导数在函数中的应用

合集下载

高中数学导数的应用

高中数学导数的应用

高中数学导数的应用导数是高中数学中的重要概念之一,它在许多实际问题中都有着广泛的应用。

本文将从几个不同的角度来讨论导数的应用。

一、函数的局部性质导数描述了函数在某一点附近的局部变化情况。

通过计算导数,我们可以判断函数在某点上是增函数还是减函数,从而了解函数的局部性质。

例如,对于一条直线函数,导数恒为常数,表示函数在任意一点上都是增函数或减函数;而对于一个二次函数,导数可以告诉我们函数的凹凸性质。

二、切线与法线导数还可以用来求解函数的切线和法线方程。

对于一条曲线,通过求解曲线上某一点的导数,我们可以得到切线的斜率,从而得到切线方程。

同样地,法线的斜率可以通过切线的斜率和导数的关系求解,进而得到法线方程。

这种应用在物理学中特别有用,例如计算质点在曲线上的运动轨迹时,我们需要知道质点的切线方程,以便求解其运动速度和加速度等物理量。

三、最值问题导数也可以用来解决函数的最值问题。

对于一个连续函数,其最值出现在导数为零的点或者定义域的端点上。

因此,通过求解导数为零的方程,我们可以得到函数的极值点,从而求解最值问题。

这一应用在经济学中尤为重要,例如在成本和收益问题中,我们需要确定某种产品的生产数量,以使总利润最大化。

四、曲线的凹凸性与拐点通过导数的符号变化,我们可以判断函数在某一区间上的凹凸性以及确定曲线的拐点。

当导数在某一区间上始终大于零时,函数在该区间上是凹函数;反之,当导数在某一区间上始终小于零时,函数在该区间上是凸函数。

而导数在某一点上发生跃变时,可以判断该点为函数的拐点。

这一应用在优化问题和工程设计中具有重要意义,例如在物体运动问题中,我们需要找到最优的运动轨迹,以使得物体的速度变化最小。

总结起来,导数的应用非常广泛。

无论是研究函数的局部性质、求解切线和法线方程、解决最值问题,还是分析曲线的凹凸性与拐点,导数都发挥着重要的作用。

因此,对于高中数学学习者来说,深入理解导数的概念和应用是非常重要的。

只有掌握了导数的应用,才能更好地解决实际问题,并在日后的学习和工作中受益。

导数与函数的关系及应用

导数与函数的关系及应用

导数与函数的关系及应用导数是微积分中一个重要的概念,它描述了函数在某一点上的变化率。

导数不仅与函数的性质息息相关,而且在实际问题中有着广泛的应用。

本文将探讨导数与函数的关系,以及导数在各个领域中的应用。

一、导数的定义及性质在微积分中,函数在某一点上的导数表示函数在该点的瞬时变化率。

对于函数f(x),在区间内一点a上的导数可以用极限表示:f'(a) = lim(x→a) (f(x) - f(a))/(x - a)其中lim表示极限,f'(a)表示函数f(x)在点a处的导数。

导数具有一些重要的性质:1. 导数表示了函数的斜率:函数的导数代表了函数曲线在某一点上的斜率,可以帮助我们理解函数曲线的变化趋势。

2. 导数与函数的图像:通过导数的正负性可以推断函数在不同区间的递增和递减性。

3. 导数与函数的极值点:函数在极值点处的导数为零,通过导数可以判断函数的极大值和极小值。

二、导数与函数的关系导数与函数的关系密不可分。

函数的导数可以告诉我们函数在某一点上的变化情况,并且可以帮助我们分析函数的性质。

1. 可导函数与连续函数:对于一个函数而言,如果它在某一点上的导数存在,则称该函数在该点可导。

可导函数一定是连续的,但连续函数不一定可导。

2. 一阶导数与高阶导数:除了一阶导数,也可以计算二阶导数、三阶导数等。

高阶导数描述了函数的变化率随着自变量变化而变化的快慢程度。

3. 反函数与导数:若函数f(x)在区间上可导且在某区间内连续且单调,则存在其反函数f^(-1)(x),且两者的导数满足:(f^(-1))'(x) = 1/f'(f^(-1)(x))三、导数的应用导数在数学中有着广泛的应用,以下为几个常见的应用领域。

1. 最优化问题:导数可用于求解最值问题,例如求解函数的最大值、最小值、极大值、极小值等。

通过导数可以找到函数的可能极值点,并进一步求解最优化问题。

2. 函数图像的研究:导数可以帮助我们研究函数的图像特征,如函数的凹凸性、拐点、拐弯等。

导数的七种应用

导数的七种应用

导数的七种应用导数是微积分里面非常重要的概念之一,它是求解函数的变化率的重要工具。

在现实世界中,各种科学领域和工程学都有着广泛的应用。

本文将介绍导数的七种应用,包括微积分学,物理学,经济学,机械工程,数学,生物学和计算机科学。

一、微积分学导数在微积分学中有各种广泛的应用,例如求解定积分以及求解复合函数的极值问题。

比如,我们可以使用梯度(即导数)来求解函数的最小值或最大值,这在实际工程中也经常用到。

二、物理学导数在物理学中也有广泛的应用,其中最重要的是用导数来求解动量。

根据动量定理,物体的动量是受速度函数的变化来决定的,而速度函数的变化正是由导数来求解的。

三、经济学导数在经济学中又有广泛的应用,例如用来求解经济的最优状态。

在经济学中,基本的决策问题都可以用导数来求解,从而找到满足所有参与者条件的最佳解决方案。

四、机械工程导数在机械工程中也有广泛的应用,最常用的就是热力学运用。

它可以用来表示流体在特定温度和压强条件下的特性,从而确定机械系统的传热量、流量及其他物理参数。

五、数学导数在数学中也有广泛的应用,例如用来求解方程组的最优解,以及线性规划问题、最小二乘问题和其他优化问题。

六、生物学导数在生物学中也有广泛的应用,主要用于研究植物的生长状况,以及植物体内及周围环境中生物活动的影响。

七、计算机科学导数在计算机科学中也发挥了重要作用,比如使用导数解决数值优化问题,以及机器学习中的梯度下降法,这都是实现机器智能的重要技术。

综上所述,导数在各种科学和工程领域有着广泛的应用。

它是一种重要的数学工具,在现实世界中有着各种各样的应用,从而改变了我们对函数变化和流体传热的认识,为探索现实世界科学规律,提供了重要依据。

《导数在函数中的应用实例》

《导数在函数中的应用实例》

摘要:导数是高等数学中一个重要的概念,它在研究函数的性质、解决实际问题等方面具有广泛的应用。

本文将通过几个具体的实例,详细阐述导数在函数中的应用,包括求切线、研究函数的单调性、求极值和最值等。

一、引言导数是函数在某一点的瞬时变化率,它反映了函数在该点的局部性质。

导数在数学分析、物理、工程等领域有着广泛的应用。

本文将通过实例,展示导数在函数中的应用,以帮助读者更好地理解导数的概念和意义。

二、导数在求切线中的应用1. 实例一:求函数f(x) = x²在点P(2,4)处的切线方程。

解:首先,求出函数f(x)的导数f'(x)。

根据求导法则,f'(x) = 2x。

将x=2代入f'(x),得到f'(2) = 4。

因此,点P(2,4)处的切线斜率为4。

接下来,利用点斜式方程求出切线方程。

点斜式方程为y - y₁ = m(x - x₁),其中m为切线斜率,(x₁, y₁)为切点坐标。

将切点坐标和斜率代入,得到切线方程为y- 4 = 4(x - 2),即y = 4x - 4。

2. 实例二:求函数f(x) = ln(x)在点A(1,0)处的切线方程。

解:求出函数f(x)的导数f'(x)。

根据求导法则,f'(x) = 1/x。

将x=1代入f'(x),得到f'(1) = 1。

因此,点A(1,0)处的切线斜率为1。

利用点斜式方程求出切线方程。

将切点坐标和斜率代入,得到切线方程为y - 0 = 1(x - 1),即y = x - 1。

三、导数在研究函数单调性中的应用1. 实例一:研究函数f(x) = x³在区间(-∞, +∞)上的单调性。

解:求出函数f(x)的导数f'(x)。

根据求导法则,f'(x) = 3x²。

由于x²≥0,所以f'(x)≥0。

因此,函数f(x)在区间(-∞, +∞)上单调递增。

中学数学教案导数在函数中的应用

中学数学教案导数在函数中的应用

中学数学教案导数在函数中的应用一、教学目标:1. 理解导数的基本概念和性质。

2. 学会使用导数求解函数的极值、单调性、凹凸性等问题。

3. 能够运用导数解决实际问题,提高解决问题的能力。

二、教学内容:1. 导数的基本概念:导数的定义、导数的几何意义。

2. 导数的计算:基本导数公式、导数的四则运算、复合函数的导数。

3. 导数在函数中的应用:函数的单调性、极值、凹凸性、实际问题。

三、教学重点与难点:1. 重点:导数的基本概念、导数的计算方法、导数在函数中的应用。

2. 难点:导数的计算、函数的凹凸性判断、实际问题的解决。

四、教学方法:1. 采用启发式教学,引导学生主动探究导数的基本概念和性质。

2. 通过例题讲解,让学生掌握导数的计算方法。

3. 利用多媒体课件,直观展示函数的单调性、极值、凹凸性等概念。

4. 结合实际问题,培养学生的应用能力。

五、教学过程:1. 导入新课:回顾初中阶段学习的函数知识,引导学生思考函数的单调性、极值等问题。

2. 讲解导数的基本概念:介绍导数的定义,解释导数的几何意义。

3. 导数的计算:讲解基本导数公式,示范导数的四则运算,分析复合函数的导数。

4. 导数在函数中的应用:讲解函数的单调性、极值、凹凸性的判断方法,结合实际问题进行演示。

5. 课堂练习:布置相关练习题,让学生巩固所学知识。

7. 作业布置:布置课后作业,巩固导数的基本概念和计算方法。

六、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习兴趣和积极性。

2. 练习完成情况:检查学生课堂练习和课后作业的完成质量,评估学生对导数知识的掌握程度。

3. 实际问题解决:评估学生在解决实际问题时的应用能力,如能否灵活运用导数分析函数的性质。

七、教学拓展:1. 导数在高等数学中的应用:介绍导数在微积分、线性代数等高等数学领域的应用,激发学生的学习兴趣。

2. 导数与其他学科的联系:探讨导数在物理学、经济学等学科中的应用,拓宽学生的知识视野。

导数在研究函数中的应用

导数在研究函数中的应用

导数在研究函数中的应用导数作为微积分的重要概念,在研究函数中应用广泛。

导数的概念最早由牛顿和莱布尼茨独立提出,它描述了函数变化的速率。

导数的定义是函数在其中一点的变化率,表示函数在这一点附近的斜率。

在函数研究中,导数的应用主要体现在以下几个方面:1.切线和法线:导数可以用来求解函数曲线上其中一点的切线和法线。

切线是函数曲线在其中一点上切过该点的直线,而法线是与切线相垂直的直线。

利用导数的定义,我们可以确定函数曲线上其中一点的斜率,进而得到其切线和法线的方程。

2.极值与拐点:导数可以帮助我们找到函数的极值点和拐点。

在函数的极值点上,导数等于零。

根据这个性质,我们可以利用导数来确定函数的极大值和极小值点。

此外,导数还可以帮助我们确定函数上的拐点,即函数曲线由凸向上转为凹向上或由凹向上转为凸向上的点。

3.函数的单调性:导数还可以帮助我们研究函数的单调性。

如果函数在一些区间上的导数恒大于零(或恒小于零),那么函数在该区间上是递增的(或递减的)。

通过分析函数的导数,我们可以确定函数在一些区间上是递增还是递减。

4.函数的凹凸性:导数还可以用来确定函数的凹凸性。

如果函数在一些区间上的导数恒大于零,那么函数在该区间上是凸的;如果函数在一些区间上的导数恒小于零,那么函数在该区间上是凹的。

通过分析函数的导数的变化情况,我们可以确定函数的凹凸区间。

5.近似计算:导数还可以用于近似计算。

在很多实际问题中,函数的导数可以用来近似表示函数在其中一点的变化率。

通过导数近似表示函数的变化率,我们可以很方便地进行问题求解和计算。

总之,导数在研究函数中的应用非常广泛,涵盖了函数的局部性质、全局性质以及近似计算等方面。

通过对导数的研究,我们可以全面了解函数的变化规律和特性,为解决实际问题提供了有力的工具。

导数在函数中的应用知识点讲解+例题讲解(含解析)

导数在函数中的应用知识点讲解+例题讲解(含解析)

导数在函数中的应用一、知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数形如山峰形如山谷3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) (3)函数的极大值一定大于其极小值.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 解析 (1)f (x )在(a ,b )内单调递增,则有f ′(x )≥0. (3)函数的极大值也可能小于极小值.(4)x 0为f (x )的极值点的充要条件是f ′(x 0)=0,且x 0两侧导函数异号. 答案 (1)× (2)√ (3)× (4)× (5)√2.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A.1B.2C.3D.4解析 由题意知在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正. 答案 A3.函数f (x )=2x -x ln x 的极值是( ) A.1eB.2eC.eD.e 2解析 因为f ′(x )=2-(ln x +1)=1-ln x ,令f ′(x )=0,所以x =e ,当f ′(x )>0时,解得0<x <e ;当f ′(x )<0时,解得x >e ,所以x =e 时,f (x )取到极大值,f (x )极大值=f (e)=e. 答案 C4.(2019·青岛月考)函数f (x )=cos x -x 在(0,π)上的单调性是( ) A.先增后减 B.先减后增 C.单调递增D.单调递减解析易知f′(x)=-sin x-1,x∈(0,π),则f′(x)<0,所以f(x)=cos x-x在(0,π)上递减.答案D5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图象易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.答案D6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为()A.4B.2或6C.2D.6解析函数f(x)=x(x-c)2的导数为f′(x)=3x2-4cx+c2,由题意知,在x=2处的导数值为12-8c+c2=0,解得c=2或6,又函数f(x)=x(x-c)2在x=2处有极小值,故导数在x=2处左侧为负,右侧为正,而当e=6时,f(x)=x(x-6)2在x=2处有极大值,故c=2.答案C考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值. (1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间. 解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0,即3a ·⎝ ⎛⎭⎪⎫-432+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x ,故g ′(x )=12x (x +1)(x +4)e x . 令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4). 规律方法 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间. 2.若所求函数的单调区间不止一个时,用“,”与“和”连接.【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在⎝ ⎛⎭⎪⎫0,1e 上递增 D.在⎝ ⎛⎭⎪⎫0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.解析 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞;当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为⎝ ⎛⎭⎪⎫0,1e .(2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.答案 (1)D (2)⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2考点二 讨论函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.解 因为f (x )=x 22-a ln x ,x ∈(0,+∞),所以f ′(x )=x -a x =x 2-ax .(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )x,则有①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).考点三 函数单调性的简单应用 角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝ ⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( ) A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6(2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e ,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e 2的解集为( ) A.(-∞,1) B.(1,+∞) C.(1,e)D.(e ,+∞)解析 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x .由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e .所以函数g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,π2上单调递增,又π3>π4,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π4,所以f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π4cos π4, 即2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4.(2)F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减.由F (x )<1e 2=F (1),得x >1, 所以不等式F (x )<1e 2的解集为(1,+∞).答案 (1)B (2)B角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x . (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x -ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解. 设G (x )=1x 2-2x ,所以只要a >G (x )min . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x , 所以a ≥G (x )max . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4],因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.规律方法 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)<f (2) B.4f (1)>f (2) C.f (1)<4f (2)D.f (1)>4f ′(2)(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( )A.(-∞,-2]B.⎣⎢⎡⎭⎪⎫12,+∞ C.[2,+∞) D.⎝ ⎛⎦⎥⎤-∞,12解析 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)内为减函数,所以g (1)>g (2),即f (1)12>f (2)22,所以4f (1)>f (2).(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1x ≥0在(2,+∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 答案 (1)B (2)B三、课后练习1.(2017·山东卷)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-x B.f (x )=x 2 C.f (x )=3-xD.f (x )=cos x解析 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x =⎝ ⎛⎭⎪⎫e 2x,在定义域R 上为增函数,A 正确.对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确.对于C ,g (x )=e x ·3-x =⎝ ⎛⎭⎪⎫e 3x在定义域R 上是减函数,C 不正确.对于D ,g (x )=e x ·cos x ,则g ′(x )=2e x cos ⎝ ⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确. 答案 A2.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( ) A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e 解析 f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ).则原不等式可变形为f (ln x )<f (1)⇔f (|ln x |)<f (1). 又f ′(x )=x cos x +2x =x (2+cos x ), 由2+cos x >0,得x >0时,f ′(x )>0.所以f (x )在(0,+∞)上单调递增. ∴|ln x |<1⇔-1<ln x <1⇔1e <x <e. 答案 D3.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.解析 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13. 答案 ⎣⎢⎡⎦⎥⎤-13,134.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x, 当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a 2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点.由于g ′(0)=-2,∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9;由g ′(3)>0,即m >-373. ∴-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.。

导数的七种应用

导数的七种应用

导数的七种应用
导数是一个重要的数学概念,它表达了函数变化的方式。

由于它可以描述函数之间的关系,所以它在几乎所有的数学和科学领域中都有应用。

导数的七种应用是:
一、用于估算
导数可以用来估算函数的极值,从而使我们能够得出函数的极值点。

此外,还可以用导数来估算函数在任意点处的变化率。

二、用于求极值
使用导数,可以求出函数在某一点处的极值。

这使得可以确定某函数的最大值和最小值,以及求解它们所在的位置。

三、用于求解微分方程
导数也可以用来求解微分方程。

因为微分方程的形式是表示函数变化率的方程,所以它可以使用导数来求解。

四、用于图像的拟合
导数可以用来拟合任意函数的图像。

只需要知道函数的形式,就可以用导数来拟合图像。

五、用于求局部极大值或极小值
导数可以用来求局部极大值或极小值。

这是因为可以通过函数的导数来确定其极大值和极小值的位置。

六、用于解决线性递增/递减问题
通过导数,可以解决线性递增/递减问题。

这是由于递增/递减函数的导数表示其变化率,所以可以根据导数求解此类问题。

七、用于求微分
导数也可以用来求微分。

微分是求函数图像在某一点处的斜率,因此可以使用导数来求微分。

从上面我们可以看出,导数有着众多的应用,涵盖了数学和科学领域的众多研究领域。

运用它们,可以解决各种复杂问题,为科学和数学探索做出重要贡献。

导数的意义及应用

导数的意义及应用

导数的意义及应用导数是微积分的重要概念之一,真实世界中有许多应用与导数相关。

导数表示一个函数在其中一点上的瞬时变化率。

可以理解为函数曲线在该点处的切线的斜率。

导数能够提供有关函数如何随着自变量的变化而变化的信息。

导数的应用:1.确定函数的递增和递减区间函数在其中一点的导数为正表示函数在该点处递增,即函数的值随自变量的增加而增大。

函数在其中一点的导数为负表示函数在该点处递减,即函数的值随自变量的增加而减小。

通过导数的正负性推断出函数的递增和递减区间。

2.求取最大值和最小值在函数图像上,极大值和极小值对应于导数为零或不存在的点,即导数为零的点可能是函数的极值点。

可以通过导数值的变化确定极值的位置,并通过二次导数的符号推断出最大值和最小值。

3.切线和法线导数可以用来确定函数曲线在其中一点的切线方程。

切线是曲线在该点上的最佳线性逼近。

导数还可以用来确定切线的斜率,进一步确定切线的方程。

法线是切线的垂直线,法线的斜率是切线斜率的相反数。

4.求解速度和加速度在物理学和工程学中,导数用于求解物体的速度和加速度。

速度是位移关于时间的导数,加速度是速度关于时间的导数。

通过求解导数,可以确定物体的速度和加速度的变化率。

5.求解曲线的凹凸性曲线的凹凸性可以通过函数的导数的变化来确定。

如果函数的二阶导数为正,表示函数的曲线是凹向上的;如果函数的二阶导数为负,表示函数的曲线是凹向下的。

通过确定曲线的凹凸性,可以优化路径规划和表面设计等。

6.求解函数的方程导数在求解函数的方程时也发挥重要作用。

利用导数可以找到函数的零点,即函数的图像与x轴相交的点。

通过求解导数,可以确定方程的解的存在性和位置。

总之,导数在实际生活和科学研究中具有广泛的应用。

从数学的角度来看,导数提供了函数变化的有用信息。

从物理学、工程学和其他科学领域来看,导数帮助我们了解和解释自然现象以及进行预测和优化。

导数在研究函数中的应用

导数在研究函数中的应用

导数在研究函数中的应用导数是微积分中的重要概念,它在研究函数中有着广泛的应用。

导数可以描述函数在某一点上的变化率,帮助我们理解函数的性质以及解决实际问题。

本文将从几个方面介绍导数在函数研究中的应用。

一、函数的极值问题导数在研究函数的极值问题中起着重要的作用。

通过求函数的导数,我们可以得到函数的驻点和拐点,从而确定函数的极值。

具体来说,当函数的导数为零或不存在时,该点可能是函数的极值点。

通过求导数并求解方程,我们可以求得这些驻点,然后用二阶导数的符号判断它们是极大值还是极小值。

这个过程在求解最优化问题、优化生产过程中都有着广泛的应用。

二、函数的图像与性质导数可以帮助我们研究函数的图像和性质。

通过求导数,我们可以得到函数的增减性和凹凸性。

具体来说,当导数大于零时,函数是增函数;当导数小于零时,函数是减函数。

而二阶导数的正负可以判断函数的凹凸性,当二阶导数大于零时,函数是凹函数;当二阶导数小于零时,函数是凸函数。

通过分析导数和二阶导数的变化,我们可以画出函数的图像,并对函数的性质进行准确的描述。

三、函数的近似计算导数在函数的近似计算中有着重要的应用。

当函数的表达式很复杂或很难求解时,我们可以通过导数来近似计算函数的值。

具体来说,我们可以利用导数的定义公式f'(x) = lim(h->0) (f(x+h)-f(x))/h 来计算函数在某一点的导数,然后通过导数的值和函数在该点的值来估计函数在附近点的值。

这种方法在数值计算、机器学习等领域中被广泛应用。

四、函数的最优化问题导数在函数的最优化问题中也有着重要的应用。

通过求函数的导数,我们可以找到函数的驻点,从而求解函数的最值。

具体来说,当函数在某一点的导数为零或不存在时,该点可能是函数的最值点。

通过求导数并求解方程,我们可以求得这些驻点,然后通过二阶导数的符号判断它们是极大值还是极小值。

这个方法在经济学、工程学等领域中常常用来解决最优化问题。

导数在函数的研究中有着广泛的应用。

导数在高中数学函数中的应用体会

导数在高中数学函数中的应用体会

导数在高中数学函数中的应用体会
作为一个AI,我无法体验和感受,但我可以通过统计数据和常见的实际例子来说明导数在高中数学函数中的应用。

1. 反应函数变化速率
导数可以用来反应函数在某一个点上的变化速率,即函数在该点处的斜率。

通过求导,我们可以得到函数的变化速率,进而用于解决实际问题,比如求切线的斜率、求最速降线等等。

2. 解决最值问题
导数可以用于解决函数取值的最大值和最小值问题。

具体的方法是,对函数求导,求得导函数的零点,即为函数的极值点,然后通过比较极值点和函数在区间端点的值,找到函数的最大值和最小值。

3. 求曲线长度和面积
导数可以用于求曲线长度和曲面积。

具体的方法是,将曲线或曲面分割成无数个极小的线段或面元,然后对这些线段或面元的长度或面积进行求和,最终得到曲线或曲面的长度或面积。

通过上述应用,我们可以看到,导数不仅是高中数学函数的重要概念,更是在实际生活中具有广泛的应用价值。

导数在函数中的应用

导数在函数中的应用

导数在函数中的应用
现代社会中,微积分在各个领域都有着广泛的应用,而其中最重要的就是导数的应用。

导数可以帮助我们研究函数的变化趋势,可以提供有关函数的关键信息,它在科学、工程、数学、物理等众多领域有着重要的作用。

首先,导数可以用来确定函数的极值,即求解函数的最大值和最小值。

函数的极值是指函数在定义域内所取得的最大值或最小值,利用导数可以轻松地求出函数的极值。

其次,导数可以用来分析函数的变化趋势,即函数图像的上升或下降速度。

函数的变化趋势是指函数在定义域内的变化状况,其中导数可以用来描述函数的变化速度,可以帮助我们更清楚地了解函数的变化趋势。

此外,导数可以用来解决最优化问题,即找出某一函数的最优解。

最优化问题是指在一定条件下,求出能够使函数取得最大值或最小值的解,用导数可以计算出函数的极值,从而可以找出函数的最优解。

最后,导数还可以用来研究函数的变化率,即求出函数在某一点的变化率。

函数的变化率是指函数在某一点的变化率,其中导数可以用来描述函数在某一点的变化率,可以帮助我们更清楚地了解函数的变化状况。

总之,导数在函数中有着重要的作用,它可以用来求解函数的极值、分析函数的变化趋势、解决最优化问题和研究函数的变化率,它在各个领域都有着重要的作用。

3.3导数在函数中的应用(极值与最值)

3.3导数在函数中的应用(极值与最值)

科 目数学 年级 高三 备课人 高三数学组 第 课时 3.3导数在函数中的应用(极值与最值)考纲定位 会利用导数求函数的极值及最值;会区分函数极值与最值之间的区别.【考点整合】1、导数与函数极值的关系:(设()f x 在x a =附近有定义,且存在导函数()f x ') 函数()f x 在x a =处有极大值 函数()f x 在x a =处有极小值 定义定义 (1)x a 在的左边时,有()f x ' 0;(1)x a 在的右边时,有()f x ' 0;(2)x a 在的左边时,有()f x ' 0; (2)x a 在的右边时,有()f x ' 0; 图象图象2、判断下列语句的真假性:(1)函数在某区间上的极大值一定是最大值;( )(2)函数在某区间上的极大值一定比极小值大;( )(3)函数()y f x =在区间(,)a b 上一定存在最值;( )(4)函数()y f x =在区间[,]a b 上的最大值是(),()f a f b 和全体极值中最大的一个;( )(5)若0()0f x '=,则函数()y f x =在0x x =处取极值.( )【典型例题】一、求函数的极值点1、如果()y f x =的导函数()y f x '=的图象如图所示,给出下列判断:(1)()y f x =在(,2)-∞上单调递增;(2)()y f x =在(0,2)上单调递增;(3)2x =-时,()f x 有极大值;(4)0x =时,()f x 有极大值;(5)2x =时,()f x 有极大值;则上述判断正确的是 .2、函数32()39f x x ax x =++-在3x =-处取得极值,则a =( )A.2B.3C.4D.5二、求函数的极值与最值3、(2012 江苏 改编)已知函数32()f x x ax bx =++在1,1x x =-=时都取得极值.(1)求,a b 的值; (2)求函数()f x 在区间[-2,2]上的最值.三、高考真题演练4、(2012 湖南)函数)sin()(ϕω+=x x f 的导函数)(x f y '=的部分图象如图所示,其中,P 为图象与y 轴的交点,C A ,为图象与x 轴的两个交点,B 为图象的最低点.若6πϕ=,点P 的坐标为)233,0(,则=ω ;5、(2012 陕西)设函数()x f x xe =,则( )A.1x =为()f x 的极大值点B.1x =为()f x 的极小值点C.1x =-为()f x 的极大值点D.1x =-为()f x 的极小值点6、(2012 江西)设3211()232f x x x ax =-++. (1)若()f x 在2(,)3+∞上存在单调增区间,求a 的范围;(2)当02a <<时,()f x 在[1,4]上的最小值为163-,求()f x 在该区间上的最大值.【作业】《胜券在握》P26页 第1,2题【课后反思】。

导数在函数研究中的应用

导数在函数研究中的应用

导数在函数研究中的应用主要体现在以下几个方面:
1. 判断函数的单调性:通过求导数,可以判断函数在某个区间上的单调性。

如果导数大于零,则函数在该区间上单调递增;如果导数小于零,则函数在该区间上单调递减。

2. 寻找函数的极值:当导数等于零的点称为极值点,函数在该点取得极值。

通过求导数并令其等于零,可以找到函数的极值点。

3. 判断函数的凹凸性:通过求二阶导数,可以判断函数的凹凸性。

如果二阶导数大于零,则函数在该区间上凹;如果二阶导数小于零,则函数在该区间上凸。

4. 解决最优化问题:通过求导数,可以找到函数的最小值或最大值。

例如,在经济学中,可以使用导数来求解边际成本、边际收益等最优化问题。

5. 应用于物理学:在物理学中,导数是研究运动和力学的重要工具。

例如,速度是位移对时间的导数,加速度是速度对时间的导数。

因此,知道这些概念可以帮助我们更好地理解物体的运动和力学。

6. 应用于工程学:在工程学中,构造函数和导数是设计和优化产品和系统的重要工具。

例如,可以使用导数来优化工程材料的强度和刚度。

7. 应用于统计学:在统计学中,一些重要概念如概率密度函数和累积分布函数也可以使用导数来求解。

总之,导数是数学中非常重要的概念,它在许多领域中都有广泛的应用。

导数的应用概述

导数的应用概述

导数的应用概述导数是微积分中重要的概念之一,它描述了函数在某一点的变化率。

导数的应用广泛,涉及到许多领域,如物理学、经济学、工程学等。

本文将对导数的应用进行概述,介绍几个常见的应用场景。

1. 最值问题导数可以用来求函数的最值。

我们知道,在一个可导函数的极值点处,导数为零或不存在。

因此,通过求函数的导数,并解方程找到导数为零的点,我们可以确定函数的极值点。

然后通过二阶导数的符号来判断极值点的类型,是极大值还是极小值。

例如,我们有一个函数f(x)表示某商品的需求曲线,通过求导并解方程f'(x)=0,可以找到最大需求和最小需求的价格。

2. 切线与法线导数还可以用来求函数图像上的切线和法线。

切线是函数图像在某点的斜率,而斜率恰好就是该点处的导数值。

因此,我们可以通过求导得到函数在某点处的导数,从而得到该点的切线。

例如,我们有一个位置函数s(t),表示某物体在时间t时的位置。

通过求导得到速度函数v(t),我们可以知道在任意时间t时物体的速度,进而得到该时刻物体运动轨迹上的切线。

3. 函数图像的变化趋势函数的导数还可以用来描述函数图像的变化趋势。

根据导数的正负性,可以判断函数在某一区间上是递增还是递减。

例如,对于函数f(x),如果在某区间上导数大于零,则说明函数在该区间上递增;如果导数小于零,则说明函数在该区间上递减。

这样,我们就可以通过函数的导数来判断其图像的升降性,并画出函数的大致图像。

4. 曲线的凹凸性导数的二阶导数可以判定函数图像上的曲线是凹还是凸。

具体地说,如果函数的二阶导数大于零,则函数图像是凹的;如果二阶导数小于零,则函数图像是凸的。

例如,对于函数f(x),我们可以通过计算它的二阶导数f''(x)来判断函数图像在某一区间上的凹凸性。

这个判断对于模型的建立和问题的分析具有重要作用。

综上所述,导数作为微积分的重要工具,具有广泛的应用。

通过求导,我们可以解决最值问题、求切线和法线、描述函数图像的变化趋势以及判断曲线的凹凸性等。

导数在研究函数中的应用

导数在研究函数中的应用

导数在研究函数中的应用导数是微积分中的一个基本概念,它描述了函数在其中一点的变化率。

由于函数在不同点的变化率是函数的重要性质之一,所以导数在研究函数中有着广泛的应用。

下面将从几个方面探讨导数在研究函数中的应用。

首先,导数可以用来求函数的最值。

在实际问题中,我们经常需要找到一个函数的最大值或最小值,这些最值往往代表了问题中的其中一种最优解。

通过计算函数的导数,我们可以找到函数在哪些点取得最大值或最小值,从而解决问题。

例如,在经济学中,我们利用导数来确定一个企业的生产量,以使其利润最大化。

在物理学中,我们利用导数来确定一个物体在何时达到最大速度。

其次,导数可以用来求函数的图像特征。

函数的导数可以描述函数在每一点的斜率,从而揭示函数的图像特征。

通过函数的导数,我们可以确定函数在哪些点上是递增的、递减的,从而得到函数的增减性质。

我们可以通过导数的符号和零点来确定函数的极值点和拐点,从而得到函数的凹凸性质。

例如,在物理学中,我们可以通过求一个物体的位移函数的导数来确定物体的速度函数。

进一步地,我们可以通过速度函数的导数来确定物体的加速度函数。

此外,导数还可以用来进行近似计算。

在很多实际问题中,往往难以通过精确计算来得到一个准确的结果。

然而,通过导数的概念,我们可以通过局部线性化来得到一个近似结果。

也就是说,我们可以用一个线性函数来替代原函数,从而得到一个较好的近似结果。

这种近似计算方法被广泛应用于物理、工程等领域。

例如,在计算器中,我们可以通过导数的近似计算方法来快速地计算一个函数的值。

最后,导数还可以用来研究函数的变化趋势。

函数的导数可以描述函数的变化趋势,它可以告诉我们函数在一些点上的变化速率。

通过导数的大小和正负号,我们可以确定函数是递增还是递减,从而得到函数的趋势。

例如,在金融学中,我们可以通过计算股票价格的导数来判断股票市场的走势。

总之,导数在研究函数中有着广泛的应用。

通过求函数的导数,我们可以求函数的最值,研究函数的图像特征,进行近似计算,以及研究函数的变化趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二课时 导数在函数中的应用
【学习目标】
1.理解导数在研究函数的单调性和极值中的作用;
2.理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有广泛的应用。

3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;
4.结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

【重点难点】
①利用导数求函数的极值;②利用导数求函数的单调区间;③利用导数求函数的最值;④利用导数证明函数的单调性;⑤数在实际中的应用;⑥导数与函数、不等式等知识相融合的问题;⑦导数与解析几何相综合的问题。

【高考要求】B 级
【自主学习】1. 函数的单调性
⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则)(x f 为 .(逆命题不成立)
(2) 如果在某个区间内恒有0)(='x f ,则)(x f .
注:连续函数在开区间和与之相应的闭区间上的单调性是一致的.
(3) 求可导函数单调区间的一般步骤和方法:
① 确定函数)(x f 的 ;
② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根;
③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间;
④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区间内的增减性.
2.可导函数的极值
⑴ 极值的概念:设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称)(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点. ⑵ 求可导函数极值的步骤:
① 求导数)(x f ';
② 求方程)(x
f'=0的;
③ 检验)(x
f'=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负,f'在方程)(x
那么函数y=)(x
f在这个根处取得;如果在根的左侧附近为负,右侧为正,那么函数y=)(x
f在这个根处取得 .
3.函数的最大值与最小值:
⑴ 设y=)
f是定义在区间[a ,b ]上的函数,y=)(x
(x
f在(a ,b )内有导数,则函数y =)(x
f在[a ,b ]上有最大值与最小值;但在开区间内有最大值与最小值.
(2) 求最值可分两步进行:
① 求y=)(x
f在(a ,b )内的值;
② 将y=)(x
f、)(b f比较,其中最大的一个为最大值,最小的一
f的各值与)(a
个为最小值.
(3) 若函数y=)(x
f为函数的,)(b f为函数
f在[a ,b ]上单调递增,则)(a
的;若函数y=)
f为
f为函数的,)(b
(a
f在[a ,b ]上单调递减,则)
(x
函数的 .
[典型例析]
2例1已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=
3时,y=f(x)有极值.
(1)求a,b,c
(2)求y=f(x)在[-3,1]上的最大值和最小值.
例2已知f(x)=e x-ax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围;
(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.
例3某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2-10x3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).
(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值-成本)
(2)问年造船量安排多少艘时,可使公司造船的年利润最大?
(3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么?
[当堂检测]
1.函数y=f(x)的图象过原点且它的导函数g=)
f 的图象是如图所示的一条直线,则
(x
y=f(x)图象的顶点在第象限.
2.已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x >0时,)(x f '>0,)(x g '>0,则x <0时,)(x f ' 0,)(x g ' 0(用“>”,“=”或“<”填空).
3.(2008·广东理)设∈a R ,若函数y=e ax +3x ,∈x R 有大于零的极值点,则a 的取值范围为 .
4. 函数y=3x 2-2lnx 的单调增区间为 ,单调减区间为 .
5.(2008·江苏,14)f(x)=ax 3-3x+1对于x ∈[-1,1]总有f(x)≥0成立,则a= .
6函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=x
x f )(在区间(1,+∞)上一定是 函数.(用“增”、“减”填空)
7函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数
f (x )在开区间(a ,b )内极小值点有 个.
8已知函数f (x )=2
1x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是 .
9已知函数f (x )的导数f ′(x )=a (x +1)·(x -a ),若f (x )在x =a 处取到极大值,则a 的取值范围是 .。

相关文档
最新文档