的是()A. f(x) = x² + 1B. f(x) = 1/xC. f(x) = √(x - 2)D. f(x) = |x|2. 函数f(x) = e^(2x)的导数为()A. f'(x) = 2e^(2x)B. f'(x) = e^(2x)C. f'(x) = 4e^(2x)D. f'(x) = 2xe^(2x)3. 若lim(x→0) (f(x) - f(0))/(x - 0) = 2,则f'(0)等于()A. 2B. -2C. 0D. 不存在4. 函数y = x^3 - 3x + 1在x = 0处的切线方程为()A. y = 1B. y = xC. y = x + 1D. y = -x5. 下列极限计算正确的是()A. lim(x→∞) (1 + 1/x)^x = eB. lim(x→0) x / (sin x) = 1C. lim(x→0) (1 - cos x) / x = 1/2D. lim(x→0) (e^x - 1) / x = 16. 若函数f(x) = x²lnx在区间[1, 2]上单调递增,则f'(x)在区间[1, 2]上的符号为()A. 恒正B. 恒负C. 先正后负D. 先负后正7. 函数y = sin(3x)的周期为()A. π/3B. 2π/3C. πD. 2π8. 已知函数f(x) = x² + 2x + 1,则f(x)的极值点为()A. x = -1B. x = 0C. x = 1D. x = -29. 下列级数收敛的是()A. ∑(n=1 to ∞) 1/nB. ∑(n=1 to ∞) (-1)^n/nC. ∑(n=1 to ∞) n^2D. ∑(n=1 to ∞) 1/n²10. 曲线y = e^(-x)在x = 0处的切线斜率为()A. 1B. -1C. 0D. 不存在二、填空题(每题5分,共50分)1. 函数f(x) = x³ - 3x² + 2x在x = 1处的二阶导数为__________。

高考数学高三模拟考试试卷压轴题高考数学试卷文科

高考数学高三模拟考试试卷压轴题高考数学试卷文科

高考数学高三模拟考试试卷压轴题高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A.[﹣4,+∞) B.(﹣2,+∞)C.[﹣4,1] D.(﹣2,1]2.(5分)已知i是虚数单位,则(2+i)(3+i)=()A.5﹣5i B.7﹣5i C.5+5i D.7+5i3.(5分)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β5.(5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3 C.92cm3 D.84cm36.(5分)函数f(x)=sinxcosx+cos2x的最小正周期和振幅分别是()A.π,1 B.π,2 C.2π,1 D.2π,27.(5分)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0 B.a<0,4a+b=0 C.a>0,2a+b=0 D.a<0,2a+b=0 8.(5分)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.9.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.10.(5分)设a,b∈R,定义运算“∧”和“∨”如下:a∧b= a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2D.a∨b≥2,c∨d≥2二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)已知函数f(x)=,若f(a)=3,则实数a=.12.(4分)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.13.(4分)直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于.14.(4分)某程序框图如图所示,则该程序运行后输出的值等于.15.(4分)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k=.16.(4分)设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于.17.(4分)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(14分)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.19.(14分)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,an;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.20.(15分)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若G是PC的中点,求DG与平面PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.21.(15分)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.22.(14分)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N 两点,求|MN|的最小值.高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A.[﹣4,+∞) B.(﹣2,+∞)C.[﹣4,1] D.(﹣2,1]【分析】找出两集合解集的公共部分,即可求出交集.【解答】解:∵集合S={x|x>﹣2}=(﹣2,+∞),T={x|﹣4≤x≤1}=[﹣4,1],∴S∩T=(﹣2,1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知i是虚数单位,则(2+i)(3+i)=()A.5﹣5i B.7﹣5i C.5+5i D.7+5i【分析】直接利用多项式的乘法展开,求出复数的最简形式.【解答】解:复数(2+i)(3+i)=6+5i+i2=5+5i.故选:C.【点评】本题考查复数的代数形式的混合运算,考查计算能力.3.(5分)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】当“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,得到“α=0”是“sinα<cosα”的充分不必要条件.【解答】解:∵“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,如α=等,∴“α=0”是“sinα<cosα”的充分不必要条件,故选:A.【点评】本题主要考查了必要条件,充分条件与充要条件的判断,要求掌握好判断的方法.4.(5分)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β【分析】用直线与平面平行的性质定理判断A的正误;用直线与平面平行的性质定理判断B的正误;用线面垂直的判定定理判断C的正误;通过面面垂直的判定定理进行判断D的正误.【解答】解:A、m∥α,n∥α,则m∥n,m与n可能相交也可能异面,所以A不正确;B、m∥α,m∥β,则α∥β,还有α与β可能相交,所以B不正确;C、m∥n,m⊥α,则n⊥α,满足直线与平面垂直的性质定理,故C正确.D、m∥α,α⊥β,则m⊥β,也可能m∥β,也可能m∩β=A,所以D不正确;故选:C.【点评】本题主要考查线线,线面,面面平行关系及垂直关系的转化,考查空间想象能力能力.5.(5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3 C.92cm3 D.84cm3【分析】由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.【解答】解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=100.故选:B.【点评】由三视图正确恢复原几何体是解题的关键.6.(5分)函数f(x)=sinxcosx+cos2x的最小正周期和振幅分别是()A.π,1 B.π,2 C.2π,1 D.2π,2【分析】f(x)解析式第一项利用二倍角的正弦函数公式化简,再利用两角和与差的正弦函数公式及特殊角的我三角函数值化为一个角的正弦函数,根据正弦函数的值域,确定出振幅,找出ω的值,求出函数的最小正周期即可.【解答】解:f(x)=sin2x+cos2x=sin(2x+),∵﹣1≤sin(2x+)≤1,∴振幅为1,∵ω=2,∴T=π.故选:A.【点评】此题考查了两角和与差的正弦函数公式,二倍角的正弦函数公式,以及三角函数的周期性及其求法,熟练掌握公式是解本题的关键.7.(5分)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0 B.a<0,4a+b=0 C.a>0,2a+b=0 D.a<0,2a+b=0 【分析】由f(0)=f(4)可得4a+b=0;由f(0)>f(1)可得a+b<0,消掉b变为关于a 的不等式可得a>0.【解答】解:因为f(0)=f(4),即c=16a+4b+c,所以4a+b=0;又f(0)>f(1),即c>a+b+c,所以a+b<0,即a+(﹣4a)<0,所以﹣3a<0,故a>0.故选:A.【点评】本题考查二次函数的性质及不等式,属基础题.8.(5分)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.【分析】根据导数的图象,利用函数的单调性和导数的关系,得出所选的选项.【解答】解:由导数的图象可得,导函数f′(x)的值在[﹣1,0]上的逐渐增大,故函数f(x)在[﹣1,0]上增长速度逐渐变大,故函数f(x)的图象是下凹型的.导函数f′(x)的值在[0,1]上的逐渐减小,故函数f(x)在[0,1]上增长速度逐渐变小,图象是上凸型的,故选:B.【点评】本题主要考查函数的单调性和导数的关系,属于基础题.9.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选:D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.10.(5分)设a,b∈R,定义运算“∧”和“∨”如下:a∧b= a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2D.a∨b≥2,c∨d≥2【分析】依题意,对a,b赋值,对四个选项逐个排除即可.【解答】解:∵a∧b=,a∨b=,正数a、b、c、d满足ab≥4,c+d≤4,∴不妨令a=1,b=4,则a∧b≥2错误,故可排除A,B;再令c=1,d=1,满足条件c+d≤4,但不满足c∨d≥2,故可排除D;故选:C.【点评】本题考查函数的求值,考查正确理解题意与灵活应用的能力,着重考查排除法的应用,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)已知函数f(x)=,若f(a)=3,则实数a=10.【分析】利用函数的解析式以及f(a)=3求解a即可.【解答】解:因为函数f(x)=,又f(a)=3,所以,解得a=10.故答案为:10.【点评】本题考查函数解析式与函数值的应用,考查计算能力.12.(4分)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.【分析】由组合数可知:从6名学生中任选2名共有=15种情况,2名都是女同学的共有=3种情况,由古典概型的概率公式可得答案.【解答】解:从6名学生中任选2名共有=15种情况,满足2名都是女同学的共有=3种情况,故所求的概率为:=.故答案为:.【点评】本题考查古典概型及其概率公式,涉及组合数的应用,属基础题.13.(4分)直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于4.【分析】求出圆的圆心与半径,利用圆心距,半径,半弦长满足勾股定理,求解弦长即可.【解答】解:圆x2+y2﹣6x﹣8y=0的圆心坐标(3,4),半径为5,圆心到直线的距离为:,因为圆心距,半径,半弦长满足勾股定理,所以直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长为:2×=4.故答案为:4.【点评】本题考查直线与圆的位置关系,弦长的求法,考查转化思想与计算能力.14.(4分)某程序框图如图所示,则该程序运行后输出的值等于.【分析】由题意可知,该程序的作用是求解S=1++++的值,然后利用裂项求和即可求解.【解答】解:由题意可知,该程序的作用是求解S=1++++的值.而S=1++++=1+1﹣+﹣+﹣+﹣=.故答案为:.【点评】本题考查了程序框图中的循环结构的应用,解题的关键是由框图的结构判断出框图的计算功能.15.(4分)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k=2.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=kx+y对应的直线进行平移.经讨论可得当当k<0时,找不出实数k的值使z的最大值为12;当k≥0时,结合图形可得:当l经过点C时,zmax=F(4,4)=4k+4=12,解得k=2,得到本题答案.【解答】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,0),B(2,3),C(4,4)设z=F(x,y)=kx+y,将直线l:z=kx+y进行平移,可得①当k<0时,直线l的斜率﹣k>0,由图形可得当l经过点B(2,3)或C(4,4)时,z可达最大值,此时,zmax=F(2,3)=2k+3或zmax=F(4,4)=4k+4但由于k<0,使得2k+3<12且4k+4<12,不能使z的最大值为12,故此种情况不符合题意;②当k≥0时,直线l的斜率﹣k≤0,由图形可得当l经过点C时,目标函数z达到最大值此时zmax=F(4,4)=4k+4=12,解之得k=2,符合题意综上所述,实数k的值为2故答案为:2【点评】本题给出二元一次不等式组,在目标函数z=kx+y的最大值为12的情况下求参数k 的值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.16.(4分)设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于﹣1.【分析】由题意,x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,考察(x2﹣1)2,发现当x=1时,其值为0,再对照不等式左边的0,可由两边夹的方式得到参数a,b满足的方程,再令f(x)=x4﹣x3+ax+b,即f(x)≥0在x≥0恒成立,利用导数研究函数在x≥0的极值,即可得出参数所满足的另一个方程,由此解出参数a,b的值,问题即可得解.【解答】解:验证发现,当x=1时,将1代入不等式有0≤a+b≤0,所以a+b=0,当x=0时,可得0≤b≤1,结合a+b=0可得﹣1≤a≤0,令f(x)=x4﹣x3+ax+b,即f(1)=a+b=0,又f′(x)=4x3﹣3x2+a,f′′(x)=12x2﹣6x,令f′′(x)>0,可得x>,则f′(x)=4x3﹣3x2+a在[0,]上减,在[,+∞)上增,又﹣1≤a≤0,所以f′(0)=a<0,f′(1)=1+a≥0,又x≥0时恒有0≤x4﹣x3+ax+b,结合f(1)=a+b=0知,1必为函数f(x)=x4﹣x3+ax+b的极小值点,也是最小值点.故有f′(1)=1+a=0,由此得a=﹣1,b=1,故ab=﹣1.故答案为:﹣1.【点评】本题考查函数恒成立的最值问题及导数综合运用题,由于所给的不等式较为特殊,可借助赋值法得到相关的方程直接求解,本题解法关键是观察出不等式右边为零时的自变量的值,及极值的确定,将问题灵活转化是解题的关键.17.(4分)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.【分析】由题意求得=,||==,从而可得===,再利用二次函数的性质求得的最大值.【解答】解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为 2.【点评】本题主要考查两个向量的数量积的运算,求向量的模,利用二次函数的性质求函数的最大值,属于中档题.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(14分)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.【分析】(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.【解答】解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,∵sinB≠0,∴sinA=,又A为锐角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bc•cosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,∴bc=,又sinA=,则S△ABC=bcsinA=.【点评】此题考查了正弦定理,三角形的面积公式,熟练掌握正弦定理是解本题的关键.19.(14分)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,an;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.【分析】(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式an可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{an}的前11项大于等于0,后面的项小于0,所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|an|的和.【解答】解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,an=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,an=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以an=﹣n+11或an=4n+6;(Ⅱ)设数列{an}的前n项和为Sn,因为d<0,由(Ⅰ)得d=﹣1,an=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|an|=﹣Sn+2S11=.综上所述,|a1|+|a2|+|a3|+…+|an|=.【点评】本题考查了等差数列、等比数列的基本概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.20.(15分)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若G是PC的中点,求DG与平面PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.【分析】(Ⅰ)由PA⊥面ABCD,可得PA⊥BD;设AC与BD的交点为O,则由条件可得BD是AC的中垂线,故O为AC的中点,且BD⊥AC.再利用直线和平面垂直的判定定理证得BD⊥面PAC.(Ⅱ)由三角形的中位线性质以及条件证明∠DGO为DG与平面PAC所成的角,求出GO 和AC的值,可得OC、OD的值,再利用直角三角形中的边角关系求得tan∠DGO的值.(Ⅲ)先证 PC⊥OG,且 PC==.由△COG∽△CAP,可得,解得GC 的值,可得PG=PC﹣GC 的值,从而求得的值.【解答】解:(Ⅰ)证明:∵在四棱锥P﹣ABCD中,PA⊥面ABCD,∴PA⊥BD.∵AB=BC=2,AD=CD=,设AC与BD的交点为O,则BD是AC的中垂线,故O为AC的中点,且BD⊥AC.而PA∩AC=A,∴BD⊥面PAC.(Ⅱ)若G是PC的中点,O为AC的中点,则GO平行且等于PA,故由PA⊥面ABCD,可得GO⊥面ABCD,∴GO⊥OD,故OD⊥平面PAC,故∠DGO为DG与平面PAC所成的角.由题意可得,GO=PA=.△ABC中,由余弦定理可得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+4﹣2×2×2×cos120°=12,∴AC=2,OC=.∵直角三角形COD中,OD==2,∴直角三角形GOD中,tan∠DGO==.(Ⅲ)若G满足PC⊥面BGD,∵OG⊂平面BGD,∴PC⊥OG,且 PC==.由△COG∽△CPA,可得,即,解得GC=,∴PG=PC﹣GC=﹣=,∴==.【点评】本题主要考查直线和平面垂直的判定定理的应用,求直线和平面所成的角,空间距离的求法,属于中档题.21.(15分)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.【分析】(Ⅰ)求导函数,确定切线的斜率,求出切点的坐标,即可求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)分类讨论,利用导数确定函数的单调性,从而可得极值,即可得到最值.【解答】解:(Ⅰ)当a=1时,f′(x)=6x2﹣12x+6,所以f′(2)=6∵f(2)=4,∴曲线y=f(x)在点(2,f(2))处的切线方程为y=6x﹣8;(Ⅱ)记g(a)为f(x)在闭区间[0,|2a|]上的最小值.f′(x)=6x2﹣6(a+1)x+6a=6(x﹣1)(x﹣a)令f′(x)=0,得到x1=1,x2=a当a>1时,x 0 (0,1)1 (1,a)a (a,2a)2af′(x)+ 0 ﹣0 +f(x)0 单调递增极大值3a﹣1单调递减极小值a2(3﹣a)单调递增4a3比较f(0)=0和f(a)=a2(3﹣a)的大小可得g(a)=;当a<﹣1时,X 0 (0,1) 1 (1,﹣2a)﹣2a f′x)﹣0 +f(x)0 单调递减极小值3a﹣1 单调递增﹣28a3﹣24a2∴g(a)=3a﹣1∴f(x)在闭区间[0,|2a|]上的最小值为g(a)=.【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的最值,考查学生的计算能力,考查分类讨论的数学思想,属于中档题.22.(14分)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N 两点,求|MN|的最小值.【分析】(I)由抛物线的几何性质及题设条件焦点F(0,1)可直接求得p,确定出抛物线的开口方向,写出它的标准方程;(II)由题意,可A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,将直线方程与(I)中所求得方程联立,再结合弦长公式用所引入的参数表示出|MN|,根据所得的形式作出判断,即可求得最小值.【解答】解:(I)由题意可设抛物线C的方程为x2=2py(p>0)则=1,解得p=2,故抛物线C的方程为x2=4y(II)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,由消去y,整理得x2﹣4kx﹣4=0,所以x1+x2=4k,x1x2=﹣4,从而有|x1﹣x2|==4,由解得点M的横坐标为xM===,同理可得点N的横坐标为xN=,所以|MN|=|xM﹣xN|=|﹣|=8||=,令4k﹣3=t,t≠0,则k=,当t>0时,|MN|=2>2,当t<0时,|MN|=2=2≥.综上所述,当t=﹣,即k=﹣时,|MN|的最小值是.【点评】本题主要考查抛物线的几何性质,直线与抛物线的位置关系,同时考查解析几何的基本思想方法和运算求解能力,本题考查了数形结合的思想及转化的思想,将问题恰当的化归可以大大降低题目的难度,如本题最后求最值时引入变量t,就起到了简化计算的作用.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

高考数学压轴考试文科试题

高考数学压轴考试文科试题

高考压轴考试文科数学试题本套试卷分第一卷(选择题)和第二卷〔非选择题〕两局部.第一卷50分,第二卷100分,卷面一共计150分,时间是120分钟.第一卷〔选择题 一共50分〕一、选择题:此题一共有10个小题,每一小题5分,一共50分;在每一小题给出的四个选项里面只有一项是哪一项正确的1.集合A 、B ,全集∪,给出以下四个命题⑴假设A B ⊆,那么A B B =; ⑵假设A B B =,那么A B B =;⑶假设()a AC B ∈,那么a A ∈; ⑷假设()a C A B ∈,那么()a A B ∈那么上述正确命题的个数为A .1B .2C .3D .42.设非零向量a 、b 、c ,假设a b c p abc=++,那么p 的取值范围为A .[0,1]B .[0,2]C .[0,3]D .[1,2]3.设等差数列{}n a 的前n 项和为n S ,当1a 、d 变化时,假设4688()a a a +++1012(a a +1416)a a ++是一个定值,那么以下各数中也为定值的是A .7SB .8SC .13SD .15S4.设1(1,)2OM =,(0,1)ON =,那么满足条件01OP OM ≤⋅≤,01OP ON ≤⋅≤的动点P 的变化范围〔图中阴影局部含边界〕是A B C D 5.在斜三角形ABC 中,sin cos cos A B C =-且tan tan 1B C =-A 的值是A .6π B .3πC .23πD .56π6.设两个非零向量12,e e 不一共线,假设12ke e +与12e ke +也不一共线,那么实数k 的取值范围为A .(,)-∞+∞B .(,1)(1,)-∞-⋃-+∞C .(,1)(1,)-∞⋃+∞D .(,1)(1,1)(1,)-∞-⋃-⋃+∞7.设A 、B 、C 、D 是半径为2的球面上四个不同的点,且满足0AB AC ⋅=,0AD AC ⋅=,0AB AD ⋅=,那么ABC ABD ACD S S S ∆∆∆++的最大值为A .16B .8C .4D .2 8.由方程||||1x x y y +=确定的函数()y f x =在R 上是A .奇函数B .偶函数C .增函数D .减函数9.函数2()()(,)f x x ax b a bR =+∈在2x =时有极值,其图象在点(1,(1))f 处的切线与直线30x y +=平行,那么函数()f x 的单调减区间为A .〔-∞,0〕B .〔0,2〕C .〔2,+∞〕D .〔-∞,+∞〕10.定义在R 上的函数()f x 对任意的x 都有(3)()3f x f x +≤+和(2)()2f x f x +≥+且(1)1f =,那么(2008)f 的值是A .2021B .2006C .2021D .2021第二卷〔非选择题 一共100分〕二、填空题:本大题一一共5小题,每一小题5分,一共25分.把答案填在题中横线上. 11.分别把写有0,1,2,3,4数字的四张纸片放入一盒中,每次取一张记数字为m ,放回后再取一张记数字为n ,设P 〔m,n 〕为平面中的点,那么点22(,){(,)|916144}P m n x y x y ∈+≤的概率为_________12.在102)1)(1(x x x -++的展开式中,含4x 的系数为 . 13.假设1111111111112612203042567290110132156a =+++++++++++,且sin a θ=,([0,])2πθ∈,那么tan 2θ= .14.一个公司有N 个员工,下设一些部门,现采用分层抽样方法从全体员工中抽取一个容量为n的样本〔N 是n 的倍数〕,某部门被抽取m 个员工,那么这个部门的员工数为 . 15.如右图,在杨辉三角形中,从上往下数一共有n(n ∈N *)行,在这些数中非1的数字之和为三、解答题:本大题一一共6小题,一共75分,解答题应写出文字说明、证明过程或者演算步骤。

高考压轴卷文科数学试卷一

高考压轴卷文科数学试卷一

一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数$f(x)=ax^2+bx+c$的图象开口向上,对称轴为$x=1$,且过点$(0,1)$,则$a$、$b$、$c$的值分别为()A. $1, -2, 1$B. $1, 2, 1$C. $-1, 2, 1$D. $-1, -2, 1$2. 在三角形ABC中,AB=AC,角BAC=60°,点D、E分别在BC、AC上,且BD=BE,则角AED的度数为()A. 30°B. 45°C. 60°D. 90°3. 设集合A={x|x≥-1},集合B={x|x≤2},则集合A与集合B的交集为()A. {x|x≤-1}B. {x|x≤2}C. {x|-1≤x≤2}D. 空集4. 已知函数$f(x)=x^3-3x+2$,若存在实数$x_0$,使得$f(x_0)=0$,则$x_0$的取值范围是()A. $(-\infty, 1)$B. $(1, +\infty)$C. $(-\infty, 0)$D. $(0,+\infty)$5. 下列各数中,不是有理数的是()A. $\sqrt{2}$B. $\frac{1}{3}$C. $-1.234$D. $0.1010010001...$6. 已知数列$\{a_n\}$满足$a_1=1$,$a_{n+1}=a_n+2n$,则数列$\{a_n\}$的前$n$项和$S_n$为()A. $n^2-n$B. $n^2+n$C. $n^2-2n$D. $n^2+2n$7. 已知向量$\vec{a}=(2,3)$,$\vec{b}=(1,4)$,则$\vec{a}\cdot\vec{b}$的值为()A. 10B. 15C. 20D. 258. 在平面直角坐标系中,点P的坐标为$(3,4)$,点Q在直线$x+y=5$上,且$\angle PQO=90°$,则点Q的坐标为()A. $(1,4)$B. $(2,3)$C. $(4,1)$D. $(5,0)$9. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$a_1+a_2+a_3=9$,$a_1+a_4+a_5=15$,则数列$\{a_n\}$的公差为()A. 1B. 2C. 3D. 410. 已知函数$f(x)=\frac{1}{x^2-1}$,则函数$f(x)$的对称中心为()A. $(1,0)$B. $(-1,0)$C. $(0,1)$D. $(0,-1)$11. 在等腰三角形ABC中,AB=AC,角BAC=120°,则角B的度数为()A. 30°B. 45°C. 60°D. 75°12. 已知数列$\{a_n\}$满足$a_1=2$,$a_{n+1}=2a_n-1$,则数列$\{a_n\}$的通项公式为()A. $a_n=2^n-1$B. $a_n=2^n+1$C. $a_n=2^n-2$D. $a_n=2^n+2$二、填空题(本大题共8小题,每小题5分,共40分)13. 若函数$f(x)=ax^2+bx+c$的图象开口向上,对称轴为$x=1$,且过点$(0,1)$,则$a$、$b$、$c$的值分别为______。

【高三】2021年5月高考数学文科压轴试卷(含答案福建)

【高三】2021年5月高考数学文科压轴试卷(含答案福建)

【高三】2021年5月高考数学文科压轴试卷(含答案福建)福建省2021届高考压轴卷数学(文学)试题(2022年5月24日)科试题参考公式:锥体体积公式,其中为底面面积,为高第一卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果已知函数的定义字段为,则(***)a.b.c.d.2.如果,则以下不等式成立(****)a.b.c.d.3.如果函数是函数的逆函数,则的值为(***)a.b.c.d.4.设置a,β是两个不同的平面,直线La,那么“l?β”是“a”吗?β已确定(***)a.充分不必要条件b.必要不充分条件c.充要条件d.既不充分也不必要条件5.要获得函数的图像,只需输入函数的图像(****)a.向左平移1个单位b.向右平移1个单位c、按单位向左移动D.按单位向右移动6.已知变量x,y满足约束条件则z=x+y的最大值为(****)a、 3b。

4c。

5d。

六7.已知函数,则是(****)a、非奇函数和非偶函数,以及(0,+∞)b.奇函数,且在上单调递增c、非奇函数和非偶函数,以及(0,+∞)d.偶函数,且在上单调递减8.在右边的程序框图中,输入,根据程序运行后的输出结果为(***)a.3b.4c.5d.69.如果双曲线和直线之间没有交点,则偏心率的取值范围(****)a.b.c.d.10.如果它是一个内点,并且一个豆子随机分散,那么这个豆子落入的概率是(****) a.b.c.d.11.如图所示,矩形的一侧在轴上,其他两个顶点在函数上的图象上.若点的坐标为注意矩形的周长为,则(****)a、 208b。

216c。

212d。

二百二十12.已知表示大于的最小整数,例如.下列命题① 函数的取值范围为;② 如果它是一个算术序列,那么它也是一个算术序列;③若是等比数列,则也是等比数列;④若,则方程有3个根.正确答案是(***)a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(门头沟一模20.) (本小题满分14分)已知数列}{n a 的前n 项和为n S ,11=a ,满足下列条件①0≠∈∀n a N n ,*;②点),(n n n S a P 在函数22xx x f +=)(的图象上;(I )求数列}{n a 的通项n a 及前n 项和n S ; (II )求证:10121<-≤+++||||n n n n P P P P .解:(I )由题意 22nn n a a S +=……2分,当2≥n 时2212121---+-+=-=n n n n n n n a a a a S S a整理得0111=--+--))((n n n n a a a a ……5分,又0≠∈∀n a N n ,*,所以01=+-n n a a 或011=---n n a a01=+-n n a a 时,11=a ,11-=-n n a a ,得11--=n n a )(,211n n S )(--=……7分011=---n n a a 时,11=a ,11=--n n a a ,得n a n =,22nn S n +=……9分(II )证明:01=+-n n a a 时,))(,)((21111nn n P ----,5121==+++||||n n n n P P P P ,所以0121=-+++||||n n n n P P P P…11分,011=---n n a a 时,),(22nn n P n +,22121)(||++=++n P P n n ,2111)(||++=+n P P n n 222222121112*********)()()()()()(||||++++++--++=++-++=-+++n n n n n n P P P P n n n n 22112132)()(++++++=n n n 13分,因为11122122+>+++>++n n n n )(,)(所以1112132022<++++++<)()(n n n ,综上10121<-≤+++||||n n n n P P P P……14分.2.(2011年高考20.)(本小题共13分)若数列12:,,,(2)n n A a a a n ⋅⋅⋅≥满足11(1,2,,1)k k a a k n +-==⋅⋅⋅-,则称n A 为E 数列,记12()n n S A a a a =++⋅⋅⋅+. (Ⅰ)写出一个E 数列A 5满足130a a ==;(Ⅱ)若112a =,n=2000,证明:E 数列n A 是递增数列的充要条件是n a =2011;(Ⅲ)在14a =的E 数列n A 中,求使得()n S A =0成立得n 的最小值.解:(Ⅰ)0,1,0,1,0是一具满足条件的E 数列A 5.(答案不唯一,0,—1,0,1,0;0,±1,0,1,2;0,±1,0,—1,—2;0,±1,0,—1,—2,0,±1,0,—1,0都是满足条件的E 的数列A 5) (Ⅱ)必要性:因为E 数列A 5是递增数列,所以)1999,,2,1(11Λ==-+k a a k k . 所以A 5是首项为12,公差为1的等差数列.所以a 2000=12+(2000—1)×1=2011. 充分性,由于a 2000—a 1000≤1,a 2000—a 1000≤1,……a 2—a 1≤1所以a 2000—a t ≤19999,即a 2000≤a 1+1999.又因为a 1=12,a 2000=2011,所以a 2000=a 1+1999. 故n n n A k a a 即),1999,,2,1(011Λ=>=-+是递增数列.综上,结论得证. (Ⅲ)对首项为4的E 数列A k ,由于,3112=-≥a a ,2123≥-≥a a …….3175-≥-≥a a ……所以)8,,3,2(021ΛΛ=>+++k a a a k ,所以对任意的首项为4的E 数列A m ,若,0)(=m A S 则必有9≥n .又41=a 的E 数列,0)(4,3,2,1,0,1,2,3,4:11=----A S A 满足所以n 是最小值是9.3.(2012年高考,20)(本小题共13分)设A 是如下形式的2行3满足性质:,,,,,[1,1]P a b c d e f ∈-,且0a b c d e f +++++=。

记()i r A 为A 的第i 行各数之和(1,2)i =,()j c A 为第j 列各数之和(1,2,3)j =;记()k A 为1|()|r A ,2|()|r A ,1|()|c A ,2|()|c A ,3|()|c A 中的最小值。

(Ⅰ)对如下数表A ,求()k A 的值(Ⅱ)设数表A 形如其中10d -≤≤。

求()k A 的最大值;(Ⅲ)对所有满足性质P 的2行3列的数表A ,求()k A 的最大值4(海淀一模20. )(本小题满分13分)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为 “一阶比增函数”.(Ⅰ) 若2()f x ax ax =+是“一阶比增函数”,求实数a 的取值范围;(Ⅱ) 若()f x 是“一阶比增函数”,求证:12,(0,)x x ∀∈+∞,1212()()()f x f x f x x +<+; (Ⅲ)若()f x 是“一阶比增函数”,且()f x 有零点,求证:()2013f x >有解.解:(I )由题2()f x ax axy ax a x x+===+在(0,)+∞是增函数,由一次函数性质知当0a >时,y ax a =+在(0,)+∞上是增函数,所以0a > ………………3分 (Ⅱ)因为()f x 是“一阶比增函数”,即()f x x在(0,)+∞上是增函数,又12,(0,)x x ∀∈+∞,有112x x x <+,212x x x <+ 所以112112()()f x f x x x x x +<+, 212212()()f x f x x x x x +<+ ………………5分 所以112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+所以11221212121212()()()()()x f x x x f x x f x f x f x x x x x x +++<+=+++ 所以1212()()()f x f x f x x +<+…8分(Ⅲ)设0()0f x =,其中00x >.因为()f x 是“一阶比增函数”,所以当0x x >时,00()()0f x f x x x >= 法一:取(0,)t ∈+∞,满足()0f t >,记()f t m =由(Ⅱ)知(2)2f t m >,同理(4)2(2)4f t f t m >>,(8)2(4)8f t f t m >> 所以一定存在*n ∈N ,使得(2)22013n n f t m >⋅>,所以()2013f x > 一定有解 ………………13分 法二:取(0,)t ∈+∞,满足()0f t >,记()f t k t= 因为当x t >时,()()f x f t k x t>=,所以()f x kx >对x t >成立 只要 2013x k>,则有()2013f x kx >>,所以()2013f x > 一定有解5.(朝阳二模20)(本小题满分13分)已知实数12,,,n x x x L (n *∈N 且2n ≥)满足||1i x ≤ ()1,2,,i n =⋅⋅⋅,记121(,,,)n i j i j nS x x x x x ≤<≤=∑L .(Ⅰ)求2(1,1,)3S --及(1,1,1,1)S --的值; (Ⅱ)当3n =时,求123(,,)S x x x 的最小值; (Ⅲ)当n 为奇数时,求12(,,,)n S x x x L 的最小值. 注:1i j i j nx x ≤<≤∑表示12,,,n x x x L 中任意两个数i x ,j x (1i j n ≤<≤)的乘积之和.解:(Ⅰ)由已知得222(1,1,)11333S --=-+-=-.(1,1,1,1)1111112S --=----+=-…3分 (Ⅱ)3n =时,12312132313(,,)i j i j S S x x x x x x x x x x x ≤<≤===++∑.固定23,x x ,仅让1x 变动,那么S 是1x 的一次函数或常函数,因此2323min{(1,,),(1,,)}S S x x S x x ≥-. 同理2333(1,,)min{(1,1,),(1,1,)}S x x S x S x ≥-.2333(1,,)min{(1,1,),(1,1,)}S x x S x S x -≥---.以此类推,我们可以看出,S 的最小值必定可以被某一组取值1±的123,,x x x 所达到,于是12311,2,3min{(,,)}k x k S S x x x =±=≥.当1k x =±(1,2,3k =)时,22221231231[()()]2S x x x x x x =++-++212313()22x x x =++-.因为123||1x x x ++≥,所以13122S ≥-=-,且当121x x ==,31x =-,时1S =-,因此min 1S =-.…7分(Ⅲ)121(,,,)n i j i j nS S x x x x x ≤<≤==∑L 121312321n n n n x x x x x x x x x x x x -=++++++++L L L .固定23,,,n x x x L ,仅让1x 变动,那么S 是1x 的一次函数或常函数, 因此2323min{(1,,,,),(1,,,,)}n n S S x x x S x x x ≥-L L .同理2333(1,,,,)min{(1,1,,,),(1,1,,,)}n n n S x x x S x x S x x ≥-L L L .2333(1,,,,)min{(1,1,,,),(1,1,,,)}n n n S x x x S x x S x x -≥---L L L .以此类推,我们可以看出,S 的最小值必定可以被某一组取值1±的12,,,n x x x L 所达到,于是1211,2,,min {(,,,)}k n x k nS S x x x =±=≥L L .当1k x =±(1,2,,k n =L )时,222212121[()()]2n n S x x x x x x =+++-+++L L 2121()22n n x x x =+++-L .当n 为奇数时,因为12||1n x x x +++≥L , 所以1(1)2S n ≥--,另一方面,若取12121n x x x -====L , 1112221n n n x x x --++====-L ,那么1(1)2S n =--,因此min 1(1)2S n =--.…………………………………………………………13分6.(朝阳一模,20)(本小题满分13分)由1,2,3,4,5,6,7,8,9,10按任意顺序组成的没有重复数字的数组,记为1210(,,,)x x x τ=L ,设1011()|23|k k k S x x τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值; (Ⅱ)求证:()55S τ≥; (Ⅲ)求()S τ的最大值.(注:对任意,a b ∈R ,a b a b a b -≤±≤+都成立.) 解:(Ⅰ)1011()|23|7654321012857kk k S xx τ+==-=+++++++++=∑.………3分(Ⅱ)证明:由a b a b +≥+及其推广可得,12231011()232323S x x x x x x τ=-+-++-L 121023112()3()x x x x x x ≥+++-+++L L=121010(110)552x x x ++++==L . ……………………………7分 (Ⅲ)10,9,8,7,6,5,4,3,2,1的2倍与3倍共20个数如下:20,18,16,14,12,10,8,6,4,2,30,27,24,21,18,15,12,9,6,3其中最大数之和与最小数之和的差为20372131-=,所以()131S τ≤, 对于0(1,5,6,7,2,8,3,9,4,10)τ=,0()131S τ=,所以()S τ的最大值为131. ……………………………………………………13分注:使得()S τ取得最大值的有序数组中,只要保证数字1,2,3,4互不相邻,数字7,8,9,10也互不相邻,而数字5和6既不在7,8,9,10之一的后面,又不在1,2,3,4之一的前面都符合要求. 7.(大兴一模20.)(13分)(2013•大兴区一模)已知数列{a n }的各项均为正整数,且a 1<a 2<…<a n ,设集合A k ={x|x=λi a i ,λi =﹣1或λi =0,或λi =1}(1≤k≤n ).性质1:若对于∀x ∈A k ,存在唯一一组λi ,(i=1,2,…,k )使x=λi a i 成立,则称数列{a n }为完备数列,当k取最大值时称数列{a n }为k 阶完备数列. 性质2:若记m k =a i (1≤k≤n ),且对于任意|x|≤m k ,k ∈Z ,都有x ∈A K 成立,则称数列P{a n }为完整数列,当k 取最大值时称数列{a n }为k 阶完整数列.性质3:若数列{a n }同时具有性质1及性质2,则称此数列{a n }为完美数列,当K 取最大值时{a n }称为K 阶完美数列;(Ⅰ)若数列{a n }的通项公式为a n =2n ﹣1,求集合A 2,并指出{a n }分别为几阶完备数列,几阶完整数列,几阶完美数列;(Ⅱ)若数列{a n }的通项公式为a n =10n ﹣1,求证:数列{a n }为n 阶完备数列,并求出集合A n 中所有元素的和S n . (Ⅲ)若数列{a n }为n 阶完美数列,试写出集合A n ,并求数列{a n }通项公式解:(Ⅰ)}4,3,2,1,0,1,2,3,4{2----=A ;}{n a 为2阶完备数列,n 阶完整数列,2阶完美数列; (Ⅱ)若对于∈∀x n A ,假设存在2组i λ及i μ(n i ,2,1Λ=)使∑==ni ii ax 1λ成立,则有1220112201101010101010--+++=+++n n n n μμμλλλΛΛ,即10)(10)(10)(1122011=-++-+--n n n μλμλμλΛ,其中}1,0,1{,-∈i i μλ,必有n n μλμλμλ===Λ2211,,所以仅存在唯一一组i λ(n i ,2,1Λ=)使∑==ni i i a x 1λ成立,即数列}{n a 为n 阶完备数列;0=n S ,对∈∀x n A ,∑==ni i i a x 1λ,则∑∑==-=-=-ni i i n i i i a a x 11)(λλ,因为}1,0,1{-∈i λ,则}1,0,1{-∈-i λ,所以n A x ∈-,即0=n S(Ⅲ)若存在n 阶完美数列,则由性质1易知n A 中必有n3个元素,由(Ⅱ)知n A 中元素成对出现(互为相反数),且n A ∈0,又}{n a 具有性质2,则n A 中n3个元素必为31333331{,,1,0,1,,}2222n n n n n A ----=---L L ,n m 213-=n 。

相关文档
最新文档