最短路径算法—dijkstra总结

合集下载

gis计算最短路径的Dijkstra算法详细讲解

gis计算最短路径的Dijkstra算法详细讲解

最短路径之Dijkstra算法详细讲解1最短路径算法在日常生活中,我们如果需要常常往返A地区和B 地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。

最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。

算法具体的形式包括:(1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。

(2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。

在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。

(3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。

(4)全局最短路径问题:求图中所有的最短路径。

用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。

最常用的路径算法有:Dijkstra算法、A*算法、Bellman-Ford算法、Floyd-Warshall算法、Johnson算法。

本文主要研究Dijkstra算法的单源算法。

2Dijkstra算法2.1 Dijkstra算法Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。

主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

2.2 Dijkstra算法思想Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。

图论中的最短路径算法

图论中的最短路径算法

图论中的最短路径算法图论是数学的一个分支,研究图的性质和图之间的关系。

在图论中,最短路径算法是一类重要的算法,用于寻找图中两个顶点之间的最短路径。

本文将介绍图论中的几种常见的最短路径算法。

一、Dijkstra算法Dijkstra算法是最短路径算法中最常用的一种。

它基于贪心策略,通过逐步扩展路径来求解最短路径。

算法的基本思想是,从一个起始顶点开始,逐步扩展到其他顶点,每次选择当前路径中距离起始顶点最近的顶点进行扩展,直到扩展到目标顶点或者所有顶点都被扩展完毕。

Dijkstra算法的步骤如下:1. 初始化起始顶点的距离为0,其他顶点的距离为无穷大。

2. 选择距离起始顶点最近的顶点,将其加入已扩展顶点集合。

3. 更新与新加入顶点相邻的顶点的距离,如果新的距离比原来的距离小,则更新距离。

4. 重复步骤2和步骤3,直到扩展到目标顶点或者所有顶点都被扩展完毕。

5. 根据更新后的距离,可以得到最短路径。

二、Bellman-Ford算法Bellman-Ford算法是另一种常用的最短路径算法。

它可以处理带有负权边的图,而Dijkstra算法只适用于非负权边的图。

Bellman-Ford算法的基本思想是通过对所有边进行松弛操作,逐步减小起始顶点到其他顶点的估计距离,直到得到最短路径。

Bellman-Ford算法的步骤如下:1. 初始化起始顶点的距离为0,其他顶点的距离为无穷大。

2. 对所有边进行松弛操作,即如果存在一条边(u, v),使得从起始顶点到v的距离大于从起始顶点到u的距离加上边(u, v)的权值,则更新距离。

3. 重复步骤2,直到没有顶点的距离发生变化。

4. 根据更新后的距离,可以得到最短路径。

三、Floyd-Warshall算法Floyd-Warshall算法是一种多源最短路径算法,可以求解图中任意两个顶点之间的最短路径。

该算法通过动态规划的方式,逐步更新顶点之间的距离,直到得到最短路径。

Floyd-Warshall算法的步骤如下:1. 初始化顶点之间的距离矩阵,如果两个顶点之间存在边,则距离为边的权值,否则距离为无穷大。

dijkstra最短路径算法详解

dijkstra最短路径算法详解

dijkstra最短路径算法详解
Dijkstra最短路径算法是一种常用的图算法,用于求解带权图中的单源最短路径问题,即从一个固定的源节点到图中的其他节点的最
短路径。

以下是详细的算法步骤:
1. 初始化
一开始,将源节点的距离设为0,其余节点的距离设置为正无穷,在未访问的节点集合中把源节点压入堆中。

2. 确定最短路径
从堆中取出未访问节点集合中距离源节点最近的节点v,标记其
为已访问。

之后,对于v的邻居节点w,计算从源节点到v再到w的距离,如果经过v的路径比已经计算得到的路径短,则更新路径。

更新
后的距离先暂时放入堆中,如果后边有更短的路径,则更新。

3. 重复第2步
重复第2步,直到取出的节点为终点节点,或者堆为空。

4. 算法结束
算法结束后,各节点的距离就是从源节点到它们的最短距离。

Dijkstra算法的复杂度是O(NlogN),其中N是节点个数。

其优
势在于只需要算一次即可得到所有最短路径,但是要求所有边的权值
必须非负,否则会导致算法不准确。

总之,Dijkstra算法是一种简单有效的最短路径算法,其实现也比较直观。

在处理如飞机和火车等交通路径规划问题中有较好的应用。

最短路dijkstra算法详解

最短路dijkstra算法详解

最短路dijkstra算法详解最短路问题是图论中的一个经典问题,其目标是在给定图中找到从一个起点到其他所有节点的最短路径。

Dijkstra算法是解决最短路问题的一种常用算法,本文将详细介绍Dijkstra算法的原理、实现以及时间复杂度等相关内容。

一、Dijkstra算法的原理Dijkstra算法是一种贪心算法,其基本思想是从起点开始,逐步扩展到其他节点。

具体而言,Dijkstra算法通过维护一个集合S来记录已经找到了最短路径的节点,以及一个数组dist来记录每个节点到起点的距离。

初始时,S集合为空,dist数组中除了起点外所有节点都被初始化为无穷大。

接下来,重复以下步骤直到所有节点都被加入S集合:1. 从dist数组中选择距离起点最近的未加入S集合的节点u;2. 将u加入S集合;3. 更新与u相邻的未加入S集合的节点v的距离:如果从起点出发经过u可以得到更短的路径,则更新v对应位置上dist数组中存储的值。

重复以上步骤直至所有节点都被加入S集合,并且dist数组中存储了每个节点到起点的最短距离。

最后,根据dist数组中存储的信息可以得到起点到任意节点的最短路径。

二、Dijkstra算法的实现在实现Dijkstra算法时,需要使用一个优先队列来维护未加入S集合的节点,并且每次从队列中选择距离起点最近的节点。

由于C++标准库中没有提供优先队列,因此需要手动实现或者使用第三方库。

以下是一个基于STL堆实现的Dijkstra算法代码示例:```c++#include <iostream>#include <vector>#include <queue>using namespace std;const int INF = 0x3f3f3f3f;vector<pair<int, int>> adj[10001];int dist[10001];void dijkstra(int start) {priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;pq.push(make_pair(0, start));dist[start] = 0;while (!pq.empty()) {int u = pq.top().second;pq.pop();for (auto v : adj[u]) {if (dist[u] + v.second < dist[v.first]) {dist[v.first] = dist[u] + v.second;pq.push(make_pair(dist[v.first], v.first));}}}}int main() {int n, m, start;cin >> n >> m >> start;for (int i = 1; i <= n; i++) {dist[i] = INF;}for (int i = 1; i <= m; i++) {int u, v, w;cin >> u >> v >> w;adj[u].push_back(make_pair(v, w));}dijkstra(start);for (int i = 1; i <= n; i++) {if (dist[i] == INF) {cout << "INF" << endl;} else {cout << dist[i] << endl;}}return 0;}```以上代码中,adj数组用于存储图的邻接表,dist数组用于存储每个节点到起点的最短距离。

离散数学 最短路径dijkstra算法

离散数学 最短路径dijkstra算法

离散数学是数学的一个分支,研究离散对象和不连续对象的数量关系及其结构的数学学科。

离散数学对于计算机科学和信息技术领域有着重要的应用,其中最短路径dijkstra算法是离散数学中的一个重要算法,它被广泛应用于计算机网络、交通规划、电路设计等领域,在实际应用中发挥着重要的作用。

一、最短路径dijkstra算法的基本原理最短路径dijkstra算法是由荷兰计算机科学家艾兹赫尔·达斯提出的,用于解决带权图中的单源最短路径问题。

该算法的基本原理是:从一个源点出发,按照权值递增的顺序依次求出到达其它各个顶点的最短路径。

具体来说,最短路径dijkstra算法的实现步骤如下:1. 初始化:将源点到图中各个顶点的最短路径估计值初始化为无穷大,将源点到自身的最短路径估计值初始化为0;2. 确定最短路径:从源点开始,选择一个离源点距离最近的未加入集合S中的顶点,并确定从源点到该顶点的最短路径;3. 更新距离:对于未加入集合S中的顶点,根据新加入集合S中的顶点对其进行松弛操作,更新源点到其它顶点的最短路径的估计值;4. 重复操作:重复步骤2和步骤3,直到集合S中包含了图中的所有顶点为止。

二、最短路径dijkstra算法的实现最短路径dijkstra算法的实现可以采用多种数据结构和算法,比较常见的包括邻接矩阵和邻接表两种表示方法。

在使用邻接矩阵表示图的情况下,最短路径dijkstra算法的时间复杂度为O(n^2),其中n表示图中顶点的个数;而在使用邻接表表示图的情况下,最短路径dijkstra 算法的时间复杂度为O(nlogn)。

三、最短路径dijkstra算法的应用最短路径dijkstra算法可以应用于计算机网络中路由选择的最短路径计算、交通规划中的最短路径选择、电路设计中的信号传输最短路径计算等领域。

在实际应用中,最短路径dijkstra算法通过寻找起始点到各个顶点的最短路径,为网络通信、交通规划、电路设计等问题提供有效的解决方案。

dijkstra算法最短路径

dijkstra算法最短路径

《求解最短路径:应用迪杰斯特拉算法》一、介绍Dijkstra算法的概念和基本原理Dijkstra算法是一种用于解决最短路径问题的算法,它由荷兰计算机科学家Edsger Dijkstra在1959年发明,用于求解从源点到其他所有结点的最短路径。

它的基本原理是:在一张图中,从源点到每一个结点的最短路径是从源点开始,经过最少的边到达每一个结点的路径。

Dijkstra算法的实现过程中,首先要建立一个有向图,该图由顶点和边组成,每条边都有一个权值,表示从一个顶点到另一个顶点的距离。

然后,从源点开始,每次选择最小权值的边,继续查找下一个顶点,直到找到终点。

最后,将所有路径之和求出,即为源点到目标点的最短路径。

举例来说,假如有一张有向图,其中有A,B,C,D四个结点,以及AB,AC,BD,CD四条边,其中AB,AC,BD边的权值分别为2,3,1,CD边的权值为4。

如果要求求出从A到D的最短路径,则可以使用Dijkstra算法,首先从A出发,选择权值最小的边,即BD,则A-B-D的路径长度为3,接着从B出发,选择权值最小的边,即CD,则A-B-D-C的路径长度为7,因此,从A到D的最短路径为A-B-D,路径长度为3。

Dijkstra算法的优点是算法简单,实现方便,时间复杂度低,它可以用于解决路径规划,车辆调度,网络路由等问题,同时,它也可以用于解决复杂的最短路径问题。

因此,Dijkstra算法在计算机科学中有着重要的应用价值。

二、讨论Dijkstra算法的应用及其优势Dijkstra算法是一种用于解决最短路径问题的算法,它的应用和优势非常广泛。

首先,Dijkstra算法可以用于解决交通路网中的最短路径问题。

例如,在一个城市的交通路网中,如果一个乘客要从一个地方到另一个地方,那么他可以使用Dijkstra算法来查找最短的路径。

这样可以节省乘客的时间和金钱,也可以减少拥堵。

此外,Dijkstra算法还可以用于解决计算机网络中的最短路径问题。

c++ 遍历所有点且距离最短_最短路径问题dijkstra算法详解

c++ 遍历所有点且距离最短_最短路径问题dijkstra算法详解

c++ 遍历所有点且距离最短_最短路径问题dijkstra算法详解一、问题概述在图论中,最短路径问题是一个重要的研究课题,它涉及到从一个节点到另一个节点的最短路径的寻找。

Dijkstra算法是一种用于解决最短路径问题的经典算法,它可以高效地遍历图中的所有节点,并找到从起始节点到目标节点的最短路径。

二、Dijkstra算法详解1. 算法思想Dijkstra算法的基本思想是:对于图中的每个节点,选择距离起始节点最近的节点,并将其标记为已访问。

然后,从已访问的节点中选择下一个距离起始节点最近的节点,并将其标记为已访问。

重复这个过程,直到遍历完所有的节点。

在每一步中,算法都会更新节点之间的距离信息,以使得结果更加精确。

2. 算法步骤(1) 初始化:将起始节点的距离设置为0,将所有其他节点的距离设置为无穷大。

将起始节点标记为已访问。

(2) 遍历所有相邻节点:对于每个已访问的节点,遍历其所有相邻节点,并更新它们到起始节点的距离。

对于每个相邻节点,如果通过该相邻节点到达起始节点的距离比当前距离更短,则更新该相邻节点的距离。

(3) 终止条件:当没有未访问的节点时,算法终止。

此时,每个节点的最短路径已经确定。

3. C语言实现以下是一个简单的C语言实现Dijkstra算法的示例代码:```c#include <stdio.h>#include <stdlib.h>#define MAX_VERTICES (100) // 最大顶点数int minDistance[MAX_VERTICES]; // 存储最小距离的数组int dist[MAX_VERTICES]; // 存储每个节点到起点的实际距离的数组bool visited[MAX_VERTICES]; // 标记每个节点是否已访问的数组int src; // 起点int V; // 顶点数void dijkstra(int G[MAX_VERTIXE][MAX_VERTICES], int src) {V = G[0].size(); // 获取顶点数for (int i = 0; i < V; i++) {dist[i] = INT_MAX; // 初始化所有顶点到起点的距离为无穷大visited[i] = false; // 所有顶点未访问}dist[src] = 0; // 起点的距离为0for (int count = 0; count < V - 1; count++) {int u = vertex_selection(G, dist, visited); // 选择当前距离最小的顶点uvisited[u] = true; // 将u标记为已访问for (int v = 0; v < V; v++) { // 遍历u的所有邻居顶点if (!visited[v] && (dist[v] > dist[u] + G[u][v])) { // 如果未访问且通过u到达v的距离更短dist[v] = dist[u] + G[u][v]; // 更新v的距离信息}}}}int vertex_selection(int G[MAX_VERTICES][MAX_VERTICES], int dist[], bool visited[]) {int minIdx = 0, minDist = INT_MAX;for (int v = 0; v < V; v++) { // 遍历所有顶点vif (!visited[v] && minDist > dist[v]) { // 如果未访问且当前距离更短minDist = dist[v];minIdx = v; // 记录最小距离和对应的顶点索引}}return minIdx; // 返回最小距离对应的顶点索引}```三、应用场景与优化方法Dijkstra算法适用于具有稀疏权重的图,它可以高效地找到最短路径。

Dijkstra算法求解单源最短路径问题

Dijkstra算法求解单源最短路径问题

Dijkstra算法求解单源最短路径问题一、单源最短路径问题描述给定一个带权有向图G=(V,E),其中每条边的权都是非负数。

给定V中的一个顶点,称为源。

计算从源到所有其他定点的最短路径长度。

这里的路径长度就是指各边权之和。

该问题称为单源最短路径问题(Single-Source Shortest Paths)。

二、Dijkstra算法思想将图G中所有的顶点V分成两个顶点集合S和T。

以v为源点已经确定了最短路径的终点并入S集合中,S初始时只含顶点v, T则是尚未确定到源点v最短路径的顶点集合。

然后每次从T集合中选择S集合点中到T路径最短的那个点,并加入到集合S中,并把这个点从集合T删除。

直到T集合为空为止。

三、算法描述(步骤)1、选一顶点v为源点,并视从源点v出发的所有边为到各顶点的最短路径:①记录从源点v到其它各顶点的路径长度数组dist[],开始时,dist是源点v到顶点i的直接边长度,即dist中记录的是邻接阵的第v行。

②设一个用来记录从源点到其它顶点的路径数组path[],path中存放路径上第i个顶点的前驱顶点。

2、在上述的最短路径dist[]中选一条最短的,并将其终点(即<v,k>)k加入到集合s中。

3、调整T中各顶点到源点v的最短路径。

因为当顶点k加入到集合s中后,源点v到T中剩余的其它顶点j就又增加了经过顶点k到达j的路径,这条路径可能要比源点v到j原来的最短的还要短。

调整方法是比较dist[k]+g[k,j]与dist[j],取其中的较小者。

4、再选出一个到源点v路径长度最小的顶点k,从T中删去后加入S中,再回去到第三步,如此重复,直到集合S中的包含图G的所有顶点。

四、算法实现(数据结构)1、算法实现输入:一个大于1的整数n.输出:●一个随机生成的有向图G=(V,E),对于每一条边,有一个非负数字c(u,v)与之相关。

●对于每个顶点v∈V,得到从v0到v的最短路径的长度。

最短路径四大算法

最短路径四大算法

最短路径四大算法1. Dijkstra算法Dijkstra算法是最短路径问题中最常用的一种算法,它利用贪心策略寻找起点到终点的最短路径。

算法的核心是维护一个集合S,用于存放已经求得最短路径的点,以及一个距离数组d,记录每个点到起点的距离,每次选择距离最小的点加入S集合,然后更新其他点的距离,直到找到终点或者所有点都被加入S集合。

Dijkstra算法主要应用于带权图中的单源最短路径问题,时间复杂度为O(N^2),其中N为顶点数。

2. Bellman-Ford算法Bellman-Ford算法是针对Dijkstra算法不能处理带负权边的情况而提出的一种算法。

该算法利用动态规划思想,通过迭代更新每个节点的最短路径距离来求解最短路径。

算法的具体实现为从起点开始,遍历所有的边E,通过以下公式计算每个节点i到起点的最短路径长度d[i]:d[i] = min(d[i],d[j]+w(j,i))其中w(j,i)为边(j,i)的权值,如果存在一条从起点到终点的路径使得d[i]可以被进一步更新,则说明图中存在负权环。

Bellman-Ford算法的时间复杂度为O(VE),其中V为节点数,E为边数。

3. Floyd算法Floyd算法是一种动态规划算法,用于解决任意两点间的最短路径问题。

该算法利用一个二维数组dp[i][j]记录从i到j的最短路径长度,然后遍历整个图,通过dp[i][k]+dp[k][j]来更新dp[i][j]的值,直到遍历完所有的节点。

Floyd算法的时间复杂度为O(N^3),其中N为顶点数。

4. A*算法A*算法是一种启发式搜索算法,用于解决具有地图结构的最短路径问题。

该算法利用目标节点与当前节点间的启发式估价函数来快速收敛到最短路径。

具体实现为将每个节点标记为开放集、关闭集或者路径节点,按照估价函数对每个开放集中的节点进行排序,然后选择距离起点最近的节点进行拓展,直到找到终点或者开放集为空。

A*算法的时间复杂度与估价函数相关,通常情况下为O(b^d),其中b为平均分支数,d为起点到终点的最短路径长度。

最短路径算法―Dijkstra(迪杰斯特拉)算法分析与实现(

最短路径算法―Dijkstra(迪杰斯特拉)算法分析与实现(

Dijkstra( 迪杰斯特拉算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。

主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

Dijkstra 算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

Dijkstra 算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。

一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。

初始时,S中仅含有源。

设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。

Dijkstra 算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S 中,同时对数组dist作必要的修改。

一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。

例如,对下图中的有向图,应用Dijkstra 算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。

Dijkstra 算法的迭代过程:主题好好理解上图!以下是具体的实现(C/C++:A ]***************************************2.* About: 有向图的Dijkstra 算法实现3. * Author: Tanky Woo4. * Blog: 6.7. #i nclude8. using n amespace std;9.9. con st i nt maxnum = 100;10. con st i nt maxi nt = 999999;12.13.11. void Dijkstra(i nt n, int v, int *dist, int *prev, int c[max nu m][max num]12. {13. bool s[maxnum]; // 判断是否已存入该点到 S 集合中14. for(i nt i=1; i<=n; ++i15. {16. dist[i] = c[v][i];17. s[i] = 0; // 初始都未用过该点18. if(dist[i] == maxi nt19. prev[i] = 0;20. else21. prev[i] = v;22. }23. dist[v] = 0;24. s[v] = 1;28.29. // 依次将未放入S 集合的结点中,取 dist[] 最小值的结点,放入结合 S 中5. *************************************30. // 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度31.for(i nt i=2; i<=n; ++i32.{33.i nt tmp = maxi nt;34.i nt u = v;35.// 找出当前未使用的点j的dist[j] 最小值36.for(int j=1; j<=n; ++j37.if((!s[j] && dist[j]38.{39.u = j; // u 保存当前邻接点中距离最小的点的号码40.tmp = dist[j];41.}42.s[u] = 1; // 表示u点已存入S集合中43.43.// 更新dist44.for(i nt j=1; j<=n; ++j45.if((!s[j] && c[u][j]46.{47.int newdist = dist[u] + c[u][j];48.if( newdist < dist[j]49.{50.dist[j] = n ewdist;51.prev[j] = u;52.}53.}54.}55.}58.void searchPath(i nt *prev,i nt v, int u59.{60.int que[max nu m];61.i nt tot = 1;62.que[tot] = u;63.tot++;64.int tmp = prev[u];65.while(tmp != v66.{67.que[tot] = tmp;68.tot++;69.tmp = prev[tmp];70.}71.que[tot] = v;72.for(int i=tot; i>=1; --i73.if(i != 174.cout << que[i] << "-> ";75.else76.cout << que[i] << en dl;77.}78.78.int main(79.{80.freopen("input.txt", "r", stdin;81.II各数组都从下标1开始82.i nt dist[max num]; II 表示当前点到源点的最短路径长度83.i nt prev[max nu m]; II 记录当前点的前一个结点记录图的两点间路径长度84.i nt c[max nu m][max nu m]; II87.88. II输入结点数89. cin >> n;90. II输入路径数91. cin >> line;92. i nt p, q, le n; II 输入p, q93.94. II 初始化c[][] 为maxi nt95. for(i nt i=1; i<=n; ++i96. for(i nt j=1; j<=n; ++j97. c[i][j] = maxi nt;98.99. for(i nt i=1; i<=li ne; ++i100. {101. cin >> p >> q >> len;102. if(len < c[p][q] II 有重边103. {104. c[p][q] = le n; II p 指向q 105. c[q][p] = le n; II q指向p,106. }107. }108.109. for(int i=1; i<=n; ++i110. dist[i] = maxi nt;111. for(i nt i=1; i<=n; ++i112. {113. for(i nt j=1; j<=n; ++j 两点及其路径长度这样表示无向图114.printf("%8d", c[i][j];115.prin tf("\n";116.}117.117.Dijkstra(n, 1, dist, prev, c;119.118.// 最短路径长度119.cout << " 源点到最后一个顶点的最短路径长度:"<< dist[ n] << endl;122.120.// 路径121.cout << " 源点到最后一个顶点的路径为:";122.searchPath(prev, 1, n;123.}复制代码输入数据:571 2 101 4 301 5 1002 3 503 5 104 3 204 5 60输出数据:999999 10 999999 30 10010 999999 50 999999 999999 999999 50 999999 20 1030 999999 20 999999 60100 999999 10 60 999999源点到最后一个顶点的最短路径长度: 60 源点到最后一个顶点的路径为: 1 -> 4 -> 3 -> 5。

最短路径 算法

最短路径 算法

最短路径算法在计算机科学和图形学中,最短路径算法是一种用于找到一组节点之间最短路径的算法。

这些算法广泛应用于路由算法、GIS系统、模拟导航系统等领域。

在许多实际应用中,最短路径算法提供了许多实用的功能,如确定两点之间的距离和导航路径等。

下面将介绍几种最短路径算法的基本原理和实现方法。

一、Dijkstra算法Dijkstra算法是一种基于贪婪策略的最短路径算法,适用于图中不含负权边的图。

该算法的基本思想是从一个源节点开始,逐步计算源节点到其他节点的最短路径。

算法的核心思想是每次选择当前已知最短路径的节点,并更新其邻居节点的距离。

实现步骤如下:1. 初始化:将源节点的距离设为0,将所有其他节点的距离设为无穷大。

2. 遍历所有与源节点相邻的节点,并更新其到源节点的距离。

3. 对于每个相邻节点,如果通过源节点到达该节点的距离小于当前距离,则更新该节点的距离。

4. 重复步骤2和3,直到所有节点的距离都得到更新。

二、Bellman-Ford算法Bellman-Ford算法是一种适用于包含负权边的图的最短路径算法。

该算法通过多次迭代来更新节点的距离,并使用松弛操作来检测负权环。

该算法的时间复杂度为O(n),其中n是图中节点的数量。

实现步骤如下:1. 初始化:将源节点的距离设为0,并将所有其他节点的距离设为可能的最长距离(例如正无穷)。

2. 对于每个相邻节点u,从图中移除边(u, v),并更新v的距离(如果存在)。

3. 在没有剩余边的情况下,重新初始化所有节点的距离。

4. 重复步骤2和3,直到所有边的长度被增加到所有v的权重的加和+ε或被更改为新权重的节点变为可达状态。

如果某个节点的权重减小或为负数(因此没有负权环),那么就从结果集中移除它,并将邻居的权重减小对应的数量到其它节点中对应邻居的权重处(对权重相同的情况仍然可采用轮转机制确保统一更新)以优化该点下一步的可能选择空间和对应的下一个邻居的可能状态下的可能性一致。

最短路径算法——Dijkstra算法

最短路径算法——Dijkstra算法

最短路径算法——Dijkstra算法摘要:数据结构作为计算机科学的核心,已经成为人们必须掌握的一切信息知识。

作为经典的最短路径算法,Dijkstra算法数据结构被在生活中的各方面都有所体现。

本文从数据结构和最短路径算法的定义入手,介绍了Dijkstra算法的算法优缺点和算法实例,最后阐述了最短路径算法在现实生活中的作用,说明该算法的重要意义。

关键词:最短路径;Dijkstra算法;应用一、数据结构与算法1.1 数据结构数据结构是解释数据之间关系的科学。

典型的数据结构包括数组、链表、树和图[1]。

如何准确地使用各种数据结构至关重要。

这种数据结构就是图表,它是“树型”数据结构的扩展。

节点是一个节点(单独的节点),不能连接或连接到另一个节点。

结果,图中节点之间的关系变得更加复杂,并且通过计算机从一个节点到另一个节点的路径变得更加困难。

数据结构彼此具有一个或多个某种联系的元素数据汇总。

一般情况下,经过筛选的数据结构可以让用户感受到良好的体验或使用效率。

数据逻辑结构、数据存储结构和数据操作三部分是数据结构研究的主要内容。

线性结构和非线性结构一起组成了数据结构中的逻辑结构。

对线性结构的解释是:简单的一个表就是一种线性结构,这个表中所有的节点都符合线性关系。

除此之外,线性表是一种典型的线性结构,栈、队列、字符串都是线性结构。

对非线性结构的解释是:在一个简单表中的节点之间存在若干个对应关系是非线性结构。

在现实应用中,非线性结构主要包括了数组、树结构、图结构等数据结构。

1.2最短路径算法最短路径在图论中定义为在有向图中两结点间找一条权值最小的路径。

最短路径算法是对图状结构进行分析,找到需要的、合适的结点及路径,在交通、路径规划、城市建设、灾难逃生等领域广泛应用[2]。

最短路径法是一种机器学习技术,用于搜索连通图中结点之间的最短路径,是计算复杂系统中发现最优路径的有效方法。

最短路径法可以应用于许多不同类型的问题,包括路由算法、资源分配问题、最优布线、交通规划等,还可以被用于搜索引擎中搜索优化的相关工作。

dijkstra算法 原理

dijkstra算法 原理

dijkstra算法原理Dijkstra算法原理Dijkstra算法是一种用于计算加权图中最短路径的算法,它以荷兰计算机科学家Edsger W. Dijkstra的名字命名。

该算法的核心思想是通过逐步确定起点到各个顶点的最短路径来实现。

Dijkstra算法的步骤如下:1. 创建两个集合S和U,其中S是已确定最短路径的顶点集合,U 是未确定最短路径的顶点集合。

2. 初始化起点的最短路径为0,其他顶点的最短路径为正无穷大。

将起点加入到集合S中,将其他顶点加入到集合U中。

3. 对于集合U中的每个顶点,计算从起点出发经过该顶点到达所有其他顶点的路径长度,并更新最短路径和前驱顶点。

4. 从集合U中选择路径最短的顶点加入到集合S中,并从集合U中移除。

5. 重复步骤3和步骤4,直到集合U为空。

Dijkstra算法的核心在于每次从集合U中选择最短路径的顶点加入到集合S中。

通过这种方式,可以逐步确定起点到其他顶点的最短路径,并且保证每次加入集合S的顶点都是当前最短路径的顶点。

Dijkstra算法的时间复杂度为O(V^2),其中V是图中顶点的个数。

这是因为在每次迭代中,需要对集合U中的每个顶点进行更新操作。

当顶点数量较大时,Dijkstra算法的效率可能较低。

然而,可以通过使用优先队列来优化Dijkstra算法的时间复杂度。

优先队列可以在插入和删除操作中保持元素的有序性,从而减少查找最短路径的时间。

通过使用优先队列,可以将Dijkstra算法的时间复杂度优化为O((V+E)logV),其中E是图中边的个数。

Dijkstra算法广泛应用于网络路由、地图导航和资源调度等领域。

在网络路由中,Dijkstra算法可以用来寻找从源节点到目标节点的最优路径,从而实现数据包的快速传输。

在地图导航中,Dijkstra 算法可以用来计算最短路径,指导驾驶员选择最佳路线。

在资源调度中,Dijkstra算法可以用来分配有限资源,以最大程度地满足各个任务的需求。

dijkstra算法平均最短路径公式

dijkstra算法平均最短路径公式

Dijkstra算法(Dijkstra's algorithm)是一种用来确定图中起点到其他每个顶点的最短路径的算法。

它是由荷兰计算机科学家艾兹赫尔·迪克斯特拉(Edsger W. Dijkstra)在1956年提出的,是广泛应用于计算机科学和工程领域的重要算法之一。

1. 问题描述在一个带权重的有向图中,每一条边都有一个权重值,表示从一个顶点到另一个顶点的距离或代价。

给定一个起点,我们希望找到从起点到其他每个顶点的最短路径。

2. Dijkstra算法原理Dijkstra算法的基本原理是通过每次选择具有最小路径长度的顶点来逐步确定最短路径。

算法的具体步骤如下:1)初始化:将起点到其他每个顶点的最短路径长度初始化为无穷大,起点的最短路径长度初始化为0。

2)选择起点:选择起点作为当前顶点。

3)更新路径长度:对于当前顶点的每一个邻接顶点,如果通过当前顶点到达邻接顶点的路径长度小于目前已知的最短路径长度,则更新最短路径长度。

4)选择下一个顶点:从尚未确定最短路径的顶点中,选择具有最小路径长度的顶点作为当前顶点。

如果所有的顶点都已经确定了最短路径,算法结束;否则继续执行步骤3。

5)重复步骤3和步骤4,直到所有的顶点都确定了最短路径。

3. 算法的实现Dijkstra算法可以使用不同的数据结构来实现,包括数组、优先队列(如最小堆)等。

这里以使用数组和最小堆为例介绍算法的实现。

3.1 使用数组实现使用一个数组dist[]来存储当前起点到每个顶点的最短路径长度,初试化为无穷大。

使用一个数组visited[]来标记每个顶点是否已经确定了最短路径。

使用一个数组parent[]来记录每个顶点的前驱顶点。

具体实现步骤如下:1)初始化dist[]为无穷大,起点的dist值为0。

2)重复以下步骤n次,其中n为顶点数:a)选择dist[]中值最小且对应的顶点未被确定最短路径的顶点u。

b)标记顶点u为已确定最短路径。

最短路径算法——Dijkstra 算法

最短路径算法——Dijkstra 算法

最短路径算法——Dijkstra算法一、最短路径问题最短路问题是图论理论的一个经典问题。

寻找最短路径就是在指定网络中两结点间找一条距离最小的路。

最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。

最短路径算法的选择与实现是通道路线设计的基础,最短路径算法是计算机科学与地理信息科学等领域的研究热点,很多网络相关问题均可纳入最短路径问题的范畴之中。

经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断涌现。

在带权图(即网络)G=(V,E)中,若顶点v i,v j是图G的两个顶点,从顶点v i到v j 的路径长度定义为路径上各条边的权值之和。

从顶点v i到v j可能有多条路径,其中路径长度最小的一条路径称为顶点v i到v j的最短路径。

求最短路径具有很高的实用价值,在各类竞赛中经常遇到。

一般有两类最短路径问题:一类是求从某个顶点(即源点)到其他顶点(即终点)的最短路径;另一类是求图中每一对顶点间的最短路径。

本讲主要讲述一种单源最短路径(Single source shortest path)算法——Dijkstra 算法,用于解决非负权有向图的单源最短路径问题。

二、Dijkstra算法2.1 Dijkstra算法Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。

主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率偏低。

Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

2.2 Dijkstra算法思想对于图G=(V,E),假设(u,v)是E中的边,c u,v是边的长度(即边权)。

如果把顶点集合V划分为两个集合S和T:S中所包含的顶点,他们到u的距离已经确定;T中所包含的顶点,他们到u的距离尚未确定。

单源最短路径算法

单源最短路径算法

单源最短路径算法这篇文章将介绍两种常用的单源最短路径算法,Dijkstra算法和Bellman-Ford算法,它们分别使用了贪心法和动态规划的思想来解决该问题。

一、Dijkstra算法:Dijkstra算法是一种贪心法的算法,以其发明者荷兰计算机科学家Edsger W. Dijkstra的名字命名。

它的基本思想是通过逐步扩展已知最短路径集合,直到找到从起始节点到目标节点的最短路径为止。

算法步骤如下:1.初始化距离数组,将起始节点到所有其他节点的距离初始化为无限大。

2.将起始节点的距离设置为0。

3.对于与起始节点直接相连的节点,更新距离数组的值为起始节点到这些节点的距离。

4.选择距离数组中值最小且未访问过的节点作为下一个当前节点。

5.更新从起始节点到当前节点经过未访问过的节点的距离,并更新距离数组中的值。

6.重复步骤4和5,直到所有节点都被访问过或者无法再找到更短的路径。

Dijkstra算法的时间复杂度为O(V^2),其中V为图中节点的数量。

使用优先队列或堆数据结构可以将时间复杂度降低到O((V+E)logV)。

二、Bellman-Ford算法:Bellman-Ford算法是一种动态规划的算法,它以其发明者Richard Bellman和Leslie Ford的名字命名。

与Dijkstra算法不同的是,Bellman-Ford算法可以处理含有负权边的图。

算法步骤如下:1.初始化距离数组,将起始节点到所有其他节点的距离初始化为无限大。

2.将起始节点的距离设置为0。

3.对于每条边,更新距离数组的值为起始节点到目标节点的距离。

4.重复步骤3,直到所有节点的距离不再改变。

5.检查是否存在负权回路,如果存在,说明不存在最短路径。

Bellman-Ford算法的时间复杂度为O(VE),其中V为图中节点的数量,E为图中边的数量。

总结:Dijkstra算法和Bellman-Ford算法是解决单源最短路径问题的两种常用算法。

迪杰斯特拉(Dijkstra)算法描述及理解

迪杰斯特拉(Dijkstra)算法描述及理解

迪杰斯特拉(Dijkstra)算法描述及理解Dijkstra算法是⼀种计算单源最短⽆负边路径问题的常⽤算法之⼀,时间复杂度为O(n2)算法描述如下:dis[v]表⽰s到v的距离,pre[v]为v的前驱结点,⽤以输出路径,vis[v]表⽰该点最短路径是否已经确认初始化:dis[v]=INT dis[s]=0 pre[s]=0 执⾏n次 在没有确定的点中找到⼀个路径最短的,并修改为已经确认 通过这个点修改其他所有没有确定的点 直到所有点已经确认为最短路径,退出循环现在证明算法的正确性:⾸先,我们说明两条性质:1.确定任何⼀个点为最短路径时,前驱p⼀定已经是最短路径(假设源点的前驱是它本⾝)。

2.任意时刻在还没有确定最短路径的点的集合中路径最短的点就是可以被确定的点。

稍微证明⼀下这两条性质(反证法):证明1:假如前驱p还不是最短路径,那么显然当p是最短路径时到当前节点的路径更短,即不是最短路径的节点所确定的节点⼀定不是最短路径(好像很显然)证明2:为了⽅便描述,我们定义已经确定的点为⽩点,没有确定的点为蓝点。

若是蓝点中路径最短x还不能确定为⽩点,那么x的最短路径上必定存在⼀个蓝点y。

即dis[x]>dis[y]+edge[y][x]。

⽽dis[y]处于两种状态:(1)dis[y]已经是y点的最短路径,那么显然与dis[x]为蓝点中最短的相⽭盾。

(2)dis[y]还不是y点的最短路径,那么它的前驱显然是另外⼀个蓝点,即dis[y]>=dis[x](这⾥省略了⼀些步骤,不过⾃⼰稍微想⼀下,我觉得挺显然的),也⽭盾。

综上,性质2得证。

回过头再看我们的算法:在刚开始的时候,⾸先确定的最短路(就是直接和源点相连的点)进⼊⽩点集合,满⾜性质1,2。

此后每个过程都满⾜以上两个性质,所以算法正确。

算法实现:1 memset(vis,0,sizeof(vis));2 vis[s]=1;3 dis[s]=0;4 for(int i=1;i<n;i++)5 {6 int m=INT_MAX;7 int k=0;8 for(int j=1;j<=n;j++)9 {10 if(!vis[j] && dis[j]<m)11 {12 m=dis[j];13 k=j;14 }15 }16 if(k==0)17 break;18 vis[k]=1;19 for(int j=1;j<=n;j++)20 {21 if(dis[k]+e[k][j]<dis[j])22 dis[j]=dis[k]+e[k];23 }24 }View Code。

最短路径算法—dijkstra总结

最短路径算法—dijkstra总结

最短路径算法—D i j k s t r a总结(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除Dijkstra 算法解释本文引用三篇文章:分别是谢光新-Dijkstra 算法,zx770424 -Dijkstra 算法,中华儿女英雄 -Dijkstra 算法有兴趣的朋友请引用原文,由于分类很不相同难以查找,此处仅作汇总。

谢光新的文章浅显易懂,无需深入的数学功力,每一步都有图示,很适合初学者了解。

zx770424将每一步过程,都用图示方式和公式代码\伪代码对应也有助于,代码的理解。

中华儿女英雄从大面上总结了Dijkstra 的思想,并将演路图描叙出来了。

起到总结的效果。

希望这篇汇总有助于大家对Dijkstra 算法的理解。

Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。

主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

简介Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。

主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。

注意该算法要求图中不存在负权边。

算法描述(这里描述的是从节点1开始到各点的dijkstra算法,其中Wa->b表示a->b的边的权值,d(i)即为最短路径值)1.置集合S={2,3,...n}, 数组d(1)=0, d(i)=W1->i(1,i之间存在边) or +无穷大(1.i之间不存在边) 2.在S中,令d(j)=min{d(i),i属于S},令S=S-{j},若S为空集则算法结束,否则转33.对全部i属于S,如果存在边j->i,那么置d(i)=min{d(i), d(j)+Wj->i},转2Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。

总结Dijkstra算法的主要思想

总结Dijkstra算法的主要思想

总结Dijkstra算法的主要思想Dijkstra算法是一种用于在图中找到从起点到终点的最短路径的算法。

它被称为单源最短路径算法,因为它是从给定的一个起点开始搜索到其他所有节点的最短路径。

Dijkstra算法的主要思想是通过使用贪婪策略逐步构建最短路径树。

其具体步骤如下:1. 创建一个包含所有节点的数组,其中存放每个节点距离起点的最短路径长度的估计值。

2. 将起点的估计值设置为0,其他节点的估计值设置为无穷大,表示初始时还没有找到到达这些节点的最短路径。

3. 创建一个空的集合S,用来存放已经找到最短路径的节点。

4. 重复以下步骤,直到所有节点都被加入到S中:- 从未加入S的节点中选择一个具有最小估计值的节点u,将其加入到S中。

- 对于节点u的每个邻居节点v,更新它们的估计值,如果通过u到达v的路径比当前节点v的估计值更短,则更新节点v的估计值为通过节点u到达v的路径长度,同时将节点u设置为节点v的前驱节点。

5. 当所有节点都被加入到S中后,最短路径树就构建完成了。

Dijkstra算法的关键点在于每次选择具有最小估计值的节点加入S中。

这是通过使用最小堆或优先级队列来实现的,以便在每次操作中迅速找到估计值最小的节点。

通过这种方式,Dijkstra算法避免了遍历所有可能的路径,而是通过贪婪策略选择当前节点的最短路径,并逐步扩展到其他节点。

这种贪婪策略保证了每次选择的节点都是局部最优的选择,从而最终找到全局的最短路径。

Dijkstra算法的时间复杂度取决于图的表示方式和优先级队列的实现方式。

如果使用邻接矩阵表示图,并且优先级队列使用二叉堆实现,则算法的时间复杂度为O(V^2 + E log V),其中V是节点的数量,E是边的数量。

如果使用邻接表表示图,并且优先级队列使用斐波那契堆实现,则算法的时间复杂度为O((V+E) log V)。

总之,Dijkstra算法是一种用于寻找从起点到终点的最短路径的算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最短路径算法—D i j k s t r a
总结
-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
Dijkstra 算法解释
本文引用三篇文章:分别是谢光新-Dijkstra 算法,
zx770424 -Dijkstra 算法,
中华儿女英雄 -Dijkstra 算法
有兴趣的朋友请引用原文,由于分类很不相同难以查找,此处仅作汇总。

谢光新的文章浅显易懂,无需深入的数学功力,每一步都有图示,很适合初学者了解。

zx770424将每一步过程,都用图示方式和公式代码\伪代码对应也有助于,代码的理解。

中华儿女英雄从大面上总结了Dijkstra 的思想,并将演路图描叙出来了。

起到总结的效果。

希望这篇汇总有助于大家对Dijkstra 算法的理解。

Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。

主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

简介
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。

主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。

注意该算法要求图中不存在负权边。

算法描述
(这里描述的是从节点1开始到各点的dijkstra算法,其中Wa->b表示a->b的边的权值,d(i)即为最短路径值)
1.置集合S={2,3,...n}, 数组d(1)=0, d(i)=W1->i(1,i之间存在边) or +无穷大(1.i之间不存在边) 2.在S中,令d(j)=min{d(i),i属于S},令S=S-{j},若S为空集则算法结束,否则转3
3.对全部i属于S,如果存在边j->i,那么置d(i)=min{d(i), d(j)+Wj->i},转2
Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。

在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。

此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

算法具体步骤
(1)初始时,S只包含源点,即S=,v的距离为0。

U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。

(2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

(3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k 的距离加上边上的权。

(4)重复步骤(2)和(3)直到所有顶点都包含在S中。

复杂度分析
Dijkstra 算法的时间复杂度为O(n^2)
空间复杂度取决于存储方式,邻接矩阵为O(n^2)
Dijkstra 算法的基本思想是:。

相关文档
最新文档