工程力学材料力学_知识点_及典型例题
工程力学---材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解
P
B C
l 2 l 2
A
x
P 解:AC段:M ( x ) x 2 y P EIy x 2 A P 2 EIy x C x 4 l 2 P 3 EIy x Cx D 12
P
B C
l 2
x
由边界条件: x 0时,y 0
l 由对称条件: x 时,y 0 2
梁的转角方程和挠曲线方程分别为:
最大转角和最大挠度分别为:
11qa max A 1 x1 0 6 EI 19qa 4 ymax y2 x2 2 a 8EI
3
例5:图示变截面梁悬臂梁,试用积分法
求A端的挠度 P
I
2I
l
fA 解: AC段 0 x l
B
P 3 2 EIy x C2 x D2 6
由边界条件: x l时,y=0, =0
得:
C2
1 1 Pl 2 , D2 Pl 3 2 3
l x 时,yC左 =yC右 , C左 = C右 由连续条件: 2
5 3 2 C1 Pl , D1 Pl 3 16 16
由连续条件: x1 x2 a时, y1 y2 , y1 y2
由边界条件: x1 0时, y1 0
0 x 2 a 时 , y 由对称条件: 2 2
得 D1 0
C1 C2 得 D1 D2
11 3 得 C2 qa 6
qa 1 (11a 2 3 x12 ) 0 x1 a 6 EI q 2 [3ax2 2 ( x2 a)3 11a 3 a x2 2a 6 EI qa y1 (11a 2 x1 x13 ) 0 x1 a 6 EI q y2 [4ax23 ( x2 a) 4 44a 3 x2 ] a x2 2a 24 EI
工程力学复习题(材料力学部分)
工程力学作业(材料力学)第一、二章 拉伸、压缩与剪切一、填空题1、铸铁压缩试件,破坏是在 截面发生剪切错动,是由于引起的。
2、a 、b 、c 三种材料的应力-应变曲线如图所示。
其中强度最高的材料 是 ,弹性模量最小的材料是 ,塑性最好的材料是 。
3、图示结构中杆1和杆2的截面面积和拉压许用应力均相同,设载荷P 可在刚性梁AD 上移动。
结构的许可载荷[ P ]是根据P 作用于 点处确定的。
aa1 2 PCDBAOσεa bc4、五根抗拉刚度EA 相同的直杆铰接成如图所示之边长为a 的正方形结构,A 、B 两处受力 P 作用。
若各杆均为小变形,则A 、B 两点的相对位移∆AB = 。
5、图示结构中。
若1、2两杆的EA 相同,则节点A 的竖向位移∆Ay = ,水平位移为∆Ax = 。
6、铆接头的连接板厚度t = d ,则铆钉的切应力τ为 , 挤压应力σ bs 为 。
P / 2 P / 2二、选择题1、当低碳钢试件的试验应力σ=σs时,试件将:(A) 完全失去承载能力; (B) 破断;(C) 发生局部颈缩现象; (D) 产生很大的塑性变形。
正确答案是。
2、图示木接头,水平杆与斜杆成α角,其挤压面积为A bs为:(A)b h;(B)b h tan α;(C)b h/ cos α;(D)b h /(cos α sin α)。
3、图示铆钉联接,铆钉的挤压应力为:(A)2 P / ( π d2 );(B)P / (2 d t );(C)P/ (2 b t );(D)4 P/ ( π d2 )。
正确答案是。
4、等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为l ,截面积为A ,材料弹性模量为E ,泊松比为ν,拉伸理论告诉我们,影响该杆横截面上应力的因素是:(A )E 、ν、P ; (B )l 、A 、P ; (C )l 、A 、E 、ν、P ; (D )A 、P 。
正确答案是 。
5、等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为截面积为A ,则横截面上的正应力和45º斜截面上的正应力分别为:(A )P / A ,P / ( 2 A ); (B )P / A ,P / ( 21/ 2A );(C )P / ( 2 A ),P / ( 2 A ); (D )P / A ,2 1 / 2P/ A 。
工程力学--材料力学(第五、六章)经典例题及讲解
P
A
0.5 m
C D
0.4 m 1m
B
20
40
解:C点的应力 σ C = E ε = 200 × 10 3 × 6 × 10 − 4
= 120M Pa
C截面的弯矩
M C = σ C W z = 640 N ⋅ m
由 M C = 0.5 R A = 0.5 × 0.4 P = 0.2 P = 640 N ⋅ m 得 P = 3.2kN
度减小一半时,从正应力强度条件考虑, 该梁的承载能力将是原来的多少倍? 解: 由公式
σ max
M max M max = = 2 Wz bh 6
可以看出:该梁的承载能力将是原来的2 可以看出:该梁的承载能力将是原来的2倍。
例4:主梁AB,跨度为l,采用加副梁CD AB,跨度为l 采用加副梁CD
的方法提高承载能力, 的方法提高承载能力,若主梁和副梁材料 相同,截面尺寸相同, 相同,截面尺寸相同,则副梁的最佳长度 a为多少? 为多少?
2 2
2
bh b( d − b ) Wz = = 6 6
2 2 2
∂ Wz d 2 b 2 = − =0 ∂b 6 2
d 由此得 b = 3
d
2 2
h
h = d −b =
h = 2 ≈3:2 b
2 d 3
b
例12:跨长l =2m的铸铁梁受力如图示,已知材料许用拉、 12:跨长l =2m的铸铁梁受力如图示 已知材料许用拉、 的铸铁梁受力如图示,
10 kN / m
200 2m 4m 100
10 kN / m
200
2m
Fs( kN ) 25 Fs(
45 kN
4m
100
工程力学材料力学-知识点-及典型例题
作出图中AB杆的受力图。
A处固定铰支座B处可动铰支座作出图中AB、AC杆及整体的受力图。
B、C光滑面约束A处铰链约束DE柔性约束作图示物系中各物体及整体的受力图。
AB杆:二力杆E处固定端C处铰链约束(1)运动效应:力使物体的机械运动状态发生变化的效应。
(2)变形效应:力使物体的形状发生和尺寸改变的效应。
3、力的三要素:力的大小、方向、作用点。
4、力的表示方法:(1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!)(2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。
5、约束的概念:对物体的运动起限制作用的装置。
6、约束力(约束反力):约束作用于被约束物体上的力。
约束力的方向总是与约束所能限制的运动方向相反。
约束力的作用点,在约束与被约束物体的接处7、主动力:使物体产生运动或运动趋势的力。
作用于被约束物体上的除约束力以外的其它力。
8、柔性约束:如绳索、链条、胶带等。
(1)约束的特点:只能限制物体原柔索伸长方向的运动。
(2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。
()9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。
(1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。
被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。
(2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。
()10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。
约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。
()11、固定铰支座(1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。
(2)约束反力的特点:固定铰支座的约束反力同中间铰的一样,也是方向未定的一个力;用一对正交的力来表示,指向假定。
()12、可动铰支座(1)约束的构造特点把固定铰支座的底部安放若干滚子,并与支撑连接则构成活动铰链支座约束,又称锟轴支座。
工程力学试题库_材料力学
⼯程⼒学试题库_材料⼒学材料⼒学基本知识复习要点1.材料⼒学的任务材料⼒学的主要任务就是在满⾜刚度、强度和稳定性的基础上,以最经济的代价,为构件确定合理的截⾯形状和尺⼨,选择合适的材料,为合理设计构件提供必要的理论基础和计算⽅法。
2.变形固体及其基本假设连续性假设:认为组成物体的物质密实地充满物体所在的空间,毫⽆空隙。
均匀性假设:认为物体内各处的⼒学性能完全相同。
各向同性假设:认为组成物体的材料沿各⽅向的⼒学性质完全相同。
⼩变形假设:认为构件在荷载作⽤下的变形与构件原始尺⼨相⽐⾮常⼩。
3.外⼒与内⼒的概念外⼒:施加在结构上的外部荷载及⽀座反⼒。
内⼒:在外⼒作⽤下,构件内部各质点间相互作⽤⼒的改变量,即附加相互作⽤⼒。
内⼒成对出现,等值、反向,分别作⽤在构件的两部分上。
4.应⼒、正应⼒与切应⼒应⼒:截⾯上任⼀点内⼒的集度。
正应⼒:垂直于截⾯的应⼒分量。
切应⼒:和截⾯相切的应⼒分量。
5.截⾯法分⼆留⼀,内⼒代替。
可概括为四个字:截、弃、代、平。
即:欲求某点处内⼒,假想⽤截⾯把构件截开为两部分,保留其中⼀部分,舍弃另⼀部分,⽤内⼒代替弃去部分对保留部分的作⽤⼒,并进⾏受⼒平衡分析,求出内⼒。
6.变形与线应变切应变变形:变形固体形状的改变。
线应变:单位长度的伸缩量。
练习题⼀.单选题1、⼯程构件要正常安全的⼯作,必须满⾜⼀定的条件。
下列除()项,其他各项是必须满⾜的条件。
A、强度条件B、刚度条件C、稳定性条件D、硬度条件2、物体受⼒作⽤⽽发⽣变形,当外⼒去掉后⼜能恢复原来形状和尺⼨的性质称为()A.弹性B.塑性C.刚性D.稳定性3、结构的超静定次数等于()。
A.未知⼒的数⽬B.未知⼒数⽬与独⽴平衡⽅程数⽬的差数C.⽀座反⼒的数⽬D.⽀座反⼒数⽬与独⽴平衡⽅程数⽬的差数4、各向同性假设认为,材料内部各点的()是相同的。
A.⼒学性质B.外⼒C.变形D.位移5、根据⼩变形条件,可以认为()A.构件不变形B.结构不变形C.构件仅发⽣弹性变形D.构件变形远⼩于其原始尺⼨6、构件的强度、刚度和稳定性()A.只与材料的⼒学性质有关B.只与构件的形状尺⼨有关C.与⼆者都有关D.与⼆者都⽆关7、在下列各⼯程材料中,()不可应⽤各向同性假设。
材料力学典型例题与详解(经典题目)
所以石柱体积为
V3
=
G ρ
=
[σ ]A(l) − ρ
F
= 1×106 Pa ×1.45 m 2 −1000 ×103 N = 18 m3 25 ×103 N/m3
三种情况下所需石料的体积比值为 24∶19.7∶18,或 1.33∶1.09∶1。 讨论:计算结果表明,采用等强度石柱时最节省材料,这是因为这种设计使得各截面的正应 力均达到许用应力,使材料得到充分利用。 3 滑轮结构如图,AB 杆为钢材,截面为圆形,直径 d = 20 mm ,许用应力 [σ ] = 160 MPa ,BC 杆为木材,截面为方形,边长 a = 60 mm ,许用应力 [σ c ] = 12 MPa 。试计算此结构的许用载
= 1.14 m 2
A
2=
F+ρ [σ ] −
A1 l1 ρ l2
=
1000 ×103 N + 25 ×103 N/m3 ×1.14 m 2 × 5 m 1×106 N/m 2 − 25×103 N/m3 × 5 m
= 1.31 m 2
A
3=
F
+ ρA1l1 + ρA2l2 [σ ] − ρ l3
= 1000 ×103 N + 25 ×103 N/m3 ×1.14 m 2 × 5 m + 25×103 N/m3 ×1.31 m 2 × 5 m = 1.49m 2 1×106 N/m 2 − 25 ×103 N/m3 × 5 m
解:1、计算 1-1 截面轴力:从 1-1 截面将杆截成两段,研究上半段。设截面上轴力为 FN1 ,
为压力(见图 b),则 FN1 应与该杆段所受外力平衡。杆段所受外力为杆段的自重,大
《工程力学(工程静力学与材料力学)(第3版)》习题解答:第3章 力系的平衡
工程力学(工程静力学与材料力学)习题与解答第3章 力系的平衡3-1 试求图示两外伸梁的约束反力FRA 、FRB ,其中(a )M = 60kN ·m ,FP = 20 kN ;(b )FP = 10 kN ,FP1 = 20 kN ,q = 20kN/m ,d = 0.8m 。
知识点:固定铰支座、辊轴支座、平面力系、平衡方程 难易程度:一般 解答:图(a-1) 0=∑x F ,FAx = 00=∑A M ,05.34R P =⨯+⨯--B F F M 05.342060R =⨯+⨯--B F FRB = 40 kN (↑)=∑y F ,0P R =-+F F F B Ay20-=Ay F kN (↓)图(b-1),M = FPd 0=∑A M ,03221P R P =⋅-⋅++⋅d F d F d F dqd B即 032211P R P =-++F F F qd B 02032108.02021R =⨯-++⨯⨯B FFRB = 21 kN (↑)=∑y F ,FRA = 15 kN (↑)3-2 直角折杆所受载荷,约束及尺寸均如图示。
试求A 处全部约束力。
A MB Ay F B R F CAx F PF(a) M A B B R F A R F P 1F C qdBD(b)(a )(b ) 习题3-1图FMB习题3-3图sF W A F ABF BF AN F(a)知识点:固定端约束、平面力系、平衡方程 难易程度:一般 解答: 图(a ): 0=∑x F ,0=Ax F=∑y F ,=Ay F (↑)0=∑A M ,0=-+Fd M M AM Fd M A -=3-3 图示拖车重W = 20kN ,汽车对它的牵引力FS = 10 kN 。
试求拖车匀速直线行驶时,车轮A 、B 对地面的正压力。
知识点:固定端约束、平面力系、平衡方程 难易程度:一般解答: 图(a ):0)(=∑F A M 08.214.1NB S =⨯+⨯-⨯-F F W6.13NB =F kN=∑y F ,4.6NA =F kN3-4 图示起重机ABC 具有铅垂转动轴AB ,起重机重W = 3.5kN ,重心在D 。
《工程力学(工程静力学与材料力学)(第3版)》习题解答:第1章 静力学基本概念
(a) (b)习题1-1图FACBAxF Ay F 工程力学(工程静力学与材料力学)第1章 静力学基本概念1-1 图a 、b 所示,Ox1y1与Ox2y2分别为正交与斜交坐标系。
试将同一方F 分别对两坐标系进行分解和投影,并比较分力与力的投影。
知识点:力的分力与投影 难易程度:易 解答:(a ),图(c ):11 sin cos j i F ααF F += 分力:11 cos i F αF x = , 11 sin j F αF y =投影:αcos 1F F x = ,αsin 1F F y =讨论:ϕ= 90°时,投影与分力的模相等;分力是矢量,投影是代数量。
(b ),图(d ): 分力:22)tan sin cos (i F ϕααF F x -= ,22sin sin j F ϕαF y =投影:αcos 2F F x = ,)cos(2αϕ-=F F y讨论:ϕ≠90°时,投影与分量的模不等。
1-2 试画出图a 、b 两情形下各物体的受力图,并进行比较。
1y F xx F 1y F α1x F yF(c )x F 2y F 2y 2x 2x F 2y F F(d )Ay F F B C A Ax F 'F C(a-2)C D C F D R (a-3)AxF F F A C BD Ay F (b-1)习题1-3图知识点:受力分析与受力图 难易程度:易 解答: 比较:图(a-1)与图(b-1)不同,因两者之FRD 值大小也不同。
1-3 试画出图示各物体的受力图。
F Ax F AyF D C B A B F 或(a-2) F B F A F D C A (a-1)BF AxF A AyF C(b-1) W F B DC F F (c-1) F F C B BF A 或(b-2)αD AF A BC B F(d-1)C F C A AF (e-1)Ax F A Ay F D F D CαF BF FC D B F A习题1-4图难易程度:易 解答:1-4 图a 所示为三角架结构。
工程力学材料力学部分课后习题详解
2-1 求下列结构中指定杆内的应力。
已知(a)图中杆的横截面面积A 1=A 2=1150mm 2; 解:(1)分析整体,作示力图∑=0)(i BF M:CB 041088=××−×A F AF N1F N2(c)40kN A F =(2)取部分分析,示力图见(b )∑=0)(i CF M:02442.22=×+×−×q F F A N2(404402)36.36kN 2.2N F ×−×==3262236.361031.62MPa 115010N F A σ−×===×(3)分析铰E ,示力图见(c )∑=0ix F :0sin 12=−βN N F F1240.65kN N N F F == 3161137.961035.3MPa 115010N F A σ−×===×2-2 求下列各杆内的最大正应力。
(3)图(c)为变截面拉杆,上段AB 的横截面积为40mm 2,下段BC 的横截面积为30mm 2,杆材料的ρg =78kN/m 3。
解:1.作轴力图,BC 段最大轴力在B 处6N 120.530107812.0kN B F −=+×××AB 段最大轴力在A 处6N 12(0.5300.540)107812.0kN A F −=+×+×××3N 2612.010400MPa 30mm3010B B F σ−−×===× 3N 2612.010300MPa 40mm 4010AA F σ−−×===×杆件最大正应力为400MPa ,发生在B 截面。
EDF BF AF CxF N2(b)A120B120F NC2-4 一直径为15mm ,标距为200mm 的合金钢杆,比例极限内进行拉伸试验,当轴向荷载从零缓慢地增加58.4kN 时,杆伸长了0.9mm ,直径缩小了0.022mm ,确定材料的弹性模量E 、泊松比µ。
工程力学概述和例题讲解
静力学基本内容
静力学——研究物体受力及平衡规律。(只研究“力”) Statics
刚体、刚体系
建筑结构静 力计算
静力学基本概念
空气动力学,水动力学 一般力学——研究经典力学的一般原理
静力学,理论力学,振动力学
绪论
本课程特点 第一门技术基础课——基础课与专业基础课之间
前面基础 课:数学、 物理
工程 力学
后续力学课:固体力学、 结构力学、弹性力学、 塑性力学、流体力学等
专业基 础课
专 业 课
① 概念性强、 逻辑严密、 理论系统;
1静.2力.3 学公公理3理
公理3
加减平衡力系公理: 在已知力系上加或减去任意平衡力系,并不改变 原力系对刚体的作用。 此公理是研究力系等效的重要依据。
推理1 力的可传性: 作用在刚体上某点的力,可沿其作用线移动,而 不改变它对刚体的作用。
力对刚体的三要素: 1)大小; 2)方向; 3)作用线。
在此,力是有固定作用线的滑动矢量。
等效力系:如果两力系对物体的作用效应相同,则称它们为 等效力系,简称等效。
力系简化:用一简单力系等效替换一个复杂力系,称为力系 的简化。
合力与分力:若某力系与一个力等效,则称此力为该力系的合 力;而该力系的各力成为此力的分力。
静力学基本概念
1.1.2 刚体的概念 刚体:是指在力的作用下不变形的物体,即在力的作用下其
力对点之矩矢在通过该点的某轴上的投影等于力对该轴之矩。
4)合力矩定理
F RF 1F 2F n M Moz((FFRR))
工程力学材料力学第一章
直杆、杆的截面无突变、截面到载荷作用点有一定 的距离。
直杆轴向拉伸或压缩时斜截面上的应力 k
设有一等直杆受拉力P作用。 P 求:斜截面k-k上的应力。 解:采用截面法 由平衡方程:Pα=P P P k P
α α
k Pα k
Pα 则: pα = Aα
Aα:斜截面面积;Pα:斜截面上内力。
A 由几何关系: α = cos Aα
σ 0 ( 45°斜截面上剪应力达到最大 ) |τ 当α = ± 45°时, α |max =
目 录
公式的应用条件: 公式的应用条件: 直杆、杆的截面无突变、 的距离。 直杆、杆的截面无突变、截面到载荷作用点有一定 的距离。 圣维南( 原理: 圣维南 Saint-Venant)原理: 原理 离开载荷作用处一定距离, 离开载荷作用处一定距离,应力分布与大小不受外载荷作 用方式的影响。 用方式的影响。 应力集中( 应力集中(Stress Concentration): ): 在截面尺寸突变处,应力急剧变大。 在截面尺寸突变处,应力急剧变大。
工程构件,大多数情形下,内力并非均匀分布,集度的定 义不仅准确而且重要,因为“破坏”或“失效”往往从内力集 度最大处开始。 2. 应力的表示: 应力的表示: ① 平均应力: 平均应力: ∆P M ∆A
ΔP pM = ΔA
全应力(总应力): ② 全应力(总应力):
p = lim
∆A → 0
∆P dP = ∆ A dA
目 录
目 录
目 录
例题
图示结构,已知斜杆AB长2m,横截面面积为 图示结构,已知斜杆AB长2m,横截面面积为 AB 水平杆AC的横截面面积为250mm AC的横截面面积为 200mm2。水平杆AC的横截面面积为250mm2。材料的 弹性摸量E=200GPa 载荷F=10kN 试求节点A E=200GPa。 F=10kN。 弹性摸量E=200GPa。载荷F=10kN。试求节点A的位 移。 计算各杆件的轴力。(设斜杆为1 。(设斜杆为 解:1、计算各杆件的轴力。(设斜杆为1杆,水 平杆为2 用截面法取节点A 平杆为2杆)用截面法取节点A为研究对象
工程力学复习题(材料力学部分)
工程力学作业(材料力学)v1.0 可编辑可修改第一、二章 拉伸、压缩与剪切一、填空题1、铸铁压缩试件,破坏是在 截面发生剪切错动,是由于引起的。
2、a 、b 、c 三种材料的应力-应变曲线如图所示。
其中强度最高的材料 是 ,弹性模量最小的材料是 ,塑性最好的材料是 。
3、图示结构中杆1和杆2的截面面积和拉压许用应力均相同,设载荷P 可在刚性梁AD 上移动。
结构的许可载荷[ P ]是根据P 作用于 点处确定的。
aa1 2 PCDBAOσεa bc4、五根抗拉刚度EA 相同的直杆铰接成如图所示之边长为a 的正方形结构,A 、B 两处受力 P 作用。
若各杆均为小变形,则A 、B 两点的相对位移∆AB = 。
5、图示结构中。
若1、2两杆的EA 相同,则节点A 的竖向位移∆Ay = ,水平位移为∆Ax = 。
6、铆接头的连接板厚度t = d ,则铆钉的切应力τ为 , 挤压应力σ bs 为 。
P / 2 P / 2二、选择题1、当低碳钢试件的试验应力σ=σs时,试件将:(A) 完全失去承载能力; (B) 破断;(C) 发生局部颈缩现象; (D) 产生很大的塑性变形。
正确答案是。
2、图示木接头,水平杆与斜杆成α角,其挤压面积为A bs为:(A)b h;(B)b h tan α;(C)b h/ cos α;(D)b h /(cos α sin α)。
3、图示铆钉联接,铆钉的挤压应力为:(A)2 P / ( π d2 );(B)P / (2 d t );(C)P/ (2 b t );(D)4 P/ ( π d2 )。
正确答案是。
4、等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为l ,截面积为A ,材料弹性模量为E ,泊松比为ν,拉伸理论告诉我们,影响该杆横截面上应力的因素是:(A )E 、ν、P ; (B )l 、A 、P ; (C )l 、A 、E 、ν、P ; (D )A 、P 。
正确答案是 。
5、等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为截面积为A ,则横截面上的正应力和45º斜截面上的正应力分别为:(A )P / A ,P / ( 2 A ); (B )P / A ,P / ( 21/ 2A );(C )P / ( 2 A ),P / ( 2 A ); (D )P / A ,2 1 / 2P/ A 。
工程力学-材料力学部分
A 代入上式,得: Aa cos a
pa s cos a 斜截面上总应力:
斜截面上总应力: pa s cos a 分解: pa
k
F F
sa pa cosa s cos a
2
k
F
a
k
a
sa
Pa
t a pa sin a s cos a sin a
s
2
sin 2a
a
工程力学材料力学部分:
主要研究作用在物体上的力及变形规律。研究构件在相应 承载能力的条件下,以最经济的代价为构件确定合理的形状和 尺寸,选择适当的材料,为构件的设计提供必要的理论基础和 计算方法。
主要内容:
1、内力、应力的概念; 2、轴向拉伸与压缩; 3、剪切和挤压; 4、圆轴扭转; 5、梁的弯曲。
截面面积A成反比,这一比例关系称为胡克定律。即
FN l l = EA
E 为材料的弹性模量,取值与材料有关,由实验测定, 单位常用GPa。 胡克定律的另一表达式:
s E
32
胡克定律表明:当 FN 和 l 不变时, EA 值越大,绝对 变形量越小。说明EA是杆件抵抗拉压变形能力的度量。
例5.3
并求与横截面夹角30°的斜截面上的正应力和切应力。 解:拉压杆斜截面上的应力,直接由公式求之:
s0
F 4 10000 127 .4MPa 2 A 3.14 10
τ max σ 0 /2 127.4/2 63.7MPa
3 s a s 0 cos a 127 .4 95.5MPa 4
m
F F
m
(a)
以作用力FN替代弃去部分对研究对象的作用。
《工程力学》复习指导含答案
材料力学重点及其公式材料力学的任务(1)强度要求; (2)刚度要求;(3)稳定性要求。
变形固体的基本假设(1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设.外力分类:表面力、体积力;内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。
(3)根据平衡条件,列平衡方程,求解截面上和内力。
应力:正应力、切应力。
变形与应变:线应变、切应变。
杆件变形的基本形式(1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。
失效原因:脆性材料在其强度极限破坏,塑性材料在其屈服极限时失效。
二者统称为极限应力理想情形。
塑性材料、脆性材料的许用应力分别为:,,强度条件:,等截面杆轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:,沿轴线方向的应变和横截面上的应力分别为:,。
横向应变为:,横向应变与轴向应变的关系为:。
胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即,这就是胡克定律。
E为弹性模量。
将应力与应变的表达式带入得:静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。
圆轴扭转时的应力变形几何关系-圆轴扭转的平面假设。
物理关系-—胡克定律.力学关系圆轴扭转时的应力:;圆轴扭转的强度条件:,可以进行强度校核、截面设计和确定许可载荷。
圆轴扭转时的变形:;等直杆:圆轴扭转时的刚度条件:,弯曲内力与分布载荷q之间的微分关系;;Q、M图与外力间的关系a)梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。
b)梁在某一段内作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线.c)在梁的某一截面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作出图中AB杆的受力图。
A处固定铰支座B处可动铰支座作出图中AB、AC杆及整体的受力图。
B、C光滑面约束A处铰链约束DE柔性约束作图示物系中各物体及整体的受力图。
AB杆:二力杆E处固定端C处铰链约束(1)运动效应:力使物体的机械运动状态发生变化的效应。
(2)变形效应:力使物体的形状发生和尺寸改变的效应。
3、力的三要素:力的大小、方向、作用点。
4、力的表示方法:(1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!)(2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。
5、约束的概念:对物体的运动起限制作用的装置。
6、约束力(约束反力):约束作用于被约束物体上的力。
约束力的方向总是与约束所能限制的运动方向相反。
约束力的作用点,在约束与被约束物体的接处7、主动力:使物体产生运动或运动趋势的力。
作用于被约束物体上的除约束力以外的其它力。
8、柔性约束:如绳索、链条、胶带等。
(1)约束的特点:只能限制物体原柔索伸长方向的运动。
(2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。
()9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。
(1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。
被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。
(2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。
()10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。
约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。
()11、固定铰支座(1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。
(2)约束反力的特点:固定铰支座的约束反力同中间铰的一样,也是方向未定的一个力;用一对正交的力来表示,指向假定。
()12、可动铰支座(1)约束的构造特点把固定铰支座的底部安放若干滚子,并与支撑连接则构成活动铰链支座约束,又称锟轴支座。
(2)约束反力的特点:垂直于支承面的一个力,指向假定。
()13、二力杆约束(1)约束的构造特点:杆件的自重不计,杆件的两端均用铰链(或固定铰支座)与周围的其它物体相连接。
两铰链之间不受任何力作用。
杆件可以是直杆或曲杆。
二力杆约束又称链杆约束,约束中的杆件又称之为二力杆。
(2)约束的约束特:性限制了物体沿杆件两端铰链连线方向的运动。
但不能阻止物体沿铰链的转动。
()(3)约束反力特点:根据二力平衡公理,二力杆约束的约束反力的方向必沿杆件两端铰链中心的连线,指向不定的一个力。
(二力平衡公理:一个刚体受两个力作用处于平衡的必要和充分条件:两个力等值、反向、共线)13、固定端约束:(1)约束的构造特点把杆件的端部与周围物体进行刚性连接。
两连接物体不能绕连接点有任何的相对转动。
(2)约束反力的特点:用一对正交的力和一个反力偶(用M表示)来表示。
()14、受力图:反映物体受力情况的图形。
15、画受力图的步骤:(1)确定研究对象,取脱离体。
(只画研究对象本身,不能画与它相连接的周围其它物体!)(2)画主动力。
(只画研究对象直接受到的主动力)(3)画约束反力。
(只画研究对象以外的其它物体对研究对象的约束反力,按每种约束的反力特点画)()16、物系:由两个及两个以上的物体构成的物体系统。
17、作用与反作用公理:两物体之间的相互作用力总是大小相等、方向相反、作用在同一直线上。
知识点:1、平衡:物体相对于地面处于静止或作匀速直线运动。
(物体受到的力的合力等于零)2、力在坐标轴上的投影:通过力的起点和终点分别作坐标轴的垂线,两垂线与坐标轴的交点之间的线段就是力在坐标轴上的投影。
(如图中的Fx和Fy)力的投影有正负,力的箭头指向与座标的正向一致为正;反之为负。
若力与正向夹角为α,则:Fx=FcosαFy=-Fcosα合力投影定理:力系的合力在任意轴上的投影等于各分力在同一轴上投影的代数和。
R X=F1X+F2X+...F nX=∑F XR Y=F1Y+F2Y+...F nY=∑F Y3、力矩:力矩是力对物体绕某一点转动其转动效果大小的度量。
它等于力的大小(F)乘以该点到力的距离(力臂d)。
并规定,力使物体绕该点顺转为负,逆转为正。
力矩的计算公式:M O(F)=±F³d4、合力矩定理:合力对某一点之矩等于各分力对同一点之矩的代数和。
M O(F R)=M O(F1)+M O(F2)+...M O(F n)=∑M O(F)分布力对某点之矩等于分布力的合力对该点之矩。
均匀分布的分布力的合力作用点在分布段的中点。
5、力偶:力偶是等值、反向、相互平行的一对特殊的力。
力偶对物体只起转动效果。
力偶矩的计算公式:M O(F)=±F³d [其中:d---力偶臂(两平行力之间的距离)]求图示组合平面图形的形心坐标。
(单位:mm)解:1、将图示组合平面图形分成如右图所示的矩形I和矩形II组合后再减去圆III(认为其面积为负的)2、I、II、III的面积和形心坐标分别为:A 1=(100-20)³20=1600mm2 X1=10mm Y1=20+40=60mmA 2=80³20=1600mm2 X2=40mm Y2=10mmA 3=-πR2=3.14³52=-78.5mm2X3=10mm Y3=90mm3、利用形心坐标公式计算形心坐标(1)、分割法:工程中的零部件往往是由几个简单基本图形组合而成的,在计算它们的形心时,可先将其分割为几个基本图形,利用查表法查出每个基本图形的形心位置与面积,然后利用形心计算公式求出整体的形心位置。
此法称为分割法。
(2)、负面积法:仍然用分割法的公式,只不过去掉部分的面积用负值。
上式中的A i是每一个基本图形的面积;X i、Y i分别是每一个基本图形的形心的X、Y坐标。
上述两种方法可以分别使用,也可以同时使用。
如图所示的轴向拉压杆,已知材料的许用应力[σ]=10MPa,若截面为圆形,试设计其直径d。
知识点:1、变形:物体形状和尺寸的改变。
2、强度:强度是构件承受外力时抵抗破坏的能力。
3、刚度:刚度是构件承受外力时抵抗变形的能力。
4、稳定性:稳定性是构件承受外力时保持原有平衡状态的能力。
5、杆件的基本变形形式:轴向拉伸和压缩、剪切、扭转、弯曲。
6、轴向拉伸和压缩的受力特点:杆件受到的力(或合力)与其轴线重合。
7、轴力:与杆件的轴线重合的内力(用F N或N表示)(拉为正,压为负)。
8、截面法:用一假想的截面从要求内力处将杆件切开分成两段,取其中的任意一段为研究对象,画出其受力图,利用平衡方程,求出内力。
其步骤可归结为下列四步:切、取、代、平9、轴力图:将杆件的轴力随截面位置变化的关系用一个图形来表示。
10、应力:应力是分布内力的集度。
垂直于截面上的应力叫正应力,用σ表示。
切于截面的应力叫切应力(剪应力),用τ表示。
11、轴向拉压杆横截面上正应力的计算公式:12、极限应力(σu):材料失效时的应力。
塑性材料的极限应力是屈服极限(σs);脆性材料的极限应力是强度极限(σb)。
13、许用应力[σ]:保证构件安全工作,材料许可承担的最大应力。
其中:n---安全系数14、安全系数:为保证构件具有一定安全贮备而选取的一个大于1的系数。
安全系数越大构件越安全,但越不经济。
15、轴向拉压杆的强度条件:16、三类强度计算(1)、强度校核校核是否成立。
成立则强度够,不成立则强度不够。
(2)、截面设计计算出杆件的横截面面积,从而根据截面形状设计尺寸。
(3)、确定许可荷载计算出杆件的轴力,从而根据轴力与荷载的关系确定许可荷载的大小。
如图所示的铆钉联接,已知铆钉的许用剪应力[τ]=80MPa,铆钉和钢板的许用挤压应力[σjbs]=200MPa,钢板的许用正应力[σ]=160MPa,铆钉直径d=20mm,钢板厚度t=8mm,钢板宽度b=60mm,P=10kN,试校核此联接的强度。
知识点:1、剪切的受力特点:构件受到一对大小相等、方向相反、作用线相隔很近的平行力作用。
2、剪切的变形特点:沿平行两力作用线之间的面发生相对错动。
发生相对错动的面称为剪切面。
剪切变形是工程实际中常见的一种基本变形。
常出现于联接件中,如:铆钉联接、螺栓联接、销钉联接、键联接、榫头联接等等。
3、挤压:剪切变形中传递力的接触面发生的局部受压现象。
传递力的接触面称为挤压面(d图中的阴影部分a图的挤压面计算面积)。
4、剪应力计算公式:(工程实用计算中假设剪应力是均匀分布在剪切面上的)其中:τ---剪应力 FS---剪切面上的剪力 A---剪切面面积 [τ]---许用剪应力5、剪切的强度条件:6、挤压的应力计算公式:(工程实用计算中假设挤压应力是均匀分布在挤压面的计算面积上的)其中:Fbs---挤压力σbs---挤压应力 Ajbs---挤压面计算面积(是其最大正投影面面积)7、挤压的强度条件:由上述两个强度条件可进行三个方面的强度计算:(1)、强度校核(2)、截面设计(3)、确定许可荷载8、轴向拉压杆的强度条件:图示圆轴AB所受的外力偶矩M e1=800N²m,M e2=1200N²m,M e3=400N²m,G=80GPa,l2=2l1=600mm [τ]=50MPa,[φ/]=0.25(º)/m。
试设计轴的直径。
知识点:1、扭转:杆件的两端受到大小相等、转向相反且作用平面直垂于杆轴线的力偶的作用,致使杆件各横截面都绕杆轴线发生相对转动,杆件表面的纵向线将变成螺旋线。
2、轴:以扭转变形为主的杆件称为轴。
3、扭矩:当杆件受到外力偶矩作用发生扭转变形时其横截面上的内力偶矩。
(用T表示;单位:N.m或kN.m)扭矩的正负号规定___右手螺旋法则。
扭矩的计算方法---截面法(方法与轴力的计算相似)4、扭矩图:用一个图形来表示截面上的扭矩随其截面位置变化关系。
5、圆轴扭转时横截面上任一点的切应力计算公式:其中:T---截面上的扭矩ρ---要求应力的点到圆心O点的距离6、横截面上最大切应力发生在周边上,计算公式为:实心和空心圆截的惯性矩I p和抗扭截面系数W p(1)实心圆截面(2)空心圆截面7、圆轴扭转时的强度条件8、扭转角(υ):圆轴扭转时两横截面相对转过的角度。
9、单位扭转角(θ):单位长度上的扭转角。
(rad/m)其中:T---截面上的扭矩 I p---截面对圆心O点的极惯性矩 L---两截面之间的距离 G---剪切弹性模量10、圆轴扭转时的刚度条件:其中:[θ]---许用单位扭转角(rad/m或°/m)试作出图示梁的剪力图和弯矩图。