一次不定方程的解法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
一次不定方程的解我们现在就这个问题,先给出一个定理
定理如是互质的正整数是整数,且方,①cby?ax?有一组整数解则此
方程的一切整数解可以表示为yx,00其中…3,??1,?2,t?0,证因为是方程①的整数解,当然满足y,x00②c?ax?by00因此
.cby?at)?ax?ba(x?bt)?(y?0000这表明,也是方程①的解.at?y??x?xbty00设是方程①的任一整数解,则有??y,x③??caxby???②得④③
??)y(?)x(ax??by?00精心整理.
精心整理
t是整数.将,其中代入④,即得由于,所以,即???
atyy?y?at??y ya?y1)?,(ab000.因此可以表示成,的形式,所以,
???y?y?atx?x?x?x?btyy?x??x?btatbty,x00000表示方程①的一切整数解,命题得证.有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解. 例1求的整数解.715y?11x?将方程变形得1解是这个方程的的倍数.由观察是整数,所应是因211组整数解,所以方程的解先考,通过观
察易得解11114所以
(7711,,从而可取21?x??28,y00可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于
求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是 t一样的.将解中的参数做适当代换,就可化为同一
形式.求方程的非负整数解.2例9022y??6x得因为,所以方程两边同
除以解2?(6,22)2①45?3x?11y由观察知,是方程1??yx?4,11②1?11y?x3
的一组整数解,从而方程①的一组整数解为
由定理,可得方程①的一切整数解为精心整理.
精心整理
因为要求的是原方程的非负整数解,所以必有
180?11t?0?③??45?3t?0?由于是整数,由③得,所以只有两种可能.16?t?15,tt16t?15?当;当.所以原方程的非负整数解是
3??4,yy?0?t16,xt?15,x?15,x?415x???,??y?3y?0??求方的所有正整数解211?分析这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况们可用逐步缩小系数的方法使系数变小,最后再用观察法求得其解
解用方
211?的最小系除方程①的各项,并移项
211y②?30?2y?x?77y?53.化简得到是整数,故因为也是整数,于是?u yx,3?7u5y?7③3??7u5y3?2u(整数),由此得令?v5④35v?2u?u??1u??1??是方程④的一组解.将代入③得,再将由观察知代入②得
2?2y?y??v?1v?1??x?25x?25?19t??t为整数,所以它的一切解为.于是方程①有一组解025x???y?2y?2?7t??0由于要求方程的正整数解,所以
解不等式,得只能取.因此得原方程的正整数解为0,1t精心整理.精心整理
x?25x?6??,??y?2y?9??当方程的系数较大时,我们还可以用辗转相除法求其特解,其解法结合例题说明.
求方程的整数解.4例25??107y37x解
为表示,我们把上述辗转相除过程回代,1031由此可是方的一组整数解.于2610322652?x22600是方的一组整数解23107所以原方程的一切整数解
某国硬币分分两种,问用这两种硬币支分货款,有多少种不例14的方法
解设需枚分,枚分恰好支付分,于是x y57142①1425?y?7x所以
由于,所以,并且由上式知.因为,所以,从而1xx?1)5?52(12)?(5,20x?x7?142,所以①的非负整数解为1,6,11,16?x x?1x?6x?11x?16????,,,
????y?27y?20y?13y?6????所以,共有4种不同的支付方式.
说明当方程的系数较小时,而且是求非负整数解或者是实际问题时,这时候的解的组数往往较少,可以用整除的性质加上枚举,也能较容易地解出方程.
多元一次不定方程可以化为二元一次不定方程.
精心整理.
精心整理
求方程的整数解.6例1000?y?5z9x?24解设,即,于是.于是原方程可化为t8y?3t?3x?9x?24y1000??5z3t3x?8y?t?①?3t?5z?1000?用前面的方
法可以求得①的解为
x?3t?8?(是整数)②u?y??t?3u②的解为
200是整数)100,得消去1600都是整数200100年以前,我国古代数学家张丘建在他编写的《张丘建算经》里,曾1500 大约提出并解决
了“百钱买百鸡”这个有名的数学问题,通俗地讲就是下例.只个钱买小鸡每个钱三只.用母鸡每只三个钱,今有公鸡每只五个钱,7 例100100鸡,问公鸡、母鸡、小鸡各买了多少只?只,由题意列方程组解设公鸡、母鸡、小鸡各买z,x,y①②化简得③300?z?15x?9y②得③?200y?14x?8得,解即1?100x7?4y?4x7?y的一个特解为于是1004x7?y?精心整理.
精心整理
由定理知的所有整数解为100?x?4y7由题意知,,所以
100?y,z0?x,4?25?t?28??7解得?24?28??t14?77?4∴28t?25?7
只公鸡只母鸡8811
精心整理.