锂离子固相扩散系数
扩散系数
图2-3 (b)Li4Ti5O12膜中,电位从1.44V变化到1.46V并恒定过程中,电 流随时间变化的曲线 log i vs. t (◊——实验值,--拟和值)[3]
( 4 )电位弛豫法(Potential Relax Technique, PRT)
电ቤተ መጻሕፍቲ ባይዱ弛豫:在电池与外界无物质和能量交换的条件下研究
电极电势随时间的关系。一般是在恒流充(或放)到一定 容量下来测得。 电位弛豫技术的公式如公式(7)所示[4]
2 ln exp F 1 ln N - 2 DLi t d RT
(t L2 D )
(2-7)
其中,φ∞为平衡电极电位,φ为初始电位,R为气体常数(8.31 J· mol-1· K1),T温度,d为活性物质的厚度,D 为Li在电极中的扩散系数,t为电 Li 位达到平衡时的时间。
化学扩散系数:扩散过程伴随着固相反应,此时扩
散系数具有反应速度常数的含义,称为化学扩散系 数。
(例:O在Fe3O4中的扩散、Li在TiS2中的扩散等)
《固体离子学》工藤彻一、笛木和雄著,董治长译,北京工业大学出版社;
关于本节题目的说明:
为何是“锂”而不是“锂离子”?
从所查阅的文献来看,既有使用“锂离子”
2
(6)
其中,i为电流值,t为时间,△Q为嵌入电极的电量,DLi为Li 在电极中的扩散系数,d为活性物质的厚度。
[3] Journal of Solid State Chemistry 177(2004) 2094-2100
锂离子在LiVOPO_4中的扩散系数的测定
第32卷第1期吉首大学学报(自然科学版)Vol.32No .12011年1月Journ al of Ji shou Universit y (Nat ural Science Edit ion)J an.2011文章编号:1007-2985(2011)01-0085-03锂离子在LiVOPO 4中的扩散系数的测定*熊利芝1,梁凯2,何则强1,2(1.吉首大学生态旅游应用技术湖南省重点实验室,湖南吉首416000;2.吉首大学化学化工学院,湖南吉首416000)摘要:采用简单的恒电流法测定了锂离子在LiVOP O 4中的扩散系数.结果表明,充、放电过程中锂离子在LiVOP O 4电极中的扩散系数分别为4.7810-11和3.2710-11cm 2/s.关键词:扩散系数;LiVOP O 4;恒电流放电中图分类号:O614.111;T M912.9文献标志码:A锂离子电池是20世纪90年代新发展起来的绿色能源,也是我国能源领域重点支持的高新技术产业.锂离子电池以其高可逆容量、高电压、优异循环性能和高能量密度等性能备受人们的重视,被称为21世纪逆脱嵌的绿色电源[1].锂离子电池正、负极材料都采用锂离子能可逆脱嵌的嵌入客体化合物.由于锂离子电池在充、放电过程中的主要步骤是锂离子分别从正、负极材料嵌入和脱出,因此,锂离子在这些材料中的扩散系数成为一个被广泛关注的电极动力学参数.尤其对高功率型电池,动力学参数就显得更加重要.对于锂离子电池,常用的电化学测试方法有电流脉冲驰法(CPR)、恒电流间歇滴定法(GIT T)、电化学阻抗法(EIS)、电位间歇滴定技术(PIT T)和循环伏安法(CV)等[2-5].笔者在用流变相法制备新型锂离子电池正极材料LiV OPO 4[6-7]的基础上,用一种简单的方法测定了锂在LiVOPO 4中的扩散系数.1实验部分1.1LiVOPO 4的制备参照文献[6]制备LiV OPO 4前躯体:称取等物质的量的分析纯LiOHH 2O 、NH 4VO 3、H 3PO 4和柠檬酸,分别将LiOHH 2O,NH 4VO 3和柠檬酸溶于温水得到水溶液,然后将各水溶液与H 3PO 4混合.混合溶液置于恒温加热磁力搅拌器上于80左右形成蓝色凝胶.凝胶105真空干燥10h 得到蓝色干凝胶(LiVOPO 4前躯体).将此前躯体在强烈搅拌下加入到一定浓度的蔗糖水溶液中,于80维持搅拌至近干后置于管式炉中400和惰性气氛下预烧2h,然后再升温至650保温10h.随炉冷却,得到LiVO -PO 4/C 复合材料.1.2LiVOPO 4的表征采用X 射线衍射(XRD)对LiVOPO 4样品进行物相和结构分析;采用扫描电镜(SEM)研究LiVOPO 4*收稿日期:2010-12-15基金项目:国家自然科学基金资助项目(20873054);国家高技术研究发展计划(863计划)重点项目子课题(2010AA065205);湖南省教育厅科学研究项目(10A098);生态旅游应用技术湖南省重点实验室开放基金项目(z 6)作者简介熊利芝(),女,湖南益阳人,吉首大学生态旅游应用技术湖南省重点实验室讲师,博士生,主要从事功能材料研究10stlv d0:1974-.样品的微观形貌.1.3锂离子扩散系数的测定将80%的样品、10%的乙炔黑和10%的聚偏二氟乙烯(PVDF)溶解在溶剂N-甲基吡咯烷酮(NMP)中形成浆料.将浆料均匀涂在铝箔上,涂层的厚度约为100m.将涂好的电极片裁剪成面积为1cm 2的工作电极,在120下真空干燥12h 备用.测试电池采用常规的扣式电池,以金属锂箔为对电极,1.0molL-1LiPF 6的EC -DMC(体积比为11)溶液为电解液,在充满氩气的手套箱中装配而成.在扩散系数测定前对电池进行10次充放电循环以活化电池得到电化学性质稳定的电极.经活化后的电池在3.8~4.3V(相对Li/Li +)之间进行恒电流实验,实验设备为Land CT 2001A 电池测试仪,温度为25.根据文献[7],按照D/a 2(Q 0-i )=i/15(1)测定锂离子在LiVOPO 4中的扩散系数.其中:Q 0是无界面扩散时的初始比容量(Ah/g);是间歇时间(s).根据(1)式,D/a 2的值可以通过测定直线i -i 的斜率而得到.此方法无需知道锂的浓度,也无需知道LiVOPO 4的表面积,简单方便.2结果与讨论图10.1C 时LiVOP O 4的放电曲线(1C=159MA/g)为了得到锂在放电过程的扩散系数,经活化的电极在较低的电流密度(0.1C~0.3C)下连续放电.间歇时间是指电极从4.3V 放电到3.5V(相对Li/Li +)所需的时间.0.1C 恒电流放电曲线如图1所示;i-i 曲线如图2所示.从图2可见,i 与i 具有很好的线性关系,直线的斜率di/d(i )的值为-0.196.根据(1)式计算得到D/a 2的值为1.30710-2s -1.图3为LiVOPO 4样品的扫描电镜图,球形LiVOPO 4颗粒的半径(a)为0.5m.因此,放电过程中锂在LiVOPO 4电极中的扩散系数为3.2710-11cm 2/s.采用同样的方法,可以计算得到D 为4.7810-11cm 2/s,大于放电过程的扩散系数.图2i-i关系曲线图3LiV OPO 4样品的扫描电镜对比本研究得到的锂离子扩散系数和相关文献报道的结果发现,本研究得到的扩散系数有一定的差别,但都在一个数量级上.文献[7]采用电位阶跃法得到的扩散系数为5.5210-11,文献[9]采用循环伏安法得到的扩散系数为-11这种差别可能是由于采用不同方法制备的样品的微观结构、热力学以及动力学性质不完全一样有关同时,不同的测试方法基于不同的理论背景,在得到扩散系数D 的计算公式时做了一定程度的简化86吉首大学学报(自然科学版)第32卷2.7910:..3结论采用简单的恒电流法测定了锂离子在LiV OPO 4电极中的扩散系数.此方法不需要知道锂的浓度,也不需要知道LiVOPO 4颗粒的表面积,简单方便.计算结果表明,充、放电过程中锂离子在LiVOPO 4电极中的扩散系数分别为4.7810-11和3.2710-11cm 2/s.参考文献:[1]TARASCON J M,ARM AND M.Issues and Cha llenges F acing Rechargeable Lithium Batter ies [J].Natur e,2001,414:359-367.[2]R ONCI F ,STALLWORT H P E,ALAMGIR F,et al.Lithium -7Nuclea r Magnetic Resonance and Ti K -Edge X -Ra y Absorption Spect roscopic Investigation of Electrochemical Lithium Inser tion in Li 4/3+xTi 5/3O 4[J].J.P ower Sources,2003(119/121):631-636.[3]ZAGH IB K,SI MONEAU M,ARM AND M,et al.Electrochemical Study of Li 4T i 5O 12as Negative Electr ode for L-i Ion Polymer Rechargeable Batter ies [J].J.Power Sources,1999(81/82):300-305.[4]ARIYOSH I K,YAMATO R,OH ZUKU T.Zer o -Str ain Insertion Mechanism of Li[Li 1/3T i 5/3]O 4for Advanced Lithium -Ion (Shuttlecock)Batter ies [J].Electrochim.Acta,2005,51(6):1125-112.[5]ANDRIIKO A A,RUDENOK P V,NYRKOVA L I.Diffusion Coefficient of Li +in Solid -State R echargeable Batter y Mater ials [J].J.Power Sour ces,1998,72(2):146-149.[6]何则强,熊利芝,吴显明,等新型锂离子电池正极材料LiVOPO 4的制备与表征[J].无机化学学报,2008,24(2):303-306.[7]XIONG L-i zhi,H E Ze -qiang.A New Rheological Phase Route to Synthesize Nano -LiVOPO 4Cathode Materia l for Lith-i um Ion Batter ies [J].Acta P hys.Chim.Sin.,2010,26(3):573-577.[8]姚经文,吴锋,官亦标.尖晶石Li 4Ti 5O 12中锂离子的化学扩散系数的研究[J].无机化学学报,2007,23(8):1439-1442.[9]R EN M M,ZHOU Z,SU L W,et al.LiVOPO 4:A Cathode M aterial for 4V Llithium Ion Batteries [J].Journal of Pow -er Sources,2009,189(1):786-789.Determination of Chemical Diffusion Coefficient of Lithium -Ion in LiVOPO 4XIONG L-i zhi 1,LIAN G Kai 2,H E Ze -qiang 1,2(1.Key Labor ator y of Ecot ourism s Application Technology,Hunan P rovince,Jishou 416000,H unan China;2.College of Chemistr y and Chemical Engineer ing,Jishou University,Jishou 416000,H unan China)Abstr act:A relatively simple galvanostatic method was used for the evaluation on the aver age chemical diffusion coefficient of lithium -ion in spinel LiVOPO 4pr epared by rheological phase method.The diffu -sion coefficient of lithium -ion was estimated to be 4.7810-11cm 2s -1and 3.2710-11cm 2/s forcharge and dischar ge,respectively.Key words:diffusion coefficient;LiVOPO 4;galvanostatic method(责任编辑易必武)87第1期熊利芝,等:锂离子在LiVOPO 4中的扩散系数的测定。
CV、EIS以及如何计算锂离子电池扩散系数
CV、EIS以及如何计算锂离子电池扩散系数■ 仁循环伏安法2.交流阻抗法. 3.扩散系数循环伏安法在一定扫描速率下,从起始电位正向扫描到转折电位期间,电极中活性物质被氧化,产生氧化电流;当负向扫描从转折电位变到原起始电位期间,电极中活性物质被氧化,产生还原电流。
循环伏安法所以判断循环伏安图上的峰是氧化峰还是还原峰.并不是看峰电流是正还是负,而是看扫描电位的变化。
电位从低到高是氧化过程,亦称为正向扫描(positive);从高到低是还原过程,亦称为负向扫描(negative) »循坏伏安法Cyclic Voltammetry Parameters讽EM ........... |2 -------- ---------- 初始电位,设定的起始电压HighEM .......... [0 -------- ---------- >高电位,电压窗口的最高电压LowE (V) ........ [0 ---------- 低电位,电压窗口的最低电压FinalEM ......... |o ---------- 截止电位,设定的终止电压ImtoalScanPoiarty........ jNegative --- >扫描方向,第一步是正向还是负向Scan Rate (V/$) . [ol ---------- 扫描速度,一般0.0001 V/sSweep Segments .. 2 ■•扫描段数,两段是〜圈Sam^JeInterval (V) -------------------- R而>响应间隔,隔多少V出一个点Qu^Hrnehec) ..... [2 ---------- 静置时间,测量前体系静置多长时间STy(AM .......... [2006耳 ------------ 灵敏度,可以理解为纵坐标的量程厂Auto Sens i Scm Rate <- 0 01 VA----- 自动关敏度厂Enable Final E厂Aimkary Signal Recording循坏伏安法对于可逆性好的体系,设定的时候初始设定为开路电压,为了得到闭合环,所以截止电压和初始电压一样。
GITT方法测量锂离子电池活性物质Li扩散系数
GITT方法测量锂离子电池活性物质Li扩散系数Li+在活性物质内的扩散是一个重要的反应过程,也是锂离子电池内部化学反应的限制环节,因此Li+扩散系数是锂离子电池活性物质重要的一个参数,扩散系数对锂离子电池倍率性能有着重要的意义,恒电流间歇滴定法(GITT)是一种重要的扩散系数测定方法。
GITT方法假设扩散过程主要发生在固相材料的表层,GITT方法主要有两个部分组成,其中第一部分为小电流恒流脉冲放电,为了满足扩散过程仅发生在表层的假设,恒流脉冲放电的时间t要比较短,需要满足t< 2/D ,其中L为材料的特征长度 ,D 为材料的扩散系数;第二部分为长时间的静置,以让Li +在活性物质内部充分扩散达到平衡状态。
下图为一个典型的GITT测量扩散系数的过程,采用的电池为1.2mAh的扣式电池,正极材料为NCM,测试前首先将电池充电到100%SoC,然后按照0.1C放电15min,然后静置30min,每次放电大约相当于2.5%的SoC,因此总计能够进行40次循环,由于金属Li负极对于电池电压变化的影响非常小,因此测试过程中的电压变化主要来自于NCM材料,也就是说采用该方法得到的扩散系数主要反应正极材料NCM的扩散系数。
完成了测试后我们就需要利用上面得到的数据对NCM材料的扩散系数进行计算,这其中我们主要关心4个电压数据,一个是脉冲放电之前的电压 V0;一个是恒流放电瞬间电压V1,V0与V1之间的差值主要反应的是电池内部的欧姆阻抗和电荷转移阻抗等对电压变化的影响;一个是恒流放电结束时的电压V2,主要是由于Li+扩散进入到NCM材料内部引起的电压变化;一个是在静置后期的电压V3,这主要是Li+在活性物质内部进行再扩散,最终达到稳态导致的活性物质的电压变化。
根据上面得到的数据,以及费克第二定律我们可以采用下面所示的公式进行计算Li+在锂离子电池内的扩散系数。
上式中nM为摩尔数量,VM为摩尔体积,S为界面面积,t为放电脉冲持续时间,如果我们假设NCM颗粒为刚性小球,半径为Rs则上式可以转化为下式2。
锂离子扩散系数原理
锂离子扩散系数原理1.引言1.1 介绍锂离子扩散系数的基本概念和重要性锂离子扩散系数是指可描述锂离子在固体材料中扩散的速度的物理量。
在锂离子电池中,锂离子的扩散速度直接影响着电池的充放电性能和循环寿命。
研究和了解锂离子扩散系数的基本概念和重要性对于改善锂离子电池性能具有重要意义。
锂离子扩散系数的大小直接决定了锂离子在电极材料中的扩散速度,从而影响着电池的充放电速率以及对外部电路的输出功率。
锂离子扩散系数还与电池的循环寿命和安全性息息相关,因为较小的扩散系数会导致电池内部产生极化现象,造成电池容量的衰减和热失控的风险增加。
深入了解和研究锂离子扩散系数的原理和影响因素,以及寻求提高锂离子扩散系数的方法,对于改善锂离子电池的性能具有积极的意义。
本文将会在后续正文部分探讨锂离子扩散系数的定义和原理、影响因素、测定方法以及在锂离子电池中的意义,以期为读者提供更加深入的了解和认识。
1.2 强调锂离子扩散对锂离子电池性能的影响锂离子扩散系数是决定锂离子在电池中传输速度的重要参数,直接影响着电池的充放电性能和循环稳定性。
在锂离子电池中,锂离子的扩散速率决定了电池的充放电速度和功率性能。
较高的锂离子扩散系数可以提高电池的充放电速率,从而改善电池的功率性能。
锂离子的扩散速率还直接影响电池的循环寿命和稳定性。
当电池经过多次充放电循环后,如果锂离子扩散速率下降,将导致电池容量衰减和循环寿命减少。
锂离子扩散系数对锂离子电池的性能具有重要影响。
在电池设计和材料选择中,必须考虑和优化锂离子的扩散系数,以实现更好的充放电性能和循环稳定性。
研究和提高锂离子扩散系数也是目前锂离子电池领域的热点和挑战之一。
通过深入理解锂离子扩散的原理和影响因素,并寻找提高扩散系数的方法,可以为锂离子电池的性能提升和技术突破提供重要的理论和实验基础。
1.3 提出文章的目的和结构文章的目的是深入探讨锂离子扩散系数的基本概念和重要性,以及其对锂离子电池性能的影响。
锂离子固相扩散系数课件
05
锂离子固相扩散系数的研究进展
实验研究进展
01
02
03
实验技术发展
随着实验技术的不断进步 ,研究者们通过更加精确 的测量方法获得锂离子在 固相中的扩散系数。
04
锂离子固相扩散系数在电池技术 中的应用
在电池性能优化中的应用
锂离子固相扩散系数是影响电池性能 的关键参数,通过优化扩散系数可以 提高电池的能量密度和充放电性能。
通过研究扩散系数的变化规律,可以 优化电极材料的制备工艺,改善电极 的结构和组成,提高电极的离子传导 能力和电化学反应活性。
在电池寿命预测中的应用
详细描述
温度对锂离子在固体中的扩散行为具有显著影响。随着温度的升高,原子或分子 的热振动幅度增大,使得锂离子在固体中的扩散变得更加容易。因此,扩散系数 通常随温度的升高而增大。
晶体结构的影响
总结词
晶体结构的复杂程度和锂离子的扩散路径长度对锂离子固相 扩散系数有显著影响。
详细描述
晶体结构的复杂程度和锂离子的扩散路径长度对锂离子在固 体中的扩散行为具有重要影响。复杂的晶体结构或较长的扩 散路径会导致锂离子扩散变得更加困难,从而降低扩散系数 。
应力的影响
总结词
应力对锂离子固相扩散系数具有重要影响,特别是在高应力条件下,锂离子固相扩散系数可能会显著 降低。
详细描述
应力对锂离子在固体中的扩散行为具有显著影响。在高应力条件下,固体晶格的畸变和应力的局域化 效应可能阻碍锂离子的扩散运动,导致扩散系数显著降低。因此,在实际应用中,应考虑应力对锂离 子固相扩散系数的影响。
磷酸铁锂正极材料中锂离子扩散系数的测定
磷酸铁锂正极材料中锂离子扩散系数的测定任冬燕;任东兴;李晶;宋月丽【摘要】通过碳热还原法制备了磷酸铁锂正极材料,并采用恒电位阶跃法测定了磷酸铁锂正极材料在不同电位和循环次数下的锂离子扩散系数,通过XRD对循环前后磷酸铁锂材料的晶体结构进行了表征,并对磷酸铁锂材料的失效模式进行了简单的分析。
结果表明:LiFePO4在充放电过程中锂离子扩散系数随Li含量的增大,呈现先增大后略微降低的规律。
随着充放电循环次数的增多,LiFePO4中Li+的固相扩散系数值明显下降。
%LiFePO4 cathode materials was prepared by carbothermal reduction reaction.The potentiostatic intermittent titration technique(PSAC) was used to examinate the Li+ion diffusion coefficient of LiFePO4 cathode materials at different voltage and at differentcharge/discharge cycles.The structure of LiFePO4 was studied before and after charge-discharge cycles by XRD technique.And preliminary failue anlysis of LiFePO4 was also conducted.The results indicated that the Li+diffusion coefficient may increse at first then reduced with the increase of Li+ contents.The Li+ diffusion coefficient reduced tendency with the increase of cycle number.【期刊名称】《广州化工》【年(卷),期】2012(040)015【总页数】3页(P108-109,112)【关键词】磷酸铁锂;锂离子扩散系数;恒电位阶跃;循环性能【作者】任冬燕;任东兴;李晶;宋月丽【作者单位】绵阳职业技术学院材料工程系,四川绵阳621000 金川集团股份有限公司,甘肃金昌737100;金川集团股份有限公司,甘肃金昌737100;西南科技大学材料科学与工程学院,四川绵阳621000;西南科技大学材料科学与工程学院,四川绵阳621000【正文语种】中文【中图分类】TB34锂离子电池是我国能源领域重点支持的高新技术产业,特别是以磷酸铁锂为正极的锂离子电池,因其高可逆容量、高安全性、优异循环性能和高能量密度等性能备受人们的重视,成为动力电池的首选[1-3]。
锂电扩散问题
回答:
1、锂离子电池电极的EIS低频区域的直线一般认为是锂离子在固相中的扩散步骤。理论上应该是45度的一条直线,实际测试中常常偏离45度(在此不是重点,就不解释了)。
2、锂离子电池的电极不是平板电极,属于嵌入型电极,其反应为电化学嵌入(脱出)反应。在此仅以锂离子的嵌入为例。其电化学嵌入反应过程至少包括三个串联的步骤:(1)待嵌入的锂离子通过液相中的扩散或者对流的传质过程迁移至电极表面(也就是电极材料颗粒表面),(2)锂离子在固相/液相界面处转移进入固相,(3)锂离子在固相中的扩散。
通常,待嵌入的锂离子在液相中的浓度(C~1mol/L)和扩散系数(D~1E-3 cm2/s)均分别比在嵌入化合物固相中的这两个参数(C~1E-2mol/L,D~1E-10cm2/s) 要大很多,固相扩散速率慢,在几个串联过程中属于反应速度控制步骤,因此在讨论锂离子的嵌入反应动力学时一般可以忽略液相中的传质过程的影响。也就是一般认为EIS低频的扩散阻抗是属于锂离子在固相中的扩散步骤。
问题:
交流阻抗谱中,斜率呈45度直线一般被认为浓差极化导致的扩散阻抗。那么在锂离子电池中,这个扩散阻抗指的是液相的锂离子扩散阻抗还是晶格中锂离子的扩散阻抗,还是两者均有,为什么?
通过时间常数来看,经过电荷转移反应之后,锂离子进入到晶格内部扩散阶段,如果这个扩散阻抗解释为晶体内部的扩散阻抗,那么溶液中的锂离子浓差极化又该如何去描述?
ቤተ መጻሕፍቲ ባይዱ
重点解析如何用交流阻抗数据确定锂电材料的扩散系数
如何用交流阻抗数据确定锂电材料的扩散系数锂离子电池是利用Li+在正负极之间的迁移和扩散,在正负极之间建立Li的浓度差,从而储存电能。
因此Li+在正负极之间的扩散会对锂离子电池性能产生显著的影响,如果我们按照从快到慢的速度为Li+扩散的各个环节排序的话,无疑Li+在电解液之中的扩散是最为迅速的,其次是Li+在正负极表面的电荷交换过程,这一过程的速度就相对较慢了,容易成为限制缓解,而Li+在正负极材料内部的扩散速度是最慢的,这一环节也往往成为限制锂离子电池倍率性能的关键。
作为衡量Li+在活性物质内部扩散速度快慢的关键参数——固相扩散系数也就成为衡量一款材料倍率性能的关键,但是获取材料的这一参数并非简单的事情。
通常来说,计算活性物质固相扩散系数的方法主要有恒电位滴定、恒电流滴定和交流阻抗数据等方法。
近日,德国德累斯顿工业大学的Tien Quang Nguyen(第一作者)和Cornelia Breitkopf(通讯作者)提出了一种新的通过交流阻抗数据获取扩散系数的方法。
采用EIS数据获取材料的扩散系数并不是新提出的概念,在此之前就已经有不少模型采用了交流阻抗中的扩散阻抗值来计算电极或材料的扩散系数,但是这些模型通常都需要结合扩散长度等参数进行计算,而这一数值通常采用电极厚度或颗粒半径等数值近似代替。
而Tien Quang Nguyen提出的方法仅仅需要采用交流阻抗数据就可以获得计算扩散系数所需要的全部参数。
根据扩散系数的定义,我们可以通过扩散长度ID和扩散时间τD之间的比值得到扩散系数(如下式所示)。
从上式能够看到,要想获得扩散系数我们需要通过实验数据或理论模型数据得到上述的两个参数。
在电化学体系中,离子淌度可以通过双电层的厚度λD和极化过程中的弛豫时间τ2根据下式计算得到。
为了获得扩散系数这一关键参数,我们首先要获得扩散层厚度这一数据,所谓扩散层是指的在扩散过程中物质浓度会受到影响的范围,Bandara & Mellander and Coelho等人通过界面电介质极化现象开发了一个模型用以计算扩散层的厚度。
CV、EIS以及如何计算锂离子电池扩散系数
CV、EIS以及如何计算锂离子电池扩散系数■ 仁循环伏安法2.交流阻抗法. 3.扩散系数循环伏安法在一定扫描速率下,从起始电位正向扫描到转折电位期间,电极中活性物质被氧化,产生氧化电流;当负向扫描从转折电位变到原起始电位期间,电极中活性物质被氧化,产生还原电流。
循环伏安法所以判断循环伏安图上的峰是氧化峰还是还原峰.并不是看峰电流是正还是负,而是看扫描电位的变化。
电位从低到高是氧化过程,亦称为正向扫描(positive);从高到低是还原过程,亦称为负向扫描(negative) »循坏伏安法Cyclic Voltammetry Parameters讽EM ........... |2 -------- ---------- 初始电位,设定的起始电压HighEM .......... [0 -------- ---------- >高电位,电压窗口的最高电压LowE (V) ........ [0 ---------- 低电位,电压窗口的最低电压FinalEM ......... |o ---------- 截止电位,设定的终止电压ImtoalScanPoiarty........ jNegative --- >扫描方向,第一步是正向还是负向Scan Rate (V/$) . [ol ---------- 扫描速度,一般0.0001 V/sSweep Segments .. 2 ■•扫描段数,两段是〜圈Sam^JeInterval (V) -------------------- R而>响应间隔,隔多少V出一个点Qu^Hrnehec) ..... [2 ---------- 静置时间,测量前体系静置多长时间STy(AM .......... [2006耳 ------------ 灵敏度,可以理解为纵坐标的量程厂Auto Sens i Scm Rate <- 0 01 VA----- 自动关敏度厂Enable Final E厂Aimkary Signal Recording循坏伏安法对于可逆性好的体系,设定的时候初始设定为开路电压,为了得到闭合环,所以截止电压和初始电压一样。
锂离子固相扩散系数课件
溶液中的电极面积,DLi为Li在电极中的扩散系数,υ为扫描速
率,△Co为反应前后Li浓度的变化。
[1] Journal of Power S学ou习r交c流esPP1T 39 (2005) 261-268
8
方法特点
要求是可逆体系(电化学步骤可逆) 优点:设备简单,数据处理容易 缺点1:得到的只是表观的扩散系数
缺点2:浓度变化△Co的确切值很难求得
学习交流PPT
9
应用举例[1]:
首先测量材料在不同扫描速率下的循环伏安图(如图1-a)
图1 (a)Li1.40Mn2.0O4薄膜材料不同扫描速率下的CV
图 学习交流PPT
10
将不同扫描速率下的峰值电流对扫描速率的平方根作图 (图2-1-b)
图2-1 (b) Li1.40Mn2.0O4薄膜材料峰值电流对扫描速率的平方根曲线[1]。
面积,(dE)/(dx)库仑滴定曲线的斜率,即为开路电位对电极中Li浓度曲线上某
浓度处的斜率。
[2] Journal of P学ow习交er流SPPoTurces 76 (1998) 81-90
13
方法特点
可以直观的看出是否受扩散控制
缺点1:得到的结果也只是一个表观 的扩散系数
缺点2:要求所测体系的摩尔体积Vm 不发生变化
学习交流PPT
6
锂的扩散系数测量主要有如下一些方法:
• 循环伏安法(Cyclic Voltammetry, CV)
• 电化学阻抗法(Electrochemical Impedance Spectroscopy, EIS)
• 恒电位间歇滴定法(Potentiostatic Intermittent Titration Technique, PITT)
eis 电池的锂离子扩散系数和电极的扩散系数
eis 电池的锂离子扩散系数和电极的扩散系数锂离子电池是一种常见的二次电池,广泛应用于移动设备、电动车辆和储能系统等领域。
锂离子扩散系数和电极的扩散系数是影响锂离子电池性能的重要参数。
本文将分别介绍锂离子扩散系数和电极的扩散系数,并探讨其在电池性能中的作用。
首先,我们将介绍锂离子的扩散系数。
锂离子的扩散系数是指锂离子在电解液中的自由扩散速率,通常用D表示。
锂离子的扩散速率受到电解液的粘度、电解液中总溶质浓度、锂离子与溶质之间的相互作用以及离子电流密度等因素的影响。
较高的扩散系数可以提高锂离子电池的充放电速率和功率密度。
锂离子电池的电解液通常由溶解锂盐的有机溶剂组成。
有机溶剂的粘度较低,有利于锂离子的扩散。
此外,适当增加电解液中的溶质浓度可以提高锂离子的扩散系数。
锂盐的溶解度在常温下较高,可以满足这一需求。
然而,锂离子与电解液中的溶质之间存在相互作用,例如配位和水合作用,这可能降低锂离子的扩散速率。
同时,较高的电流密度会导致电解液中离子间的运动速率变慢,从而降低锂离子的扩散系数。
其次,让我们来了解一下电极的扩散系数。
电极的扩散系数是指电极材料中锂离子运动的自由程度,通常用DL表示。
电极材料中的扩散系数取决于锂离子在材料晶格中的迁移速率和扩散路径的障碍物。
高的电极扩散系数可以提高锂离子电池的容量和循环性能。
正负极材料在锂离子电池中起着不同的作用。
在负极材料中,锂离子是从电解液中嵌入或脱嵌的,这种过程称为锂离子的插入/脱嵌反应。
锂离子的插入/脱嵌反应速率取决于材料的扩散系数。
通常,负极材料具有较高的扩散系数,以满足快速充放电需求。
例如,石墨是常用的负极材料,其具有较高的扩散系数。
正极材料通常通过锂离子的反应来储存和释放锂离子,这称为锂离子的嵌入/脱嵌反应。
嵌入/脱嵌反应速率取决于正极材料中锂离子的扩散系数。
一些正极材料,如锂铁磷酸钠(LiFePO4)和锰酸锂(LiMn2O4),具有较低的扩散系数,这可能会限制锂离子的嵌入/脱嵌速率。
prt计算扩散系数
prt计算扩散系数
扩散系数在工业中是一项十分重要的物性指标。
以锂离子电池为例,可以利用电位弛豫法(PRT)测量电极材料的固相扩散系数,从而确定电池中电极材料的扩散系数。
PRT是一种常用的测量方法,通过测量电位随时间的变化来确定扩散系数。
这种方法需要一个电极系统,并在其中注入待测物质。
通过记录电位随时间的变化,可以计算出扩散系数。
需要注意的是,PRT方法的适用范围和精度可能会受到多种因素的影响,如电极材料的性质、测量条件等。
因此,在使用PRT方法测量扩散系数时,需要进行适当的实验设计和数据分析,以确保测量结果的准确性和可靠性。
无定形硅固相锂离子扩散系数研究
无定形硅固相锂离子扩散系数研究吴弘;林卫;万华;张剑军;李冰【摘要】采用电化学阻抗谱技术(EIS)测定了无定型硅中的Li+的扩散系数,并与石墨进行比较。
因硅负极在嵌锂时体积膨胀较大,在采用EIS公式进行计算时,对公式中的浓度参数(C)进行了修正。
重点对这种电化学测试方法进行了讨论。
处理结果表明采用EIS时,公式中的σ值对D值的数量值影响很大。
随着嵌锂量的减少,即电极电压的升高,无定形硅的扩散系数呈现递减趋势,直到0.8 V以上,电极处于完全脱锂态。
%The chemical diffusion coefficient of Li-ion in amorphous silicon material was measured by the electrochemical impedance spectrum(EIS). And the results were compared with the commerical graphite. Because of the volumetric expansion when Li intercalating silicon matrial, the concentration parameter C was not a constant and we modified this parameter to match the real model. The emphases were put on the comparison and discussion of this method. And the results showed that the parameter σ determined the magnitude of the parameter D, so this model still needed to be revised.【期刊名称】《科技创新导报》【年(卷),期】2016(013)012【总页数】4页(P17-19,21)【关键词】无定型硅;扩散系数;电化学方法【作者】吴弘;林卫;万华;张剑军;李冰【作者单位】中国轻工业长沙工程有限公司湖南长沙 410014;中国轻工业长沙工程有限公司湖南长沙 410014;中国轻工业长沙工程有限公司湖南长沙 410014;中国轻工业长沙工程有限公司湖南长沙 410014;中国轻工业长沙工程有限公司湖南长沙 410014【正文语种】中文【中图分类】TN91目前商品化的锂离子电池大多采用锂过渡金属氧化物/石墨体系,虽然这类体系的电化学性能优异,但是其本身储锂能力较低,特别是碳类负极材料目前已经几乎接近其理论容量372 mAh/g,已难以适应现在各种便携式电子设备的小型化发展及电动汽车对大容量高功率化学电源的需求。
li的扩散系数
li的扩散系数
(最新版)
目录
1.锂(Li)的概述
2.锂的扩散系数的定义和意义
3.锂的扩散系数的影响因素
4.锂的扩散系数在科研和工业中的应用
5.我国在锂的扩散系数研究方面的发展
正文
锂(Li)是一种轻金属元素,位于周期表的第二组,原子序数为 3。
锂具有较低的密度和较高的比热,是一种优秀的轻质金属材料。
在众多领域,如能源、材料科学和生物医学等,锂及其化合物都发挥着重要作用。
锂的扩散系数是描述锂在各种材料中扩散能力的物理量,对于了解锂在不同材料中的行为具有重要意义。
锂的扩散系数指的是锂在单位时间内通过单位面积的能力,通常用公式 D= 1/t 表示,其中 D 表示扩散系数,t 表示扩散时间。
锂的扩散系数受多种因素影响,如温度、材料结构和材料成分等。
一般来说,温度越高,锂的扩散系数越大;不同类型的材料,锂的扩散系数也会有很大差异。
锂的扩散系数在科研和工业领域具有广泛的应用。
在锂电池研究中,了解锂的扩散系数有助于优化电极材料和电解质,提高电池性能和安全性。
此外,在金属提炼、腐蚀防护和核反应堆等领域,锂的扩散系数也具有重要的参考价值。
我国在锂的扩散系数研究方面取得了显著的进展。
近年来,我国科学家们在锂电池材料、锂提取工艺和锂在材料中的行为等方面进行了深入研究,为我国新能源产业和相关领域的发展奠定了坚实基础。
同时,我国政
府也积极推动锂电池产业发展,为相关研究提供了有力的支持。
总之,锂的扩散系数是描述锂在各种材料中扩散能力的重要物理量,对锂在科研和工业领域的应用具有指导意义。
锂离子固相扩散系数
一!
关于扩散系数:
▪ 扩散:物质从高浓度向低浓度处传输,致使浓度向
均一化方向发展的现象。
▪ 扩散系数:单位浓度梯度作用下粒子的扩散传质速
度(Di)。 Fick第一律:Ji = - Di (dci/dx)
▪ Di 量纲:cm2 s-1
▪ 粒子在溶液中的扩散系数:经典扩散理论认为,引
图2-1 (b) Li1.40Mn2.0O4薄膜材料峰值电流对扫描速率的平方根曲线[1]。
说明:
1. 由于锂在电极材料中的扩散是一 个非常缓慢的过程,所以扫描速率的选 择一定不要太大,最好在1mV/s以下。
2. 在使用公式(2)时,△Co的计算
可按电流峰所积分的电量来计算。
(2) 交流阻抗法(Electrochemical Impedance Spectroscopy, EIS)
[2] Journal of Power Sources 76 (1998) 81-90
方法特点
可以直观的看出是否受扩散控制
缺点1:得到的结果也只是一个表观 的扩散系数
缺点2:要求所测体系的摩尔体积Vm 不发生变化
应用举例[2]:
从Nyquist图上取出扩散控制部分(即图2中低频区的红线部分) 的数据,根据公式3或4,用Zω的实部或虚部对ω-1/2作图,即可求 得系数B,将B带入公式5,即可求得扩散系数 。
方法特点
要求是可逆体系(电化学步骤可逆) 优点:设备简单,数据处理容易 缺点1:得到的只是表观的扩散系数
缺点2:浓度变化△Co的确切值很难求得
应用举例[1]:
首先测量材料在不同扫描速率下的循环伏安图(如图1-a)
图1 (a)Li1.40Mn2.0O4薄膜材料不同扫描速率下的CV 图
循环伏安交流阻抗和锂离子电池扩散系数2
为浸入溶液中的电极面积,(dE)/(dx)库仑滴定曲线的斜率,即为开路电位对电极中Li浓度曲线上某浓度处的斜率。
对于可逆性好的体系,设定的时候初始设定为开路电压,为了得到闭合环,所以截止电压和初始电压一样。
扩散速度往往决定了反应速度。 这种设定方式多见于正极材料。
3. 扩散系数
其中R为气体常数,T为绝对温度,n为转移电子数,C为电极中锂的浓度,L为电极厚度。
扩散系数
首先测的峰值电流对扫描速率的平方根作图。
《电化学方法原理及应用》,
扩散系数越大,电极的大电流放电能力越好,材料的功率密度越高,高倍率性能越好。
首先测量材料在不同扫描速率下的循环伏安图,然后将不同扫描速率下的峰值电流对扫描速率的平方根作图。
锂在固相中的扩散过程(嵌入/脱嵌、合金化/去合金化)是很复杂的,既有离子晶体中“换位机制”的扩散,也有浓度梯度影响的扩散
得到的只是表观的扩散系数。
在一定扫描速率下,从起始电位正向扫描到转折电位期间,电极中活性物质被氧化,产生氧化电流;
当负向扫描从转折电位变到原起始电位期间,电极中活性物质被氧化,产生还原电流。
扩散系数越大,电极的大电流放电能力越好,材料的功率密度越高,高倍率性能越好。
《电化学测定方法》,腾岛.
而锂离子扩散系数满足公式
循环伏安法
所以判断循环伏安图上的峰是氧化峰还是还原峰,并不是看峰电流是 正还是负,而是看扫描电位的变化。电位从低到高是氧化过程,亦称为正 向扫描(positive);从高到低是还原过程,亦称为负向扫描(negative)。
循环伏安法
初始电位,设定的起始电压 高电位,电压窗口的最高电压 低电位,电压窗口的最低电压 截止电位,设定的终止电压 扫描方向,第一步是正向还是负向 扫描速度,一般 0.0001 V/s 扫描段数,两段是一圈 响应间隔,隔多少V出一个点 静置时间,测量前体系静置多长时间 灵敏度,可以理解为纵坐标的量程
循环伏安交流阻抗和锂离子电池扩散系数
这种设定方式多见于正极材料。 这里ip是电流;
为浸入溶液中的电极面积,(dE)/(dx)库仑滴定曲线的斜率,即为开路电位对电极中Li浓度曲线上某浓度处的斜率。 若低于开路电压,则是放电条件下的阻抗,反之则是充电。
从阻抗图谱锂的低在频部固分相可以中直观的的扩看出散是否过是程扩散(控制嵌。入/脱嵌、合金化/去合金化)是很复杂的, 从振阻幅抗 ,图给谱予既的交低流有频扰部动离分的子可振以幅晶直大观小体的,中看越出小“是则否得换是到位扩的散结机控果制越制。精确”,的同时扩噪音散信,号也也会越有大浓。 度梯度影响的扩散,还 《电化学测包定方括法》化,学腾岛势. 影响的扩散。“化学扩散系数”是一个包含以上扩散过程 静这置种时 设间定,方的测式量多宏前见体于观系负的静极置材概多料长。念时,间 目前被广为使用。
交流阻抗法
控制通过电化学系统的电流(或系统的电势)在小幅度的条件下随 时间按正弦波规律变化,同时测量系统电势(或电流)随时间的变化, 或者直接测量系统的交流阻抗,进而分析电化学系统的反应机理、计算 系统的相关参数的方法。
φ
10mV
A
0
π/ω
2π/ω t
a
交流阻抗法
交流扰动的高频到低频对应的锂离子迁移变化依次是锂离子在电解 液中的迁移,锂离子在界面的转换,锂离子在固相中的扩散。
交流阻抗法
初始电位,设定的电势条件,一般设 定为开路电压,则测定的是开路条件 下的阻抗。若低于开路电压,则是放 电条件下的阻抗,反之则是充电。 高频率,给予交流扰动的最高频率。 低频率,给予交流扰动的最低频率。 振幅,给予交流扰动的振幅大小,越 小则得到的结果越精确,同时噪音信 号也会越大。 静置时间,测量前体系静置多长时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶液中的电极面积,DLi为Li在电极中的扩散系数,υ为扫描速率,
△Co为反应前后Li浓度的变化。精选课件
8
[1] Journal of Power Sources 139 (2005) 261-268
方法特点
要求是可逆体系(电化学步骤可逆) 优点:设备简单,数据处理容易 缺点1:得到的只是表观的扩散系数
精选课件
6
锂的扩散系数测量主要有如下一些方法:
▪ 循环伏安法(Cyclic Voltammetry, CV)
▪ 电化学阻抗法(Electrochemical Impedance
Spectroscopy, EIS)
▪ 恒电位间歇滴定法(Potentiostatic Intermittent
Titration Technique, PITT)
4.4 锂离子电池中锂的固相 化学扩散系数的测量
The estimation of chemical diffusion coefficient of lithium in
lithium ion battery
精选课件
1
4.4.1 测量化学扩散系数的意义
▪ 锂的嵌入/脱嵌反应,其固相扩散过程为一
缓慢过程,往往成为控制步骤。
▪ 扩散系数:单位浓度梯度作用下粒子的扩散传质速
度(Di)。 Fick第一律:Ji = - Di (dci/dx)
▪ Di 量纲:cm2 s-1
▪ 粒子在溶液中的扩散系数:经典扩散理论认为,引
起扩散的原因是渗透压力场,导出:
Di=kT/(6πriη)
式中: ri—i粒子的有效半径;η—介质黏度系数
可根据T 、η估算Di。大体为一常数,溶液浓度影响不
用交流阻抗法测扩散系数的公式如式3、4和5所示[2]:
-Im(Z)=B-1/2
(3)
Re(Z)=B-1/2
(4)
2
DLi+=0.5FVAmB-ddEx
(5)
其中:ω为角频率,B为Warburg系数,DLi为Li在电极中的扩散系数,Vm为活 性物质的摩尔体积,F为法拉第常量(96500C/mol),A为浸入溶液中的电极
缺点2:浓度变化△Co的确切值很难求得
精选课件
9
应用举例[1]:
首先测量材料在不同扫描速率下的循环伏安图(如图1-a)
图1 (a)Li1.40Mn2.0O4薄膜材料不同扫描速率下的CV
图精选课件
10
将不同扫描速率下的峰值电流对扫描速率的平方根作图 (图2-1-b)
图2-1 (b) Li1.40Mn2.0O4薄膜材料峰值电流对扫描速率的平方根曲线[1]。
▪ 扩散速度往往决定了反应速度。 ▪ 扩散系数越大,电极的大电流放电能力越
好,材料的功率密度越高,高倍率性能越好。
▪ 扩散系数的测量是研电极动力学性能的
重要手段。
▪ 扩散系数成为选择电极材料的重要参数之
一!
精选课件
2
关于扩散系数:
▪ 扩散:物质从高浓度向低浓度处传输,致使浓度向
均一化方向发展的现象。
对于扩散步骤控制的可逆体系,用循环伏安法测化学扩 散系数如公式1和2所示[1]:
Ip 0 .4 4 6 3 z F A (z F /R T )1 /2 C o D L i1 /21 /2(1)
常温时有:
Ip=2 .6 9 1 0 5n 3 /2A D L i1 /21 /2 C o (2)
其中 Ip 为峰电流的大小,n 为参与反应的电子数,A为浸入
精选课件
11
说明:
1. 由于锂在电极材料中的扩散是一 个非常缓慢的过程,所以扫描速率的选 择一定不要太大,最好在1mV/s以下。
2. 在使用公式(2)时,△Co的计算
可按电流峰所积分的电量来计算。
精选课件
12
(2) 交流阻抗法(Electrochemical Impedance Spectroscopy, EIS)
▪ 电位弛豫法(Potential Relax Technique, PRT)
▪ 恒电流间歇滴定法(Galvanostatic Intermittent
Titration Technique, GITT)等等
精选课件
7
4.4.2 常用的测量方法
(1) 循环伏安法(Cyclic Voltammetry, CV)
精选课件
14
应用举例[2]:
从Nyquist图上取出扩散控制部分(即图2中低频区的红线部分) 的数据,根据公式3或4,用Zω的实部或虚部对ω-1/2作图,即可求 得系数B,将B带入公式5,即可求得扩散系数 。
图 2-2 100次循环后Li0.9Cr0.1Mn1.9O4和Li0.9Mn2O4阴极材料Nyquist图[2]
大,随温度变化2%/ ºC。 精选课件
3
关于扩散系数:
▪ 固相扩散:固体内的扩散基本上是借助于缺陷由原子
或离子的布朗运动所引起的。
▪ 自扩散系数:在离子晶体中,阳离子和阴离子分别在
各自的活动范围内作布朗运动,表示该种运动活泼性 的扩散系数称为自扩散系数。
▪ 化学扩散系数:扩散过程伴随着固相反应,此时扩散
也有用“锂”的,没有统一的说法。
▪ 一般认为,锂离子是在穿过SEI膜之后才与
电子发生作用的,之后才发生固相中的扩
散过程。可以理解成离子的扩散,也可以
理解成原子的扩散。为统一起见,本课程
统称“锂”。
精选课件
5
为何称作“化学扩散系数”?
▪ 锂在固相中的扩散过程(嵌入/脱嵌、合金
化/去合金化)是很复杂的,既有离子晶体 中“换位机制”的扩散,也有浓度梯度影 响的扩散,还包括化学势影响的扩散。 “化学扩散系数”是一个包含以上扩散过 程的宏观的概念,目前被广为使用。
面积,(dE)/(dx)库仑滴定曲线的斜率,即为开路电位对电极中Li浓度曲线上某
浓度处的斜率。
精选课件
13
[2] Journal of Power Sources 76 (1998) 81-90
方法特点
可以直观的看出是否受扩散控制
缺点1:得到的结果也只是一个表观 的扩散系数
缺点2:要求所测体系的摩尔体积Vm 不发生变化
系数具有反应速度常数的含义,称为化学扩散系数。 (例:O在Fe3O4中的扩散、Li在TiS2中的扩散等)
《固体离子学》工藤彻一、笛木和雄著,董治长译,北京工业大学出版社;
《电极过程动力学导论》查全性,精选科课件学出版社
4
关于本节题目的说明:
为何是“锂”而不是“锂离子”?
▪ 从所查阅的文献来看,既有使用“锂离子”