矩阵论矩阵分解汇总PPT课件
第五章 矩阵分解64页PPT文档
(1)首先解线性方程组 LyPb,可得 y L1Pb .
(2) 接着计算原方程组的解x U1y,即 求解方程组 Ux y 。
例 5.1.5 例 5.1.6 例 5.1.7
定理5.2.1 设 zCn是单位列向量,则对
C n 中的任意向量x,都存在Householder矩
阵使得
Hxz,其中
x
,且
2
x H z为实
数。
例 5.2.1 例 5.2.2
5.2.2 矩阵的QR分解
下面我们探讨如何利用Householder变 换将矩阵化为上三角矩阵。我们以n=3的 情形开始讨论 .
即 xˆ a1是 Axr1的精确解,从而达到改进 解的目的。当然很可能还存在误差,得到
的是 aˆ 1 ,而不是 a 1 。此时设r 2b A x ˆ a ˆ1,
解线性方程组 Axr2,得到 aˆ 2 ,将 Axb的 解改进为 xˆaˆ1aˆ2 。
如此继续下去,可以证明,只要cond(A) 不是太大,序列 x ˆ,x ˆa ˆ1,x ˆa ˆ1a ˆ2, 最终会收 敛到 Axb 的解,通常只需迭代几步就可 以得到很精确的解。
3
2
此时
l1 v1 w1
H1A 0 v2 w2
0
v3
w3
接下来可构造H使得
H
v v
2 3
l2 0
其中
l2
v v
2 3
令
H2
最新第二章矩阵分解4-矩阵的奇异值分解PPT课件
定义2.20 设 ACnn,若存在酉矩阵P,使得 PHAPB
,则A称酉相似于B.
性质1 若A是n阶实对称矩阵,i(i1,2, ,n)是的特征值,则
恒存在正交阵Q,使得Q A d( i1 Q ,a 2 , g ,n ) 而且Q的n个列向量是的一个完备的标准正交特征向量系。
性质2 若 ARnn,是非奇异矩阵,则存在正交阵P和Q,
工程审计是以基建项目为标的,以会计师、审计师、 造价师为主要从业人员。
二、工程审计分类
三、工程造价审计和竣工财 务决算审计
工程造价审计:对单项、单位工程的造价进行审核, 其审计过程与施工单位的结算编制过程基本相同,即 按照工程量套定额(工程量清单报价)。一般由造价 工程师完成。
竣工财务决算审计:除工程造价审计外,对其他工程 建设支出比如前期开发费用、工程管理杂费等所有支 出加在一起,审查其是否有不合理支出,是否有挤占 建设成本和计划外建设项目的现象等,来确定一个建 设项目的总造价。由注册会计师完成。
六、项目前期的审计
具体对象是建设单位上报文件和有权机关审批文件的形 式与内容,重点审计五个方面:
投资决策审计
勘察设计审计
建设准备情况审计 招标投标审计 经济合同审计
建设程序中,前期阶 段重要性在审计执行 时同样适用。
6.1、投资决策审计
重点审计项目建议书、可行性研究报告编制与审批的 程序是否合规,有无先报批后论证的现象;
抵等价类中的任一矩阵A,奇异值分解 AUDVT 中的
矩阵都是相同的,D称为正交相抵等价类中的标准形矩阵。
复旦大学上海视觉艺术 学院
实训中心工程审计
经验交流学习讨论
目录
审计的基本概念和相关知识 工程审计的主要内容 本项目的审计问题和说明回复介绍 策略、经验和总结
2024年度矩阵分析课件精品PPT
2024/3/24
6
矩阵性质总结
01
结合律
02
交换律
03 分配律
04
数乘结合律
数乘分配律
05
2024/3/24
(A+B)+C=A+(B+C),(AB)C=A(BC)。 A+B=B+A,但AB≠BA。 (A+B)C=AC+BC,C(A+B)=CA+CB。 λ(μA)=(λμ)A,(λ+μ)A=λA+μA。 λ(A+B)=λA+λB。
12
03
线性方程组与矩阵解法
2024/3/24
13
线性方程组表示形式
80%
一般形式
Ax = b,其中A为系数矩阵,x为 未知数列向量,b为常数列向量 。
100%
增广矩阵形式
[A|b],将系数矩阵A和常数列向 量b合并为一个增广矩阵。
80%
向量形式
x = Ab,表示通过矩阵A的逆求 解未知数列向量x。
04
典型例题解析
10
秩及其求法
2024/3/24
01
矩阵秩的定义与性质
02
利用初等变换求矩阵秩的方法
03
利用向量组的极大无关组求矩阵秩的方法
04
典型例题解析
11
典型例题解析
01 02 03 04
2024/3/24
初等变换与初等矩阵相关例题 矩阵等价性判断相关例题 秩及其求法相关例题 综合应用相关例题
矩阵分析课件精品PPT
2024/3/24
1
目
CONTENCT
录
2024/3/24
• 矩阵基本概念与性质 • 矩阵变换与等价性 • 线性方程组与矩阵解法 • 特征值与特征向量 • 相似对角化与二次型 • 矩阵函数与微分方程求解
矩阵分解ppt课件
1 0 0 01 0 0 01 0 2 1
1 2
1 1
0 1
0 0 0 0
2 0
0 1
0 0 0 0
1 0
1 1
2 L~DU~ 1
1
2 1
2
1
0
0
0
5 0
0
0
1
Department of Mathematics
Department of Mathematics
7
思 路
通过比较法直接导出 L ~和 U 的计算公式。
a11 a12 a1n 1
u11 u12 u1n
Aa21
a22
a2nl21
1
u22 u2n
an1 an2 ann ln1 1
L 为一般下三角阵而 U~为单位上三角阵的分解称
为L ~C为rou单t 位分下解三。角阵而 U为一般上三角阵的分解
称为Doolittle分解
证明: AL~U 设: AL ~U
L ~ (li) jn n ,(lij 0 ,ij)
U (u i) jn n ,(u ij 0 ,ij)
1 2 4 5l21 l22 0 00 1 u23 u24
2 1 6 5 1 2 2 8
ll43
1 1
l32 l42
l33 l43
00 l440
0 0
1 0
u134
Department of Mathematics
10
由此: l11 1, l21 1, l31 2, l41 1
2 1 6 5 2 1 1 00 0 1 1 1 2 2 8 1 2 2 50 0 0 1
《矩阵的分解》课件
高斯消元法
基本思想:通过行变换将矩阵 化为上三角矩阵或对角矩阵
步骤:选择主元素、消元、回 代
应用:求解线性方程组、求逆 矩阵、求特征值和特征向量
优点:计算量小,易于实现, 适用于稀疏矩阵和带状矩阵
迭代法
迭代法的基本思想:通过不断迭代, 逐步逼近目标解
迭代法的应用:在矩阵分解、数值 优化、图像处理等领域有广泛应用
U:上三角矩阵,对角线以上元素为0
LDU分解的应用:求解线性方程组、计算矩阵的逆矩阵等
平方根分解
平方根分解的定义:将矩阵分解为 两个矩阵的乘积,其中一个矩阵是 单位矩阵,另一个矩阵是矩阵的平 方根。
平方根分解的应用:平方根分解在 数值计算、线性代数、优化等领域 有着广泛的应用。
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
迭代法的步骤:设定初始值,计算 迭代函数,更新迭代值,直到满足 停止条件
迭代法的优缺点:优点是简单易实 现,缺点是收敛速度慢,容易陷入 局部最优解
共轭梯度法
共轭梯度法是一种求解线性方程组的迭代方法 共轭梯度法的基本思想是利用共轭梯度方向进行迭代 共轭梯度法的优点是收敛速度快,稳定性好 共轭梯度法的缺点是计算量大,需要存储大量的中间结果
a. 选取一组向量 b. 计算向量组的内积 c. 计算向量组的正交化向量 d. 重复步骤b和c,直到所有向量都正交
优点: a. 简单易行 b. 适用于任意维数的向量组
a. 简单易行 b. 适用于任意维数的向量组
应用: a. 矩阵的正交分解 b. 线性代数的其他领域
a. 矩阵的正交分解 b. 线性代数的其他领域
添加标题
添加标题
矩阵的标准型分解课件
满秩分解法是将一个矩阵分解为一个或多个秩为1的矩阵的乘 积的方法。通过这种方法,可以将一个复杂的矩阵问题转化 为多个简单的问题,便于分析和计算。满秩分解在数值分析 、线性代数等领域有广泛应用。
约当标准型分解法
总结词
将矩阵通过一系列行变换和列变换化为 约当型,得到标准型分解。
VS
ቤተ መጻሕፍቲ ባይዱ
详细描述
约当标准型分解法是将一个矩阵通过一系 列行变换和列变换化为约当型的方法。约 当型是一种特殊形式的矩阵,其特点是每 一对角线上的元素都是非零的,且其他位 置上的元素都为零。约当标准型分解在解 决线性方程组、判断矩阵是否可逆等问题 中有广泛应用。
应用广泛
在许多领域中,如线性代 数、数值分析、控制论等 ,标准型分解都发挥着重 要的作用。
矩阵标准型分解的历史背景
早期研究
矩阵的标准型分解思想可 以追溯到19世纪末,当时 数学家开始研究矩阵的分 解问题。
关键进展
20世纪初,数学家如埃尔 米特、嘉当和克莱因等做 出了重要贡献,推动了标 准型分解理论的发展。
各个元素。
三阶矩阵的标准型分解实例
总结词
通过三阶矩阵的实例,进一步展示标准型分 解的复杂性和计算技巧。
详细描述
选取一个三阶矩阵B,对其进行一系列初等 行变换和初等列变换,将其化为标准型矩阵 。在变换过程中,详细解释每一行变换的步 骤和计算方法,以及如何得到标准型矩阵的
各个元素。
高阶矩阵的标准型分解实例
性质
标准型分解具有唯一性,即对于同一个矩阵,其标准型分解是唯一的。此外, 标准型分解还具有可交换性,即矩阵的乘法运算和标准型分解的顺序可以交换 。
矩阵标准型分解的重要性
01
02
矩阵论矩阵的分解演示文稿
PiPj 0 i j
s
Pi I
i1
LU分解:AFnn, 有下三角形矩阵L ,上 三角形矩阵U ,使得A=LU。
LDV分解:AFnn, L、V分别是主对角线 元素为1的下三角形和上三角形矩阵,D为 对角矩阵,使得A=LDV。
已知的方法:Gauss-消元法
例题1 (P.61eg1)设
2 2 3
A
4
7
7
求A的LU和LDV分解。 2 4 5
矩阵论矩阵的分解 演示文稿
矩阵分解的概述
矩阵的分解:
A=A1+A2+…+Ak 矩阵的和
A=A1A2 …Am
矩阵的乘积
矩阵分解的原则与意义: 理论上的需要
实际应用的需要
计算上的需要
显示原矩阵的某些特性
矩阵化简的方法与矩阵技术
主要技巧:
各种标准形的理论和计算方法
矩阵的分块
§3.1 常见的矩阵标准形与分解
二、矩阵的满秩分解
列 定义3.2 (P.66 ) 行满秩 满 对秩为r 的矩阵AFmn ,如果存在秩为r的矩阵 秩 B Fmr,CFrn ,则A=BC为A 的满秩分解。
定理3.2:任何非零矩阵AFmn都有满秩分解。
满秩分解的求法:
方法1: 方法2
例题1( P.68, eg4 )
• 方法建立 的思想 • 方法实现的途径
2 、Schur 分解
定理3.7(P.74 )对矩阵ACnn,存在酉矩
阵U和上三角矩阵T,使得
UHAU=T=
1
2
证明要点:
n
➢A=PJ AP–1 ,
➢P=UR
➢A= PJ AP–1 =U(RJR–1 )UH =UTUH。
7矩阵分解
§5.1 求解线性方程组的 矩阵分解方法
1
上页 下页 返回 结束
§5.1求解线性方程组的矩阵分解方法 Made by QQIR
一、利用矩阵的三角分解求线性方程组的解
2
上页 下页 返回 结束
§5.1求解线性方程组的矩阵分解方法 Made by QQIR
14
上页 下页 返回 结束
10
上页 下页 返回 结束
§5.1求解线性方程组的矩阵分解方法 Made by QQIR
11
上页 下页 返回 结束
§5.1求解线性方程组的矩阵分解方法 Made by QQIR
12
上页 下页 返回 结束
§5.1求解线性方程组的矩阵分解方法 Made by QQIR
13
上页 下页 返回 结束
§5.1求解线性方程组的矩阵分解方法 Made by QQIR
二、利用矩阵的正交三角分解求矛盾方程的最 小二乘解
7
上页 下页 返回 结束
§5.1求解线性方程组的矩阵分解方法 Made by QQIR
8
上页 下页 返回 结束
§5.
上页 下页 返回 结束
§5.1求解线性方程组的矩阵分解方法 Made by QQIR
3
上页 下页 返回 结束
§5.1求解线性方程组的矩阵分解方法 Made by QQIR
4
上页 下页 返回 结束
§5.1求解线性方程组的矩阵分解方法 Made by QQIR
5
上页 下页 返回 结束
§5.1求解线性方程组的矩阵分解方法 Made by QQIR
6
上页 下页 返回 结束
§5.1求解线性方程组的矩阵分解方法 Made by QQIR
矩阵论-谱分解
i 1
i 1
6)因为E j =U j UHj ,由上节引理知r(E j )=r(U j )=n j.
r
r
r
r
: AAH j E j ( j E jH ) i i Ei EiH i i Ei
j 1
j 1
i 1
i 1
r
且AH A i i Ei , i 1
所以AAH =AH A.
正规矩阵谱分解步骤:
第五节 谱分解
1.正规矩阵的谱分解
设A是正规矩阵,则U Unn , 满足:A=Udiag{1, ,n}UH ,
若令U=(1, ,n ),则
A=(1,
,n )diag{1,
,n
}
1H
H 2
111H
H n
n
n
H n
(1)
其中
i是矩阵A的特征值i所对应的单位特征向量,i
H是
i
n阶矩阵.(1)式称为A的谱分解.由于i可能是重根,所以上式
任取z V1 V2,有z Ex, Ez ,这里为原点对应的向量. 则 =Ez=E2x Ex z,所以V1 V2 ={},
x Cn,有x=Ex+(I-E)x,其中Ex V1,(I-E)x V2, 所以Cn =V1 V2.
=(1,
0,
1),
2
=
(0,
1 5
,
2 5
),
3
=(0,
2 5
,
1 5
)
1
1 0 1
则E1
=11
=
0
(1,
0,
1)=
0
0
0
0
0 0 0
0
2 5
矩阵论矩阵的分解 ppt课件
结论:如果矩阵A能用两行互换以外的 初等行变换 化为阶梯形,则A有LU分解。
三角分解的存在性和惟一性
定理3.1 (P.62) :
• 矩阵的k 阶主子式:取矩阵的前k行、前k列得到 的行列式,k=1,2, … ,n。
• 定理: AFnn有惟一LDV分解的充要条件是A的顺 序主子式Ak非零,k =1,2,…,n-1。
LU分解:AFnn, 有下三角形矩阵L ,上 三角形矩阵U ,使得A=LU。
LDV分解:AFnn, L、V分别是主对角线 元素为1的下三角形和上三角形矩阵,D为 对角矩阵,使得A=LDV。
已知的方法:Gauss-消元法
例题1 (P.61eg1)设
2 2 3
A
4
7
7
求A的LU和LDV分解。 2 4 5
2 、Schur 分解
定理3.7(P.74 )对矩阵ACnn,存在酉矩
阵U和上三角矩阵T,使得 UHAU=T=
1
2
证明要点:
n
➢A=PJ AP–1 ,
➢P=UR
➢A= PJ AP–1 =U(RJR–1 )UH =UTUH。
二、正规矩阵(Normal Matrices)
1、 定义3.3(P.77 )A是正规矩阵 AHA=AAH。 常见的正规矩阵:
对角矩阵 对称和反对称矩阵:AT=A,AT=–A。 Hermite矩阵和反Hermite矩阵:AH=A,AH=–A 正交矩阵和酉矩阵:ATA=AAT=I,AHA=AAH=I。
例题1 (P.78,eg 10)设A为正规矩阵,B酉相似于A,
证明B也是正规矩阵。
正规是酉相似的不变性质
例题2、AFmn,矩阵AHA 和矩阵AAH是正规矩阵。
在内积空间中讨论问题,涉及:
矩阵论简明教程整理全PPT课件
k
ei
e
H j
E ei , ej , k
第45页/共188页
Remark
det E u,v, det In uvH det 1 vHu
1 vHu (由n Im AB m In BA 得到)
第46页/共188页
四、其他特殊矩阵
1幂零矩阵:Ak 0, k : 某正整数; 2幂等矩阵:A2 A; 3 实对称正定矩阵:
a a jn 1 j1 2 j2
anjn
j1 j2 jn
第13页/共188页
二、块矩阵的行列式
1、设A Cmm , B Cmn , C Cnm , D Cnn , 则
1 A
0A
BA
0 AD
0D 0D CD
2 A B 1mn C D 1mn B A
CD
AB
DC
3 A B m A B
minrank A, rank B
第30页/共188页
推论1
设ACmn , B Cnk ,且AB 0,则
rank A rank B n
第31页/共188页
§1.4 特殊矩阵
一、 几类基本的特殊矩阵
1、零矩阵,单位矩阵 2、对角矩阵
a11
D
a22
diag
a11
,
a22
,
ann
第50页/共188页
§2.1 矩阵的特征值与特征向量
一、特征值与特征向量 1、定义 定义1
设ACnn ,若存在数 C和x Cn , x 0使得 Ax x
则称是A的特征值,x称为A属于的特征向量。
第51页/共188页
2、特征多项式 定义2
设ACnn , 称In A为A的特征矩阵,称detIn A 为A的特征多项式,称detIn A 0为A的特征方程。
矩阵理论课件-第二章 矩阵的分解
故xH AH Ax=xH x= 2 xH x,因为AH A=I,所以 2 =1.
(因为xH x= x 2 0)
:由条件UHAU=diag{1, , n}共轭转秩得UHAHU=
diag{1,
, n},所以UHAAT U=diag{ 1 2 ,
,
n
2
}=I
,
n
所以AAT =In .
注1:设A Cnn ,则
Cmr r
,
C
Ir
D
Crn r
.
下设A的前r个列向量线性相关,只需先做列变换,变成
线性无关,
因此存在P
Cmmm,Q
Cnn n
,
满足
PAQ=
Ir 0
D 0
或A=P-1
Ir 0
D 0
Q-1
=P-1
Ir 0
I
r
=BC
D Q-1
其中B=P-1
Ir 0
Cmr r
,C
Ir
D
讨论知AH x1, , AH xp为AH A属于i 0的特征向量,只要证明
AH x1, , AH xp线性无关,就证明了AAH的p重特征值也是AH A 的p重特征值.
下证AH x1, , AH xp线性无关.
设k1AH x1
k p AH xp 0.则( AH x1,
,
AH
xp
)
k1
0
kp
H
=
1 2
11,可知|I-A|无重根,
A为单纯矩阵,但AAH AH A.
推论1:A为正规矩阵,当且仅当A有n个特征向量构成Cn的一组 标基,且A的不同特征值的特征向量正交.
推论2:设A R nn ,则
矩阵论-正规矩阵及Schur分解
证明::由条件AH A=AAH ,由Schur引理, 酉阵U,使UH AU=K (上三角阵),即A=UKUH ,因此 AH A UKH UH UKUH UKH KUH AAH UKUH UKH UH UKKH UH 所以KH K=KKH ,因为K为上三角阵,经分析可得K为对角阵.
第二节 正规矩阵及Schur分解
定理1(Schur引理)设A Cnn ,则存在酉矩阵U,使得
U
H
AU=
1
*
,
0
n
即任一复方阵相似于一个上三角阵,其对角元
为A的特征值.
(实方阵Schur引理)设A Rnn ,且A的特征值均为实数
则存在正交矩阵Q,使得
QT
AQ=Q-1AQ=
1
*
,
0
n
-1 , 3
i, 3
1 )T 3
1 i -1
2
6
3
-1 0 0
令U=(1,2
,3
)=
0
1
2 6 i
i 3 1
,
则U是酉矩阵,且U
H
AU=
0 0
-1 0
0
2
2 6 3
故xH AH Ax=xH x= 2 xH x,因为AH A=I,所以 2 =1.
(因为xH x= x 2 0)
:由条件UHAU=diag{1, , n}共轭转秩得UHAHU=
diag{1,
, n},所以UHAAT U=diag{ 1 2 ,
,
n
2
}=I
,
n
所以AAT =In .
注1:设A Cnn ,则
第四章 矩阵分解
矩阵分析第四章 矩阵分解§4.1: 矩阵的满秩分解 §4.2: 矩阵的正交三角分解 §4.3: 矩阵的奇异值分解 §4.4: 矩阵的极分解 §4.5: 矩阵的谱分解矩阵分解前言矩阵分解定义: 将一个已知矩阵表示为另一些较为简单或 较为熟悉的矩阵的积(或和)的过程称为矩阵分解. 例:(1)对任意n阶正规矩阵A,存在酉阵U∈Un×n使 A=Udiag(λ1,…,λn)U*, 其中λ1,…,λn为A的所有特征值的任一排列. (2)对任意n阶正定矩阵A,存在可逆阵Q∈Cnn×n使A=Q*Q,或存 在唯一正定阵B使A=BB. 矩阵分解意义:有利于研究已知的矩阵. 例如,利用正定阵A的平方根B为正定阵可证: 对任意Hermite阵H,AH或HA都有实特征值.1( AH∼(A1/2)-1AHA1/2=A1/2HA1/2∈Hn×n )2初等变换与初等矩阵(p73)三类初等变换: (行(列)变换←→左(右)乘) (1)将矩阵A的两行互换等价于用第一类初等矩阵P(i,j)左 乘A; (2)将矩阵A的第i行乘以k≠0等价于用第二类初等矩阵 P(i(k))=diag(1,…,1,k,1,…,1)左乘A. (3)将矩阵A的第j行乘以k≠0后再加到第i行等价于左乘第 三类初等矩阵P(i,j(k)).P (i , j ) =⎛1 ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 1 1 1 0 1 1初等变换与初等矩阵举例⎛1 ⎞⎛ 1 4 7 ⎞ ⎛ 1 4 7 ⎞ ⎜ 0 1 ⎟⎜ 2 5 8 ⎟ = ⎜ 3 6 9 ⎟ ; ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 1 0 ⎟⎜ 3 6 9 ⎟ ⎜ 2 5 8 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛1 4 7⎞⎛1 ⎞ ⎛ 1 7 4⎞ ⎜ 2 5 8⎟⎜ 0 1⎟ = ⎜ 2 8 5⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 3 6 9⎟⎜ 1 0⎟ ⎜ 3 9 6⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎛1 ⎞⎛1 4 7⎞ ⎛ 1 4 7 ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ 0.2 ⎟ ⎜ 2 5 8 ⎟ = ⎜ 0.4 1 1.6 ⎟ ; ⎜ ⎜ 1⎟⎜ 3 6 9 ⎟ ⎜ 3 6 9 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎛1 4 7⎞⎛1 ⎞ ⎛ 1 4 7 / 9⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 2 5 8⎟⎜ 1 ⎟ = ⎜ 2 5 8/9⎟ ⎜ 3 6 9⎟⎜ 1/ 9 ⎟ ⎜ 3 6 1 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠---- i ---- j⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ 1⎠P (i , j ( k )) =⎛1 ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝1k 1⎞ ⎟ ⎟ ⎟ ---⎟ ⎟ ⎟ ---⎟ ⎟ ⎟ 1⎠i j3⎛1 ⎞⎛ 1 2 3⎞ ⎛ 1 2 3 ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ −4 1 ⎟ ⎜ 4 5 6 ⎟ = ⎜ 0 −3 −6 ⎟ ; ⎜ 1⎟⎜ 7 8 9⎟ ⎜ 7 8 9 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠−3 ⎞ ⎛ 1 2 0 ⎞ ⎛ 1 2 3⎞⎛1 ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 4 5 6⎟⎜ 1 ⎟ = ⎜ 4 5 −6 ⎟ ⎜7 8 9⎟⎜ 1 ⎟ ⎜ 7 8 −12 ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠4初等变换与初等矩阵的性质3类初等矩阵都是可逆的(行列式不为0). 将A依次作初等矩阵P1,…,Pr对应的行(列)初等变换等价 于左(右)乘A以可逆矩阵Pr…P1(P1…Pr). 可适当选第一类初等矩阵的乘积P使PA(AP)的行(列)是A 的行(列)的任意排列; 可适当选第三类初等矩阵 P(i,j(k))中的k使P(i,j(k))A的(i,j)元变为0; 可适当选第二类初等矩阵P(i(k))中的k使P(i(k))A的非 零(i,i)元变为1. 存在初等矩阵的乘积P和Q,使PAQ= ,其中r=rankA.初等变换与初等矩阵的性质续命题:设A∈Crm×n前r列线性无关,则用初等行变换可把A变为⎛ Er ⎜ ⎝ 0 ⎛1 ⎜ ⎜ D⎞ ⎜ = ⎜ ⎟ 0 ⎠ ⎜ ⎜ ⎜ ⎜ ⎝ 1 1 * * * * *⎞ ⎟ *⎟ *⎟ ⎟ *⎟ ⎟ ⎟ ⎟ ⎠一般地,∀A∈Crm×n都存在m,n阶可逆阵P和Q使PAQ=5证:因前r列线性无关,故用第一类初等矩阵左乘可使A的 (1,1)元≠0. 再用第二类初等矩阵左乘可使a11=1; 最后用若干第三类初等矩阵左乘可使A的第一列=e1. 因前2列线性无关,故新的第2列与e1线性无关且≠0, 故用第一类行变换可使(2,2)元≠0,…可使A的第2列=e2. ….可使A的第r列=er.此时空白处必为0元.安徽大学 章权兵1矩阵分析§4.1: 矩阵的满秩分解⎛ 1 ⎜ A = ⎜ −2 ⎜ 0 ⎝ 0 0 0 0⎞ ⎛1 ⎟ ⎜ 1 ⎟ , 没 有 P ∈ C 33 × 3 使 P A = ⎜ ⎟ ⎜ 0⎠ ⎝0 0 0 0⎞⎛1 ⎟⎜ 1⎟⎜0 0⎟⎜0 ⎠⎝ 0 0 1 0⎞ ⎛ 1 ⎟ ⎜ 1 ⎟ = ⎜ −2 0⎟ ⎜ 0 ⎠ ⎝ 0 1 0 0⎞ ⎟ 0⎟ 0⎟ ⎠1⎞ ⎟ ⎟. 0⎟ ⎠定义:对任意矩阵A∈Crm×n,A=BC 称为A的一个满秩分 解,如果B∈Crm×r,C∈Crr×n. 例:⎛1 ⎜ ⎜1 ⎜0 ⎝ 1 2 1 2 3 1 3 ⎞ ⎛1 ⎟ ⎜ 2 ⎟ = ⎜1 − 1⎟ ⎜ 0 ⎠ ⎝ 1⎞ ⎟⎛ 1 2 ⎟⎜ ⎜0 1 ⎟⎝ ⎠ ⎛1 4 ⎞ ⎜ ⎟ = ⎜1 ⎟ 1 1 − 1⎠ ⎜ ⎝0 0 1 2⎞ ⎟⎛ 1 3 ⎟⎜ ⎜0 1 ⎟⎝ ⎠ −1 0 1 1 5 ⎞ ⎟ − 1⎟ ⎠⎛ 1 ⎜ A P ( 2, 3) = ⎜ − 2 ⎜ 0 ⎝⎛ 1 0 0 ⎞ ⎛ 1 0 0 ⎞ ⎛ 1 0.5 0 ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ PAQ = P (2,1(0.5)) AP (2, 3) = ⎜ 0.5 1 0 ⎟ ⎜ −2 1 0 ⎟ = ⎜ 0 1 0 ⎟ ⎜ 0 0 1⎟⎜ 0 0 0⎟ ⎜ 0 0 0⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠m=3,n=4,r=2. 注:可能存在不仅是常数差别的两个实质不同的满 秩分解.矩阵满秩分解的存在定理定理4.1.1:任意矩阵A∈Crm×n,都有满秩分解: A=BC,B∈Crm×r,C∈Crr×n. 证:由初等矩阵性质知: 存在可逆阵P∈Cmm×m和Q∈Cnn×n,使 PAQ= 从而 A⎛ Er ⎜ ⎜ 0 ⎝ 0 ⎞ ⎛ Er ⎟=⎜ 0⎟ ⎜ 0 ⎠ ⎝ ⎛ Er ⎞ -1 ⎜ ⎟ ( E r =P ⎝ 0 ⎠ ⎞ ⎟ ⎟ (E r ⎠ 0)存在定理中矩阵B,C的决定对于A的前r列线性无关的情形:⎛E PA = ⎜ r ⎝ 0 D ⎞ ⎛ Er ⎞ = (Er 0 ⎟ ⎜ 0 ⎟ ⎠ ⎝ ⎠ D)⎛E A = P −1 ⎜ r ⎝ 0D⎞ Er ⎞ −1 ⎛ ⎟= P ⎜ ⎟ (Er 0 ⎠ ⎝ 0 ⎠D ) = BC其中0)⎛E ⎞ B = P −1 ⎜ r ⎟ ; C = ( Er ⎝0⎠D)Q-10)= BC,⎛ 其中B=P-1 ⎜Er ⎞ ⎜ 0 ⎟ ,C= ⎟ ⎝ ⎠(ErQ-1满足所要求的条件.C是PA的前r行(即所有非0行)组成的矩阵, B和C的秩显然都是r.10矩阵B的进一步决定对于A的前r列线性无关的情形: 要求PA的前r列化为(Er,0)T,故有 B=P-1(Er,0)T ⇒ PB=(Er,0)T=PA1, 其中,A1为A前r列组成的子矩阵,由此推出B=A1. (参看P.183-184定理的证明及例4.1.1,例4.1.2) 对下例,A的第1,3两列也线性无关. 令A1为A第1,3两列组成的子矩阵,并将A的第1,3 两列化为(E2,0)T,C为所得矩阵的前2行. 则不难看出也有 A=BC和B=A1.求矩阵满秩分解的初等变换方法再以A= ⎜ 1 ⎜⎛1 1 2 3 ⎞ ⎟ 2 3 2 ⎟ 为例作说明如下: ⎜ 0 1 1 −1⎟ ⎝ ⎠①用初等行变换把A前两列变为(E2 0)T⎛1 1 2 3 ⎞ ⎛1 1 2 3 ⎞ ⎛1 0 1 4 ⎞ ⎛1 1⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛1 0 1 4 ⎞ ⎜ 1 2 3 2 ⎟ → ⎜ 0 1 1 −1 ⎟ → ⎜ 0 1 1 −1⎟ = ⎜ 1 2 ⎟ ⎜ 0 1 1 −1⎟ ⎠ ⎜ 0 1 1 −1 ⎟ ⎜ 0 1 1 −1 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ a1 a2 ②用初等行变换把A的1,3两列变为(E2 0)T ⎛1 1 2 3 ⎞ ⎛1 1 2 ⎜ ⎟ ⎜ ⎜1 2 3 2 ⎟ → ⎜0 1 1 ⎜ 0 1 1 −1 ⎟ ⎜ 0 1 1 ⎝ ⎠ ⎝ 3 ⎞ ⎛ 1 −1 0 5 ⎞ ⎛ 1 2 ⎞ ⎟ ⎜ ⎟ ⎜ ⎟ ⎛ 1 −1 0 5 ⎞ −1 ⎟ → ⎜ 0 1 1 − 1 ⎟ = ⎜ 1 3 ⎟ ⎜ ⎟ 0 1 1 −1 ⎠ −1 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠a1 a3安徽大学 章权兵2矩阵分析关于矩阵满秩分解的注矩阵满秩分解不唯一;但同一矩阵的两个满秩分 解的因式矩阵之间存在密切关系(见定理4.1.2). A∈Crm×n ⇒ r=rank A ≤ min{m,n} A的秩等于它的行秩,列秩或行列式秩. A的行(列)秩是它的行(列)最大线性无关组的行 (列)数;A的行列式秩是其非0子式的最大阶数. A=BC ⇒ rank A≤rank B 且 rank A≤rank C rank A=rank A*13引理4.3.1引理4.3.1:对任意矩阵A∈Crm×n有 rank(AA*)=rank(A*A)=rank A*=rank A=r. 证:因方程组Ax=0的解空间维数等于n-rank A, (*) 故为了证明 rank(A*A)=rank A 只须证明下列两个方程组有相同的解空间即可 Ax=0 ⑴ ⑵ A*Ax=0 显然,x满足⑴ ⇒ x满足⑵. x满足⑵ ⇒ x*A*Ax=0,即(Ax,Ax)=0 ⇒ Ax=0,即x满足⑴. 注:利用A的任意性以A*代A由(*)得 rank A=rank A*=rank((A*)*A*)=rank(AA*)同一矩阵两个满秩分解间的关系定理4.1.2:若A=BC=B1C1均为A∈Crm×n 的满秩分解, 则存在θ∈Crr×r,使得B=B1θ,C=θ-1C1. 证:若A=BC=B1C1,则BCC*=B1C1C*. 由p.190引理4.3.1知:rank(CC*)=rank C=r, 从而 CC*∈Crr×r为可逆矩阵,且满足B=B1C1C*(CC*)-1. 由上式推出r≥rank(C1C*)≥rank B=r,即rank(C1C*)=r. 进而 θ=C1C*(CC*)-1∈Crr×r,满足B=B1θ. 同理可证 C=(B*B)-1B*B1C1=θ′C1,θ′∈Crr×r. 因此,BC=B1C1 ⇒ B1θθ′C1=B1C1 ⇒ B1*B1θθ′C1C1* = B1*B1C1C1* 引理4.3.1 ⇒ θθ′=E ⇒ θ′=θ-1定理4.1.2的补充命题:设A=B1C1为A∈Crm×n的满秩分解, 则A=BC是A的满秩分解,当且仅当 ∃θ∈Crr×r, B=B1θ,C=θ-1C1. 证: 必要性由定理4.1.2给出. 充分性. 若存在θ使(*)成立,则B,C给出A的满秩分解: BC=B1C1=A. (*)§4.2: 矩阵的正交三角分解满秩矩阵的分解 行(列)满秩矩阵的分解 一般矩阵的分解满秩矩阵的正交三角分解定理4.2.1:∀A∈Cnn×n都可唯一地分解为A=UR(或A=LU),其中 U∈Un×n,R(L)为正线上(或下)三角矩阵. 证:(存在性)令A=(α1, … ,αn),则α1, … ,αn线性无关, 用Schmidt方法从α1, … ,αn得标准正交组ν1,…,νn满足⎧ ⎪ ⎪ ⎨ ⎪ ⎪α ⎩α 1 = C 11ν 11αn2= C 21ν1+ C 22 ν22∀i,Cii=‖βi‖>0n= C n 1ν+ Cn2ν+ ... + C nn νC 21 C 22于是其中,U=(ν1,…,νn)为酉矩阵,R为正线上三角矩阵.⎛ C 11 ⎜ A= (α 1 ,..., α n ) = (ν 1 ,..., ν n ) ⎜ ⎜ ⎜ ⎜ ⎝C n1 ⎞ ⎟ C n2 ⎟ ⎟ ⎟ C nn ⎟ ⎠=UR,安徽大学 章权兵3矩阵分析β1=α1 , β2=α2-((α2,β1)/(β1,β1))β1 , β3=α3-((α3,β1)/(β1,β1))β1-((α3,β2)/(β2,β2))β2 , . . . νi=(1/‖βi‖)βi, βi=‖βi‖νi, i=1,2,… α1=β1=‖β1‖ν1; C11=‖β1‖>0 α2=((α2,β1)/(β1,β1))β1+β2=C21ν1+‖β2‖ν2;C22=‖β2‖>0正交三角分解唯一性证明定理4.2.1:∀A∈Cnn×n都可唯一地分解为A=UR(或A=LU), 其中U∈Un×n,R(L)为正线上三角矩阵. (唯一性) 设还有U′∈Un×n和正线上三角矩阵R′使A=U′R′. 则有 UR=U′R′ ⇒ U′*U = R′R-1 = W 矩阵 W=U′*U∈Un×n,且W=R′R-1 仍然是正线上三角矩阵. (正线上三角阵的逆和积仍是正线上三角阵) 于是,由p.162的引理3.9.1知 W=E. 即 (U′)*U=R′R-1=E. 由此式立即推出:U=U′E=U′ & R′=ER=R. 得证唯一性.α3=C31ν1+C32ν2+‖β3‖ν3; . . .C33=‖β3‖>0正交三角分解下三角情形的证明定理4.2.1:∀A∈Cnn×n都可唯一地分解为A=LU,其中 U∈Un×n,L为正线下三角矩阵. 证: ∀A∈Cnn×n ⇒ AT∈Cnn×n. 存在唯一的U′∈Un×n和正线上三角矩阵R,使AT=U′R. 于是A=(AT)T=(U′R)T=RTU′T=LU, 其中,U=U′T∈Un×n,L=RT为正线下三角矩阵.列(行)满秩矩阵的正交三角分解定理4.2.2:∀A∈Crm×r(Crr×n)都可唯一地分解为A=UR (A=LU), 其中U∈Urm×r(Urr×n),R(L)为r阶正上线(下)三角矩阵. (定理4.2.1为m=n=r时的特例) 证:(存在性)令A=(α1, … ,αr),则α1, … ,αr线性无关, 用Schmidt方法求得标正组ν1,…,νr满足⎧ ⎪ ⎪ ⎨ ⎪ ⎪α ⎩αr2α 1 = C 1 1ν 1 = C 2 1ν 1 + C 2 2ν22∀i,Cii>0.r= C r 1ν 1 + C r 2ν+ . . . + C r rν因此A=UR,其中U=(ν1,…,νr)∈Urm×r, R=⎛ C 11 ⎜ ⎜ ⎜ ⎜ ⎝C 21 C 22C r1 ⎞ ⎟ Cr2 ⎟ ⎟ ⎟ C rr ⎠定理4.2.2唯一性证明定理4.2.2: ∀A∈Crm×r都可唯一地分解为A=UR,其中 U∈Urm×r,R为r阶正线上三角矩阵. (唯一性) 设还有U′∈Urm×r和正线上三角矩阵R′∈Cr×r 使A=U′R′. 则有 R*R=A*A=(R′)*R′, 于是由定理3.9.1⑹,A*A是正定Hermite矩阵. 故A*A可唯一地表示为乘积R*R,其中R为正线上三角阵. 因此必有R=R′. 进而,由UR=U′R′给出U=U′,得证唯一性.一般矩阵的正交三角分解定理4.2.3:∀A∈Crm×n可分解为A=U1R1L2U2,其中U1∈Urm×r, U2∈Urr×n,R1和L2分别为r阶正线上三角和下三角矩阵. 证:由矩阵的满秩分解知: 存在列满秩矩阵B和行满秩矩阵C使A=BC. 存在U1∈Urm×r和r阶正上线上三角矩阵R1使得B=U1R1. 存在r阶正线下三角矩阵L2和U2∈Urr×n使得C=L2U2. 从而A=U1R1L2U2满足条件.安徽大学 章权兵4矩阵分析用UR(LU)分解方法解方程组例4.2.1:用UR(LU)方法解方程组 Ax=b (*) − 2 ⎞ 1 ⎛ 1 ⎞ 其中 ⎛ − 3 ⎜ ⎟ ⎜ ⎟⎜ 1 A = ⎜ 1 ⎜ ⎜ 2 ⎝ 1 1 − 1 − 1 0 1 ⎟ ⎜ 0 ⎟, b = ⎜ 2 ⎟ ⎜ ⎟ ⎜ 1 ⎠ ⎝ ⎟ ⎟. ⎟ ⎟ ⎠§4.3: 矩阵的奇异值分解引理4.3.1:对任意矩阵A∈Crm×n有 rank(AA*)=rank(A*A)=rank A*=rank A=r. 引理4.3.2: ∀A∈Cm×n,AA*∈Cm×m 与 A*A∈Cn×n 均为 半正定Hermite矩阵. 证:由(A*A)*=A*A 和 ∀x∈Cn,x*A*Ax=(Ax,Ax)≥0 得证:A*A∈Cn×n 为半正定Hermite矩阵. 同理可证: AA*∈Cm×m 为半正定Hermite矩阵.解:令A=(α1,α2,α3),易见α1,α2,α3线性无关, 用Schmidt方法得标准正交组ν1,ν2,ν3如教本所示. 则A=UR,R为正线上三角矩阵,U=(ν1,ν2,ν3)∈U34×3 于是 R=U*A,代入(*)式得 URx=b ⇒ Rx=U*b ⇒ x=R-1U*b 最后求得 x=(-5/2,-1/2,3)T.AA*∈Cm×m与A*A∈Cn×n的特征值定理4.3.1: ∀A∈Cm×n, AA*∈Cm×m与A*A∈Cn×n的非零特 征值(正特征值)全同. 证法1:不难验证下列矩阵等式:⎛ AA* 0 ⎞⎛ Em A ⎞ ⎛ AA* ⎜ * ⎟⎜ ⎟=⎜ ⎜ A 0 ⎟⎜ En ⎟ ⎜ A* ⎠ ⎝ ⎝ ⎠⎝⎜ 因S= ⎜ ⎝ ⎛ Em定理4.3.1的另一证法证法2:设λ≠0是AA*的非零特征值: AA*x=λx, λ≠0,x≠0 则 A*x≠0, A*A(A*x)=λ(A*x) 所以λ也是A*A的非零特征值. 同理可证: A*A的任一非零特征值也是AA*的非零特征值.AA* A⎞ ⎛ Em A ⎞⎛ 0 ⎟=⎜ ⎟⎜ En ⎟⎜ A* A* A ⎟ ⎜ ⎠⎝ ⎠ ⎝0 ⎞ ⎟ A* A⎟ ⎠0 ⎞ −1 0 ⎞ ⎛ AA * 0 ⎞ A⎞ ⎛ 0 ⎛ 0 ⎟ = S⎜ * ⎜ ⎜ ⎟S ~ ⎜ * ⎜ ⎟ ⎟ * ⎟ * ⎟ En ⎟ 可逆,故 ⎜ A* 0 ⎟ ⎝ A A A⎠ ⎝ A A A⎠ ⎠ ⎠ ⎝ *)=0与det(λE-A*A)=0有相同非零解, 从而det(λE-AA得证AA*与A*A有相同的非零特征值.奇异值的概念定义4.3.1:∀A∈Crm×n,AA*∈Cm×m或A*A∈Cn×n 的正特征 值的算术平方根称为A的正奇异值(简称奇异值, 共有r个记为 α1,…,αr). 例:求A= ⎜ − 1 ⎜⎜ 0 ⎝ ⎛ 1 0⎞ ⎟ 1⎟∈ C 0⎟ ⎠3× 2 2正规矩阵的奇异值定理4.3.2:正规矩阵的奇异值是其非零特征值的模. 证:设A为正规矩阵,则有U∈Un×n使 A=Udiag(λ1, … ,λn)U* A*=Udiag(λ 1 ,..., λ n )U* 从而 AA*=Udiag(|λ1|2, … ,|λn|2)U* 得证A的正奇异值是A的非零特征值的模.的奇异值.解: A*A=⎜ −1 ⎜⎝⎛2−1⎞ ⎟ 1⎟ ⎠,det(λE-A)=λ2-3λ+1的两个根:(3±√5)/2 均为正, A的奇异值为:α1=((3+√5)/2)1/2;α2=((3-√5)/2)1/2. 例4.3.1:见P.191.安徽大学 章权兵5矩阵分析矩阵的酉等价关系定义:设A,B∈Cm×n,若有S∈Cmm×m,T∈Cnn×n 使B=SAT,则称B 与A等价;若有U∈Um×m,V∈Un×n使B=UAV,则称B与A酉等价. 不难证明Cm×n中的等价或酉等价关系R是等价关系. ∀A∈Cm×n,ARA:A=EmAEn (ARB⇒BRA): A=UBV⇒B=U*AV*,U*∈Um×m,V*∈Un×n (ARB & BRC⇒ARC):A=UBV & B=U′CV′⇒A=UU′CV′V 注1: A与B酉等价当且仅当它们有相同的奇异值. 注2: ∀A∈Cm×n的酉等价类中有一个最简单形状的矩阵 (见定理4.3.3). ( A∈Crm×n等价于diag(Er,0)=PAQ )奇异值分解定理1定理4.3.3:令α1,…,αr为A∈Crm×n的全部正奇异值; ∆=diag(α1,…,αr),则有U∈Um×m,V∈Un×n使 U*AV= ⎜ 0 ⎜⎛ ∆ 0⎞ ⎟ =D∈C m×n r 0⎟ ⎝ ⎠(*)U满足U*AA*U是对角矩阵,V满足V*A*AV是对角矩阵. ( A=UDV*称为A的奇异值分解式) 证: 因AA*为m阶半正定矩阵,故有U∈Um×m使⎛ ∆2 0⎞ ⎟ 0⎟ ⎝ ⎠ 分块U=(U1,U2),则U1∈Urm×r,U2∈Um-rm×(m-r)U*AA*U=diag(α12,…,αr2,0,…0)= ⎜ 0 ⎜对角阵 次酉阵奇异值分解定理1续⎛ ∆2 ⎜ ⎝ 0 ⎛ U1* ⎞ ⎛ U1* AA *U1 U1* AA *U 2 ⎞ 0 ⎞ ⎛ U1* ⎞ ⎟ ⎟ = ⎜ * ⎟ AA *(U1 , U 2 ) = ⎜ * ⎟ ( AA *U1 , AA *U 2 ) = ⎜ * * U2 ⎠ 0 ⎠ ⎝U 2 ⎠ ⎝ ⎝ U 2 AA *U1 U 2 AA *U 2 ⎠奇异值分解定理1续令 V1=(v1,…,vr),则v1,…,vr为标准正交组. 将此标正组扩大为Cn的标正基:v1,…,vr,vr+1,…,vn, 令V=(v1,…,vn)=(V1,V2)∈Un×n,其中V2=(vr+1,…,vn). 易见 0=V1*V2=∆-1U1*AV2 ⇒ U1*AV2=0 综合以上得⎛ U * AV U 1* AV2 ⎞ ⎛U * ⎞ ⎟ U * AV = ⎜ 1* ⎟ A(V1 , V2 ) = ⎜ 1* 1 ⎜ U AV U * AV ⎟ ⎜U ⎟ 2 2⎠ ⎝ 2 1 ⎝ 2⎠ ⎛ U * AA * U 1∆−1 =⎜ 1 ⎜ 0 ⎝ 0 ⎞ ⎛ ∆2 ∆−1 ⎟=⎜ 0⎟ ⎜ 0 ⎠ ⎝ 0⎞ ⎛ ∆ 0⎞ ⎟=⎜ ⎟ 0⎟ ⎜ 0 0⎟ ⎠ ⎠ ⎝比较(1,1)块得 ∆2=U1*AA*U1 比较(2,2)块得 0=U2*AA*U2=(U2*A)(U2*A)* ⇒ U2*A=0. ( ∀M∈Cm×n,MM*=0 ⇒ 0=tr(MM*)=Σ2 i,j|mij|⇒ ∀i,j,mij=0 ⇒ M=0 ) 令 V1=A*U1∆-1∈Cn×r 则 V1*V1=∆-1U1*AA*U1∆-1=∆-1∆2∆-1=E ⇒ V1∈Urn×r奇异值分解定理2定理4.3.4:令α1,…,αr为A∈Crm×n的全部正奇异值; ∆=diag(α1,…,αr),则有U1∈Urm×r,V1∈Urn×r 使 A=U1ΔV1 . 证:由定理4.3.3直接推出⎛∆ A = U ⎜ ⎜ 0 ⎝ 0 0 ⎞ ⎟V ⎟ ⎠*关于奇异值分解定理的注(1)定理4.3.3的证明同时给出了因子矩阵U,V的求法. (U(V)是使AA*(A*A)酉相似对角化的变换矩阵) (2)矩阵U,V的列分别是AA*,A*A的对应特征向量. 证: 只证U(类似可证V). U*AA*U=diag(λ1,…,λm),λi为AA*的特征值. 令 U=(u1,…,um), 则 (AA*u1,…,AA*um)=AA*(u1,…,um) =(u1,…,um)diag(λ1,…,λm) =(λ1u1,…,λmum) ⇒ ∀i,AA*ui=λiui A*A=VD*U*UDV*=Vdiag(λ1,…,λm)V* ⇒ ∀i,A*Avi=λivi= (U 1 , U2⎛∆ )⎜ ⎜ 0 ⎝0 0⎞ ⎛ V 1* ⎟⎜ * ⎟⎜ V ⎠⎝ 2⎞ ⎟ ⎟ ⎠⎛V * ⎞ = (U 1∆ , 0 )⎜ 1* ⎟ = U 1∆ V1* ⎜V ⎟ ⎝ 2⎠安徽大学 章权兵6矩阵分析奇异值分解例1例4.3.1: 求 A=⎛1 ⎜ ⎜0 ⎜0 ⎝ 2⎞ ⎟ 0⎟ 0⎟ ⎠奇异值分解例2例:求 A= 解: AA* =⎛1 ⎜ ⎜2 ⎝ 0 0 0⎞ ⎟ 0⎟ ⎠的奇异值分解式.的奇异值分解式.解: AA*=diag(5,0,0),σ(AA*)={5,0,0},Δ=(√5). U1∈U13×1是AA*对应于5的单位特征向量x=(1,0,0)T,U=E3. V1=A*U1∆-1= ⎜ ⎜⎛1 ⎝2 0 0 ⎛1⎞ 0 ⎞⎜ ⎟ ⎟⎜ 0 ⎟ ⎟ 0 ⎠⎜ ⎟ ⎝0⎠⎛1 ⎜ ⎜2 ⎝2⎞ * ⎟ 4 ⎟ ,σ(AA )={5,0},r=1,Δ=(√5). ⎠U1∈U12×1是AA*对应于5的单位特征向量x=(1/√5,2/√5)T V1=A*U1∆-1 = ⎜ 0⎜0 ⎝ ⎛1 ⎜ 2⎞ ⎟⎛ 0 ⎟⎜ ⎜ 0 ⎟⎝ ⎠1 5 2 5( )=1 51 5⎛1⎞ ⎜ ⎟ ⎜ 2⎟ ⎝ ⎠, V=1 5⎛1 ⎜ ⎜2 ⎝− 2⎞ ⎟ 1 ⎟ ⎠⎞ ⎟ ⎟ ⎠( )=1 51 5⎛1 ⎜ ⎜0 ⎜0 ⎝2⎞ ⎛1⎞ ⎟⎛ 1 ⎞ ⎜ ⎟ 0 ⎟⎜ ⎟ = ⎜ 0 ⎟ ⎜2⎟ 0 ⎟⎝ ⎠ ⎜ 0 ⎟ ⎠ ⎝ ⎠所以A的奇异值分解式是 A=UDV*= ⎜ 0 ⎜⎝0 ⎛1 ⎜ 0 1 0 0⎞⎛ 5 ⎜ 0⎟⎜ 0 ⎟ 1⎟⎜ 0 ⎠⎝ 0⎞ ⎟⎛ 0⎟⎜ 0⎟⎝ ⎠1 5 −2 5 1 2 5⎛1⎞ ⎞ ⎜ ⎟ ⎟ = ⎜0⎟ 5 ⎠ ⎜0⎟ ⎝ ⎠( 5 )(1 52 5)=U1∆ V 1*所以A的奇异值分解式是 ⎛ 15 * = ⎜ A = U1ΔV1 ⎜ 2 ⎝ 5⎞ ⎟( ⎟ ⎠5 ) (1, 0 , 0 )§4.4: 矩阵的极分解定义:令A∈Cn×n,A=HU或A=UH称为A的极分解式,如果 U∈Un×n,H∈Cn×n 是半正定Hermite矩阵. 特例: n=1时,由复数的指数表示式 a=ρeiθ 有 A=(a)=(ρ)(eiθ)=HU, H=(ρ)是半正定Hermite矩阵,U=(eiθ)是酉矩阵. 下面的定理证明: 矩阵的极分解式存在并且是唯一的.满秩方阵的极分解定理4.4.1: ∀A∈Cnn×n,存在U∈Un×n 和n阶正定Hermite矩阵 H1,H2 使 A=H1U (H12=AA*,即H1=√(AA*))或 A=UH2;并且这 样的分解式是唯一的. 证: 由定理3.9.1和定理3.9.4, 正定Hermite矩阵A*A存在唯一正定矩阵H2=(A*A)1/2. 令U=AH2-1, 则 U*U=(AH2-1)*AH2-1 =H2-1A*AH2-1=H2-1H22H2-1=E, 从而U∈Un×n使A=UH2;因H2可逆且唯一,故U也唯一. ( 另一半的证明: A=UH2=UH2U*U=H1U, H1=UH2U*为正定Hermite矩阵. AA*=H1UU*H1=H12 & H1为正定Hermite阵 ⇒ H1唯一. )非满秩方阵的极分解定理4.4.2: ∀A∈Crn×n,存在U∈Un×n和唯一n阶秩r半正定 Hermite矩阵H1,H2使A=H1U (H12=AA*,即H1=√(AA*)) 或 A=UH2 (即H2=√(A*A)). 证:存在性 由奇异值分解定理有U1,V∈Un×n使A=U1DV*, D=diag(α1,…,αr,0,…,0). 令H1=U1DU1*,H2=VDV*,U=U1V*,则H1,H2,U满足要求 A=U1DU1*U1V*=H1U; A=U1V*VDV*=UH2. 唯一性 若A=H1U,则AA*=H12 ⇒H1=(AA*)1/2唯一. 注:也可用上述方法证明定理4.4.1. 思考:定理4.4.2中U是否唯一? 不一定唯一! 没有U=AH2-1矩阵极分解的一个经典应用定理4.4.3: ∀A∈Cn×n 为正规矩阵当且仅当存在 U,U′∈Un×n和(同一个)n阶半正定Hermite矩阵H使 A=HU=U′H. 证:必要性 设A*A=AA*.由定理4.4.2,存在U∈Un×n和n 阶半正定Hermite矩阵H1,H′使A=H1U=UH′. 因此 H1=(AA*)1/2=(A*A)1/2 =H′. (AA*=H1UU*H1=(H1)2,A*A=H′U*UH′=(H′)2) 充分性 设A=HU=U′H. 则 AA*=HU(HU)*=H2 , A*A=(U′H)*U′H=H2 =AA*安徽大学 章权兵7。
第九章 矩阵分解
第一节 矩阵的满秩分解 第二节 矩阵的正交三角分解 第三节 矩阵的奇异值分解 第四节 矩阵的谱分解
2013-12-02
1
第一节 矩阵的满秩分解
满秩分解的基本思想
存在非奇异矩阵 P 和 Q 化矩阵 A 成为标准型,即
PAQ
=
0
0
0
1
取P−1的前两列为B , 取Q−1的前两行为 C
2013-12-02
则得 A 的一种满秩分解
1 A = BC = 2
1
−101
1 0
2 3
0 1
−03
2013-12-02
1
第二节 矩阵的正交三角分解
定理1 设A则∈可C以nn×n唯, 一A分解为 =A U= R 或 A RU1 其中U(,酉U1阵∈)U n是×n 正线上,三R 角矩阵, R1是正线下三角矩阵(主对角线上元素均为正)。
= (b) 因为,BC有 B= 1C1 B*BC B*B1C1
= 所以 C (= B*B)−1 B*B1C1 R2C1
(2)
其中 R2 = (B*B)−1 B*B1
2013-12-02
1
所= 以 BC B= 1R1 R2C1 B1C1
所以 B1*B1R1 R2C1C1* = B1*B1C1C1* (3)
0
为 A的奇异值矩阵。
2013-12-02
1
定理4:对于秩为 r 的复矩阵 Am×n , 必有 m 阶酉 矩阵U 及 n 阶酉矩阵V 使得 U *AV = S 。
这里S是 A 的奇异值矩阵。
证明:设 A的非零奇异值为 σ1,σ 2,,σ r , 则
σ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
5
例1.试用Doolittle分解求解方程组 .
2 5 6 x1 10
4
13
19x2
19
Байду номын сангаас
6 3 6 x3 30
1 2 5 6
解: A2 1
3 7LU
3 4 1
4
.
6
(1)解Ly b
1
y1 10
2
1
y2
19
3 4 1 y3 30
得 y(10,1,4)T
如果限定R的对角元全正, 则QR分解是唯一的。
.
29
Householder变换求QR分解
我们先介绍Householder变换的性质 如何利用Householder变换求矩阵的QR分解
.
23
0 1 0 1 1 求A=0 2 0 1 1的满秩分解
0 3 0 2 2
0 1 0 1 1 0 1 0 1 1 解:A0 0 0 3 3 0 0 0 1 1
0 0 0 5 5 0 0 0 0 0
.
24
0 1 0 0 0 0 0 0 1 1
0 0 0 0 0
1
F
2
3
1
1
C232 ,
2
G0 0
1 0
0 0
0 1
01C225
A F G 为 满 秩 分 解
.
25
由 前 面 的 例 题 可 以 看 出 , 矩 阵 A的 满 秩 分 解 不 是 唯 一 的 。
若A=FG为满秩分解,P为任意r阶 可逆矩阵, 则A=(FP)(P-1G)=FG也是满秩分解
.
26
矩阵的QR分解
矩阵QR分解在求解最小二乘问题、特征值 问题等方面具有很重要的运用。
矩阵的分解汇总
.
1
目录
三角分解(LU分解) Cholesky分解 满秩分解 矩阵的QR分解 矩阵的奇异值分解 矩阵的谱分解
.
2
三角分解(LU分解)
矩阵的三角分解主要是用来解方程组Ax=b. 如果A=LU,其中L为下三角,U为上三角,
则方程组Ax=b等价于Ly=b,Ux=y.
.
3
若下三角矩阵L是单位下三角矩阵,称A= LU为Doolittle分解;
这 种 分 解 , 称 为 矩 阵 A 的 满 秩 分 解
.
9
求 矩 阵 A的 满 秩 分 解
1 2 1 0 1 2
A
1
2
2
1
3
3
2 4 3 1 4 5
4
8
6
2
8
1
0
解 ( 1 ) 将 矩 阵 [ A E ] 做 行 初 等 变 换 , ( 只 能 做 行 变 换 ) 目 标 是 将 A 的 前 r 行 线 性 无 关 , 后 面 的 行 为 零 行 。
若上三角矩阵U是单位上三角矩阵,称 A=LU为Crout分解
矩阵分解A=LDU,其中,L为单位下三角 矩阵,U为单位上三角矩阵。
.
4
Cholesky分解
A是实的对称正定矩阵(或者复Hermite正定 矩阵),
则存在唯一的下三角阵G,使得A=GGT,其 中,G的对角元全正。这种分解称为矩阵A 的Cholesky分解。
QR分解也叫正交三角分解。 本节我们介绍三种求QR分解的方法—
Schmidt正交化方法、Householder 变换法、 Givens变换法。
.
27
矩阵的正交三角分解(QR分解)
设ARnnn,则A可分解为: A=QR 其中,Q为正交阵,R为上三角阵。
.
28
A=(QD)(DR)=QR 其中,D为对角阵,对角元为1 A=(QD)(DR)=QR也是QR分解
.
10
1 2 1 0 1 2 1
[A E]=1 2 2 1 3 3 2 4 3 1 4 5
1
1
4 8 6 2 8 10
1
1 2 1 0 1 2 1
00
0 0
11 00
2 0
1 1 1 0 1 1
1
0 0 0 0 0 0 0 0 2 1
.
11
1 2 1 0 1 2 1
设A=0 0 1 1 2 1,P1 1
A
=
1
2
2
1
3
3
2 4 3 1 4 5
4
8
6
2
8
1
0
.
19
解 : 对 A 做 行 初 等 变 换 , 得 到
1 2 1 0 1 2
A 0
0
1
1
2
1
0 0 0 0 0 0
0
0
0
0
0
0
1 2 0 1 1 1
0 0 1 1
2
1
0 0 0 0 0 0
0 0 0 0
0
0
.
20
1
所以,F
.
7
(2) 解Ux y
2 5 6 x1 10
3
7
x2
1
4 x3 4
解 得 : x(3,2,1)T。
.
8
满秩分解
定 理 : 设 A C rm n , 则 存 在 F C rm r(列 满 秩 ), G C rr n , ( 行 满 秩 ) , 使 得 A F G
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 2 1
则 P A = A = G 0 A = P 1 G 0 FF 1 G 0 F G
.
12
1
而
P
1
1
1
,
2 1 1
4
2
2
1
.
13
1
F
1
2
4
0
1
,
1
2
G10
2 0
1 1
0 1
1 2
2 1
1
2
4
1
2 3
C
2
4
2
,
6
G1 0
2 0
0 1
1 1
211 1C226
A F G 为 所 求 的 满 秩 分 解
.
21
求 A=0 0
0 0
1 2
2 4
6 3的 满 秩 分 解
解:A00
0 0
1 0
2 0
3 0
.
22
F
1 2
C1
21
,
G 00123 C 1 1 5
A F G 为 满 秩 分 解
称 B为 H e rm ite 标 准 形 。
.
17
定 理 : 设 ACrmn,通 过 行 初 等 变 换 将 A 化 成 Hermite标 准 形 B,取 B的 前 r行 为 G, A的 j1,j2, ,jr列 构 成 F,则 AFG为 满 秩 分 解 。
.
18
例 求满秩分解
1 2 1 0 1 2
A F G 为 所 求 的 满 秩 分 解
.
14
在求矩阵的满秩分解的过程中,要求矩阵 的逆,这比较麻烦
我们将介绍矩阵的Hermit标准形,用它来求 矩阵的满秩分解比较方便。
.
15
矩阵的Hermite标准形
设 BCrmn,满 足 (1)B 的 前 r行 每 一 行 至 少 含 一 个 非 零 元 ,
且 第 一 个 非 零 元 是 1 (2)B 的 后 m-r行 都 是 零 行
.
16
(3)设B的第一行的第一个1元所在的列为j1列, 第二行的第一个1元所在的列为j2列 , 第r行的第一个1元所在的列为jr列,则 j1<j2< <jr
( 4 )j 1 , j 2 , , j r构 成 单 位 阵 的 前 r 列 ,